
2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3152633, IEEE Design
and Test

1

Mitigating Speculative Execution Attacks via
Context-Sensitive Fencing
Mohammadkazem Taram, Ashish Venkat, Dean Tullsen

Abstract—This paper presents Context-Sensitive Fencing
(CSF), a micro-code-level mitigation for multiple variants of
Spectre. CSF leverages the ability to dynamically alter the
instruction stream via the decoder, to seamlessly inject new
micro-ops, including fences, only when dynamic conditions in-
dicate they are needed. This enables the processor to protect
against the attack with minimal impact on the efficacy of
key performance features such as speculative execution. This
research also examines several alternative fence implementations,
and introduces new types of fences which allow most dynamic
reorderings of loads and stores while still preventing speculative
accesses from changing visible microarchitectural state.

I. INTRODUCTION

The tension between security and performance has always
been an important theme. However, Spectre and related at-
tacks [1], [2] have exposed new dimensions of that tension,
exploiting some of the most fundamental architectural per-
formance features. Mitigating most variants of Spectre, as
a result, potentially requires highly intrusive changes to the
existing out-of-order processor design, severely limiting per-
formance. Although Intel has announced microcode updates
to mitigate certain variants of the attack, a majority of the
high impact vulnerabilities still largely rely on software patch-
ing [3]. Software mitigations take advantage of fences that
mute specific effects of speculative execution by constraining
the order of certain memory operations, or in some cases by
completely serializing a portion of the dynamic instruction
stream. Liberal fence insertion (e.g., at every load) can mitigate
the attacks, but doing so severely hurts performance; however,
deploying fences more strategically at appropriate locations in
the code requires extensive patching – resulting in significant
engineering effort and long delays to deployment. We need
architectures that can more seamlessly and quickly react to
such attacks via unobtrusive field updates.

This work proposes Context-Sensitive Fencing (CSF), a
novel microcode-level defense against Spectre. The key com-
ponents of the defense strategy include: (a) a microcode
customization mechanism that allows processors to surgically
insert fences into the dynamic instruction stream to miti-
gate undesirable side-effects of speculative execution, (b) a

Mohammadkazem Taram and Dean Tullsen are with the Department of
Computer Science and Engineering, University of California San Diego, La
Jolla, CA, 92093-0404.
E-mail: mtaram,tullsen@cs.ucsd.edu

Ashish Venkat is with the Department of Computer Science of University
of Virginia.
E-mail: venkat@virginia.edu

This manuscript is an extended version of the paper, “Context-Sensitive
Fencing: Securing Speculative Execution via Microcode Customization”,
presented at ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2019.

decoder-level information flow tracking framework that iden-
tifies potentially unsafe execution patterns to trigger microcode
customization.

This defense can operate on legacy binaries, including
completely untrusted code, without the need for recompilation
or binary translation. Among the significant advantages of this
approach is that a global solution to a new speculation-based
attack can be deployed quickly via microcode update, without
the need to wait for every software vendor to deploy a solution
and update their products.

This work analyzes a significantly expanded suite of fences,
considering various possible new enforcement stages and
enforcement strategies. We introduce a new fence that prevents
speculative updates to cache state with minimal interference
in the dynamic scheduling of instructions, considering both
a version that minimizes disruption of dynamically scheduled
instruction execution in a non-shared-memory scenario, and a
slightly more constrained version that respects TSO semantics
for shared-memory execution. To mitigate a larger suite of
Spectre variants, we also introduce new fences that protect
against attacks that exploit port contention [4] and memory
disambiguation prediction [5].

CSF, via a novel decoder level information flow tracking-
based detection mechanism, has the ability to automatically
and dynamically identify the points in the program that require
a fence. Information-flow tracking at the front-end of the
pipeline is a new challenge, as all operations at that point
are speculative. We develop a solution that addresses both the
resulting overtainting and undertainting issues.

II. ARCHITECTURAL OVERVIEW

This section describes the overall architectural approach of
our defense mechanism – context-sensitive fencing. Figure 1
shows the expected implementation. Key to our approach is an
x86 microcode engine that enables context-sensitive decoding
(CSD) [6], allowing it to optionally translate a native x86
instruction into a customizable, alternate set of micro-ops. CSF
leverages this capability to dynamically perform conservative
insertion of fences at potentially vulnerable Spectre code
targets. To this end, we introduce new custom micro-op flows
and new configuration mechanisms that trigger such micro-op
flows.

