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Abstract
The introduction of unmanned-aerial-vehicle remote sensing 
for collecting high-spatial- and temporal-resolution imagery 
to derive crop-growth indicators and analyze and present 
timely results could potentially improve the management of 
agricultural businesses and enable farmers to apply appropri-
ate solution, leading to a better food-security framework. This 
study aimed to analyze crop-growth indicators such as the 
normalized difference vegetation index (NDVI), crop height, 
and vegetated surface roughness to determine the growth of 
corn crops from planting to harvest. Digital elevation mod-
els and orthophotos generated from the data captured using 
multispectral, red/green/blue, and near-infrared sensors 
mounted on an unmanned aerial vehicle were processed and 
analyzed to calculate the various crop-growth indicators. The 
results suggest that remote sensing-based growth indicators 
can effectively determine crop growth over time, and that 
there are similarities and correlations between the indicators.

Introduction
During the last decade, there have been improvements in the 
agricultural sector through theoretical and technological devel-
opments in many fields, including chemistry, genetics, and ro-
botics (Radoglou-Grammatikis et al. 2020), and there has been 
an increase in the estimated amount of investment toward the 
development of agricultural-based technology (Tsouros et al., 
2019). However, there is still a rising need to increase food 
production, because of the continuous increase in the human 
population and urbanization. The adoption of these scientific 
approaches aims to increase agricultural food by 70% by the 
year 2050, when the world’s population is projected to be 9 
billion (Grainger 2010; Perea-Moreno et al. 2019), with an 
increasing demand for crops from 2005 to 2050 (Tilman et al. 
2011; Tian et al. 2021) and a stipulated decrease in cultivated 
area (Tsouros et al. 2019). Intensive use of available farmland 
to close the yield gaps and reduction of the expansion of agri-
cultural lands could positively affect crop production and im-
prove the supply chain necessary to meet crop demand (Foley 
et al. 2011; Tilman et al. 2011; J. Huang et al. 2019).

The linear relationship between population and agricul-
tural growth necessitates the acceptance and advancement 
of a multi-disciplinary method that facilitates monitoring 
and evaluation of crop fields for growth assessment, through 

timely collection and analysis of farm data, to inform decision 
making (Popescu et al., 2020). In addition, other outcomes 
from agricultural activities, such as the emission of 30% to 
35% of greenhouse gases (Foley et al. 2011) and nitrogen pol-
lution due to incomplete absorption by plants (Stuart et al. 
2014), could be solved by the adoption of a well-structured 
interdisciplinary approach to optimizing production. Finally, 
agricultural stakeholders would not be burdened with the 
limitations of practicing traditional agronomy, which involves 
expensive and time-consuming methods (Wei et al. 2018).

Precision agriculture and smart farming technologies ob-
serve and measure an area to respond to spatial and temporal 
variability in crop fields (Jeppesen et al. 2018). This mecha-
nism aims to maximize inputs for more rewarding output 
without disturbing natural resources, so as to advance environ-
mental sustainability and quality (Mulla et al. 2002; Gołaś et 
al. 2020). Whipker and Akridge (2008) estimate that adoption 
of precision agriculture could contribute to an increase of more 
than 30% in US agribusiness. Precision and smart agriculture 
involve the use of sensors and software, coupled with other 
technologies, to collect and transfer data without the assis-
tance of humans. Precision farming enables monitoring of crop 
growth and other agronomy processes such as fertilizer ap-
plication, disease detection, and irrigation routines. The use of 
such technologies helps in obtaining timely data from the farm-
land for crop management and decision making in an efficient 
manner (Aubert et al. 2012; Mulla 2013). However, prevailing 
issues such as compatibility, complexity, and interoperability 
slow down the rate at which precision agriculture is adopted 
(Aubert et al. 2012). Shadrin et al. (2020) provide an overview 
of the issues and challenges associated with precision agri-
culture. The main objectives in adopting precision agriculture 
are to increase crop yield, improve product quality, ensure 
efficient usage of production inputs, save energy, and prevent 
environmental pollution (Radoglou-Grammatikis et al. 2020).

