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Abstract

The introduction of unmanned-aerial-vehicle remote sensing
for collecting high-spatial- and temporal-resolution imagery
to derive crop-growth indicators and analyze and present
timely results could potentially improve the management of
agricultural businesses and enable farmers to apply appropri-
ate solution, leading to a better food-security framework. This
study aimed to analyze crop-growth indicators such as the
normalized difference vegetation index (NDVI), crop height,
and vegetated surface roughness to determine the growth of
corn crops from planting to harvest. Digital elevation mod-
els and orthophotos generated from the data captured using
multispectral, red/green/blue, and near-infrared sensors
mounted on an unmanned aerial vehicle were processed and
analyzed to calculate the various crop-growth indicators. The
results suggest that remote sensing-based growth indicators
can effectively determine crop growth over time, and that
there are similarities and correlations between the indicators.

Introduction
During the last decade, there have been improvements in the
agricultural sector through theoretical and technological devel-
opments in many fields, including chemistry, genetics, and ro-
botics (Radoglou-Grammatikis et al. 2020), and there has been
an increase in the estimated amount of investment toward the
development of agricultural-based technology (Tsouros et al.,
2019). However, there is still a rising need to increase food
production, because of the continuous increase in the human
population and urbanization. The adoption of these scientific
approaches aims to increase agricultural food by 70% by the
year 2050, when the world’s population is projected to be 9
billion (Grainger 2010; Perea-Moreno et al. 2019), with an
increasing demand for crops from 2005 to 2050 (Tilman et al.
2011; Tian et al. 2021) and a stipulated decrease in cultivated
area (Tsouros et al. 2019). Intensive use of available farmland
to close the yield gaps and reduction of the expansion of agri-
cultural lands could positively affect crop production and im-
prove the supply chain necessary to meet crop demand (Foley
et al. 2011; Tilman et al. 2011; J. Huang et al. 2019).

The linear relationship between population and agricul-
tural growth necessitates the acceptance and advancement
of a multi-disciplinary method that facilitates monitoring
and evaluation of crop fields for growth assessment, through
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timely collection and analysis of farm data, to inform decision
making (Popescu et al., 2020). In addition, other outcomes
from agricultural activities, such as the emission of 30% to
35% of greenhouse gases (Foley et al. 2011) and nitrogen pol-
lution due to incomplete absorption by plants (Stuart et al.
2014), could be solved by the adoption of a well-structured
interdisciplinary approach to optimizing production. Finally,
agricultural stakeholders would not be burdened with the
limitations of practicing traditional agronomy, which involves
expensive and time-consuming methods (Wei et al. 2018).

Precision agriculture and smart farming technologies ob-
serve and measure an area to respond to spatial and temporal
variability in crop fields (Jeppesen et al. 2018). This mecha-
nism aims to maximize inputs for more rewarding output
without disturbing natural resources, so as to advance environ-
mental sustainability and quality (Mulla et al. 2002; Gotas$ et
al. 2020). Whipker and Akridge (2008) estimate that adoption
of precision agriculture could contribute to an increase of more
than 30% in US agribusiness. Precision and smart agriculture
involve the use of sensors and software, coupled with other
technologies, to collect and transfer data without the assis-
tance of humans. Precision farming enables monitoring of crop
growth and other agronomy processes such as fertilizer ap-
plication, disease detection, and irrigation routines. The use of
such technologies helps in obtaining timely data from the farm-
land for crop management and decision making in an efficient
manner (Aubert et al. 2012; Mulla 2013). However, prevailing
issues such as compatibility, complexity, and interoperability
slow down the rate at which precision agriculture is adopted
(Aubert et al. 2012). Shadrin et al. (2020) provide an overview
of the issues and challenges associated with precision agri-
culture. The main objectives in adopting precision agriculture
are to increase crop yield, improve product quality, ensure
efficient usage of production inputs, save energy, and prevent
environmental pollution (Radoglou-Grammatikis et al. 2020).