The CSD-enabled microcode engine is provisioned with
fine-grained reconfiguration capabilities via a set of model-
specific registers (MSRs) that can control the frequency, type,
and enforcement criteria of fences inserted into the dynamic
instruction stream. Such a fine-grained runtime reconfiguration
capability is especially important to this work because specula-
tion fences have a high performance cost. This approach allows

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 27,2022 at 02:49:41 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3152633, IEEE Design
and Test

2

Configuration
Registers (MSRs)

M
ac

ro
-o

p
qu

eu
e

µop-Queue

Scratchpad Regs.

Runtime
System

DLIFT
Macro-op Stream

Macro-to-µop
Translation Unit

CSD-Enabled Decoder

INC [0x802ac] FENCE
LD t0,[0x802ac]
ADD t0, t0, 1
ST [0x802ac], t0 Di

sp
at

ch
er Mistaint

Detection
and Recovery

Fig. 1: Architectural Overview

us to surgically insert fences that impose varying degrees
of restrictions on speculative execution, depending upon the
runtime conditions, current level of threat, and the nature of
the code being executed.

Moreover, CSF benefits from a novel decoder-level infor-
mation flow tracking engine [7] that has the ability to identify
instructions with untrusted inputs that can potentially form a
Spectre gadget, and can then trigger alternate micro-op flows
that insert speculation fences. Being in the decoder, and thus
inherently speculative, DLIFT relies on mistaint detection and
recovery hardware implemented in the execute stage to avoid
overtainting and undertainting scenarios. Finally, CSF also
includes hardware and microcode-level mechanisms to achieve
branch predictor state isolation across protection domains to
mitigate the variant-2 and variant-4 attacks. Both of these
enhancements are described in detail in [7].

III. DESIGN AND IMPLEMENTATION

This section describes in greater detail the architectural
techniques and building blocks that together constitute the
proposed defense strategy – context-sensitive fencing.

A. Microcode Customization

Speculation fences are a processor’s primary mechanism to
override speculative execution. For Spectre variant-1, context-
sensitive fencing works with CSD by providing alternate
decodings of all load instructions, with the alternate decoding
always including a fence micro-op that appears before the
load micro-op. The alternate decoding will then be triggered
or not based on runtime conditions. The first consideration,
then, is what fence instruction to incorporate. Most processors
already provide a variety of fences and serializing instructions.
However, none of these were designed for security. Several
were designed for synchronization, and thus with very dif-
ferent priorities. Others are just unintentional side effects of
other operations, most of which are expected to be rare, so
the serialization aspects are typically implemented with little
attention to performance. In this study, we find ample op-
portunity to significantly shift and reduce the aforementioned
tension between performance and security – identifying and
eliminating several key dimensions of these fences that restrict
performance with no actual benefit for security.

The following sections look at fence options, from existing
alternatives to design options for novel, targeted fences.

µ-
op

 Q
ue

ue

Macro-op
Stream Macro-to-µop

Translation
Unit

CSD-Enabled Decoder

FENCE
Injection

Point

µ-
op

 D
is

pa
tc

he
r

Load Store-Queue

FU1 FU2

RS
RS

RS
RS
RS

Cache

C
ac

he

C
on

tro
lle

r

Mem

M
em

C

on
tro

lle
r

✖

✖

✖

✖

✖

✖ Fence Enforcement Point

Fig. 2: Fence Enforcement Points

1) Serializing Instructions and Memory Fences: Serializing
instructions are the strictest amongst all speculation fences
and completely override speculative execution. Upon decoding
a serializing instruction, the processor stalls fetching any
subsequent instruction until all instructions preceding the
serializing instruction retire. Due to the high pipeline depth
and issue width of modern out-of-order superscalars, the usage
of serializing instructions could result in long delays and
considerable throughput loss. Memory fences, on the other
hand, enforce a memory serialization point in the program
instruction stream. More specifically, these fences ensure that
memory operations that appear after the fence are stalled until
all prior memory requests (and the fence) complete execution.

