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Abstract—Battery energy storage systems (BESS) are increas-
ingly deployed in microgrids due to their benefits in improving
system reliability and reducing operational costs. Meanwhile,
advanced small modular reactors (SMRs) offer many advantages,
including relatively small physical footprints, reduced capital
investment, and the ability to be sited in locations not possible
for larger nuclear plants. In this paper, we propose a bi-level
operational planning model that enables microgrid planners to
determine the optimal BESS size and technology while taking
into account the optimal long-term (a yearly simulation with a
15-min resolution) operations of a microgrid with SMRs and
wind turbines. Case studies are performed using realistic BESS
and grid data for two BESS technologies, i.e., Li-Ion battery
and compressed air energy storage. Numerical results show the
effectiveness of the proposed bi-level model. The pros and cons
of the two BESS technologies are also revealed.

NOMENCLATURE

Indices, Sets, and Parameters
NT Total number of operational time periods

t Index of operational time periods, t=1,2,3,...,NT
LT Total number of years in BESS lifetime

PW Present worth factor

y Index of years, y=1,2,3,...,LT
Cap Capacity of BESS

ECmax Max allowable daily electricity cost

τ Time interval, in hour

Emax Max accumulative energy from the grid

Cmax/Dmax Maximum charge/discharge rate of BESS

SOCmin/SOCmax Min/Max state of charge (SOC) for BESS

ηC/ηD Charging/discharging efficiency of BESS

λ̄t Electricity price at time t
P̄W
t Wind generation at time t

P̄D
t Electricity demand at time t

Variables
OCNB

y Annual operating cost without BESS at year y
OCB

y Annual operating cost with BESS at year y
∂y Battery degradation coefficient at year y
OMy Operation and maintenance cost of BESS at year y
IC Up-front capital cost of BESS

ICt /IDt Charging/discharging indicator of BESS at time t; 1

for charge/discharge, otherwise 0

PN
t Power generated by SMR at time t

PB
t Electricity consumption/generation by BESS at time t

PG
t Power extracted/injection from/to grid at time t

SOCt SOC of at time t

I. INTRODUCTION

The deployment of battery energy storage systems (BESS)

in electric distribution networks such as microgrids has sig-

nificantly increased in recent years. Deploying BESS in the

context of microgrids can provide a variety of grid ser-

vices to improve reliability, resiliency, and economic gains.

A microgrid is defined as a group of interconnected loads

and distributed energy resources (DERs) with clearly defined

electrical boundaries that act as a single controllable entity

with respect to the grid and can connect and disconnect from

the grid to enable it to operate in both grid-connected and

islanded modes [1]. BESS is an essential component in a

microgrid and plays a critical role in both modes. BESS,

through demand response, could provide additional operational

flexibilities for microgrids operated in either a grid-connected

or islanded mode [2]. In the isolated mode, BESS is typically

utilized to regulate the system frequency and voltage by

either charging or discharging when a generation-demand

mismatch occurs to maintain the stability of the microgrid

(e.g., voltage and frequency). In the grid-tied mode, the BESS

reduces the microgrid operation cost by efficiently utilizing

renewable generation and taking advantage of electricity price

variations. Meanwhile, advanced small modular reactor (SMR)

is a promising type of nuclear reactors that can generate from

tens of megawatts up to hundreds of megawatts via modular

technology to achieve that purchasing economies of series

production and short construction times [3]. It demonstrates

superiority such as reducing footprints, capital investment, and

safely developing [4].

BESS deployment in microgrids has been extensively stud-

ied in the literature [5]. The work conducted in this area can be

divided into two main topics: BESS planning and operation.

The main objective of BESS planning is to determine the

optimal BESS size. Besides the optimal size, some of the

existing studies investigate the optimal BESS technology and

location. From the standing point of BESS operation, the focus

is on proposing control and scheduling approaches to manage

BESS operation to achieve a specific objective. However, the

size of the BESS is the most important factor determining the

ability to deliver the desired economic and technical benefits.

The microgrid-integrated BESS planning and operation with

heterogeneous DERs (e.g., SMR, renewable generation) is still

an open and pressing issue.
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This paper addresses this issue by systematically coupling

BESS with SMR generation, distributed wind turbines, elec-

tricity demand, and electricity prices in a microgrid. We

propose a bi-level operational planning model that enables

microgrid planners to determine the optimal BESS size and

technology while taking into account the optimal long-term

(hourly scheduling in an entire year) operations of a microgrid

with SMRs and wind turbines. Case studies are performed

using most-up-to-date specifications and data for two BESS

technologies, i.e., Li-Ion battery and compressed air energy

storage (CAES). The remainder of this paper is structured as

follows. The proposed BESS sizing method and formulation

are described in Section II. Numerical results are conducted

and analyzed in Section III. Section IV concludes the paper.