Remote sensing has been an important technology in preci-
sion agriculture (Shafiee et al. 2021). In agriculture it involves 
the use of platforms such as unmanned aerial vehicles (UAVs), 
satellites, and piloted aircraft to observe and measure reflected 
radiation from the surfaces of soil and plant materials to ascer-
tain their features. The technology has been applied to differ-
ent agricultural applications (Pinter et al. 2003; Hashemi-Beni 
and Gebrehiwot 2020; Weiss et al. 2020), such as determining 
crop yield and biomass (Shanahan et al. 2001; Chao et al. 
2019), water stress and nutrients (Tilling et al. 2007; Ihuoma 
and Madramootoo 2017), and weed infestations (Thorp and 
Tian 2004; Y. Huang et al. 2018), as well as detecting plant 
diseases (Buja et al. 2021). Most remote sensing-based agri-
culture studies have been based on images acquired by either 
satellite or piloted vehicle to monitor vegetation levels (Mora 
et al. 2017). However, satellite imagery has low spatial resolu-
tion, and limitations on the acquisition of temporal-resolution 
imagery because of the potential unavailability of the satel-
lite at the stipulated time. In addition, image collection by 
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satellites is sometimes disrupted by environmental condi-
tions. The use of piloted aircraft is also costly, and deploying 
multiple flights to acquire extra crop images is often challeng-
ing. UAV-based remote sensing systems for crop monitoring 
are fairly cost-effective, easily retrieve field data, and are very 
fast. UAVs can be flown on demand at varying altitudes to 
capture high-spatial- and temporal-resolution data over a crop 
field. These attributes have contributed to the advancement 
of precision agriculture. UAVs can be equipped with sensors to 
monitor crops, evaluate the field, and provide information to 
assist in identifying problems such as diseases and pests and 
guide farmers to quickly solving farm-related issues.

UAVs have been used in precision agriculture for several ap-
plications, such as weed mapping, monitoring and estimation 
of vegetation yield, irrigation management, crop spraying, 
and monitoring of vegetation health and detection of diseases 
(Tsouros et al. 2019; Hashemi-Beni and Gebrehiwot 2020). 
Allred et al. (2018) investigated the use of UAVs in identifying 
drainage pipes on farms, which are useful to farmers for con-
trolling the amount of water on a field. A lidar sensor mount-
ed on a UAV can assist in determining crop production and 
health status; images retrieved by lidar have been used for tex-
tural analysis to estimate total plant volume and soil surface 
for particular crops (Christiansen et al. 2017). UAVs have been 
also used in collecting thermal and multispectral information 
from a field to estimate water stress and the health status of 
pomegranate crops in Greece (Katsigiannis et al. 2016). The 
nitrogen status of rice has been determined by analyzing hy-
perspectral data captured using a UAV (Zheng et al. 2016). The 
use of time-series vegetation indices can identify varying crop 
classes and also indicate growth patterns in crops (de Souza et 
al. 2015). Prediction of wheat yield has been achieved using 
multi-sensor and multi-temporal remote sensing images taken 
on different dates (Wang et al. 2014). X. Zhou et al. (2017) 
used both UAV-generated single and multi-temporal vegetation 
indices to predict rice yield. Shafiee et al. (2021) have shown 
that multi-temporal indices generated from time-series data 
are more highly correlated with crop yield than are single 
vegetation indices. Time-series UAV data have also been used 
to determine the pattern of height and phenological changes 
in each growth cycle of corn of different genotypes (Han et al. 
2019). Yeom et al. (2019) used time-series vegetation indices 
to determine the differences between no-tillage and conven-
tional-tillage agricultural practices and their effects.

In spite of these works, more research is still required to 
evaluate the performance of UAV time-series data for precision 
agriculture. In that context, our research aimed to investigate 
UAV-based time-series vegetation indices for monitoring and 
determining the impact of fertilizer application and pre-
scribed burns at the beginning of planting on phenological 
changes in crops over time. In addition, we conduct analyses 
of time-series UAV data for monitoring and evaluation of the 
crop condition in a controlled cornfield, determine the ef-
ficiency of remote sensing-based crop-growth indicators and 
the similarities among them, and estimate the biomass yield 
of the crop in the field using the time-series UAV data.

The article is organized as follows: The next section 
explains the study area and data collected for the research. 
Then the research materials and methodology are described, 
followed by a presentation and discussion of the results. Last 
come conclusions and a summary of future research.