Remote sensing has been an important technology in preci-
sion agriculture (Shafiee et al. 2021). In agriculture it involves
the use of platforms such as unmanned aerial vehicles (UAvs),
satellites, and piloted aircraft to observe and measure reflected
radiation from the surfaces of soil and plant materials to ascer-
tain their features. The technology has been applied to differ-
ent agricultural applications (Pinter et al. 2003; Hashemi-Beni
and Gebrehiwot 2020; Weiss et al. 2020), such as determining
crop yield and biomass (Shanahan et al. 2001; Chao et al.
2019), water stress and nutrients (Tilling et al. 2007; Thuoma
and Madramootoo 2017), and weed infestations (Thorp and
Tian 2004; Y. Huang et al. 2018), as well as detecting plant
diseases (Buja et al. 2021). Most remote sensing-based agri-
culture studies have been based on images acquired by either
satellite or piloted vehicle to monitor vegetation levels (Mora
et al. 2017). However, satellite imagery has low spatial resolu-
tion, and limitations on the acquisition of temporal-resolution
imagery because of the potential unavailability of the satel-
lite at the stipulated time. In addition, image collection by
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satellites is sometimes disrupted by environmental condi-
tions. The use of piloted aircraft is also costly, and deploying
multiple flights to acquire extra crop images is often challeng-
ing. UAV-based remote sensing systems for crop monitoring
are fairly cost-effective, easily retrieve field data, and are very
fast. UAVs can be flown on demand at varying altitudes to
capture high-spatial- and temporal-resolution data over a crop
field. These attributes have contributed to the advancement
of precision agriculture. UAVs can be equipped with sensors to
monitor crops, evaluate the field, and provide information to
assist in identifying problems such as diseases and pests and
guide farmers to quickly solving farm-related issues.

UAVs have been used in precision agriculture for several ap-
plications, such as weed mapping, monitoring and estimation
of vegetation yield, irrigation management, crop spraying,
and monitoring of vegetation health and detection of diseases
(Tsouros et al. 2019; Hashemi-Beni and Gebrehiwot 2020).
Allred ef al. (2018) investigated the use of UAVs in identifying
drainage pipes on farms, which are useful to farmers for con-
trolling the amount of water on a field. A lidar sensor mount-
ed on a UAV can assist in determining crop production and
health status; images retrieved by lidar have been used for tex-
tural analysis to estimate total plant volume and soil surface
for particular crops (Christiansen et al. 2017). UAVs have been
also used in collecting thermal and multispectral information
from a field to estimate water stress and the health status of
pomegranate crops in Greece (Katsigiannis et al. 2016). The
nitrogen status of rice has been determined by analyzing hy-
perspectral data captured using a UAV (Zheng et al. 2016). The
use of time-series vegetation indices can identify varying crop
classes and also indicate growth patterns in crops (de Souza et
al. 2015). Prediction of wheat yield has been achieved using
multi-sensor and multi-temporal remote sensing images taken
on different dates (Wang et al. 2014). X. Zhou et al. (2017)
used both UAv-generated single and multi-temporal vegetation
indices to predict rice yield. Shafiee et al. (2021) have shown
that multi-temporal indices generated from time-series data
are more highly correlated with crop yield than are single
vegetation indices. Time-series UAV data have also been used
to determine the pattern of height and phenological changes
in each growth cycle of corn of different genotypes (Han et al.
2019). Yeom et al. (2019) used time-series vegetation indices
to determine the differences between no-tillage and conven-
tional-tillage agricultural practices and their effects.

In spite of these works, more research is still required to
evaluate the performance of UAV time-series data for precision
agriculture. In that context, our research aimed to investigate
UAV-based time-series vegetation indices for monitoring and
determining the impact of fertilizer application and pre-
scribed burns at the beginning of planting on phenological
changes in crops over time. In addition, we conduct analyses
of time-series UAV data for monitoring and evaluation of the
crop condition in a controlled cornfield, determine the ef-
ficiency of remote sensing-based crop-growth indicators and
the similarities among them, and estimate the biomass yield
of the crop in the field using the time-series UAV data.

The article is organized as follows: The next section
explains the study area and data collected for the research.
Then the research materials and methodology are described,
followed by a presentation and discussion of the results. Last
come conclusions and a summary of future research.