Intel’s SFENCE instruction does not allow stores to pass
through it, but does not affect loads. The MFENCE instruc-
tion restricts all memory operations from passing through it.
LFENCE, unlike SFENCE and MFENCE that are memory
ordering operations, is actually a serializing operation. In
particular, LFENCE does not stop the processor from fetching
and decoding instructions that appear after the LFENCE, but it
restricts the dispatch of such instructions until the instructions
preceding the LFENCE complete execution. Since LFENCE
serializes execution and yet makes some progress in the front-
end, it has been recommended by Intel as a low-overhead fence
that can be inserted at vulnerable points in execution to defend
against Spectre [3].

2) Fence Enforcement Policies: Since none of the existing
instructions that provide fence support were actually created
for the purpose we (or the whole industry) need for Spectre
mitigation, it is useful to consider the landscape of existing
fences and potential fence implementations. We examine sev-
eral possible properties of fences in this section.
Early vs. Late Enforcement. We first categorize fences into
early-enforced and late-enforced fences, based on the pipeline
stage at which they are enforced. In particular, we refer to any
serializing instruction, such as an LFENCE, that is enforced
at the instruction queue or earlier in the pipeline as early-
enforced. If the fence is enforced at a later stage such as the
reservation station, the load/store queue, or the cache con-
troller, we refer to it as a late-enforced fence. Late enforcement

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 27,2022 at 02:49:41 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3152633, IEEE Design
and Test

3

has two advantages. First, it allows the front-end to make
more progress in the presence of a fence. Second, it shifts the
fence enforcement point towards the leaking structure (e.g.,
the cache), reducing the impact on instructions that do not
access that structure, and allowing for the enforcement of more
fine-grained serialization rules (e.g., allow cache hits but not
misses). Figure 2 shows potential fence enforcement points at
various stages in the processor pipeline.

The later a fence is enforced, the fewer the side channels
it protects against. For example, Intel’s LFENCE prevents
information leakage through all microarchitectural structures
that appear after the instruction queue. However, to prevent in-
formation leakage through the instruction cache side channel,
we would have to resort to a regular serializing instruction,
resulting in even higher performance overheads. Similarly,
a fence enforced at the data cache controller level would
only mitigate data cache-based side channels and will not
protect against an FPU-based side-channel (refer to [7] for
more detailed description of the attacks). Instead, the FPU-
based side-channel may be mitigated using a different fence
that is appropriately configured and enforced at the reservation
station, the FPU, or an execution port.

Strict vs. Relaxed Enforcement. Depending upon how pro-
hibitive they are, we next classify fences into strict and
relaxed. Strict fences are highly prohibitive and do not allow
any instructions to pass through them until the fence retires,
whereas relaxed fences allow certain types of instructions
to pass through them. For example, an alternate version
of SFENCE that is enforced at the load/store queue and
allows all instructions to pass except stores is a late-enforced
and relaxed fence. On the other hand, all x86 serializing
instructions including LFENCE are early-enforced and strict.
Customizing the micro-op stream with early-enforced and
strict fences typically results in slower execution when com-
pared to customization with late-enforced and relaxed fences.
However, with carefully enforced constraints, the late-enforced
and relaxed fences could offer similar, if not better security
guarantees.

Early vs. Late Commit. A fence typically remains effective
until it gets committed or squashed. According to Intel [8],
a serializing instruction is only allowed to be committed if
there is no preceding outstanding store that is waiting to
be written back. While this behavior might be necessary for
device synchronization or memory ordering enforcement, for
the purpose of securing speculative execution against Spectre
attacks, there is no need to wait for stores to be written back.
This is because write buffers aren’t committed to the cache
until the store reaches retirement, and therefore the fact that
a store is waiting for an outstanding writeback request to
complete is sufficient evidence that it did not occur along a
misspeculated path.

Allowing a fence to commit early without waiting for
preceding outstanding stores to write back can release the
pipeline to again making forward progress, in some cases
saving significant delays. Therefore, in this work, we propose
and study the effects of an early-commit version of each fence.

