A Survey of Finished Vehicle Distribution and Related Problems from an
Optimization Perspective

Abstract

In this survey paper, we critique the optimization studies on the distribution of finished vehicles from
automobile manufacturers to dealers in the past three decades and propose promising prospective research
to minimize the gap between industrial practice and academic research. First, we identify major decision
makers involved in automobile distribution, summarize service models, and briefly describe the automobile
shipping practice by transportation mode. After defining the automobile shipping optimization problem at
the operational level, we present the automobile distribution problem taxonomy by classifying existing
studies by the level of decision making, mode of transportation, and type of optimization decisions. Each
subcategory of studies is reviewed in detail through comparisons by objective function, constraints,
formulation, solution algorithm, and test instances. We conclude this survey paper by summarizing major
review outcomes and proposing potential research directions. This survey will stimulate interested
transportation researchers to conduct further research to keep pace with the rapid evolution of the
automobile shipping practice.

Key words: Automotive supply chains; automobile distribution; integer programming; heuristics;
integrated loading and routing; survey.



1. INTRODUCTION

1.1. Significance of automobile distribution

The automotive industry is one of the major industries in the world (Nieuwenhuis and Wells 2015). In some
developed countries, such as Germany and Japan, the share of the automotive industry in the Gross
Domestic Product (GDP) can exceed 5% (Saberi 2018). Over 10% of all manufacturing jobs in the Europe
Union are in automobile production (Volling et al. 2013). Data compiled by the United States Bureau of
Labor Statistics (USBLS) indicate that around 4.4 million people are directly involved in automobile
manufacturing, wholesaling, and retailing in the US (USBLS 2021). According to the International
Organization of Motor Vehicle Manufacturers (abbreviated as OICA in French), the total sales volume of
passenger cars and commercial vehicles in 2019 is approximately 91 million (OICA 2020a), among which
46% are manufactured in China, the US, and Japan (OICA 2020b). In the US, on average 17 million
automobiles are sold in each of the last five years.

As a very important component of the automotive industry, automobile distribution deals with the shipping
of finished automobiles from hundreds of manufacturing plants across several different continents to tens
of thousands of dealers across the US. The distribution of finished automobiles is thus a multi-billion-dollar
industry considering the size of the U.S. automotive industry. In addition to transporting new cars, the
shipping of preowned cars also accounts for a significant portion of the automobile transportation industry
for the following reasons. First, as in the case of new cars, a lot of used cars are also exported from affluent
countries such as Japan and South Korea to developing countries (Wang and Yeo 2016, Nieuwenhuis et al.
2007). Second, when people migrate, they ship rather than drive their own vehicles to a new place.
According to the American Community Survey (ACS) conducted by the US Census Bureau, for various
reasons (e.g., education, employment or lengthy vacations) around 7 million people each year relocate to
another state (U.S Census Bureau 2018). Third, consumers may also purchase second-hand vehicles online
(e.g., online auctions) and have them delivered to their locations. Therefore, the demand for automobile
distribution has been consistently high.

1.2. Motivation and objective of this survey

Despite the long history of the automotive industry and clear significance of automobile distribution, there
is a major gap between the academic research and industrial practice. Research lags behind practice by at
least a few decades: it was not until the 1990s when optimization models for automobile shipping first
appeared in the literature, although the mass production of automobiles started in the 1900s. At the
operational level, Agbegha et al. (1998) first addressed the auto-carrier loading aspect of the highway-based
automobile shipping. At the strategic level, Miller et al. (1996) developed a mixed integer program to
optimize the mode selection and rail terminal location problems for an international automobile
manufacturer. Due to the high competitiveness in the automobile shipping industry, operations research has
been increasingly used to help automobile manufacturers and carriers make better decisions to reduce
distribution costs and increase service quality. Over 50 optimization studies involving various automobile
shipping decisions at different levels have been published since the 1990s. Nonetheless, an important
literature gap remains: no systematic surveys of the academic literature on the automobile distribution
problem have been conducted. Thus, this survey intends to contribute to the literature by bridging this gap.

Given that the focus of this survey is on automobile distribution, we do not review in detail the existing
work that is primarily on transshipment terminal or port management. Interested readers are referred to
Mattfeld and Kopfer (2003) and Mattfeld (2006), among others. Mattfeld (2006) studied some important
issues related to the terminal operations in finished vehicle supply chains, such as vehicle transshipment
planning, storage space allocation, and personnel scheduling. Mattfeld and Kopfer (2003) developed an
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integrated model for manpower planning and inventory management for a large vehicle port, the
Bremerhaven hub in Germany.

Like other distribution problems in supply chain management, automobile distribution is a very complex
decision making problem, because (1) many decision makers with different objectives are involved; (2)
interrelated optimization decisions at various levels (i.e., operational, tactical, and strategic) are made; (3)
different transportation modes (such as rail and highway) are employed to transport automobiles, which
exhibit clear mode-specific features; (4) the problem size in practice tends to be very large; and (5) the
primary factors and key considerations in automobile shipping vary significantly with region, implying a
high diversity across the world. As indicated in a seminal paper Agbegha et al. (1998), one unique feature
of the automobile shipping problem stems from the physical configuration of auto-carrying equipment.
Highway-based automobile distribution can be used as an example to illustrate it. For economic reasons,
on-road auto-carrier trailers are specially designed to allow the compact storage of automobiles on multiple
levels of an auto-carrier while not violating any auto-carrier size regulations. A major operational challenge
due to this special trailer configuration is that automobiles can only be loaded and unloaded through a single
exit of an auto-carrier, which complicates loading and unloading operations for an auto-carrier.
Unfortunately, the loading and unloading decisions, which will eventually determine how automobiles are
stored in an auto-carrier, are interrelated with other decisions in automobile distribution, such as assigning
automobiles to auto-carriers and routing auto-carriers. Therefore, the specialized auto-carrying equipment
involved in automobile distribution clearly distinguishes the automobile distribution problem from other
distribution problems.

Although studies since the 1990s have presented significant methodological advances and algorithmic
improvements, additional research is practically necessary to keep pace with the rapid evolution of the
automobile shipping industry. Therefore, we first provide a comprehensive and in-depth critique of the
existing automobile shipping optimization studies spanning all modes of transportation across multiple
decision-making levels to identify critical research gaps. Then, we propose prospective research directions
for consideration by the transportation research community such that those gaps can be filled through future
research. In addition, we discuss new research opportunities in automobile shipping considering the
potential impact of emerging technologies, such as vehicle automation, artificial intelligence, and
blockchain.

The rest of this paper is structured as follows. Section 2 presents the literature search procedure. We define
major decision makers, summarize service models, introduce automobile shipping practice by mode in
Section 3. An umbrella term named automobile shipping optimization problem is defined and a
classification of this problem is then presented in Section 4. The next four sections (Sections 5 to 8) thus
critique four subcategories of existing studies. In Section 9, we analyze major research gaps, propose
plausible approaches to addressing such gaps, and analyze the impact of emerging technologies. In Section
10, concluding remarks are presented.

2. RESEARCH METHODOLOGY

In this survey paper, we intend to broadly cover those decision-making problems concerned with moving
automobiles from one place to another. In the literature, quite a few terms with varying scopes are used,
such as auto-carrier transportation (Tadei et al. 2002), automobile pickup and delivery (Wang et al. 2018),
outbound logistics of automobiles (Wang and Chen 2020), and automobile distribution (Hei et al. 2014).
All such related problems fall within the scope of this survey.

To ensure most relevant studies are covered in this survey, the following procedure is used to conduct the
literature search systematically.
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o First, we searched Web of Science and Google Scholar with keywords including “automobile
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shipping”, “automobile transportation”, “automobile distribution”, “automobile pickup and
delivery”, and “auto-carrier loading and routing”. For those papers found in this step, we
examined whether their main research methods were optimization-based and thus excluded
purely qualitative research.

e Second, for each selected paper from the first step, we scanned its reference list to include those
new studies that were not identified in the first step; we also used Google Scholar to scan relevant
studies that referenced a paper identified from the first step.

e Third, we iterated the above steps until the pool of identified studies for review from the literature
converged.

Although the above systematic approach should cover most of automobile shipping optimization studies
written in English, we note that relevant studies published in other languages or in those journals not
indexed by Web of Science or Google Scholar are not covered in this review. The final list of studies has
more than 50 papers from mainstream journals in the field of operations research, such as Transportation
Science, Transportation Research Parts B & E, Computers & Operations Research, Computers & Industrial
Engineering, European Journal of Operational Research, Annals of Operations Research, and Management
Science. The time period ranges from the 1990s to the present.

As mentioned earlier in this section, due to this paper’s focus on existing studies that use optimization and
operations research as main research methods, existing qualitative studies are out of the scope of our survey.
Two examples of such qualitative studies are Holweg and Miemczyk (2003) who studied the strategic
implications of automotive logistics operations and Chandra et al. (2016b) who reviewed the management
practices of outbound automotive logistics in India.

3. OVERVIEW OF AUTOMOBILE SHIPPING PROBLEM

There exists a wide array of problem variants of automobile shipping, depending on several practical factors,
such as decision makers involved, transportation modes employed, and automobile carrying equipment
used. In this section, we first define decision makers involved in automobile shipping; then, we describe
three service models by characterizing how the decision makers interact with each other; finally, we
introduce various transportation modes and on-road auto-carriers.

3.1. Decision makers

There are quite a few parties involved in the automobile shipping industry, such as customers, lead
aggregators, brokers, and carriers. Those parties work collaboratively to ensure the arrival of automobiles
at the destination. Definitions of such decision makers are given to facilitate further discussions.

Customers are the individuals (e.g., a person relocating to a different place) or corporates (e.g., an
automobile manufacturer) who need to ship automobiles from an origin to a destination. Individual
customers usually move their preowned vehicles from the current location to a new location they relocate
to. Usually, they are both shippers and receivers. Unlike individuals, business customers usually ship
finished vehicles from plants or warehouses to dealer locations. In this case, shippers differ from receivers.