Fig. 1. Schematic of Small Modular Reactors based microgrid with DERs

II. MICROGRID-INTEGRATED BESS SIZING

Figure 1 demonstrates the schematic of the SMR-based

microgrid with BESS and distributed wind energy. A BESS

is normally sized based on its power rating and energy rating.

The power rating is defined as the rate with which the

BESS can supply energy while the energy rating indicates

the maximum amount of energy that can be delivered to

the demand at each cycle [6]. We apply a cost-based sizing

method, in which we size the BESS to maximize the total

benefits associated with installing the BESS in the microgrid,

while considering nuclear safety.

A. Reactor power constraints

Due to safety constraints with thermal cycling and xenon

poisoning, as well as economic constraints due to the large

fixed costs of operating a nuclear power plant, it is not

feasible to have nuclear power meet the entire grid demand

not accounted for by wind. While the limitations for flexible

operation are slightly different for each reactor design, there

are some general guidelines that have been advised from

various governing bodies. This work used guidelines put forth

by the European Utilities Requirements, as shown in Table I

[7]. These guidelines include limitations for flexible operation

for both normal operation and emergency operation, however

we only considered the limitations for normal operation.

TABLE I
EUR REGULATIONS ON LWRS OPERATING IN LOAD FOLLOWING MODE

Power change Regime Max Ramp Rate Max Cycles
50%to100% ±5%Pr /min 20,000

Within ±10%Pr ±5%Pr /sec No Limit
Within ±20%Pr ±10%Pr /min 20,000

Without any form of energy storage, this microgrid would

rely entirely on nuclear power to account for the discrepancy

between power demand and wind power production. This

would almost always result in the reactor operating outside

of safe, allowable ramp rate limits. In order to operate the

reactor within safe limits, the fluctuations in power had

to be reduced. To limit these fluctuations, the wind power

was modelled using the (Ornstein-Uhlenbeck) OU process, a

Langevin equation, which separates the stochastic series into

stochastic and deterministic parts. The OU process is defined

by the stochastic differential equation in Equation 1, where x
is the modeled stochastic process, θ is the drift or deterministic

term, σ is the diffusion or stochastic term, and η is a white

noise term.

dx

dt
= −θx+ ση(t) (1)

The nuclear power was calculated as the grid load minus

the OU modeled wind power. The parameters of the OU

process were then calculated from the wind power data. The

stochastic term, σ, was then reduced, a new wind power

time series was generated from the OU process, and the

resulting required nuclear power from this OU generated wind

power was calculated. This process was repeated until the

magnitude of the stochastic fluctuations in wind, and thus

nuclear power, allowed the nuclear plant to operate within the

EUR guidelines. The remaining power not accounted for by

wind or nuclear must then be generated from another source,

in this case energy storage.

B. BESS Sizing Method

The investment cost associated with purchasing, installing,

operating, and maintaining of the BESS is greatly related

to their size. The installation of the BESS is economically

justifiable only if the provided economic benefits outweigh

the investment cost. We formulate the BESS sizing problem

as an optimization problem whose objective is to maximize the

total BESS benefits (i.e., a cost-benefit analysis). We consider

the BESS size as a design variable whose optimal value

is determined by solving a series of optimization problems.

Specifically, an iterative-based method is proposed, in which

the steady-state microgrid optimal operation problem is solved

for different BESS sizes within the predetermined minimum

and maximum values. Figure 2 shows the flowchart of the pro-

posed BESS sizing while considering its long-term operation.

The BESS sizing problem is firstly decomposed into an upper-

level master problem, in which the BESS size is chosen as a

fixed value, and a lower-level subproblem in which the BESS

operating cost is simulated and calculated within its lifetime
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Fig. 2. Flowchart of the proposed bi-level BESS sizing

(long-term operation), as shown in Fig.2. The BESS size is

then updated and the process is repeated until all size options

are traversed. Finally, the BESS optimal size is chosen as the

one with the maximal benefits. In order to capture the true

benefits of the BESS in long-term operations, unlike previous

studies where BESS operations on a number of representative

days or weeks are studied, we conduct here yearly simulations

of the microgrid operation with a 15-minute resolution (i.e.,

4*24*365=35,040 data points a year) for each of the BESS

size chosen.