TABLE I: Characteristics of Different Fence Types

Fence Name Enforcement
Point

Strict/
Relaxed

Instructions
not Allowed

Mitigates
Variants

Existing/
New

Intel’s SIs (CPUID) Fetch Strict All All Existing
LFENCE IQ Strict All All Existing
LSQ-LFENCE LSQ Relaxed Ld v1 New
LSQ-MFENCE LSQ Relaxed Ld&St v1,v1.1,v1.2 New
CFENCE CC* Relaxed None v1 New
CFENCE-TSO CC* Relaxed None v1 New
PFENCE RS Relaxed FP FP/SmotherSpctre New
DFENCE Disambiguation* Relaxed Ld v4 New

* CC: Cache Controller, RS: Reservation Station, Disambiguation: Mem. Disambiguation Predictor Unit

B. Newly Proposed Fences

To better understand the potential for fences beyond those
that already exist, we propose and evaluate six new types of
fences, summarized in Table I. We describe each of them in
greater detail below.

The LSQ-LFENCE and the LSQ-MFENCE are relaxed
fences enforced at the load/store queue. While LSQ-LFENCE
is in effect, it does not allow any subsequent load instruction
to be issued out of the load/store queue, thereby preventing
the cache state from being changed by load instructions on
misspeculated paths. Thus, the LSQ-LFENCE mitigates the
Spectre variant-1 attack. On the other hand, the more restric-
tive LSQ-MFENCE does not allow any subsequent memory
instruction (both loads and stores) to be issued out of the
load/store queue, until the fence commits.

The CFENCE is a relaxed fence and is enforced at the cache
controller level using the following set of rules. First, like any
other fence, it allows all preceding instructions to proceed.
Second, since store instructions do not commit the contents of
the write buffer until the instruction retires, they are unaffected
by the CFENCE. Finally, it labels any subsequent load as a
non-modifying load and allows it to pass through the fence,
but the load is restricted from modifying the cache state. In
particular, a non-modifying load that results in a cache hit is
allowed to read the contents of the cache, but is restricted from
changing the LRU and other metadata bits. A non-modifying
load that results in a cache miss is marked as uncacheable,
allowing the memory read request to complete without altering
the cache state. In this way, we avoid updating the cache state
upon encountering a speculative load and do not leave any
observable cache footprint along misspeculated paths, thereby
mitigating the Spectre variant-1 attack. For most well-behaved
programs, the cache miss rate will be small enough that using
CFENCE results in considerably lower performance overhead
than other types of fences.

This approach works on an application not utilizing cross-
core shared memory or any program running on a processor
with a relaxed consistency model. However, it is important
to extend our protection to cross-core shared memory ap-
plications as they still constitute a significant proportion of
today’s software systems. Later in this section, we introduce a
constrained version of this fence that works on shared-memory
applications with a strong consistency model.

PFENCE is a relaxed fence that is enforced at a specific
execution port, and while in place, does not allow any instruc-
tion to be dispached through that execution port. For example,
PFENCE can sit in the execution ports that are associated

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 27,2022 at 02:49:41 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3152633, IEEE Design
and Test

4

with the floating point unit and then not allow floating point
instructions to be executed speculatively. This protects against
speculative execution attacks that use the contention on FPU or
a particular execution port as a medium to leak information.
In addition, since PFENCE is a relaxed fence, it does not
affect the instructions that do not access the specific execution
port. In the case of FPU-based attacks, it allows integer,
load/store, and control instructions to proceed, minimizing
the performance overhead of the defense. Since these types
of attacks usually target infrequently used instructions (e.g.,
AVX2 instructions), a targeted fence like PFENCE can defend
against them with minimal performance overhead.

DFENCE is a relaxed fence that is enforced at the memory
disambiguation predictor unit and does not let load instructions
pass if there is an in-flight store whose address is not yet
calculated. If all preceding stores have known addresses,
then loads can be issued if there is no address conflict. By
stopping the memory dependency prediction, DFENCE can
protect against variants of the attack that exploit this kind of
speculation, such as variant-4 or speculative store bypass.
Interactions with Memory Consistency. Memory consis-
tency models define correct behavior of a shared memory
system in terms of both allowed values that dynamic loads
may return and the final state of the memory. Total store
order (TSO) is a relatively strict memory consistency model
implemented by x86 that permits store-to-load reordering but
forbids all other observable reordering of loads and stores.
Therefore, for example, any observable load to load reordering
is forbidden in TSO. However, in order to attain memory-level
parallelism, modern processors allow speculative reordering
of the loads while it is not observable; and upon detecting a
violation, just like other speculative features in the processor,
they squash and rollback.

