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Abstract

Field-plated vertical Ga>Os rectifiers were operated up to 600K with reverse breakdown
voltage (Vi) of 750 V, 950 V at 500K and 1460 V at 400K. The barrier height was 1.3 eV at
300K and reduced to 0.7 eV at 600K, with ideality factors of 1.05+0.05 and 2+0.1, respectively
at these temperatures. On-state resistance, Ron, was 13 mQ.cm? at 300K and 41 mQ.cm? at
600K, leading to respective Baliga figures of merit of 151 MW.cm™ (300K) and 13.9 MW.cm™
(600K). The on-off ratio was >10* for all temperatures measured. The leakage current showed a
good fit to the thermionic field emission model when the reverse voltage was less than 80 V, and
it was dominated by the tunneling effect at higher voltage. The transition voltage from
thermionic emission to tunneling effect decreased as the temperature increased. At high reverse
voltage, a large number of electrons are injected into the drift region, and the current shows an I
« V"relationship with voltage, indicating a trap-assisted space-charge-limited conduction

(SCLC) mechanism. We observed this SCLC relation when the reverse voltage was larger than



400 V for 500 K and 600 K. The associated trap energies for these two regions were extracted as

0.2 and 0.4 eV, consistent with levels in the gap.



Introduction

The development of power electronics technology based on wide bandgap semiconductors
is attracting much interest because of the potential for significantly higher switching efficiency
and ability to operate at higher powers and temperatures. Within the next decade, about 80% of
all US electricity is expected to flow through power electronics. These include power distribution
systems, electric vehicle fast chargers, data center power supplies, ship power systems, and
renewable wind/solar energy integration. Both SiC and GaN power electronics are now
commercialized and provide more efficient performance than conventional Si-based devices [1-
3]. The combination of high breakdown voltage, low on-state resistance and lower switching
losses is improved in the ultra-wide bandgap semiconductors [4-10] [such as Ga>O3, diamond,
and AIN). This leads to their high Baliga’s figure of merit (BFOM), defined as ... E.°, where &,
1, and E. are the dielectric constant, carrier mobility, and critical breakdown field strength,
respectively.

Among these ultra-wide bandgap semiconductors, monoclinic gallium oxide (£-Ga203)
has recently attracted increasing attention due to the availability of high quality, large diameter
single crystals from mature melt growth methods and its attractive material properties of wide E¢
of 4.6-4.9 eV, good electron mobility (>200 cm?/Vs) and estimated critical breakdown field, E. ,
of~ 8 MV/cm, yielding a relatively high BFOM (>3000) with respect to silicon [11-23].
Compared to other ultra-wide bandgap materials, the inexpensive substrates lower the
manufacturing cost for f-Ga>O3 power devices for applications requiring high operation voltage
and high energy conversion efficiency.

A large literature on demonstration of power devices in this materials system now exists,

including vertical and lateral MOSFETs and rectifiers [6-43]. The absence of practical p-type



doping may be alleviated by use of other p-type oxide semiconductors to form a pn
heterojunction with Ga>Os3, such as NiO, Cu,0, Cul and Ir,03[27-34]. Some notable recent
advancements in device performance for Ga;Os3 diodes includes a SA/700V junction Schottky
barrier diode implemented with p-type NiO layer [35], 1.86kV p-n junction diode with NiO
heterojunction [36], as well as demonstrations of >100A of absolute forward current using
conventional field-plated Schottky diodes [37].

Wide energy bandgap materials are suitable for high temperature as well as high breakdown
voltage applications. The ability to operate at high temperature enables wide bandgap devices to
be attractive in terms of reduced package size and minimal requirement for cooling. Hindered by
its low thermal conductivity, demonstrations of operation at high temperature for f-Ga,Os3 are
fairly limited. Wang et al.[38] reported operation up to 600K of rectifiers with beveled edge
termination and spin-on glass passivation, achieving breakdown voltage of ~500V at this
temperature. One way to increase the breakdown voltage is to grow thicker layers, but to date,
the maximum drift layer thickness has been 30 um, thinned to 20um after the chemical
mechanical planarization (CMP) step needed to achieve a flat surface morphology [15].