C. Problem and Formulation

We consider both grid-connected and islanded operation

modes, in which the solution of the BESS sizing problem

will return the optimal BESS size together with the microgrid

optimal schedules that minimize the total microgrid cost.

The long-term BESS operation in its lifetime is taken into

consideration when the optimization problem is solved. The

upper-level sizing problem is formulated as a Markov Decision

Process (MDP) problem with the following objective function:

Max
LT∑
y=1

PW · [(OCNB
y −OCB

y )−OMy]− IC (2)

where PW is the present worth factor calculated based on the

discount and inflation rates; IC is the investment cost consist-

ing of capital costs for all battery systems are presented for

battery capital and management systems (expressed in terms of

$/kWh), the balance of plant (BOP) ($/kW), power conversion

systems (PCS) ($/kW), and construction and commissioning

(C&C) ($/kWh); OMy is assumed to be fixed over the BESS

lifetime as long as the battery size if determined. The lower-

level annual microgrid operation with BESS is formulated as

mixed-integer linear programming (MILP) problem with the

objective as follows:

OC(·)
y = argmin

NT∑
t=1

τ · PG
t · λ̄t (3)

In (3), the microgrid can participate in a demand-response pro-

gram or other ancillary services. Time-based pricing schemes,

including dynamic and time-of-use pricing, could be applied

to the MILP optimization model. Both microgrid-wide and

generator-level constraints are included in the formulation as

follows:

1) Constraints associated with Microgrid: The microgrid-

wide constraints are listed in (4)–(7). Constraint (4) guarantees

that the electricity generation and load are balanced at time t,

where PG
t is positive when the house extracts electricity from

the grid and negative when the house injects electricity into

the grid. Here, the scheduled power consumption/generation

at each time interval is the average value during a given time

interval. Constraint (5) ensures that the maximum electricity

extracted from the grid at any given time period should not

exceed a specified value. This constraint is suitable for micro-

grid customers who enroll in a demand-response program in

response to utilities’ power-reduction requests during critical

time periods. Constraint (6) shows that the total electricity

energy cost does not exceed a threshold, which may be

prescribed by the microgrid customers. This type of constraint

provides the customer with more restrictive control of their

daily energy cost. Constraint (7) indicates that the total energy

drawn from the grid should not exceed a predefined value.

A zero-energy microgrid can be modeled by setting Emax

in a long-term operation, indicating that the total energy

consumption is equal to the energy generated by the local

on-site RES:

PG
t + PN

t + P̄W
t = P̄D

t + PB
t , ∀t (4)

PG
t ≤ Pmax

t , ∀t (5)

NT∑
t=1

λ̂t · PG
t · τ ≤ ECmax, (6)

NT∑
t=1

pGt · τ ≤ Emax (7)

2) Battery Energy Storage Constraints: The residential

battery constraints include charge/discharge rate limits, state of

charge (SOC) dynamics, SOC limits, and limits on initial/final

SOC [8],[9],[10], which are given in (8)–(13), respectively.

In (8) and (9), the BESS power is positive when charging,

negative when discharging, and 0 when the storage is idling.

In (11), α is the battery degradation parameter on the capacity

fade, which is defined using a linearized depth of discharge

versus life-cycle curve [5]. Constraint (13) suggests that the

storage follows a daily cycle when the SOC at the last period

(t = NT ) would be equal to that of the initial time in the

scheduling horizon (t = 0):

0 ≤ PB
t ≤ ICt · CMax, ∀t (8)
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Fig. 3. Monthly schedules of the Li-Ion battery sized at 30MWh/7.5MW

−DMax · IDt ≤ PB
t ≤ 0, ∀t (9)

ICt + IDt ≤ 1, ∀t (10)

(11)SOCt
∀t

=

{
SOCt−1 + PB

t · ηC/Cap · α, PB
t ≥ 0

SOCt−1 + PB
t /ηD/Cap · α, PB

t < 0

SOCmin ≤ SOCt ≤ SOCmax, ∀t (12)

SOC0= SOCNT (13)

III. NUMERICAL RESULTS

We use one-year historical datasets from March 1st 2018

to Feb, 28th 2019 from the Electric Reliability Council of

Texas (ERCOT) for wind generation, electricity demand, and

electricity prices (i.e., locational marginal prices) for the yearly

simulation. The SMR parameters are from [11]. The datasets

have a time resolution of 15 minutes, totaling 35,040 data

points of the wind, demand, and electricity prices. In the sim-

ulation, we choose Li-Ion battery with a 10-year lifetime and

CAES with a 25-year lifetime at different sizes. For simplicity,

we duplicate the datasets over the years within the BESS’s

lifetime. However, a growth rate on demand and wind capacity

can also be used. Here, Li-Ion battery costs and efficiency

parameters under energy to power ratio of 4.0 are extracted

from [12]. The minimum SOC is set to 20% to minimize

its battery degradation. Both the inflation and discount rates

are assumed to be 2.1% in the battery’s lifetime. We do not

consider federal or state incentives in our simulation. The

lower-level MILP formulation for the long-term microgrid

operation is coded in the General Algebraic Modeling System

(GAMS) using a CPLEX solver [13], while the upper-level

BESS sizing problem is implemented in MATLAB.