Study Area and Data

The study area is a 2-acre controlled test plot, of size 415x210
ft, located at the North Carolina A&T State University re-
search farm in Greensboro, North Carolina. As shown in
Figure 1, the plot was divided into three different blocks to
evaluate the performance of UAV time-series data for crop-
growth assessment considering the effects of burning (killing
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the winter crop with herbicide) and/or fertilizing before plant-
ing. Blocks 1 and 2 (each 415x70 ft) both had winter crops
that were not burned before the new planting. The difference
between them is that block 1 received fertilizer and block 2
did not. Block 3 (450x120 ft) received a traditional treatment:
burning the winter crop with herbicide before the new plant-
ing, and applying the recommended amounts of NPK fertilizer.
Corn was planted on the entire field on 24 April 2020.

Figure 1. Study area: the block design of the field. Block 1
was not burned but fertilizer was applied; block 2 was not
burned and received no fertilizer; and block 3 was both
burned and fertilized.

A UAV was used for collection of red/green/blue and near-
infrared imagery over the controlled plot; eight ground control
points were implemented for georeferencing. The UAV collected
time-series data at 40 and 70 m every 2 wk from seeding time
(April 2020) to harvesting (August 2020). The flight altitude of
40 m provided higher-resolution imagery while reducing the
image’s coverage area, thus increasing the flight duration and
number of images required to cover the area of interest. Both
flights for each collection took place on the same day, with one
flight deployed at the end of the other. This approach aimed to
compare maps generated from the images of the field and study
the impact of the imagery resolution on the crop-growth assess-
ment. Table 1 describes the time-series data collected.

Table 1. Data collected by two sensors mounted on a UAV at
different flight altitudes.

Number of Flight Spatial Temporal
GCPs Sensors Altitudes Resolutions Resolution
8 RGB,NIR 40and 70 m 1and 1.9cm 2 weeks apart

GCP = ground control point; NIR = near-infrared; RGB = red/green/
blue; UAV = unmanned aerial vehicle.

Methodology

Data Processing

A structure-from-motion approach was used for 3D recon-
struction of the farmland from the 80% overlapping images
collected by the uav. These methods use feature-based image-
matching methods and collinearity conditions from camera
alignment for, respectively, image-to-image registration and
3D surface construction (Hashemi-Beni et al., 2018). The
ground control points were used for georeferencing to ensure
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the accuracy of the reconstructed 3D images. A digital eleva-
tion model (DEM) map was created after georeferencing, which
was used for orthorectification and creation of the 3D model.

Identification of Crop-Growth Indicators

Crop-growth indicators are used as indices to determine
changes that occur on a field during the growing season.
Determination of these indicators enables timely collection
of data from the field for making decisions and taking prompt
action if required. The three important indicators of growth
change studied in the research are the normalized difference
vegetation index, roughness length, and crop-height change
from the time of planting to harvesting.

Normalized Difference Vegetation Index (NDVI)

The NDVI, an extensively used vegetation index, indicates the
greenness or the photosynthetic status of a vegetative area. It
assists in determining the locations of water, bare soil, and
plants, as well as whether plants are healthy or stressed. This
knowledge is based on the reflectance received from crops.
Crops that are healthy and actively photosynthesizing absorb
most of the red light they receive and reflect much of the near-
infrared light, and the estimated amount of red light reflected
by stressed vegetation is greater than near-infrared. NDVI is
calculated as (Hashim et al. 2019)

(NIR - Red)

NDVI =
(NIR +Red)

(1

Values range from -1 to +1 (Meneses-Tovar 2011; Alface et
al. 2019), with those between —1 and 0 indicating bare soil,
roads, dead plants, or water and those between 0 and 1 indi-
cating live plants (Table 2). In positive values, lower ones in-
dicate stressed or unhealthy plants, and higher ones indicate
healthy plants. In this research, time-series NDVI raster layers
were obtained by using a raster map algebra using Equation 1.