Carriers are individuals or trucking companies which are engaged in the professional conveyance of
automobiles. Most carriers do not communicate directly with shippers. The communication is usually
through a broker, who acts as a facilitator for both shippers and carriers. On one side, brokers work with a
network of carriers and verify the carriers’ licenses, insurances, and credentials; on the other side, brokers
obtain shipping information either from shippers directly or from a lead aggregator that maintains a load
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board. With the information of available automobiles for shipping collected from individual shippers, the
load board is usually accessible by the brokers with a paid subscription and is a critical tool for the brokers
to find the best carrier or carriers to meet the need of one or a group of shippers. It should be noted that it
is not very common for brokers to own any automobile-carrying (auto-carrying) equipment. Only in certain
cases, an automobile transportation company or a Third-Party Logistics (3PL) company may act as a broker
while it also owns a fleet of auto-carriers. The automobile shipments received by those broker-carriers may
be fulfilled by their own dedicated fleets or get outsourced to other carriers.

Clearly, if a broker-carrier has its fleet and receives shipping orders directly from a shipper such as an
automobile manufacturer, all decisions involved in the shipping process are made by itself, which thus
justifies a centralized decision-making framework. If a broker does not own and operate any fleets, it may
only make those decisions regarding how to assign shipping orders to carriers, while some other decisions
(such as loading automobiles to auto-carriers) could be made by carriers. Depending on the context, routing
decisions may be made by a broker or an individual carrier. Section 3.2 better characterizes the behavioral
interactions among the above decision makers.

3.2. Service models
Depending on how decision makers interact, there are three service models, as illustrated in Figure 1.

In service model 1, the shipper, which is usually an automobile manufacturer, directly works with a carrier
without involving any brokers. It seems that this service model is studied the most in the literature among
the three service models. Tadei et al. (2002), Dell’Amico et al. (2015), Cordeau et al. (2015),
Venkatachalam and Sundar (2016), and Wensing (2018) considered this service model. An instance of this
service model is described as follows: automobile dealers located in different regions submit orders for new
automobiles to an automobile manufacturer, which then sends newly assembled automobiles (i.e., BTO,
build to order) to a staging area; all the vehicles including those stocked (i.e., BTS, build to stock) in the
staging area are released to the carrier that has contracted with the manufacturer for delivery to the dealers.

In service model 2, automobiles are transported by multiple independent carriers that are selected by a
broker without auto-carrying equipment, given the order information (such as vehicle time and shipping
timeframe) received from a shipper. This service model is studied in Wang et al. (2018), and Bonassa et al.
(2019), among others. In the problem studied by Wang et al. (2018), a 3PL provider, which does not own
any auto-carrying equipment, connects with a network of trucking companies to deliver the finished
automobiles from a manufacturer’s outbound warehouses to various dealer locations. The shipping
optimization decisions are made by the 3PL company.

Service model 3 involves a broker-carrier who has its private fleet and may also outsource its shipping
orders to other carriers, depending on whether the orders it receives from multiple shippers (potentially
through lead aggregators) exceed the capacity of its own fleet. In the first two service models, shippers are
usually business customers (such as automobile manufacturers), whose shipping demand is usually large
(e.g., dozens of automobiles per order) and predictable. In contrast, the shippers in service model 3 are
usually individual customers who relocate to new places for various reasons (new employment or
retirement). Individual shippers’ demand is relatively small (one or two cars per order) and volatile. This
difference also implies that shippers in service model 3 are more diverse than those in the other service
models. Shippers in service model 3 submit the pickup and drop off locations, a timeframe, and other
necessary vehicle details (such as make, model, and year) to the broker-carrier. After receiving all the
shipment orders, the broker-carrier determines what orders can be served in-house and what orders must be
outsourced to other carriers, based on inputs from shippers and carriers. Service model 3 has not been
studied in the literature. Liu et al. (2016) mentioned the possibility of outsourcing remaining orders to other
carriers if the fleet capacity of the logistics company in charge was not enough to cover all orders, although
this was not explicitly incorporated into their optimization model.

4
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Figure 1: Service models for automobile shipping

3.3. Transportation modes

As shown in Figure 2, all five major transportation modes except pipelines are employed in practice for
transporting automobiles. Shipping an automobile by air is not only feasible, but also has an incomparable
speed advantage, which is ideal for shipping antique or very high-end vehicles (such as Formula one cars)
overseas rapidly. As it takes at least a few thousand U.S. dollars to ship a car overseas, it is not a viable
mode for large-scale distribution of automobiles.

Maritime transportation is the primary way of intercontinental transportation of automobiles. Leading
automobile exporters such as Germany, Japan, and the U.S. rely on ocean to ship automobiles across
continents or regions, for instance, from East Asia to North America or from Mexico to Northeastern U.S.
Shipping by sea has the lowest transportation cost per car when the shipping volume is relatively large and
the shipping is over a very large distance, while the clear drawback is its very slow speed. It usually takes
weeks to cross the Pacific, which implies significant lead times (Katcoff 2011). Roll-on/roll-off or Ro-Ro
ships (Kang et al. 2012) are used to carry automobiles because vehicles can be driven on and off the vessel
on the vehicle’s own wheels through ramps. A car-carrying vessel can carry thousands of automobiles,
which would be infeasible by any other modes.

o ey

(a) Car carrying aircraft (b) Ro-Ro-shi ( Autorack (d) Roadway auto-carrier
Figure 2: Automobile transportation modes
Railway is the primary long-haul mode for transporting vehicles, due to its cost-effectiveness for longer
trips. According to Jin et al. (2010), around 70% of finished vehicles in the U.S. are shipped by railway.

The special piece of rail rolling stock called autorack is used for carrying automobiles, which has two or
three levels. Smaller vehicles such as sedans can be loaded onto tri-level railcars, while taller vehicles such

5
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as passenger trucks are loaded onto bi-level railracks (Katcoff 2011). Nowadays more and more autoracks
are partially or fully enclosed to prevent automobiles from being damaged by inclement weather, falling
rocks, being stolen, and other threats. In the U.S., travellers along the East Coast may take their automobiles
while they ride a train, thus avoiding long-distance driving. Such a service is known as Auto Train in the
U.S. or Motorail in Europe. In this case, passengers are carried in passenger rail cars while their automobiles
are loaded into autoracks.

Highway offers the most flexible automobile transportation option, as it is the only mode that can provide
door-to-door services. It has a relatively high delivery speed and medium transportation cost. Therefore,
highway is the primary mode for short-haul automobile transportation. Automobile transportation by
highway can be terminal-to-terminal or door-to-door, using a special type of truck with a tractor and trailer
called car hauler, auto-carrier, or automobile transporter. Figure 3 shows some common auto-carriers.

Auto-carriers come in numerous sizes, types, and shapes. Like autoracks, roadway auto-carriers can be
open or enclosed. Open auto-carriers are very widely used and can transport almost all types of cars, ranging
from new cars to salvage ones. Enclosed transportation offers an extra layer of protection at a higher cost
and can be used for transporting high-end vehicles. Auto-carriers may have one or two levels, with the
carrying capacity (as measured by the number of available slots) ranging from one to more than ten.
Although a single-car hauler, or better known as a tow truck, can be highly flexible to operate and can
navigate narrow roads, it is cost effective for only short distances. A high-capacity carrier is more cost
efficient due to economies of scale. Nonetheless, the maximum number of automobiles that can be carried
by an auto-carrier is regulated to avoid severe damage to the pavement. The US Department of
Transportation has regulations on the dimensions of auto-carriers, for instance, the overall length is up to
75 feet (U.S. Department of Transportation 2004).

Enclosed

(a) single level single car (b) single level multi-car (c) multi-level multi-car

Open

(d) single level single car (e) single level multi-car (f) multi-level multi-car
Figure 3: Different types of auto-carriers

Due to the special physical configuration, auto-carriers in general have only one access point from which
automobiles are loaded and unloaded. For the maximum capacity utilization, automobiles of different
dimensions should be loaded onto an auto-carrier in a certain sequence to avoid unnecessary and costly
operations, such as reloading: a vehicle that is not yet destinated must be unloaded and loaded back to allow
other vehicles to be moved. Aghbegha et al. (1998) pointed out that there is a unique combinatorial nature
associated with auto-carrier loading and unloading that stems from the special physical characteristics of
roadway auto-carriers. An auto-carrier has a set of slots of different dimensions, which are used to hold
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automobiles of various types and sizes. The number of possible ways to sequence automobiles for loading
and assign them to slots increases exponentially with the number of slots in an auto-carrier.

While the above analyses are separated by individual shipping modes, it should be noted that automobiles
are often transported using a combination of waterway, railway, and highway. For instance, imported cars
from Japan can first be transported to a port of entry (such as Long Beach, California) by ocean; then, they
are distributed to major warehouses throughout the U.S. by rail; last, they are delivered to dealer locations
by highway.

4. PROBLEM CLASSIFICATION AND REVIEW OUTLINE

To make the review systematic, we start by defining the automobile shipping optimization problem at the
operational level in Section 4.1; then, we briefly discuss related optimization problems at the strategic and
tactical levels in Section 4.2. Finally, in Section 4.3, all relevant automobile shipping studies are classified
based on the level of decision-making, primary transportation mode, and decision variables involved.

4.1. Automobile shipping optimization problem

The Automobile Shipping Optimization Problem (ASOP) is a class of operational optimization problems
that involve (1) shippers that have automobiles to be shipped from one or more origins to one or more
destinations, (2) carriers that operate auto-carrying equipment for transporting automobiles, and (3)
coordinators that optimize various planning and operational decisions to achieve an objective, subject to
the requirements and restrictions from both shippers and carriers. Each automobile to be shipped is
associated with a pickup location, a drop-off location, a vehicle type, and possibly some other information.
Carriers may be homogeneous and based in a central depot, or heterogeneous with a mixed fleet. As
discussed in Section 3.2., there are multiple service models. Depending on which service model is followed,
there may be an overlap between different roles, such as a hybrid of carrier and broker.