Study Area and Data
The study area is a 2-acre controlled test plot, of size 415×210 
ft, located at the North Carolina A&T State University re-
search farm in Greensboro, North Carolina. As shown in 
Figure 1, the plot was divided into three different blocks to 
evaluate the performance of UAV time-series data for crop-
growth assessment considering the effects of burning (killing 

the winter crop with herbicide) and/or fertilizing before plant-
ing. Blocks 1 and 2 (each 415×70 ft) both had winter crops 
that were not burned before the new planting. The difference 
between them is that block 1 received fertilizer and block 2 
did not. Block 3 (450×120 ft) received a traditional treatment: 
burning the winter crop with herbicide before the new plant-
ing, and applying the recommended amounts of NPK fertilizer. 
Corn was planted on the entire field on 24 April 2020.

Figure 1. Study area: the block design of the field. Block 1 
was not burned but fertilizer was applied; block 2 was not 
burned and received no fertilizer; and block 3 was both 
burned and fertilized.

A UAV was used for collection of red/green/blue and near-
infrared imagery over the controlled plot; eight ground control 
points were implemented for georeferencing. The UAV collected 
time-series data at 40 and 70 m every 2 wk from seeding time 
(April 2020) to harvesting (August 2020). The flight altitude of 
40 m provided higher-resolution imagery while reducing the 
image’s coverage area, thus increasing the flight duration and 
number of images required to cover the area of interest. Both 
flights for each collection took place on the same day, with one 
flight deployed at the end of the other. This approach aimed to 
compare maps generated from the images of the field and study 
the impact of the imagery resolution on the crop-growth assess-
ment. Table 1 describes the time-series data collected.

Table 1. Data collected by two sensors mounted on a UAV at 
different flight altitudes.

Number of 
GCPs Sensors

Flight 
Altitudes

Spatial 
Resolutions

Temporal 
Resolution

8 RGB, NIR 40 and 70 m 1 and 1.9 cm 2 weeks apart

GCP = ground control point; NIR = near-infrared; RGB = red/green/
blue; UAV = unmanned aerial vehicle.

Methodology
Data Processing
A structure-from-motion approach was used for 3D recon-
struction of the farmland from the 80% overlapping images 
collected by the UAV. These methods use feature-based image-
matching methods and collinearity conditions from camera 
alignment for, respectively, image-to-image registration and 
3D surface construction (Hashemi-Beni et al., 2018). The 
ground control points were used for georeferencing to ensure 
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the accuracy of the reconstructed 3D images. A digital eleva-
tion model (DEM) map was created after georeferencing, which 
was used for orthorectification and creation of the 3D model.

Identification of Crop-Growth Indicators
Crop-growth indicators are used as indices to determine 
changes that occur on a field during the growing season. 
Determination of these indicators enables timely collection 
of data from the field for making decisions and taking prompt 
action if required. The three important indicators of growth 
change studied in the research are the normalized difference 
vegetation index, roughness length, and crop-height change 
from the time of planting to harvesting.

Normalized Difference Vegetation Index (NDVI)
The NDVI, an extensively used vegetation index, indicates the 
greenness or the photosynthetic status of a vegetative area. It 
assists in determining the locations of water, bare soil, and 
plants, as well as whether plants are healthy or stressed. This 
knowledge is based on the reflectance received from crops. 
Crops that are healthy and actively photosynthesizing absorb 
most of the red light they receive and reflect much of the near-
infrared light, and the estimated amount of red light reflected 
by stressed vegetation is greater than near-infrared. NDVI is 
calculated as (Hashim et al. 2019)

	
NDVI

NIR Red
NIR Red

=
−( )
+( ) 	

(1)

Values range from −1 to +1 (Meneses-Tovar 2011; Alface et 
al. 2019), with those between −1 and 0 indicating bare soil, 
roads, dead plants, or water and those between 0 and 1 indi-
cating live plants (Table 2). In positive values, lower ones in-
dicate stressed or unhealthy plants, and higher ones indicate 
healthy plants. In this research, time-series NDVI raster layers 
were obtained by using a raster map algebra using Equation 1.