Vegetated-Surface Roughness Length

Roughness length (RL) is an expression of the variability of
elevation of a topographic surface at a given scale, where the
scale of analysis is determined by the size of the landforms

or geomorphic features of interest, either local or regional. It
shows the heterogeneity in land surface. Roughness of vegetated
surfaces is dependent on the mean canopy height, the canopy
structure, and the plant density (Jasinski and Crago 1999;
Urrego et al. 2021). Although roughness length is identified by
several models as a function of structural parameters of vegeta-
tion such as canopy area index, frontal area index (Raupach
1994; Hu et al. 2020), and leaf area index (Myneni et al. 2002;
Hu et al. 2020), it closely correlates with NDVI during the period
of crop growth (M. Yu et al. 2017; Schaudt and Dickinson 2000).

Surface RL measurements depict the nature of features of
the land or farm. Table 3 describes the surface of a field based
on estimated RL values obtained from analysis. A very rough
field has vegetation like a young dense forest, indicating the
springing up of new vegetation with 70% canopy density.

For this study, RL was estimated by first computing the total
curvature of the individual digital elevation models and then
deriving a focal statistic for calculating the standard deviation
within a moving neighborhood window of 3x3 pixels. The ras-
ter was log-transformed to normalize and reduce skewness. The
roughness index is calculated as (Korzeniowska et al. 2018)

Zizl(’;i -%) (2)

u=log,,

where x; represents the curvature value of the center cell, X;
represents the mean curvature, and n is the number of pixels
(for a 3x3 kernel).
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Table 2. Normalized difference vegetation index (NDVI) values
indicating vegetation classes (Hashim et al. 2019).

Vegetation Class Description NDVI Value

Non-vegetation ~ Barren areas, built-up areas, -1 to 0.199
road network

Low vegetation ~ Shrub and grassland 0.2 to 0.5

High vegetation = Temperate and tropical urban forest 0.501 to 1.0

Table 3. Roughness-length thresholds (Wieringa 1992; J. Yu et
al. 2021).

Roughness

Length Landscape Features Class

0.03 Flat terrain with very low Open
vegetation or grass

0.10 Cultivated area, low crops Roughly open

0.25 Open landscape, scattered shelter belts Rough

0.5 Young dense forest Very rough

1.0 Mature forest Closed

>2.0 Irregular distribution of Chaotic
large forest with clearings

Plant Height

Plant height, which is the distance from the highest point

of a plant to the lowest point (ground), assists in evaluating
both plant growth and yield (Bendig et al. 2015). It provides
relevant parameters for assessing plant physiology, genetic
traits, and environmental impacts (Malambo et al. 2018).
Figure 2 shows the stages of growth of maize from plant-

ing time to harvest time, indicating the stipulated height at
each time period and the percentages of water and fertilizer
required (Colless 1992). The percentages were determined in
the laboratory and will be used for comparison and validation
of the UAv-generated information.

In this research, a time-series DEM was processed and used
for estimating changes in crop heights across growth stages.
The DEM of each time stamp was subtracted from the DEM of
the beginning time, 30 April (planting stage). The resultant
raster presents the height change, enabling identification of
the growth cycle of the crop, which in turn assists in choos-
ing appropriate crop-management practices from the avail-
able husbandry options. Height change can be represented
mathematically as

Height change = ((Current_time[DEM] — Planting time[DEM])) (3)

Statistical Analysis

A quantitative analysis was conducted to study the time-
series assessment of the growth indices from planting to
harvesting. Thirty-six checkpoints with random distribution
were generated for each treatment block on the field (Figure
3). Changes in NDVI, RL, and crop height over time were ana-
lyzed for the checkpoints.

Results

Analysis of the time-series UAV and geospatial data was done
in Agisoft Photoscan and ArcGIS. All UAV images, taken at
both 40 and 70 m, were processed, but for demonstration
purposes, only the results from 70 m are shown. Time-series
digital elevation models were used in estimating crop height
and vegetated RL change, whereas orthomosaics were used in
assessing time-series NDVI.

Crop-Growth Indicators

This section provides the results of the three indicators
used to determine maize growth from the time of planting to
harvest.
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Planting \

<

Height (cm) 0

Days 6 -2 0

% Water | 1 2 4

%N 1 1 1
%P 1 1 1
%K 1 1 1

with the presence of other essential elements such as sunlight.