The underlying planning and operational decisions vary significantly with the mode employed to transport
vehicles. Thus, we divide all the automobile shipping optimization studies into two broad categories:
highway-based, and multimodal. As most studies in the literature involve highway transportation only, we
further divide such studies based on what types of decisions are involved. In the first paper on roadway-
based automobile transportation optimization problem, Aghbegha et al. (1998) described how various
heuristics were used in the 1990s to solve the automobile shipping optimization problem. They pointed out
that a commonly used heuristic in practice is a sequential approach, which is illustrated in Figure 4 and
described as follows:

First, as not all the vehicles in the staging areas are to be delivered on a day, priorities are given to those
vehicles that have been ordered earliest by dealerships. Dealers are then grouped so that the ordered vehicles
from the dealers in the same group are delivered together by the same auto-carrier.

Next, as the vehicles to be delivered by an auto-carrier are finalized, a routing heuristic is used to determine
the route and sequence to visit dealers.

Third, given a set of automobiles to be delivered and the optimized auto-carrier route, a detailed loading
plan is determined to minimize reloading and avoiding damages. When an auto-carrier is en-route, vehicles
that are not destined may be rearranged (such as temporarily unloaded and loaded back) in order to facilitate
the delivery of some other vehicles.
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Figure 4: Types of decisions

As reviewed later, there are many existing studies that have adopted such a sequential optimization
approach. There are also several existing studies that have focused on loading/unloading decisions only
while assuming that auto-carrier routes are given. Although such a sequential approach is relatively simple
to implement, it has a major drawback - it does not consider the interrelations between decisions made at
different steps (routing and loading). For example, an “optimized” auto-carrier route without consideration
of its associated loading implications may incur very expensive reloading operations. In the case of
transporting very high-end cars, to avoid potential damage during reloading, a strict Last In, First Out (LIFO)
policy may be adopted during loading; however, the resulting auto-carrier route may have significant
detours, which is cost prohibitive. As indicated later in this survey (Section 9.2), although some existing
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studies have attempted to integrate routing and loading/unloading decisions, no existing study has
developed a fully integrated optimization model, which is also a major motivation for this survey.

4.2. Tactical and strategic problems related to ASOP

The ASOP defined in Sections 4.1 is at the operational level, and involve operational decisions that are
made relatively frequently, such as daily or twice per week. Like in other distribution problems, there are
also tactical and strategic decisions related to automobile shipping. Such decisions are made infrequently
due to their mid-term or long-term effects. An example of tactical decision is inventory control. For instance,
Cachon & Olivares (2010) and Cachon et al. (2019) studied the relation between automobile sales and
inventory with empirical data from auto dealerships in the US. An example of strategic decision is the
location of vehicle distribution centers. For instance, Eskigun et al. (2005) optimized the automobile
distribution network considering a few practical factors including lead time.

At the strategic and tactical levels, there are two types of optimization decisions that are most relevant to
automobile shipping and thus studied extensively in the automobile distribution literature. Those decisions
are: (i) design of automobile shipping networks and selection of proper shipping modes for automobile
distribution, and (ii) management of empty autoracks including making repositioning decisions in railway-
based automobile shipping (Sherali and Maguire 2000). Given the importance and relevance of these topics,
we will review each of these problem classes in detail, along with the operational-level problems discussed
in Section 4.1.

It should be noted that although there are multiple decision-making levels, existing studies on automobile
shipping across various decision levels are not uniformly distributed, with most of them at the operational
level. This is understandable because automobile distribution problems at the operational level are
dramatically different from other distribution problems because of the unique auto-carrying equipment
involved, as discussed in Section 1.2. As we climb up the decision hierarchy, fewer and fewer operational
features are present, and the problem uniqueness diminishes. For instance, auto-carrier reloading issue is
prominent at the operational level, while it certainly becomes trivial at the network design level.

4.3. Taxonomy and review outline

We classify all relevant studies by the decision-making level and the primary transportation mode involved.
As most of the studies are on operational-level decisions of the automobile shipping, we review such studies
with priority in this survey. This explains why we review such studies before studies on higher-level
decision-making problems, although strategic-level decisions usually precede lower-level decisions in the
decision process. As already explained in Section 4.1, we divide all the operational optimization studies
into two broad categories: highway-based, and multimodal. We further divide all those roadway-based
operational models into two groups, depending on whether they consider routing optimization decisions
explicitly. Studies on tactical and strategic level decisions, including mode selection and network design,
and empty autorack management, are reviewed separately. Figure 5 shows how the reviews of these
different classes of problems are organized in Sections 5 to 8.

It should be noted that operational-level optimization problems involving different transportation modes
differ substantially due to the mode-specific characteristics involved such as loading platform configuration,
carrier capacity, and routing complexity. Thus, it does not make much sense to examine those modeling
differences among different modes in a single section, as there is very little commonality. For instance, a
highway-based auto-carrier carries around ten automobiles and visits multiple dealer locations. Reloading
operations (which are essential) directly contribute to the optimization complexity. On the contrary, a Ro-
Ro ship carries thousands of automobiles and has a single destination. When automobiles are shipped by
Ro-Ro ships, reloading becomes irrelevant. Clearly, the resulting optimization models are quite different,
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which further means that they should not be reviewed together. This explains why in each of the following
four sections, one specific group of studies is reviewed as illustrated further in Figure 5.
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Figure 5: Classification scheme and coverages of problem classes in Sections 5 to 8

5. LOADING AND RELOADING OPTIMIZATIONS

As the existing roadway-based automobile shipping optimization models without involving any routing
implications are primarily focused on loading and unloading optimizations, we review such studies in this
section. Loading is the final step in the sequential decision-making process described in Section 4.1, which
is to assign a given set of automobiles to various slots of an auto-carrier whose route is already fixed. Given
the configuration of an auto-carrier, reloading is usually needed when some automobiles that are not to be
delivered at a location prevent the unloading of destinated automobiles. Such automobiles blocking the
unloading path of destinated automobiles must be temporarily unloaded and loaded back either to the
original slot or another available slot, after those destinated automobiles are unloaded and delivered.

5.1. Formulations and solution algorithms

Agbegha was the first to study the auto-carrier loading problem (ACLP), according to Billing et al. (2018)
and Wensing (2018), among others. Agbegha et al. (1998), which was based on Agbegha’s doctoral
dissertation (Agbegha 1992), focused only on loading decisions, although it was acknowledged that loading
decisions were interrelated with other optimization decisions (such as routing) in automobile shipping. In
Agbegha et al. (1998), a so-called loading network was proposed for an auto-carrier trailer, where each
node represents a slot and an arc from one node to another indicates the unloading precedence. Depending
on the configuration of an auto-carrier trailer, certain loading constraints were considered, such as single
car constraint (a slot can accept only a few types of automobiles), and pairwise constraint (some
automobiles cannot be assigned to adjacent slots). The optimization objective was to minimize the reloading
cost, for a given auto-carrier route, which specifies the sequence for visiting auto dealers. The loading
optimization problem was formulated as a geometric assignment problem, which was solved by a heuristic
algorithm involving a branch-and-bound procedure.
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Lin (2010) followed Agbegha et al. (1998) in adopting the loading network and formulated a quadratic
assignment problem. A key assumption made in Agbegha et al. (1998), which requires a reloaded
automobile to be loaded back to the original slot, was relaxed in Lin (2010) by allowing a reloaded
automobile to move to any feasible available slot whenever reloading is needed. The quadratic assignment
problem was directly solved with a nonlinear programming solver. Lin (2010) claimed that (1) the solution
was exact; (2) better solutions were found than Agbegha et al. (1998).

Chen (2016a) followed this line of research and pointed out that the number of reloads was incorrectly
computed in Agbegha et al. (1998) if empty slots were present. After fixing this issue and making other
changes, Chen (2016a) formulated the loading optimization problem as an integer programming problem.
Computational results demonstrated that the new heuristic developed in Chen (2016a) outperformed the
heuristic of Agbegha et al. (1998).

In the three ACLP studies reviewed above (i.e., Agbegha et al. 1998, Lin 2010, Chen 2016a), the loading
optimization problem was solved at an auto-carrier depot, before the auto-carrier was dispatched. Chen
(2016Db) studied a sequential auto-carrier loading problem (SACLP) that was solved along the route at each
dealer location, assuming the solution to the ACLP was given as an input. Chen (2016b) formulated SACLP
as a series of binary integer programs, but proposed a heuristic algorithm to solve the problem.
Computational results showed that the solution of SACLP along the auto-carrier route helped reduce the
reloading cost as compared with solving ACLP once at the auto-carrier depot.

Table 1 provides a quick comparison of those four studies that are focused on loading and reloading
decisions. First, the simplifying assumption made by Agbegha et al. (1998) on reloading an automobile to
its original slot was still made in Chen (2016a). Second, the majority of loading optimization problems
were solved by various heuristics, with the exception of Lin (2010) who directly solved their quadratic
assignment problem with a solver.

Table 1: Summary of existing studies on loading and reloading problems

Study Formulation Back to original slot | Solution method
once reloaded
Agbegha et al. | Geometric assignment Yes Heuristic based on branch-and-
(1998) problem bound
Lin (2010) Quadratic assignment Not required Solved directly by a nonlinear
problem programming solver
Chen (2016a) Integer programs (IP) Yes Heuristic
Chen (2016b) A series of binary IPs Not required Heuristic

5.2. Test Instances

In the pioneering work Agbegha et al. (1998), four sets of ACLP test instances (named #1, #2, #3, and #4)
were developed based on the auto-carrier loading practice in the U.S. Each set consisted of 15 instances
(numbered from 1 to 15). In each set of the test instances, there were a unique auto-carrier type and four
types of automobiles, such as cars, vans, and long vans. Based on the configuration of an auto-carrier and
types of automobiles, loading constraints were also generated. Each automobile in the set of automobiles
assigned to the auto-carrier (i.e., a load) had a destination (which was a dealer location), although multiple
automobiles may go to the same dealer location. Each instance in a test instance set also had a unique
sequence of dealer locations (i.e., route). Agbegha et al. (1998) reported their optimization results for all 60
instances, which included the computational time and the number of reloads in the solution for each instance.
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Results showed that for some test instances, feasible solutions were not found using the heuristic they
developed.