Figure 3 shows a monthly schedule of a Li-Ion battery

sized at 30MWh/7.5MW. As seen, in order to maximize the

economic benefit of the microgrid, the battery is charged

when the electricity price is relatively low and is discharged

when the electricity price is high. It is always charged at the

maximum charge power when the price is below zero and

discharged at the maximum discharge power when the price

spikes occur. Additionally, the Li-Ion battery completes more

than 33 cycles during this month. Figure 4 shows a monthly

schedule of the CAES sized at 30MWh/1.875MW. Compared

with the Li-Ion battery, the CAES behaves similarly in terms of

charging and discharging with respect to the electricity price;

however, it has much fewer cycles due to its lower round-trip
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Fig. 4. Monthly schedules of the CAES sized at 30MWh/1.875MW

efficiency.

Microgrid annual operating cost and net benefit versus

storage size ranging from 10 MW to 60 MW are listed in

Table II, in which a negative operating cost indicates a profit

the microgrid gains by selling electricity to the utility grid.

The last row with zero energy and zero power in Table II

represents the microgrid operating cost without installing any

energy storage. As expected, larger-size storage will lead to

a higher annual net benefit (the difference between with and

without storage) in the microgrid operation. However, the high

annual net benefit is generated at the cost of massive capital

investment cost and high O&M cost of the Li-ion battery.

TABLE II
MICROGRID ANNUAL OPERATING COST AND NET BENEFIT VERSUS LI-ION

BATTERY SIZES

Energy
(MWh)

Power
(MW)

Operating cost w/
BESS ($)

Net benefit w/
BESS ($)

60 15 -978,413 995,800
50 12.5 -812,358 829,744
40 10 -645,034 662,421
30 7.5 -480,299 497,685
20 5 -314,468 331,854
10 2.5 -148,259 165,646
0 0 17,386 0

TABLE III
LIFETIME BENEFITS OF DIFFERENT STORAGE TECHNOLOGIES

Lifetime benefit ($)
Energy (MWh) Li-Ion, 4 E/P CAES, 16 E/P

10-year lifetime 25-year lifetime
60 -20,130,128 -1,875,132
50 -16,775,951 -1,563,108
40 -13,433,889 -1,248,522
30 -10,067,111 -936,124
20 -6,710,797 -626,734
10 -3,358,084 -319,507

Table III shows the lifetime benefits of two storage tech-

nologies, i.e., Li-Ion battery and CASE. In Table III, which

the lifetime benefit is calculated base on the capital cost, O&M

cost (fixed plus variable), and net benefit during the lifetime

of each technology. It is seen that the lifetime benefit of the

current state-of-the-art Li-Ion battery is negative at today’s

electricity price, indicating that installing a Li-Ion battery in

this microgrid does not make economic sense if no other

incentives (tax credit) are in place. With the advance in Li-Ion

battery technology, one would expect a much longer lifetime

and lower capital cost per MWh for the Li-Ion battery to make

economic sense. A 50% lifetime increase and a 50% capital

cost reduction will make the lifetime benefit of the Li-Ion
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battery positive in our simulations. In Table III, CAES has a

much higher lifetime benefit (still negative), in contrast to the

Li-Ion battery, which is attributed to its much longer lifetime

and significantly lower capital cost. Therefore, CAES might

be a better choice for the microgrid studied in this paper.

IV. CONCLUSION

This paper proposes a bi-level operational planning model to

determine the optimal BESS size and technology while taking

into account the optimal long-term (hourly scheduling in an

entire year) operations of a microgrid with SMRs and wind

turbines. We compare two different technology, i.e., Li-Ion and

CAES, while taking into accounting SMR and wind power

for maximizing the efficiency of a microgrid. Comparative

simulation results show that the CAES is a superior energy

storage technology for the specific SMR-based microgrid since

it has a longer technology lifetime. Our future work will

use other optimization methods, such as approximate dynamic

programming while considering solar and ammonia production

in an agricultural microgrid.
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