Figure 2. Maize growth cycle (Colless 1992), based on the application of recommended water and fertilizer (N, P, K), coupled

Figure 3. Checkpoints with random distribution in the
treatment blocks. These checkpoints were used for assessing
and comparing the crop-growth indicators (NDVI, RL, and
height change) in the three blocks.

Time-Series NDVI
Results from NDVI analysis affirm the various block treatments
applied to the study area. The variation in crop biomass
yield across different blocks is due to the differences in block
treatments. The time-series NDVI from April through August
(Figure 4) shows the progression on the field from nearly bare
earth to vast biomass development.

NDVI estimation for the first two blocks is high on 30
April due to the presence of winter crops on the field before
and after the sowing of maize seeds. There was a concur-
rent increase in biomass in the whole field, including high
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vegetation looking like a mature forest (NDvI 0.5—1) in the first
two blocks from 12 to 29 May. However, biomass in these
blocks began to deplete from 29 May until 26 June, when the
depletion was massive. This was caused by the gradual with-
ering of the winter crops and weeds in the region due to high
temperatures in the summer.

There was a gradual increase in NDVI for block 3 from 30
April through 12 June, when there was a decline in biomass
(Figure 5). This was due to the high average temperature of
84°F, which led to high evapotranspiration from the leaves
and the soil surface in the field without replacement of water
through irrigation, leading to the death of winter crops and
thus low vegetation presence. Temperature and precipitation
(Figure 6) are climatic conditions which greatly affect vegeta-
tion growth (Buitenwerf et al. 2015). Changes in climate cause
variability in vegetation growth and influence functions that
are associated with vegetation (Li ef al. 2019). An example is
the occurrence of frost, which leads to a reduction in vegeta-
tion biomass on a maize field (Raun et al. 2005). There was
not much change in biomass on our whole field from 27 July
to 11 August, as corn is ready for harvest as silage and not
much phenological development occurred.

Time-Series RL

The vegetated-surface RL variation in the study area depicted
a heterogeneous field along several rows. This heterogeneity
implies a crop at different growth stages, and inconsistency in
cultivation practices. The RL of the field on 30 April indicates
open or flat terrain with both low vegetation or low grass-like
biomass and vegetation looking like scattered shelter belts.
The field can be classified as a rough open space. Vegetation
increased by 12 May, when the field looked like a dense forest
(Figure 7).

A marginal shift from heterogeneous to homogenous over
the period 26 May to 12 June is associated with the increase
in biomass along specific rows. From 26 June to 11 August,
the study area excluding the alleyway was more closed,
consisting of a lot of vegetation in the form of mature forest
with a few chaotic instances. Except for blocks 1 and 2, in
which some parts were indicated as rough, and the alleyway,
the field was almost homogenous (Figure 8f). Corn crops at
this time are usually ready to be harvested, since there is not
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Fiéure 4. Time-series normalized difference vegetation
index generated from unmanned-aerial-vehicle data on (a)
30 April 30, (b) 12 May, (c) 26 May, (d) 29 May, (e) 12 June,
(f) 26 June, (g) 9 July, (h) 27 July, and (i) 11 August.
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Figure 5. Time-series normalized difference vegetation
index (NDvI) values for the three block treatments in our
study area, compared to the study by Raun et al. (2005).
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Figure 6. Weather conditions in the study area: (a) average
hourly temperature and (b) average hourly precipitation.
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much more change in the growth of the crop, and there is
uniformity in the growth cycle with less alteration.

Time-Series Crop Height

Figure 9 presents the UAv-based time-series crop-height
changes. Although the height estimation did not differenti-
ate the types of vegetation present in the controlled field,

the variation in height at the various growth stages assisted
in differentiating corn from the winter crops. The decline in
crop height on 12 June in the first two blocks was because the
average hourly temperature was 75°F, with low precipitation
(Figure 6), which led to the death of weeds and winter crops
that could not survive the hot summer weather. However,
there was an increase in crop height in block 3 due to the
absence of winter crops and competition from weeds. The
decline in crop height for all three blocks on 9 July shows the
effect of lagging climatic conditions leading to the lodging of
plants.