Lin (2010) used the same 60 instances in Agbegha et al. (1998) and reported that his formulation yielded
better solutions for a dozen of instances. However, it should be noted that Lin (2010) did not solve the same
problem as Agbegha et al. (1998), because in Lin (2010) it was no longer a requirement to reload an
automobile to its original slot. Lin (2010) also compared their solution time with Agbegha et al. (1998),
despite the clear difference in computing power. The computation time for an instance ranged from less
than a second to nearly one minute.

Chen (2016a) adopted 9 instances from 3 sets (#1, #2, and #4) defined in Agbegha et al. (1998). He reported
a higher solution efficiency than Agbegha et al. (1998), as all instances were solved within 21 seconds.
Chen (2016a) also reported that feasible solutions were found for some unsolvable instances in Agbegha et
al. (1998). As in Lin (2010), the significant difference in computing power was not considered when
solution times were compared. Chen (2016b) tested their method on 5 instances, part of which were from
Agbegha et al. (1998). The rest of them were generated by Chen (2016b). Solution times were not reported
in Chen (2016b).

Table 2 provides an overview of the test instances used in those loading and reloading studies. It clearly
shows that the majority of test instances used for testing loading optimization algorithms were from
Agbegha et al. (1998). All the test instances are available in these papers. In terms of solution efficiency, it
takes at least a few seconds to find an optimized loading plan for a given route covering about five dealer
locations.

Table 2: Overview of test instances in existing loading and reloading studies

Study # of # of auto | # of carrier Data source Instance
instances types types availability

Agbegha et al. 60 4 4 Original Yes

(1998)

Lin (2010) 60 4 4 Agbegha et al. (1998) Yes

Chen (2016a) 9 4 3 Agbegha et al. (1998) Yes

Chen (2016b) 5 4 2 Mixed Yes

6. OPTIMIZATION OF ROUTING AND RELATED DECISIONS

In the loading and reloading optimization studies reviewed in Section 5, the auto-carrier route is considered
given and no routing related costs are considered. On one hand, routing has a direct impact on loading; on
the other hand, routing decisions are clearly affected by partitioning decisions (which automobiles are
selected and delivered by which auto-carrier), as described in the sequential decision-making approach in
Section 4.1. Therefore, it is very challenging to optimize the routing decisions considering their
interrelations with other decisions. Routing has also attracted much more attention than loading in the
literature (e.g., Tadei et al. 2002, Dell’Amico et al. 2015, and Wang et al. 2018). In this section, we focus
on roadway-based automobile shipping optimization models involving routing and other related decisions.

6.1. Evolution of auto-carrier routing studies considering loading

We first review each relevant study in detail chronologically to show the evolution of those optimization
models. Readers may skip Section 6.1 and proceed to Sections 6.2 to 6.5 for syntheses of our review
findings.
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Tadei et al. (2002) considered three aspects of automobile shipping, namely loading, vehicle selection, and
routing, in a simplified manner. First, regarding loading, an auto-carrier was modelled as a single loading
plane where automobiles were loaded horizontally. Each automobile to be loaded has its equivalent length,
depending on the vehicle class. If the total equivalent length of the automobiles to be loaded did not exceed
the capacity threshold of an auto-carrier, the loading plan was considered feasible. Clearly, loading
solutions generated this way may not even be feasible considering a realistic configuration of an auto-carrier,
such as discrete slots of various sizes in Agbegha et al. (1998). Second, although the routing aspect was
involved in the problem considered by Tadei et al. (2002), detailed auto-carrier routes were not generated
explicitly. Instead, they simply divided geographical regions into clusters and required that only
automobiles with destinations in the same cluster can be delivered together by an auto-carrier. This replaced
routing decisions by clustering of auto dealers located in a region. Tadei et al. (2002) developed a three-
step heuristic based on an integer programming formulation to solve the integrated optimization problem.
The equivalent length concept was later adopted in Li and Zhang (2016) and Wensing (2018), among others.

Miller (2003) also tried to optimize auto-carrier routing while considering loading complications in his
master’s thesis. His work made a few key simplifying assumptions, including not considering automobile
sizes so that any car can be loaded to any slot on an auto-carrier, and not considering distances between
dealer locations. The auto-carrier modeling in Miller (2003) is more realistic than Tadei et al. (2002),
although Miller (2003) assumed that an auto-carrier had two flat levels on which automobiles were loaded
and unloaded straight. Construction and improvement heuristics were designed to solve the optimization
problem in Miller (2003).

Dell’ Amico et al. (2015) claimed that they were the first to generate detailed solutions of both the loading
and routing components of the automobile shipping problem simultaneously. Their algorithm was an
iterated local search procedure centered around the routing decisions, coupled with a fairly sophisticated
procedure used as a subroutine to check whether a given route was feasible considering several loading
constraints, such as weight and precedence. Although this work marked a milestone in the auto-carrier
routing optimization, it could be improved. For instance, the notion of equivalent length used in Tadei et al.
(2002) was kept, which prevented the consideration of detailed loading plans, as in Agbegha et al. (1998).
Dell’ Amico et al. (2015) strictly imposed the last-in-first-out (LIFO) policy, which implied no reloading
was considered at all. Cordeau et al. (2015) extended Dell’ Amico et al. (2015) by considering a multi-day
planning problem with a rolling horizon approach.

Hu et al. (2015) approached the loading constraints differently by modeling each automobile as a three-

dimensional irregular shape. The nature of loading in their study was thus to pack irregular items to an auto-

carrier. They also introduced a learning procedure to discover loading patterns that mapped a combination

of automobiles to an auto-carrier. They developed an evolutionary algorithm to solve a vehicle routing

problem with packing constraints. Similarly, Liu et al. (2016) considered the three-dimensional geometric

contour of finished automobiles when automobiles were assigned to auto-carriers. Routing decisions were

not studied, because it was assumed that an auto-carrier followed a fixed route. Nonetheless, Liu et al. (2016)
did include routing costs, which was determined only by the fixed route of an auto-carrier.

In an unpublished working paper by Venkatachalam and Sundar (2016), a simple heuristic was used to
determine the auto-carrier route; a branch-and-price algorithm was developed to solve the subsequent
loading problem for the given route. In the loading subproblem, precise automobile-to-slot assignment
decisions were considered, subject to various loading constraints about automobile height, weight, and
length. Although the loading aspect considered in this work was relatively sophisticated, loading was not
taken into account when routing decisions were made. Thus, the overall solution approach was essentially
a sequential approach. The full integration of routing and loading in the branch and price framework was
explicitly mentioned as prospective research.
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Wang et al. (2018) studied how to optimize the assignment of automobiles to auto-carriers and the route of
each auto-carrier so as to maximize the total value of the assigned automobiles minus the total transportation
cost. Although Wang et al. (2018) considered some loading constraints, such as the downward compatibility
between cars to be loaded and slots on an auto-carrier, they did not consider precise loading and unloading
plans. A column generation based heuristic was used to solve the resulting pickup and delivery problem.

Wensing (2018) adopted the sequential decision-making framework in Agbegha et al. (1998) without
considering the loading optimization. Like Tadei et al. (2002), Wensing (2018) considered the length
equivalents for both the automobile and auto-carrier. The notion of loading pattern was also used to model
the loading feasibility. The focus of this study was to compare two scenarios, both over a 10-day period: (i)
all arriving shipment orders must be accepted and shipped on the day of their arrival, and (ii) the transport
company can freely accept or reject an arriving order. Two scenarios were evaluated in terms of measures
such as overall profit and driver productivity. A greedy heuristic based on the manual planning experience
and a sophisticated heuristic consisting of construction, perturbation and combination subroutines were
compared through numerical studies.

Billing et al. (2018) used a three-phase heuristic to solve an integrated auto-carrier transportation problem,
where selection of automobiles, assignment of automobiles to auto-carriers, and routing of auto-carriers
were jointly considered, while the precise loading was not involved. A unique contribution was that they
explored the potential of using probabilistic information in reducing various costs.

Bonassa et al. (2019) studied a dynamic version of the partitioning problem where automobiles were
selected and assigned to auto-carriers, considering various loading restrictions. In this study, it was assumed
that the dealers served by an auto-carrier were located in a cluster, which made routing trivial. Also, the
actual route length was not part of the objective function. So, routing decisions were not optimized. Loading
was not optimized either because it was assumed that precise loading plans were up to individual auto-
carrier operators after automobiles were assigned to an auto-carrier.

Juarez Pérez et al. (2019) developed a two-phase heuristic for the auto-carrier transportation problem. First,
they used an insertion heuristic to generate an auto-carrier route; then they checked whether it was feasible
for all the assigned automobiles to be loaded to the auto-carrier without violating the automobile height
constraint or the LIFO policy.

Wang and Chen (2020) considered a similar problem to the one studied in Wang et al. (2018), but
significantly simplified routing decisions by approximating the actual transportation cost when the involved
dealers were located within a small radius of the auto-carrier depot, as the authors believed that the precise
optimization of routing was not worthwhile. As in Wang et al. (2018), Wang and Chen (2020) considered
an urgency level of each automobile, a full load requirement, and a downward loading compatibility
constraint. They also developed a column generation based heuristic to solve their problem.

6.2. Optimization objective and cost modeling

Among the several optimization objectives considered in the literature, two most common choices were the
maximization of total profit (revenue minus cost) and minimization of total cost. Table 3 presents a
comparison of all those studies reviewed in Section 6.1 by the cost type being considered. As the choice of
optimization objective is often related to the auto-shipping practice in a region or country, the applicable
country is also listed in Table 3. Routing cost is the travel cost/time related to a few factors, such as the
actual travel distance of auto-carriers, the number of dealership visits, and the number of auto-carriers used.
If the precise routing is not considered, the routing cost may be approximated (Wang and Chen 2020) or
even considered fixed (Liu et al. 2016). Loading cost is usually the number of reload operations. Revenues
represent incomes or rewards for selecting and shipping a subset of automobiles when not all automobiles
can be shipped by available auto-carrier capacity. For instance, some priority measure defined for each
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automobile (“criticality index” in Tadei et al. (2002) and “urgency level” in Wang et al. (2018)) is multiplied
by a coefficient to represent the reward or income for shipping this automobile. It can be seen from Table
3 that routing is considered in almost all the studies, in an exact or approximate manner. While all studies
reviewed in Section 6 involved the loading aspect, very few of them have considered loading cost explicitly.
In those studies, loading feasibility was checked in some simple or sophisticated way, but the quality of
loading decisions (if considered at all) was not quantified.