In this work, we report operation of field plated Schottky barrier diodes up to 750 V at
600K, with reasonable leakage current density. This was achieved by growing a 40 um thick
drift layer, thinned to 30 um after CMP, as well as lower carrier concentration. The devices
exhibit a negative temperature coefficient of breakdown and reverse leakage dominated by
thermionic field emission when the reverse voltage was less than 80 V, and by tunneling
conduction at higher voltage.

Experimental



The drift region of the material consisted of a 30 um thick, lightly Si doped epitaxial layer
grown by halide vapor phase epitaxy (HVPE) with minimum carrier concentration of 1.6x 10'®
cm™ (the maximum was ~3x10'® cm™), and this epitaxial layer was grown on a (001) surface
orientation Sn-doped S-Ga>Os3 single crystal (Novel Crystal Technology, Japan). The HVPE
layer is actually grown initially to a thickness of ~ 40 pum, but then chemically mechanically
polished to planarize the surface by removing ~10 um of material. As seen in the Nomarski
images of Figure 1, this produces a much smoother surface relative to the as-grown morphology,
but there is still some surface roughness after the CMP step. It is important to note that this is a
unique growth, the thickest ever attempted at NCT and the process is not optimized.

A full area Ti/Au backside Ohmic contact was formed by e-beam evaporation and was
annealed at 550C for 30s under N, ambient. 40 nm of Al,O3 and 400 nm of SiNx were deposited
as field plate dielectric using Cambridge-Nano-Fiji ALD and PlasmaTherm PECVD tools.
Dielectric windows of 40 um x40 pm was opened using dilute buffered oxide etchant (BOE),
and a 200nm Ni/Au Schottky contact was deposited with E-beam after lithography pattern
followed by standard acetone lift-off. Figure 2 shows a photograph and device geometry of
fabricated diodes, respectively. Of the 121 devices on this chip, approximately 46 have very
smooth morphology, but this was not the only parameter that correlated with achieving high
breakdown voltage. We had a yield of ~15% (~20 devices out of 121) with breakdown in the
range 745-754V. The carrier concentration of these highest breakdown voltages was typically <
2x10'6 cm™ with no visible surface defects within the active area of the device. The remaining
surface defects are due to the incomplete smoothing of the surface of the HVPE-grown layer.

The current-voltage (I-V) characteristics were recorded at IMHz with a Tektronix

370-A curve tracer was used for forward and reverse current measurements over the temperature



range 300-600K on a temperature-controlled stage. No hysteresis was observed in any of the
rectifier characteristics. The forward direction was dominated by the thermionic emission (TE)
current, while in the reverse direction, the thermionic field emission (TFE) and tunneling
currents played an important role at high reverse bias. To extract the barrier height (®y) and
ideality factor (n), we used the relationship for current density in TE theory, given by [1,3,38]
J=1Jo exp (eVa/nkT) [1-exp (-eVa/ kT)
where Jo =A" mes/moT? exp(®s /kT), e is electronic charge and A” is the Richardson constant and
Va is the bias voltage applied. The magnitude of the series resistance can also be obtained from
plots of d(Va)/d(InJ) versus J, while the barrier height is obtained from (kT/e) In(A™T?/Jo)
[44,45]. The built-in voltage can be obtained from the C-V characteristics [45]. The fact that
thermionic field emission was the dominant current transport mechanism over most of the
conditions investigated can be established by the fact that the tunneling parameter Eoo/kT was ~1
[42], where Eqo is given by (eh/4m)[ Np/m” &]%> and h is Planck’s constant and &; is the relative
dielectric constant. If this parameter is much less than unity, then thermionic emission is
significant and field emission is dominant if this parameter is >> 1.

Capacitance-Voltage (C-V) characteristics were recorded with an Agilent 4284 A Precision
LCR Meter. The diode on/off ratio is another figure-of-merit was measured when switching from
2V forward to reverse biases up to 100V. The reverse breakdown voltage was defined as the bias
for a reverse current of 1mA.