Recall that when an LSQ-LFENCE or an LSQ-MFENCE is
in effect, no younger load is allowed to be issued out of the
load/store queue. Therefore, the proposed LSQ fences comply
with TSO, as they maintain the ability of the processor core
to invalidate the speculatively loaded values. The proposed
CFENCE, however, allows younger loads to be issued, but re-
strict them from modifying the cache state, until the CFENCE
is in effect. In the case of directory-based cache coherency
protocols, this can cause the shared cache to be accessed
without updating the directory. This could potentially cause
scenarios in which the core does not receive any invalidation
for the speculatively read values, and could therefore cause a
TSO violation and incorrect execution.

On a machine with a weaker consistency model, this be-
havior is not guaranteed to the programmer, and would thus
require other synchronization primitives to enforce it, thus
removing the need for the CFENCE to provide this guarantee.

CSF, due to its fine-grain reconfigurablity, has the ability
to protect different regions of the programs with different
fences. For multi-threaded shared-memory programs that need
the TSO consistency model, we introduce a new variant of
CFENCE, called CFENCE-TSO. CFENCE-TSO allows the
fence-passing younger loads to access the local caches (e.g.,
L1 and L2), but the load is restricted from being forwarded to
the next level shared caches. In the case of local cache misses,

the request would get delayed until the CFENCE-TSO gets
committed, i.e., when the load is no longer speculative. Note
that CFENCE-TSO can allow fence-passing younger loads to
access a lower-level local cache (e.g., L2) only if the cache
forwards invalidation requests to the core. As with CFENCE,
this does not inhibit performance in the case of cache hits, but
incurs a higher cost than CFENCE in the presence of frequent
misses.

C. Fence Frequency Optimization

The most naı̈ve yet secure way to restrict speculation attacks
is to liberally instrument every instruction of a vulnerable type
(e.g., load instructions in the case of cache side-channels) in
the program with a fence micro-op. In fact not every instance
of a vulnerable instruction type is necessarily vulnerable; for
example, all the loads in the program aren’t vulnerable to
speculative attacks via cache side-channels. Therefore, we can
reduce the number of fences inserted. However, failing to
insert even a single necessary fence would enable a Spectre
attacker to read the whole victim’s memory space, so it is
of crucial importance that fence frequency optimizations be
conducted meticulously. In the following, we introduce two
secure optimizations for reducing the number of fences.
Basic Block-Level Fence Insertion. The source of the Spectre
attack is dynamic control speculation, which implies that the
speculation begins with a branch prediction and the processor
starts speculatively executing along the predicted path. To fully
mitigate this attack, we want a fence between each branch
and subsequent loads; but if one branch is followed by four
loads, we only need one fence to protect all four. Thus, in
this optimization, we propose to only instrument the first
instance of a vulnerable instruction type (e.g., first load) of
each basic block. This is simply implemented by setting a
flag in hardware whenever a branch is decoded, then insert
a micro-op in the alternative load decoding that, along with
the fence, also resets the flag. When the flag is not set, the
original decoding is used.
Taint-Based Fence Insertion. However, even one fenced load
per basic block is likely still too conservative. In all known
instances of the attacks, the attacker performs some operations
(mostly memory read) based on untrusted data that leak
information. For example, in Spectre variant-1 the attacker
provides an out-of-bound index to an array. Here, we assume
any information that comes from the user address space and
input devices (e.g., via the x86 IN instruction) is untrusted. In
particular, we instrument syscall and int 0x80 instructions with
a set of micro-ops that mark all the input registers of the syscall
(e.g., rax, rdi, rsi, etc. on Linux x86 64) as tainted. In addition,
we also consider DMA’d pages as untrusted, for which we
rely on the IOMMU to mark DMA’d pages as tainted in the
page table. For the taint-based fence insertion optimization,
we propose the insertion of fences for only vulnerable/tainted
loads that operate on untrusted data, by leveraging the decoder-
level information flow tracking strategy described in [7]. For
the scenarios where the kernel is invoked without a syscall
(e.g., exceptions and interrupts), we rely on an always-on fence
insertion policy instead of the taint-based fence insertion to

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 27,2022 at 02:49:41 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3152633, IEEE Design
and Test

5

ps sjeng bzip2 ping llu gcc ls nginx omnet gmean

Injected for All Kernel Loads

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00
N

or
m

al
iz

ed
E
xe

cu
ti
on

T
im

e

LFENCE-LC

LSQ-MFENCE-LC

CFENCE-LC

Fig. 3: Execution Time of Different Fence Enforcement Levels
(normalized to insecure execution)

protect the kernel code – a policy that is easily enabled by
CSF’s high level of dynamic configurability.