An illustrative example can be used to demonstrate that checking the loading feasibility only without
measuring the quality of loading plans may yield inferior solutions. Suppose there are two candidate auto-
carrier routes associated with the same set of automobiles to be delivered, whose routing costs are 10 and
8, respectively. While for both routes, the loading constraints are satisfied, the minimum numbers of reload
operations for the two routes are 1 and 6, respectively. Suppose the cost of each reloading operation is
equivalent to one unit of routing cost. Clearly, in this example, without considering the routing impact on
reloading, the second route would be viewed as “optimal”’; however, after considering the number of reloads,
the first route should be more desirable.

Unlike most other studies which did not involve the payments to individual auto-carriers, Bonassa et al.
(2019) carefully analyzed the cost structure of shipping an automobile from the customers’ perspective
based on the practice in Brazil. The cost of delivering a car was based on the distance between a depot and
its destination, not the actual route length. Their optimization problem was defined from the perspective of
a broker (a third-party logistics company), which outsourced shipments to independent truckers. The
objective was thus to minimize the total shipping payments made from a broker to truckers.

Table 3: Comparison by cost types considered

Study Routing Loading | Revenues Country
cost cost

Tadei et al. (2002) Yes No Yes NA

Miller (2003) Yes Yes No NA

Dell’ Amico et al. (2015) Yes No No Italy

Cordeau et al. (2015) Yes No No Italy

Hu et al. (2015) Yes No No China

Liu et al. (2016) Yes No Yes China

Venkatachalam and Sundar Yes Yes No NA

(2016)

Li and Zhang (2016) Yes No No NA

Wang et al. (2018) Yes No Yes China

Wensing (2018) Yes No Yes Germany

Billing et al. (2018) Yes No No Germany

Bonassa et al. (2019) Yes No No Brazil

Juarez Pérez et al. (2019) Yes No No Mexico

Wang and Chen (2020) Yes No Yes China
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6.3. Constraints

Many constraints on loading, reloading, and routing were considered in the literature, mainly depending on
how the physical configuration of an auto-carrier was modelled. Tadei et al. (2002) treated an auto-carrier
as a single loading plane with a fixed length. Thus, a single capacity constraint was used to model all the
loading complications. Dell’Amico et al. (2015) extended Tadei et al. (2002) by considering multiple
loading platforms instead of only one, while the concept of equivalent length was kept. Dell’ Amico et al.
(2015) argued that modern European auto-carriers were very flexible and could not be modelled using slots
(see Agbegha et al. (1998) for the U.S. auto-carrier configuration). Similar to Agbegha et al. (1998) and
based on the practice in China, Wang et al. (2018) modelled an auto-carrier as a set of a fixed number of
slots. Such slots had different dimensions and could hold automobiles of different sizes. Wang et al. (2018)
also considered the so-called downward compatibility, which prevented a small slot from holding a large
automobile while allowing a large slot to hold automobiles of any size. Unlike the above studies, Hu et al.
(2015) and Liu et al. (2016) considered a three-dimensional capacity of an auto-carrier so that loading was
essentially a three-dimensional bin packing problem. Liu et al. (2016) further considered the possibility of
lifting the front of an automobile to form an angle with the loading platform in order to reduce the length
requirement (which would allow more automobiles to be loaded within the fixed platform length).
Understandably, this placement of automobiles at an angle reduced the length requirement but would
require more vertical space. Although the choice of auto-carrier capacity modeling approach was based on
the local context, it is noted that certain approaches prevented the consideration of important operations in
loading. For instance, reloading cannot be further considered in the physical models assumed by Tadei et
al. (2002), Hu et al. (2015), and Liu et al. (2016).

Table 4 shows a comparison of the relevant studies by the constraints considered. Most studies have
considered the detailed dimensions or types/classes of automobiles, and some of them further considered
the automobile weight. The LIFO loading requirement (Dell’Amico et al. 2015) was critical because it
directly related auto-carrier routes to loading plans. Dell’ Amico et al. (2015) imposed the LIFO loading to
avoid complex and expensive reloading operations; however, this strict requirement unnecessarily
increased the auto-carrier travel distance, or the number of auto-carriers needed. The impact of this LIFO
loading restriction can be seen in the following example. There are two possible auto-carrier routes, namely
R1: [A+, B+, B-, A-] and R2: [A+, B+, A-, B-], where “+” means pickup and “-” means delivery. In terms
of routing, the second route R2 has a significantly lower cost than R1. However, if the LIFO loading
restriction is considered, R2 is no longer feasible, leaving R1 as the only choice. Clearly, if the LIFO loading
restriction is lifted in some cases, a significantly better solution may be found. Therefore, Venkatachalam
and Sundar (2016) did not adopt this strict LIFO loading requirement and imposed a limit on the number
of reloads instead, which represented a better compromise between two interrelated decisions of loading
and routing.

Although split deliveries (a delivery is split among multiple vehicle visits to a customer, Dror and Trudeau
1989) may not be preferred by customers due to the inconvenience, Dell’ Amico et al. (2015) explored the
benefits of allowing split deliveries by conducting a sensitivity analysis of the penalty for split deliveries.
They found that as the penalty for split delivery increased, the number of dealership visits significantly
dropped, while both the number of required auto-carriers and auto-carrier kilometers increased. Therefore,
a good balance between the dealers’ preferences and the carriers’ costs should be carefully selected.

Time window constraints were rarely considered in the existing studies. In most cases, some simple priority
measures or urgency levels were considered, such as in Tadei et al. (2002). As all the studies were for the
delivery problem of finished vehicles, the starting point of all auto-carriers was the same, which was called
depot in Dell’ Amico et al. (2015), vehicle distribution center in Hu et al. (2015), or new car storage yard in
Juarez Pérez et al. (2019). It was also assumed that all finished vehicles were loaded all together at the same
location. Miller (2003) pointed out that routing would be much more complex when vehicles were picked
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up at multiple locations or simultaneous pickups and deliveries could occur at one location, such as in the
case of picking up and delivering used vehicles for individual customers. Wang et al. (2018) made a
simplifying assumption on the order of pickup and delivery by restricting all pickups to occur before any
delivery.

While Table 4 shows major constraints, not all constraints that were considered in the literature are included
in this table. Also, a detailed review shows that researchers may have modelled some constraints quite
differently. For instance, a full-load constraint was enforced in Wang et al. (2018) and Wang and Chen
(2020), while in Bonassa et al. (2019), the number of automobiles per auto-carrier ranged from 8 to 11. For
another example, in most studies the supply of auto-carriers was assumed to be limited. Nonetheless, Billing
(2018) and Bonassa et al. (2019) assumed an unlimited supply of auto-carriers, which implied that all orders
available on one day could be shipped on the same day. Some additional side constraints were also
considered, such as carrier-city compatibility constraint (Wang et al. 2018) that required an auto-carrier to
visit a limited set of dealers, and the infrastructure-carrier compatibility constraint (Wensing 2018) that
prevented a fully loaded auto-carrier from traversing a specific narrow road segment or bridge.

Note that “NA” in Table 4 means not applicable. For instance, Tadei et al. (2002) did not study precise
routing or loading optimization, and hence whether LIFO was required or not and whether there were time
windows become irrelevant in their problem.
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Table 4: Comparison by constraints considered

Study Auto-carrier Capacity Automobile | Weight | LIFO Reload | Split Time
dimension limit required delivery windows
Tadei et al. (2002) One level, equivalent length Yes No NA NA NA NA
Miller (2003) Two levels, ten slots No No NA Yes NA No
Dell’A. et al. (2014) Multi-platform, equivalent length Yes Yes Yes No Allowed No
Cordeau et al. (2015) Multiple levels, equivalent length Yes Yes Yes No Allowed Yes
Hu et al. (2015) Three-dimensional space Yes Yes NA NA Prohibited Yes
Liu et al. (2016) Three-dimensional space Yes Yes NA NA Allowed NA
Venkatachalam and Multiple heterogeneous slots Yes Yes No Yes Allowed No
Sundar (2016)
Li and Zhang (2016) Two levels, equivalent length Yes No NA NA NA No
Wang et al. (2018) Multiple heterogeneous slots Yes No NA NA NA No
Wensing (2018) As in Hu et al. (2015) Yes No NA NA NA No
Billing et al. (2018) As in Hu et al. (2015) Yes No NA NA Prohibited No
Bonassa et al. (2019) Equivalent length Yes No NA NA NA NA
Juarez Pérez et al. (2019) | Multiple levels Yes No Yes No NA Yes
Wang and Chen (2020) Multiple heterogeneous slots Yes No NA NA NA No
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6.4. Solution algorithms

The auto-carrier routing problem with loading considerations is clearly NP-hard, as Tadei et al. (2002)
showed that the simplified version of the problem they studied was already strongly NP-hard. Therefore,
almost all existing studies developed heuristics to solve their problems. The heuristic algorithms used in
the literature can be classified into the following types: sequential heuristics, iterated heuristics, math
programming (MP) based heuristics, and other heuristics.