Results and Discussion
The barrier height was 1.23 eV at 300K and reduced to 0.7 eV at 600K, with ideality factors
of 1.05+0.5 and 2+0.1, respectively at these temperatures, extracted from the I-V-T

characteristics in Figure 3 and those parameters plotted in Figure 4. It is commonly observed that



the barrier height decreases with increasing temperature, as it is easier for electrons to pass over
the barrier since with pure thermionic emission there would be a reduced barrier at elevated
temperatures. This will lead to contributions from other transport mechanisms and the
commonly observed higher ideality factors at elevated temperatures. [42]. There may also be
contributions from spatial inhomogeneity of the Schottky barrier [42].

The temperature coefficient was —(2.1 = 0.6) x 107 eV/K, which is the same order of
magnitude as the temperature dependence of the band gap, namely (- 4.5x107%) eV/K [40]. In Si,
the temperature coefficient of the barrier height also depends on the chemical nature of the metal,
in contradiction with models suggesting Fermi-level pinning at the center of the semiconductor’s
band gap [41]. In Ga,03, the situation is more complex, with the dependence of barrier height
om metal work function being a function of the orientation of the Ga,Os3 surface. It is generally
the case that a number of factors also have an influence on barrier height and its temperature
dependence. For Ga>Os3, these factors include the interface crystallography, contact
inhomogeneities, the recombination velocities on different surface planes of Ga,O3 or for
different polytypes. For example, Lyle et al [42] found a strong positive correlation between the
calculated Schottky barrier heights and the work function of metal contacts on (100) B-Ga203, in
contrast to (201) B-GayO3 . Similarly, there were mixed results for (010) -GaO3 [42]. The
temperature dependence of barrier height and ideality factor in our devices is consistent with
previous reports [38, 43]. We did not observe any significant change in carrier concentration as a
result of the temperature cycling, as judged from the C-V measurements.

The on-state resistance of the rectifiers, Ron, was 13 mQ.cm? at 300K and 41 mQ.cm? at
600K, leading to respective Baliga figures of merit of 150 MW.cm™ (300K) and 14 MW.cm™

(600K). The highest previous result was 4 MW. cm™ at 600K [38]. The series resistance of the



highest breakdown voltage rectifiers was typically between 200-300 Q. The on-off ratio is
another figure of merit in that having high on-current and low leakage current in reverse bias is
desirable [46-49]. This was >10* for all temperatures measured, as shown in Figure 5.

As shown in Figure 6, at lower voltages, reverse bias leakage current is dominated by
thermionic field emission (TFE)[38, 39], which is dependent on ambient temperature. However,
with increasing voltage and hence electric field, the carrier tunneling and other conduction
processes becomes predominant, and the leakage currents become more sensitive to temperature
changes [50]. The leakage current shows a good fit to the TFE model when the reverse voltage is
less than 80 V in Figure 6, and it is affected by the tunneling effect when voltage is higher than
80 V. However, the transition voltage from thermionic emission to tunneling effect did not
follow the universal monotonic temperature [38,39]. The transition voltage actually decreased as
the temperature increased, as illustrated in Figure 7, showing that impact ionization is not the
breakdown mechanism, since that should exhibit positive temperature coefficient [46]. The
variation of Vg with temperature can be represented by a relation of the form [47] :

Vg = Vo l1+ B(T —T,)]
where B =—-3.4+ 1.4 V. K~!. We have previously found that current increases in vertical
geometry GaxOs rectifiers during electron beam induced current measurements are dominated by
impact ionization of deep acceptors in the depletion region. At room temperature, mobile hole
diffusion in the quasi-neutral region of Schottky diodes contributes significantly to the charge
collection efficiency [48]. Electron beam induced current measurements indicated a strong
amplification of photocurrent in rectifiers, attributed to the Schottky barrier lowering by holes

trapped on acceptors near the surface [49].



The breakdown fields calculated from the observed breakdown voltages at different
temperatures were 5.0 x10° V/cm at 600K, 6.3 x10°V/cm at 500K and 9. 8x10° V/cm at 400K.
These were obtained from the non-punch through relation Eva =[ (2eN4Vba)/€]*> [50]. Currently,
all Ga,Os rectifiers show performance limited by the presence of defects and by breakdown
initiated in the depletion region near the electrode corners.