Vegetated-Surface Roughness Length
Roughness length (RL) is an expression of the variability of 
elevation of a topographic surface at a given scale, where the 
scale of analysis is determined by the size of the landforms 
or geomorphic features of interest, either local or regional. It 
shows the heterogeneity in land surface. Roughness of vegetated 
surfaces is dependent on the mean canopy height, the canopy 
structure, and the plant density (Jasinski and Crago 1999; 
Urrego et al. 2021). Although roughness length is identified by 
several models as a function of structural parameters of vegeta-
tion such as canopy area index, frontal area index (Raupach 
1994; Hu et al. 2020), and leaf area index (Myneni et al. 2002; 
Hu et al. 2020), it closely correlates with NDVI during the period 
of crop growth (M. Yu et al. 2017; Schaudt and Dickinson 2000).

Surface RL measurements depict the nature of features of 
the land or farm. Table 3 describes the surface of a field based 
on estimated RL values obtained from analysis. A very rough 
field has vegetation like a young dense forest, indicating the 
springing up of new vegetation with 70% canopy density.

For this study, RL was estimated by first computing the total 
curvature of the individual digital elevation models and then 
deriving a focal statistic for calculating the standard deviation 
within a moving neighborhood window of 3×3 pixels. The ras-
ter was log-transformed to normalize and reduce skewness. The 
roughness index is calculated as (Korzeniowska et al. 2018)

	
µ =

−( )
=∑

log10

2

1
x x

n
i ii

n

	
(2)

where xi represents the curvature value of the center cell, xi  
represents the mean curvature, and n is the number of pixels 
(for a 3×3 kernel).

Plant Height
Plant height, which is the distance from the highest point 
of a plant to the lowest point (ground), assists in evaluating 
both plant growth and yield (Bendig et al. 2015). It provides 
relevant parameters for assessing plant physiology, genetic 
traits, and environmental impacts (Malambo et al. 2018). 
Figure 2 shows the stages of growth of maize from plant-
ing time to harvest time, indicating the stipulated height at 
each time period and the percentages of water and fertilizer 
required (Colless 1992). The percentages were determined in 
the laboratory and will be used for comparison and validation 
of the UAV-generated information.

In this research, a time-series DEM was processed and used 
for estimating changes in crop heights across growth stages. 
The DEM of each time stamp was subtracted from the DEM of 
the beginning time, 30 April (planting stage). The resultant 
raster presents the height change, enabling identification of 
the growth cycle of the crop, which in turn assists in choos-
ing appropriate crop-management practices from the avail-
able husbandry options. Height change can be represented 
mathematically as

Height change = ((Current_time[DEM] – Planting_time[DEM])) 	(3)

Statistical Analysis
A quantitative analysis was conducted to study the time-
series assessment of the growth indices from planting to 
harvesting. Thirty-six checkpoints with random distribution 
were generated for each treatment block on the field (Figure 
3). Changes in NDVI, RL, and crop height over time were ana-
lyzed for the checkpoints.

Results
Analysis of the time-series UAV and geospatial data was done 
in Agisoft Photoscan and ArcGIS. All UAV images, taken at 
both 40 and 70 m, were processed, but for demonstration 
purposes, only the results from 70 m are shown. Time-series 
digital elevation models were used in estimating crop height 
and vegetated RL change, whereas orthomosaics were used in 
assessing time-series NDVI.

Crop-Growth Indicators
This section provides the results of the three indicators 
used to determine maize growth from the time of planting to 
harvest.

Table 2. Normalized difference vegetation index (NDVI) values 
indicating vegetation classes (Hashim et al. 2019).

Vegetation Class Description NDVI Value

Non-vegetation Barren areas, built-up areas, 
road network

−1 to 0.199

Low vegetation Shrub and grassland 0.2 to 0.5

High vegetation Temperate and tropical urban forest 0.501 to 1.0

Table 3. Roughness-length thresholds (Wieringa 1992; J. Yu et 
al. 2021).

Roughness 
Length Landscape Features Class

0.03 Flat terrain with very low  
vegetation or grass

Open

0.10 Cultivated area, low crops Roughly open

0.25 Open landscape, scattered shelter belts Rough

0.5 Young dense forest Very rough

1.0 Mature forest Closed

≥2.0 Irregular distribution of  
large forest with clearings

Chaotic
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Time-Series NDVI
Results from NDVI analysis affirm the various block treatments 
applied to the study area. The variation in crop biomass 
yield across different blocks is due to the differences in block 
treatments. The time-series NDVI from April through August 
(Figure 4) shows the progression on the field from nearly bare 
earth to vast biomass development.