Sequential heuristics can be used when multiple types of decisions are optimized sequentially in separate
steps. They include the three-step heuristic in Tadei et al. (2002), the three-phase heuristic in Billing et al.
(2018), and the two-phase heuristics in Venkatachalam and Sundar (2016) and Juarez Pérez et al. (2019).
In the first step, Tadei et al. (2002) simplified the auto-carrier capacity constraints and developed an integer
program to assign auto-carriers to a subregion of the whole geographic area. For each auto-carrier in a
subregion, initial feasible solutions were constructed in Step 2 and improved in Step 3. Similarly, in Phase
1 of their algorithm, Billing et al. (2018) selected orders for delivery on a day based on the relative distance
between dealers. In Phase 2, they used the routing heuristic of Clark and Wright (1964) to construct vehicle
routes; in Phase 3, vehicle routes were improved through some ad hoc strategies. Although such sequential
heuristics were relatively easy to implement and may work well in some cases, a primary drawback is that
possible effect of decisions made in a later stage on earlier decisions was ignored. For instance, without
fully exploring the routing possibilities, it is suboptimal to determine whether an auto-carrier should be
assigned to a specific region or whether an automobile should be selected for delivery. Venkatachalam and
Sundar (2016) used a heuristic to solve the routing subproblem of the overall problem first. Given an auto-
carrier route, the loading problem was then solved by a column generation based branch-and-bound
algorithm. Juarez Pérez et al. (2019) used an insertion heuristic to generate routes first, followed by another
heuristic to generate feasible loading plans for the given routes.

Unlike sequential heuristics, iterated heuristics repeatedly evaluate the quality of earlier decisions so as to
improve the current decisions. Miller (2003) proposed a construction heuristic to generate an initial solution
and improvement heuristics such as k-opt or 2-opt to improve the initial solution. Dell’ Amico et al. (2015)
started with some initial solutions generated by a greedy heuristic. Then, in each iteration, they perturbed
the current solution to obtain an updated solution, which triggered the next iteration. The loop was iterated
until a time limit was reached. Under this iterated solution framework, Dell’ Amico et al. (2015) designed
their own greedy heuristic, perturbation method, and local search operators. For instance, they considered
the following local search operators: intra-route move, one-to-one dealer swap, auto-carrier interchange,
and route addition, among others, to obtain a better auto-carrier route. To ensure the loading feasibility of
an auto-carrier route, a procedure for checking loading feasibility was invoked throughout this iterated
heuristic. Cordeau et al. (2015) generalized the iterated heuristic of Dell’Amico et al. (2015) to a more
general problem. Wensing (2018) proposed two heuristics: a greedy construction type of heuristic based on
the manual planning technique, and an iterated heuristic consisting of construction, local search,
perturbation and recombination procedures.

While most papers formulated their problems mathematically as MIP or IP formulations, only a few of
them actually designed algorithms based on these formulations. A column generation based heuristic was
developed in Wang et al. (2018) based on a set packing type of formulation for their problem. In this
heuristic, they used a two-step heuristic to generate initial auto-carrier routes for each auto-carrier as an
initial set of columns, and solved the problem heuristically by decomposing the formulation into a master
problem and a subproblem. The LP relaxation of the master problem was solved to generate dual variable
values, which were then used in the subproblem. The subproblem was solved to generate new auto-carrier
routes, which were added to the master problem. A similar column generation based heuristic was also used
in a later study Wang and Chen (2020). Liu et al. (2016) formulated a loading problem as an integer program
and designed a branch-and-bound algorithm with a greedy search based on oscillation analysis to solve it.
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Bonassa et al. (2019) formulated their problem as an integer program and solved it directly by a commercial
solver.

The heuristics used in a couple of other papers do not seem to fall within any type of heuristics reviewed
above. Hu et al. (2015) developed an evolutionary algorithm. A sequence of dealers represented an auto-
carrier route, as the auto-carrier began and ended a route at the same depot. This sequence was also coded
as a chromosome in the evolutionary algorithm. Selection, crossover and mutation operators were also used
to generate better routes. Li and Zhang (2016) combined simple heuristics with integer programming. They
first used Dijkstra’s algorithm to calculate the shortest paths from the distribution center to all customers.
Then, according to the demand of the customers on each shortest path, they used an integer linear
programming model to calculate the number of cars unloaded at each point of the shortest path. Finally, a
heuristic was used to figure out the loading plan and routing strategy of each transporter traveling along the
shortest path.

Table 5 presents a comparison of those studies by formulation and solution method. Although in some
studies, dynamic or stochastic information was involved, most studies deal with static and deterministic
problems. While the underlying problems can all be formulated as IP or MIP formulations, few studies
utilized such formulations to develop heuristics. It is known that math programming based heuristics
generally have a more robust performance than rule or local search based heuristics. As Agbegha et al.
(1998) pointed out, since automobile transportation was a major industry, even one percent of cost savings
could represent millions of dollars. Therefore, there is a clear need to develop better optimization methods,
especially IP / MIP based heuristics, to yield more cost savings.

Table 5: Comparison by formulation and solution method

Study Formulation Solution Method
Tadei et al. (2002) Mixed integer Sequential heuristics
program (MIP)

Miller (2003) NA Iterated heuristics
Dell’ Amico et al. (2015) Integer program (IP) Iterated heuristics
Cordeau et al. (2015) NA Iterated heuristics
Hu et al. (2015) MIP Other heuristics
Liu et al. (2016) IP MP-based heuristics
Venkatachalam and Sundar | MIP Sequential heuristics
(2016)
Li and Zhang (2016) IP Other heuristics
Wang et al. (2018) IP MP-based heuristics
Wensing (2018) NA Iterated heuristics
Billing et al. (2018) MIP Sequential heuristics
Bonassa et al. (2019) MIP MIP solved directly by a commercial
solver
Juarez Pérez et al. (2019) 1P Sequential heuristics
Wang and Chen (2020) 1P MP-based heuristics
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6.5. Test Instances

Randomly generated test instances as well as real-world instances were used to test the solution methods
reviewed in Section 6.4. Table 6 compares the existing studies by the test instances used. They are divided
into three groups by the overall size of test instances (small, medium, and large), in terms of the number of
auto-carriers available, the number of automobiles to be shipped, and the number of dealers involved. Very
few of those test instances were made publicly available with the exception of the ones used by Dell’ Amico
et al. (2015). Not all studies have described clearly how those test instances were generated, with Billing et
al. (2018) as one of the exceptions. We thus review in detail the instances used in Dell’ Amico et al. (2015)
and Billing et al. (2018).

Dell’ Amico et al. (2015) considered in total 23 test instances, one for each working day. For all instances,
two types of auto-carriers with various carrying capacities were used. The first type of auto-carrier had four
loading platforms, while the second type had two platforms. The platform dimension, payload and other
relevant parameters were also provided for both types of auto-carriers. There were 723 automobile models,
which were consolidated into 14 loading classes for the first type of auto-carrier and 8 loading classes for
the second type of auto-carrier. Each order had detailed information about the vehicle to be shipped and its
destination dealer. In each instance, the shortest distance between each pair of locations (auto-carrier depot
or dealer location) derived from some GIS software was also provided. The test instances can be found at
http://www.or.unimore.it/site/home/online-resources/auto-carrier-transportation-problem/instances.html

Billing et al. (2018) considered all the cities with a population larger than 30,000 in a German state called
North Rhine-Westphalia. Each city was assumed to have at least one auto dealer, while for cities with a
much larger population, there were more dealers proportionally. The travel distance between any pair of
locations was a linear function of the geographical distance. The probability for each dealer to make an
order was given and on average 50 dealers made at least one order. The order size (number of automobiles)
was uniformly distributed on the range 1 to 3. The automobile type was uniformly sampled from small,
medium and large. The delivery deadline was also uniformly sampled from 0, 1, 2, and 3 days into the
future. As Billing et al. (2018) solved a multi-period planning problem, the length of the planning horizon
was 30 days.

Table 6: Comparison of test instances

Study Instance type | # of # of auto- | # of # of dealers

Size instances | carriers automobiles
Miller (2003) Synthetic 12 3 30 15-30
Li and Zhang Synthetic 1 10 ~100 9

Tés (2016)

e Liu et al. (2016) Real-world 18 1-18 3-20 -
Wensing (2018) Real-world 1 3 25 11
Venkatachalam Synthetic 72 15-100 100-600 5-25
and Sundar (2016)

§ Wang et al. (2018) | Synthetic 27 5-15 100-250 5-50

g Real-world 7 1-15 68-241 28-49
Billing et al. Synthetic 20 - - 159
(2018)
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Bonassa et al. Synthetic 30 unlimited | 8-23 -
(2019) Real-world 4 - 535-863 7-78
Wang and Chen | Synthetic 24 5-40 100-500 10-80
(2020)
Tadei et al. (2002) | Synthetic 12 100-400 2,000-4,000 | 400-800
Real-world 3 146-160 1,610-3,569 | 553-762

Dell’ Amico et al. Real-world 23 30-117 272-1,139 96-251
(2015)

gﬁ Cordeau et al. | Same test instances as in Dell’ Amico et al. (2015)

<

— (2015)
Hu et al. (2015) Synthetic 12 - - 50-420
Juarez Pérez et al. | Synthetic 10 4-490 20-3,000 44
(2019) Real-world 1 655 3,884 44

A review of the test instances used in the literature yields the following findings:

First, the test instances were used to test algorithms that were not developed for the same loading and
routing problem. In fact, as reviewed in Sections 6.2 and 6.3, the problems studied can differ significantly
in terms of both the objective function and the constraints involved. Thus, it is not recommended to directly
compare sizes of the test instances (e.g., number of auto-carriers, number of dealer locations) without
looking into the problem context first.

Second, unlike in the loading and reloading studies reviewed in Section 5, which all used the entirety or
part of the test instances from Agbegha et al. (1998), in the studies on the integrated optimization problem,
almost all the authors only used the instances developed by themselves or their co-authors. For instance,
Cordeau et al. (2015) adopted the instances of Dell’ Amico et al. (2015), while Dell’ Amico was a co-author
of Cordeau et al. (2015); Billing et al. (2018) partially adopted the instances of Wensing (2018), who co-
authored Billing et al. (2018). The only test instances that are made available online are the ones used by
Dell’ Amico et al. (2015). This means that it is difficult to replicate the computational experiments in all
those studies except Dell’ Amico et al. (2015).

Third, the computational times reported in those studies were not comparable, because (1) different
computing platforms (e.g., programming language, CPU, RAM) were used, and (2) the underlying
optimization problem was not the same, as discussed above.