When a higher reverse voltage is applied, a large number of electrons are injected into the
drift region, and the current shows an 7 o< V" relationship with the voltage, indicating a trap-
assisted space-charge-limited conduction (SCLC) mechanism [51, 52]. Under this mechanism, a
current hump should be observed before the trap-filled limited voltage, and with electrons
continue to be injected into the drift region, it will lead to a breakdown. This is commonly
reported in GaN, ie. the logarithmic I-V curve shows that the current I is proportional to /" until
a hump (sharp transition in I-V curve) at some threshold voltage. Such behavior can be modeled
by a space-charge-limited current (SCLC) conduction mechanism with traps [53,54]. Under
reverse bias and below this threshold, electrons injected into the drift layer partly contribute to
conduction current and are partly captured by acceptor traps known to be present. The hump
threshold voltage represents the trap-filled-limited voltage of the acceptor traps, suggesting the
applied voltage overcomes the negative potential formed by the un-neutralized electrons in traps
and the ionized donors in the n-Ga>Os. [53,54]. This shows an SCLC relation when the reverse
voltage is larger than 400 V for 500 K and 600 K in Figure 7.

The reverse current characteristics at different temperatures are shown in more detail in
Figure 8 (top), with all showing I o< V" relationship. A fit to the data for the 600K reverse current
characteristic is shown at the bottom of Figure 8. The data fits well to a relationship I «< V"

where n is 5.2 and the constant of proportionality is 7.6 x1072}. The associated trap energies for



these two regions were extracted as 0.2 and 0.4 eV from an Arrhenius plot, as shown in Figure 9.
Levels with these activation energies have been reported previously in epitaxial Ga;O3, but were
ascribed to unknown impurities and native point defects, respectively, with no specific
information on their microstructure [55].

The record high reverse breakdown at high temperature in this work is a significant advance
for high temperature switching applications for f-Ga>O3, as shown in the reverse breakdown
performance when compared with previous reported works at elevated temperature in Figure 10.
Summary and Conclusions

Ultrawide bandgap semiconductors offer higher switching frequencies, higher operating
temperatures and lower losses that improve power conversion efficiency. The remaining
challenges and new opportunities for Ga;Os3 in high power applications ranging from electric
vehicles, medium voltage motor drives, renewable energy interfaces, microgrids, to emerging
applications such as electric propulsion for aircraft include more thermally stable contacts,
development of stable MOS gates, optimized edge termination and continued improvements in
epi and bulk growth. For EV motor drives, the improved efficiency of ultra wide bandgap
semiconductor devices would enable either extended range for the vehicle for a given battery
charge, or a reduction in the battery pack required to go a certain distance. The required power
modules would need large area MOSFETs delivering current in the range of 80-120 Amps per
chip at 650 V to 1200 V. The promising results from vertical Ga;Oj3 rectifiers reported previously
in terms of breakdown voltages and now high temperature operation suggest that thermal
management issues become more important to address.

Data Availability Statement
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Figure Captions

Figure 1. Nomarski microscope images of the HVPE layers before (top, left and right) and after
subsequent polishing to planarize the surface (bottom, left and right).

Figure 2. Schematic of vertical rectifier structure (top) and photograph of fabricated p-Ga>0O3
Schottky diode array with 40umx40um squares (bottom).

Figure 3. Forward I-V characteristic for rectifiers as a function of temperature.

Figure 4. Schottky barrier height and ideality factor retrieved from diode forward I-V as a
function of temperature.

Figure 5. On/off ratio when switching from 2 V forward bias to the reverse biases shown on the
x-axes at various temperatures.

Figure 6. Reverse current density of the vertical $-Ga,0O3 Schottky diode at various temperatures
fitted to the TFE model for reverse biases of 5-100 V.

Figure 7. Reverse I-V-T characteristics at 400-600 K for rectifiers at various temperatures.
Figure 8. Experimental data for reverse current characteristics at 400-600K and fit to an [ &< V"
relationship (top) and more detailed view of 600K reverse current characteristic and fit to an I «
V" relationship with n=5.2 (bottom).

Figure 9. Arrhenius plot AI/AV versus 1/T. The I-V slope of the voltages ranges from 200-400 V,
and ranges over 400 V for rectifiers measured as a function of temperature.

Figure 10. Comparison of operation temperature versus maximum reverse bias for reported
vertical Ga,Os rectifiers. Previous data comes from Virginia Tech [38], University of Canterbury

[56], University of Florida [57] and NIICT [58].
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