Lodging is a result of strong winds and rainstorms (Acorsi
et al. 2019). These weather conditions lead to corn plants
leaning flat to the ground (L. Zhou et al. 2020), and sometimes
roots becoming dislocated from the soil or stems breaking,
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(h)

Rouihness Length

Figure 7. Time-series roughness length, showing the
variability of the field surface based on the growth of crops
and the canopy density on (a) 30 April, (b) 12 May, (c) 26
May, (d) 29 May, (e) 12 June, (f) 26 June, (g) 9 July, (h) 27
July, and (i) 11 August.
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Figure 8. Time-series averaged roughness length for the
three treatment blocks from planting to maturity.

reducing maize height. On 9 July, the average hourly precipi-
tation in the study area was 0.05 in, with a wind speed of 13
mi per hr from the north-northeast. Corn height decreased
after 9 July in all blocks and then resumed normal growth
after 27 July (Figure 10). A correlation matrix for crop height
in the three treatment blocks (Figure 11) showed a correlation
of 0.93 between blocks 1 and 3, implying a 93% similarity in
corn-height changes in the two blocks, which could be due
to the presence of fertilization in both. The change in crop
height in block 3 (treated with NPK fertilizer) was within a
range of 0.5 to 1.5 m on 11 August, whereas the other blocks
recorded changes of 0.1 to 0.5 m. Crop heights in the first two
blocks are lower because of the competition for nutrients and
moisture from unburned weeds.

The UAV DEM generated from this study for each time stamp
was used to estimate the surface roughness of the field and
the change in crop height. Crops that are unevenly spaced
and have a lot of seeds per hole encourage competition among
the crop and weeds, leading to variability in the canopy
surface and to crop failure. The use of UAV multi-temporal
data captured the variability caused by these parameters,
which can assist in replanting of crops to improve growth
and eventually increase crop yield. Changes in crop height
are attributed to phenological development in the crop. It is
necessary to calculate the height to ensure that the crop has
attained acceptable growth before harvesting and to deter-
mine fertilizer and water application during the growth cycle.
The differences in biomass yield over the entire period assist
in detecting unhealthy crops and informing decisions as to
intervention to rescue the crop. They also assist in predicting
crop yield based on reflection from time-series data of pheno-
typic development.

Conclusion

UAV has proven to be a reliable source for the collection of
multi-temporal data irrespective of time sensitivity of the
growth season. It is easily accessible and very flexible, and
images can be taken repeatedly. Placement of ground control
points on the field of study validates the UAV images collected
and ensures accuracy of the 3D image constructed through
georeferencing of point clouds. The UAV vegetation indices
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Figure 10. Averaged time-series crop-height changes the
three treatment blocks from planting to maturity.
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Figure 11. Correlation matrix for crop height in the three
treatment blocks.

evaluated in this study quickly indicated a change in vegeta-
tion from the time of planting to the time of harvest, com-
pared to the traditional method of monitoring a field, which
is time-consuming and labor-intensive. The normalized
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difference vegetation index provided clear information on the
vegetation status of the corn crop. Images acquired by remote
sensing were used to determine the health status of the crop
through estimating the NDVI. Low NDVI values imply crops
that are either unhealthy or moderately healthy, whereas high
values close to 1 indicate a healthy crop and provide infor-
mation on biomass yield. UAv-generated time-series results
indicated both healthy and unhealthy crop, with high and
low vegetation in the field. This analytical result from the
NDVI correlates with the vegetated-surface roughness length
for each period, which indicates that the level of vegetation
can be determined by other indices, not only NDVI. Remote
sensing detected the presence of more biomass in the control
block compared to the other two blocks, and the RL values im-
plied that the field was heterogeneous due to factors such as
plant spacing and density, plant height, and canopy structure
for most of the growth cycle. Remote sensing technology indi-
cated that the study area was a heterogeneous field for most of
the period of crop growth, becoming slightly homogeneous in
the latter stage of the cycle. The height-change results assisted
in identifying the impact of weather conditions on the maize
crop. In the future, we will use deep learning for classification
purposes and time-series analysis.
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