Although the various heuristics proposed in the existing studies may have worked well for their problems,
it is not clear whether these algorithms will still be efficient for problems where routing and loading
decisions are more closely integrated than in the existing problems. For instance, the column generation
based heuristic takes a few hundred seconds to an hour to solve an instance in Wang et al. (2018), which
did not involve loading optimization. The iterated local search heuristic of Dell’ Amico et al. (2015) had a
solution time limit of 1,500 seconds, among which 534 seconds on average were spent on checking only
the loading feasibility for each test instance. As Dell’Amico et al. (2015) only checked the loading
feasibility rather than generating a precise loading plan, the computation time will likely be much higher
when loading optimization is further incorporated.
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7. AUTO SHIPPING BY RAIL AND SEA

Despite the authors’ extensive literature search, no optimization studies for automobile shipping by air have
been found in the literature. In this section, we briefly review existing optimization studies related to
automobile shipping by rail and sea.

7.1. Motorail load planning

As reviewed in Section 3.3, motorail transportation is the long-haul transportation of passengers with their
personal vehicles on the same train. The loading aspect of motorail transportation is to assign many
automobiles of various types and dimensions to the auto-carrying wagons, decks, and slots, respecting
weight, height, width, and other technical constraints. As the train to be loaded has a fixed origin and
destination, all automobiles to be loaded to a train must also have the same origin and destination, which
means all automobiles are loaded (and unloaded) simultaneously, eliminating any reloading complexities
during the train route.

Lutter and Werners (2015) developed the first loading optimization model for motorail transportation. In
their problem, each auto-carrying wagon has two decks, on each of which there are a fixed number of
positions/slots. Lutter and Werners (2015) proposed a 4-index integer programming formulation with the
objective of maximizing the total number of loaded automobiles. With this loading optimization model,
they further developed a decision support system to help determine whether an arriving automobile order
should be accepted. Lutter (2016) later extended Lutter and Werners (2015) by proposing two tighter
reformulations of the original 4-index formulation. The first 3-index reformulation was derived by
converting the height constraint in Lutter and Werners (2015) into a knapsack-type constraint for each
loading deck, which was shown to yield a stronger linear programming formulation. To overcome the
symmetry in the 3-index reformulation, Lutter (2016) proposed another extended formulation, which was
solved by a customized branch and price algorithm. Lutter (2016) demonstrated the performance of the
proposed various formulations by solving 100 real-world test instances from a company named DB
Fernverkehr AG in Germany. Computation results indicated that the last formulation solved by the branch
and price algorithm had the best efficiency: 95% of the test instances could be solved to optimality in 90
seconds.

In contrast with the highway-based auto-carrier loading problem, the loading optimization problem for
motorail transportation could be solved much more efficiently. The primary reason is that in motorail
loading only assignment decisions are considered, while no reloading complications are involved.

7.2. Ro-Ro shipping and container shipping

When automobiles are shipped overseas, they are usually shipped via Ro-Ro vessels. It is also possible that
some of them are shipped in containers via container ships.

Ovstebg et al. (2011a) formulated the Ro-Ro ship stowage problem for a given Ro-Ro ship whose sailing
route was pre-determined. In this ship stowage problem, Qvstebg et al. (2011a) tried to determine what
automobiles should be selected for transportation and how to assign them to a deck of a Ro-Ro ship and
further to a lane on a deck, at each port of the sailing route. When vehicles were selected for loading, they
were rolled on board the Ro-Ro ship; they were rolled off at the destination port. Each lane on the Ro-Ro
ship could take automobiles in a LIFO fashion. Some penalty costs were incurred if automobiles in the back
were rolled off before those in the front. @vstebo et al. (2011a) developed a mixed integer program with
the objective of maximizing the difference between total revenues and penalties due to the temporal
rearrangements. A special stability constraint was incorporated to avoid placing too many automobiles on
one side of a ship. They proposed two solution approaches: solving directly with the solver Xpress and
using a customized heuristic. Through solving a large set of randomly generated instance, they concluded
that neither solution approach dominated the other. In other words, the solver Xpress outperformed the

23



proposed heuristic for some instances, not all. @vstebe et al. (2011b) extended their study Ovstebg et al.
(2011a) by further considering the routing and scheduling of a Ro-Ro ship. They developed a mixed integer
program, which was solved by the solver Xpress directly or a tabu search algorithm. Computational results
indicated that only the tabu search algorithm could solve realistically sized problem instances.

The stowage problem in @Qvstebg et al. (2011a) was analogous to the auto-carrier loading problem studied
by Agbegha et al. (1998). While there were many other mode-specific differences (such as quite different
auto-carrying equipment), a clear difference was that in auto-carrier loading, stability was not given as
much attention as in Ro-Ro ship stowage. In addition, in the routing and scheduling problem studied by
@vstebg et al. (2011Db), only a single Ro-Ro ship was considered, while in the highway-based auto-carrier
routing problem, such as those in Dell’ Amico et al. (2015) and other papers reviewed in Section 6, multiple
auto-carriers were considered.

Kang et al. (2012) developed an integer program to determine car allocations to each vessel and the voyage
route with the objective of minimizing the total logistics cost. The integer program was solved by a genetic
algorithm. Additional studies related to other aspects of Ro-Ro shipping, such as fleet deployment,
inventory management (Chandra et al. 2016a) and speed optimization (Andersson et al. 2015), were not
reviewed in detail here. This is because in most such general Ro-Ro shipping studies, very few specific
considerations with respect to automobiles were included, as Ro-Ro ships are designed to carry any wheeled
cargo, such as automobiles, trailers, railroad cars, farming equipment, and military equipment.

In contrast with shipping via Ro-Ro ships, not many studies have studied shipping automobiles in containers.
Xuan (2014) studied the containerized automobile shipping and indicated all Tesla vehicles were shipped
using containers. Xuan conducted cost-benefit analyses from automobile manufacturers and container lines
and identified target markets for the China Shipping Group. Dael (2014) also proposed the stowage of
automobiles in a container to take advantage of the excess capacity in a container vessel. Through an
analysis, Dael (2014) tried to convince auto manufacturers that shipping automobiles in containers may be
more cost-effective than shipping them on a pure car carrier. As a container can hold very few automobiles
(e.g., no more than 4) and it is impossible to rearrange them until the container is delivered, automobile
reloading complexities are likely to be avoided. Once automobiles are properly loaded into a container, the
optimization problem is a general containership routing and scheduling problem, which was reviewed by
Christiansen et al. (2013).

As compared with those automobile shipping optimization studies involving rail and water, it is relatively
clear that highway-based automobile shipping has been studied the most extensively and thoroughly.
Therefore, highway-based optimization models may be adapted to for the water-based and rail-based
automobile distribution problems, despite various mode-specific characteristics.

8. STRATEGIC AND TACTICAL PLANNING STUDIES

All studies reviewed in Sections 5, 6, and 7 are at the operational level, as all those underlying optimization
decisions are made every day or every few days. Those decisions at the tactical or strategic level are made
much less frequently, such as every five years or once in a decade. Examples of such tactical and strategic
decisions are locating rail terminals in a multimodal automobile distribution network and negotiating a
contract with a major railway company. In this section, we review those automobile shipping optimization
studies at a higher level than operational.

8.1. Mode selection and network design
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The design of automobile distribution network is critical because the network structure eventually defines
how efficient automobile distribution can become in the long run. As pioneers in this area, Miller et al.
(1996) developed a mixed integer program to help an international automobile manufacturer to design the
automobile distribution network in North America in the long run. Cars and light trucks that were
manufactured in the U.S. or imported from about 100 ports of entry should be delivered to approximately
275 dealer regions throughout the U.S. As there were a few candidate transportation modes, such as truck,
rail, and containerized intermodal rail, the first decision was to determine the optimal modal mix. As rail
played an essential role in the intermodal distribution network, the second decision was to optimize the
locations of rail terminals. The objective of the proposed mixed integer program was to minimize the total
logistics cost of delivering automobiles. Miller et al. (1996) used this optimization model to compare a few
different network scenarios by the delivery cost, mode share, and transit time.

Eskigun et al. (2005) also studied the automobile distribution network design problem considering lead-
time related costs, due to the increasing interest of the automotive industry in reducing lead-time. They
formulated a nonlinear programming model to minimize the sum of the fixed cost of opening distribution
centers, transportation cost, and lead-time related cost. After introducing additional binary variables and
constraints, the nonlinear program was linearized and solved with a Lagrangian heuristic. They generated
and solved 56 problem instances based on the real-world data. Numerical analyses indicated that the
proposed heuristic solved the formulation very well: achieving a less than 1 percent optimality gap in about
10 hours on average.

Along this research line, Jin et al. (2010) optimized the mode choice (truck or rail) for each plant-dealer
pair for a U.S. manufacturer based on delivery cost. Trucking companies charged a fixed cost per
automobile and a variable cost based on mileage, while a railcar’s cost followed a piecewise linear function
of the shipping volume, reflecting the quantity discounts or scale economies. An integer program was
developed for this mode choice problem, which was solved directly by a commercial solver. Results from
solving randomly generated test instances showed that the integer program could be solved in a few seconds.
Jin et al. (2010) also simulated the multi-round contract negotiation process between the auto manufacturer
and a rail company.

Hei et al. (2014) considered the optimal distribution of automobiles from one distribution center to other
locations on a multimodal freight network. Three modes were considered, namely direct trucking, road-rail,
and road-water. While trucking was the most flexible (i.e., can be dispatched almost at any time), both
trains and ships had weekly schedules. Hei et al. (2014) built an integer program to determine what mode
and route should be selected for those vehicles heading to each destination. In the numerical studies,
vehicles were to be distributed from Shanghai to other 17 locations in China. The multimodal network
consisted of 17 trucking routes, 18 road-rail intermodal routes, and 8 road-water routes. In the numerical
studies, a commercial solver was used to directly solve the integer program, as the solution time was within
1 minute. Meng et al. (2015) expanded the sensitivity analyses of train and ship capacities in Hei et al.
(2014) by considering the uncertain automobile shipment volume. As the auto manufacturer must purchase
train and ship capacities in advance for a fixed time period (e.g., 1 year), Meng et al. (2015) developed an
optimization model to determine the optimal amount of capacity to procure from rail and shipping
companies. The problem was complicated by uncertain delivery demand, which fluctuated over time.
Therefore, a two-stage stochastic program was formulated to minimize the expected delivery cost, which
was solved by a sample average approximation method. They also presented a case study based on the
network used by the Shanghai Automobile Industry Corporation in China.