NDVI estimation for the first two blocks is high on 30 
April due to the presence of winter crops on the field before 
and after the sowing of maize seeds. There was a concur-
rent increase in biomass in the whole field, including high 

vegetation looking like a mature forest (NDVI 0.5–1) in the first 
two blocks from 12 to 29 May. However, biomass in these 
blocks began to deplete from 29 May until 26 June, when the 
depletion was massive. This was caused by the gradual with-
ering of the winter crops and weeds in the region due to high 
temperatures in the summer.

There was a gradual increase in NDVI for block 3 from 30 
April through 12 June, when there was a decline in biomass 
(Figure 5). This was due to the high average temperature of 
84°F, which led to high evapotranspiration from the leaves 
and the soil surface in the field without replacement of water 
through irrigation, leading to the death of winter crops and 
thus low vegetation presence. Temperature and precipitation 
(Figure 6) are climatic conditions which greatly affect vegeta-
tion growth (Buitenwerf et al. 2015). Changes in climate cause 
variability in vegetation growth and influence functions that 
are associated with vegetation (Li et al. 2019). An example is 
the occurrence of frost, which leads to a reduction in vegeta-
tion biomass on a maize field (Raun et al. 2005). There was 
not much change in biomass on our whole field from 27 July 
to 11 August, as corn is ready for harvest as silage and not 
much phenological development occurred.

Time-Series RL
The vegetated-surface RL variation in the study area depicted 
a heterogeneous field along several rows. This heterogeneity 
implies a crop at different growth stages, and inconsistency in 
cultivation practices. The RL of the field on 30 April indicates 
open or flat terrain with both low vegetation or low grass-like 
biomass and vegetation looking like scattered shelter belts. 
The field can be classified as a rough open space. Vegetation 
increased by 12 May, when the field looked like a dense forest 
(Figure 7).

A marginal shift from heterogeneous to homogenous over 
the period 26 May to 12 June is associated with the increase 
in biomass along specific rows. From 26 June to 11 August, 
the study area excluding the alleyway was more closed, 
consisting of a lot of vegetation in the form of mature forest 
with a few chaotic instances. Except for blocks 1 and 2, in 
which some parts were indicated as rough, and the alleyway, 
the field was almost homogenous (Figure 8f). Corn crops at 
this time are usually ready to be harvested, since there is not 

Figure 3. Checkpoints with random distribution in the 
treatment blocks. These checkpoints were used for assessing 
and comparing the crop-growth indicators (NDVI, RL, and 
height change) in the three blocks.

Figure 2. Maize growth cycle (Colless 1992), based on the application of recommended water and fertilizer (N, P, K), coupled 
with the presence of other essential elements such as sunlight.
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much more change in the growth of the crop, and there is 
uniformity in the growth cycle with less alteration.

Time-Series Crop Height
Figure 9 presents the UAV-based time-series crop-height 
changes. Although the height estimation did not differenti-
ate the types of vegetation present in the controlled field, 
the variation in height at the various growth stages assisted 
in differentiating corn from the winter crops. The decline in 
crop height on 12 June in the first two blocks was because the 
average hourly temperature was 75°F, with low precipitation 
(Figure 6), which led to the death of weeds and winter crops 
that could not survive the hot summer weather. However, 
there was an increase in crop height in block 3 due to the 
absence of winter crops and competition from weeds. The 
decline in crop height for all three blocks on 9 July shows the 
effect of lagging climatic conditions leading to the lodging of 
plants.

Lodging is a result of strong winds and rainstorms (Acorsi 
et al. 2019). These weather conditions lead to corn plants 
leaning flat to the ground (L. Zhou et al. 2020), and sometimes 
roots becoming dislocated from the soil or stems breaking, 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)
Figure 4. Time-series normalized difference vegetation 
index generated from unmanned-aerial-vehicle data on (a) 
30 April 30, (b) 12 May, (c) 26 May, (d) 29 May, (e) 12 June, 
(f) 26 June, (g) 9 July, (h) 27 July, and (i) 11 August.

Figure 5. Time-series normalized difference vegetation 
index (NDVI) values for the three block treatments in our 
study area, compared to the study by Raun et al. (2005).