IV. METHODOLOGY

We closely follow the experimental methodology described
in [7], but here, to evaluate CFENCE-TSO, which is aimed at
protecting shared-memory programs, we also experiment with
the multi-threaded PARSEC benchmarks. In that experiment,
we simulate a 4-core processor with 2MB last-level cache
and a defense that is always-on, with basic block-level fence
insertion for all user and kernel memory accesses.

V. EVALUATION

Figure 3 measures the performance impact of three different
fences: (a) the standard x86 LFENCE, (b) the LSQ-MFENCE,
and (c) the CFENCE, all enforced with late commit, pes-
simistically inserted for every kernel load in the program.
CFENCE incurs the lowest performance overhead, since it is
less restrictive than the other two and is enforced at a much
later pipeline stage. Overall, CFENCE reduces the incurred
performance overhead due to fencing by 2.3×, bringing down
the execution time overhead from 48% to 21%.

Furthermore, our experimentation with the early-commit
version of the CFENCE shows that, by allowing the fence
to commit earlier, it consistently outperforms the late-commit
version, saving about 4% in overall execution time on average.

In addition to CFENCE, we also measure the performance
effects of PFENCE-FPU that protects against the variants
of the attack that exploit FPU, PFENCE-MULTDIV which
allows all the instructions to pass except multiplication and
division instructions to protect against port contention attacks,
and DFENCE that protects against variant-4, or speculative
store bypass. Pessimistically inserting PFENCE-FP, PFENCE-
MULTDIV, and DFENCE for all the vulnerable instructions
in the kernel code, on average, incur only 3.7%, 3.4%, and
1.8% execution time overhead, respectively. Furthermore, our
experiments with PARSEC benchmarks show that CFENCE-
TSO, in spite of the liberal fence insertion (for all user and

ps sjeng bzip2 ping llu gcc ls nginx omnet gmean

CFENCE

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

N
or

m
al

iz
ed

E
xe

cu
ti
on

T
im

e

Always Fencing

DLIFT-Based Fencing

DLIFT + Once per BB

Fig. 4: Impact of Fence Frequency Optimizations on Execution
Time

kernel loads, once per basic block) and the always-on nature
of the defense, degrades the performance by just 20%.

Figure 4 shows the performance of our proposed fence
frequency optimization techniques. In the first optimization,
we inject the CFENCE only for tainted loads, as indicated by
the DLIFT engine. This reduces the performance overhead of
the defense from 21% to 11% on average. We further optimize
the number of fences inserted by performing basic block-level
fence insertion. This results in an additional 4% improvement
in performance.

VI. RELATED WORK

Several works have focused on mitigating the speculative
execution attacks at the hardware level. SafeSpec [9] and
InvisiSpec [10] propose mitigating side effects of speculative
execution by adding new user-invisible shadow structures for
caches and TLBs that store transient results from speculative
instructions, and commit them to the main cache/TLB only
if the speculation was deemed correct and the corresponding
instructions gracefully retire. Even more recently, STT [11]
and ConTExT [12] have also used taint tracking techniques
that allow tracking of spurious information flow along mis-
speculated paths, enabling more fine-grained protection against
covert communication that hinges on using speculatively ac-
cessed data. CSF’s approach towards information flow tracking
is different than those works. They consider any speculatively
loaded value as untrusted, whereas CSF’s notion of trust
is similar to a classic information flow tracking where any
data that comes from untrusted channels is considered as
untrusted.

VII. CONCLUSION

In this work, we propose context-sensitive fencing (CSF), a
set of architectural techniques that provide high-performance
defense against Spectre-style attacks. We show that we can
reduce fencing overhead by a factor of 6 compared to a
conservative fence insertion method. This is done by injecting
fence instructions dynamically with no recompilation and
binary translation required. This allows us to employ runtime

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 27,2022 at 02:49:41 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3152633, IEEE Design
and Test

6

information to strategically insert fences when needed. This
work also introduces new fence primitives which protect
sensitive structures from speculation-based microarchitectural
effects, with minimal impact on instruction throughput in the
pipeline. We introduce protections for a wide variety of attacks
via a small set of targeted fence implementations, and an
adaptive framework for fence insertion.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful insights. They also thank Josep Torrellas for
helpful suggestions on this work. This research was supported
in part by NSF Grants CNS-1652925 and CNS-1850436, NS-
F/Intel Foundational Microarchitecture Research Grants CCF-
1823444 and CCF-1912608, and DARPA under the agreement
number HR0011-18-C-0020.