(a)

(b)

Figure 6. Weather conditions in the study area: (a) average 
hourly temperature and (b) average hourly precipitation.
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reducing maize height. On 9 July, the average hourly precipi-
tation in the study area was 0.05 in, with a wind speed of 13 
mi per hr from the north-northeast. Corn height decreased 
after 9 July in all blocks and then resumed normal growth 
after 27 July (Figure 10). A correlation matrix for crop height 
in the three treatment blocks (Figure 11) showed a correlation 
of 0.93 between blocks 1 and 3, implying a 93% similarity in 
corn-height changes in the two blocks, which could be due 
to the presence of fertilization in both. The change in crop 
height in block 3 (treated with NPK fertilizer) was within a 
range of 0.5 to 1.5 m on 11 August, whereas the other blocks 
recorded changes of 0.1 to 0.5 m. Crop heights in the first two 
blocks are lower because of the competition for nutrients and 
moisture from unburned weeds.

The UAV DEM generated from this study for each time stamp 
was used to estimate the surface roughness of the field and 
the change in crop height. Crops that are unevenly spaced 
and have a lot of seeds per hole encourage competition among 
the crop and weeds, leading to variability in the canopy 
surface and to crop failure. The use of UAV multi-temporal 
data captured the variability caused by these parameters, 
which can assist in replanting of crops to improve growth 
and eventually increase crop yield. Changes in crop height 
are attributed to phenological development in the crop. It is 
necessary to calculate the height to ensure that the crop has 
attained acceptable growth before harvesting and to deter-
mine fertilizer and water application during the growth cycle. 
The differences in biomass yield over the entire period assist 
in detecting unhealthy crops and informing decisions as to 
intervention to rescue the crop. They also assist in predicting 
crop yield based on reflection from time-series data of pheno-
typic development.

Conclusion
UAV has proven to be a reliable source for the collection of 
multi-temporal data irrespective of time sensitivity of the 
growth season. It is easily accessible and very flexible, and 
images can be taken repeatedly. Placement of ground control 
points on the field of study validates the UAV images collected 
and ensures accuracy of the 3D image constructed through 
georeferencing of point clouds. The UAV vegetation indices 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)
Figure 7. Time-series roughness length, showing the 
variability of the field surface based on the growth of crops 
and the canopy density on (a) 30 April, (b) 12 May, (c) 26 
May, (d) 29 May, (e) 12 June, (f) 26 June, (g) 9 July, (h) 27 
July, and (i) 11 August.

Figure 8. Time-series averaged roughness length for the 
three treatment blocks from planting to maturity.
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evaluated in this study quickly indicated a change in vegeta-
tion from the time of planting to the time of harvest, com-
pared to the traditional method of monitoring a field, which 
is time-consuming and labor-intensive. The normalized 

difference vegetation index provided clear information on the 
vegetation status of the corn crop. Images acquired by remote 
sensing were used to determine the health status of the crop 
through estimating the NDVI. Low NDVI values imply crops 
that are either unhealthy or moderately healthy, whereas high 
values close to 1 indicate a healthy crop and provide infor-
mation on biomass yield. UAV-generated time-series results 
indicated both healthy and unhealthy crop, with high and 
low vegetation in the field. This analytical result from the 
NDVI correlates with the vegetated-surface roughness length 
for each period, which indicates that the level of vegetation 
can be determined by other indices, not only NDVI. Remote 
sensing detected the presence of more biomass in the control 
block compared to the other two blocks, and the RL values im-
plied that the field was heterogeneous due to factors such as 
plant spacing and density, plant height, and canopy structure 
for most of the growth cycle. Remote sensing technology indi-
cated that the study area was a heterogeneous field for most of 
the period of crop growth, becoming slightly homogeneous in 
the latter stage of the cycle. The height-change results assisted 
in identifying the impact of weather conditions on the maize 
crop. In the future, we will use deep learning for classification 
purposes and time-series analysis.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. Time-series crop height from 
planting to harvest using unmanned-
aerial-vehicle data on (a) 12 May, (b) 26 
May, (c) 29 May, (d) 12 June, (e) 26 June, 
(f) 9 July, (g) 27 July, and (h) 11 August.

Figure 10. Averaged time-series crop-height changes the 
three treatment blocks from planting to maturity.

Figure 11. Correlation matrix for crop height in the three 
treatment blocks.
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