REFERENCES

[1] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” ArXiv e-prints, Jan. 2018.

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX
Security Symposium, 2018.

[3] Intel, “White paper: Intel analysis of speculative execution side
channels,” Tech. Rep. 336983-001, Revision 1.0, Jan. 2018.
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-
Analysis-of-Speculative-Execution-Side-Channels.pdf.

[4] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “Smotherspectre: Exploiting spec-
ulative execution through port contention,” in ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2019.

[5] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” arXiv preprint arXiv:1807.03757, 2018.

[6] M. Taram, A. Venkat, and D. Tullsen, “Mobilizing the micro-ops:
Exploiting context sensitive decoding for security and energy efficiency,”
in International Symposium on Computer Architecturei (ISCA), 2018.

[7] M. Taram, A. Venkat, and D. Tullsen, “Context-sensitive fencing:
Securing speculative execution via microcode customization,” in Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’19, (New York, NY, USA), p. 395–410, Association for Computing
Machinery, 2019.

[8] Intel Corporation, Intel® 64 and IA-32 Architectures Optimization Ref-
erence Manual. March 2009.

[9] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin,
D. Ponomarev, and N. Abu-Ghazaleh, “Safespec: Banishing the spec-
tre of a meltdown with leakage-free speculation,” arXiv preprint
arXiv:1806.05179, 2018.

[10] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Tor-
rellas, “Invisispec: Making speculative execution invisible in the cache
hierarchy,” in International Symposium on Microarchitecture (MICRO),
2018.

[11] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher,
“Speculative taint tracking (stt): A comprehensive protection for specula-
tively accessed data,” in International Symposium on Microarchitecture
(MICRO), 2019.

[12] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and D. Gruss,
“Context: A generic approach for mitigating spectre,” in Proceedings of
the 27th Annual Network and Distributed System Security Symposium
(NDSS’20), San Diego, CA, USA, 2020.

Mohammadkazem Taram is currently a Ph.D. can-
didate in the Department of Computer Science and
Engineering, University of California San Diego. He
is interested in computer architecture, security, and
privacy. He received his MS degree in computer
engineering from Sharif University of Technology.
His work on Context-Sensitive Decoding is selected
as an IEEE Micro Top Picks in computer architecture
in 2018. Contact him at mtaram@cs.ucsd.edu.

Ashish Venkat Ashish Venkat is an Assistant Pro-
fessor in the Department of Computer Science at
the University of Virginia, where he joined after
obtaining a Ph.D. from UC San Diego. His research
interests are in computer architecture and compilers,
especially in instruction set design, processor mi-
croarchitecture, binary translation, code generation,
and their intersection with computer security and
machine learning. His work has been published at
top-tier venues such as ISCA, ASPLOS, and HPCA,
and has received funding from NSF, DARPA, SRC,
and Intel. His work has been recognized as an IEEE

Micro Top Pick among all top-tier Computer Architecture Conference papers
published in 2019, IEEE Design & Test Top Pick (twice) among all Hardware
and Embedded Security papers published in Computer Architecture, Computer
Security, and VLSI CAD conferences held in the six years between 2014 and
2019, and between 2015 and 2020, and as the runner-up of the HPCA Best
Paper Award in 2019. His dissertation research has been successfully ported
and transferred to the Cloud Platforms division of the IBM Haifa Research
Lab. Contact him at venkat@virginia.edu.

Dean Tullsen is a professor in the Department of
Computer Science and Engineering, University of
California, San Diego. He works in the areas of
computer architecture, compilers, and security. He
has been awarded the ISCA Influential Paper Award
three times. He is a Fellow of the IEEE, a Fellow
of the ACM, and a past chair of the IEEE Technical
Committee on Computer Architecture. Contact him
at tullsen@cs.ucsd.edu.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on April 27,2022 at 02:49:41 UTC from IEEE Xplore. Restrictions apply.