Wang et al. (2016) used a fuzzy Delphi method to evaluate the multimodal auto transportation network
design to ship used cars from South Korea to Centra Asia, based on the following five factors: cost,
reliability, transportation capability, total time, and security. Chandra et al. (2020) studied the viability of
modal shift from in-land transportation to short-sea shipping at a strategic level for auto shipping in India.
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They developed a mixed integer program to select the route alternative, ship type and share of shipment
volumes by coastal shipping. One origin (Chennai) and a set of destinations in India were considered in the
case study. Depending on the availability of coastal shipping and cost parameters, they considered 22
configurations. The formulation was solved directly by a commercial solver with computation time ranging
from a few minutes to more than two hours. In a follow-up study (Dong et al. 2020), the tradeoff between
economic costs and environmental impacts of the distribution network design was furthered considered.

In summary, quite a few studies have addressed the design of a multimodal automobile distribution network,
although the optimization decisions considered in such studies differed. In those studies, a centralized
decision-making framework was adopted for the auto manufacturer. However, in reality, trucking
companies, rail companies and other carriers were also involved. In those existing studies, behavioral
responses from other parties involved were not properly modelled. Therefore, a game-theoretic approach
may be considered to fully characterized the behavioral interactions between the manufacturer and other
parties in the design of automobile distribution network.

8.2. Empty autorack management

Sherali and his collaborators (Sherali and Tuncbilek 1997, Sherali and Suharko 1998, Sherali and Lunday
2011) have studied various problems in the fleet management of autorack (railcars used for shipping
automobiles) for about three decades. After automobiles were delivered, the empty autoracks should be
distributed to load other automobiles. Under a naive approach, empty autoracks were returned to their
points-of-origin, known as reverse routing. A more efficient approach was based on the pooling of empty
autoracks as a common resource among multiple shippers and carriers. Sherali and Tuncbilek (1997)
studied how many autoracks an automobile manufacturer should acquire in any given year, i.e., fleet sizing
problem. Sherali and Suharko (1998) focused on a tactical planning problem of repositioning empty
autoracks to where they needed to be reloaded. Sherali and Lunday (2011) focused on the potential equity
issues in the pooling agreement and proposed a few alternative schemes to apportion autoracks to
automobile manufacturers. Although the empty autorack repositioning problems studied by Sherali were
motivated by the rail-based auto shipping practice, the general class of empty fleet (not necessarily autorack
fleet) management problems has been extensively studied in the literature. Interested readers are directed
to Dejax and Crainic (1987), Spieckermann and VoB3 (1995), and Gorman (2015), among others.

9. RESEARCH GAPS AND PROSPECTIVE OPPORTUNITIES

In this section, we identify important literature gaps and propose strategies to address them. We also
evaluate the impacts of disruptions and emerging technologies.

9.1. Hybrid service model

Three service models are summarized in Section 3.2. The review findings indicate that all the existing
automobile optimization studies assume the first two service models, because they focus on the shipping of
finished vehicles. Service model 3 is a hybrid one, as shippers may be individuals rather than auto
manufacturers; the broker may have its own fleet that can be used to deliver orders, but may also outsource
some orders to other independent carriers. The consideration of service model 3 has a few important
implications for the automobile distribution optimization, which are discussed as follows.

9.1.1 Pickup and drop-off precedence
In the case of finished vehicle distribution, all automobiles for shipping are often loaded simultaneously at
a common location and delivered at their respective dealer locations. Route design usually involves delivery
destinations only and is essentially about sequencing of dealer locations. Conversely, individual shippers
generally have not only different drop-off locations, but also different pickup locations, which means route
design will need to consider the sequencing of both pickup and drop-off locations. It is quite possible that
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not all pickups should occur prior to any deliveries, unlike what is assumed in most existing studies
reviewed in Section 6. Clearly, when multiple individual shippers are served by an auto-carrier, the routing
complexity is much higher than that for an auto manufacturer that has all vehicles ready for pickup at a
single location, even though the number of automobiles assigned to an auto-carrier remains the same.

9.1.2  Auto-carrier capacity

Because in service models 1 and 2, there is only one pickup location where the auto-carrier has the highest
load, which means if the auto-carrier capacity constraint is not violated at the beginning of a route, the
capacity constraint is met at any other locations. Service model 3 is more general, because not all pickups
occur at the same location, and some locations may even allow for simultaneous pickups and drop-offs. In
other words, the cumulative load in an auto-carrier route (measured by the total number of automobiles, or
the sum of their equivalent lengths, depending on how an auto-carrier is modelled) may exceed the auto-
carrier capacity (measured by either the number of slots or an equivalent length limit). Thus, from a capacity
constraint point of view, automobile shipping optimization in the context of service model 3 becomes much
more complex.

9.1.3 Pricing of auto shipments in customer quotes

In finished vehicle distribution, the automobile manufacturer usually has a long-term contract with a carrier,
which is renewed annually or every five years. A manufacturer usually negotiates with rail carriers every
five years (Jin et al. 2010), because the competition in the rail sector is relatively low and locations of rail
assets (e.g., tracks, intermodal terminals) are fixed (Katcoff 2011). The contract with a highway carrier is
mostly renewed annually. Unlike corporate shippers, individual shippers do not sign any long-term contract
with a broker or carrier; instead, they seek a customized and one-time quote, usually from a broker, as
shown in Figure 6. A shipper may try to obtain quotes from multiple brokers. When serving individual
shippers, a broker needs to optimize the quote for an individual shipper, by taking into account what other
automobile shipping orders it receives, and the available capacity of the auto-carrier fleet owned by itself
or its contractors. Clearly, the optimization of a quote is interrelated with other operational decisions, such
as automobile assignment, auto-carrier loading, and routing. We also note that quote optimization is largely
about pricing, which has a direct impact on whether a shipper will accept a quote or not, and hence directly
affects a broker’s profitability.
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Figure 6: Getting a quote from two anonymous automobile shipping brokers

9.1.4 Consideration of partially filled auto-carriers

In service models 1 and 2, all auto-carriers are assumed to be empty at the vehicle depot. Such an empty
auto-carrier does not have a predetermined destination, because its destination depends on the assigned
automobile shipments to it. As the distribution is usually one-way, meaning auto dealers do not ship
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automobiles to auto manufacturers, and hence those auto-carriers are assumed to return to the auto-carrier
depot empty (Liu et al. 2016). In contrast to other two service models, in service model 3, individual truckers
(also called owner-operators) may make capacity of their trucks (auto-carriers) partially available to a
broker, because their trucks are partially filled already (through another source, such as load board or a
different broker) and must follow a preliminary itinerary (e.g., arrive at a prespecified location by a due
date). Those owner-operators accept further automobile shipment orders allocated by the broker, on the
condition that their predetermined schedules are not violated. Therefore, in service model 3, it is necessary
to consider both those auto-carriers with full capacity ready and no predetermined travel plans and other
partially filled auto-carriers that must follow a predetermined travel plan. Moreover, in service models 1
and 2, it might be reasonable to assume auto-carriers return to their depots carrying no automobiles on a
return trip, while in service model 3, such empty backhaul miles can probably be avoided through optimized
matching of loads and auto-carriers.

9.2. Full integration of loading and routing optimization

9.2.1 Shortcoming of the sequential heuristic
For ease of discussion, we first present a general mathematical program for the integrated auto-carrier
loading and routing optimization problem. We use x and y to represent routing and loading decisions,
respectively. The formulation is written as follows:

max f(x) +h(y) (1)
s.t. gx)=0 2)
p(x,y) 20 3)
x €Z™M “4)
yezn (5)

The objective (1) is to minimize the sum of routing cost f(x) and loading cost g(x). Constraint (2) is a
routing constraint. Constraint (3) models the interrelation between routing and loading.

Although quite a few studies (e.g., Dell’A. et al. 2014) have considered loading and routing aspects of
automobile shipping and attempted to solve the integrated problem (1-5), none of the existing studies have
managed to develop an optimization model that produces simultaneously precise routing plans and precise
loading plans. A majority of existing studies focused on routing optimization, while considering loading
feasibility only. In these existing studies, even though the problems were already simplified by not
considering precise loading plan, the simplified optimization problems were not solved optimally, as
various heuristics were used that did not provide any solution quality guarantee.

The idea of the widely adopted sequential heuristic (described in Section 4.1) can be formally stated as
follows. First, the routing subproblem (6-8) is solved to find the optimal routing plan x*.

max f(x) (6)
s.t. gx)=0 @)
x€ezZm (3)

Then, the loading subproblem (9-11) is solved to obtain the best possible loading plan given the “optimal”
route x*.

max h(y) ©)
s.t. p(*y)=0 (10)
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y € Zn (11)

The above-mentioned sequential heuristic has a major drawback: it does not consider the interrelations
between decisions made at different steps (routing and loading, i.e. x and y variables). For example, an
“optimized” auto-carrier route without consideration of its associated loading implications may incur very
expensive reloading operations. In the case of transporting very high-end cars, to avoid potential damage
during reloading, a strict Last In, First Out (LIFO) policy may have to be adopted during loading; however,
the resulting auto-carrier route may have significant detours, which can result in an excessively high routing
cost. In a representative study, Venkatachalam and Sundar (2016) run their branch and price algorithm to
solve the loading problem for each auto-carrier route. As the number of possible auto-carrier routes is very
large and for each given auto-carrier route there are many possible loading plans, this sequential strategy
(routing first, loading second) used in Venkatachalam and Sundar (2016) does not work efficiently, which
may be the reason this sequential strategy was not implemented in their computational experiments. As of
now, there are no studies that have explored full integration of loading and routing decisions. Therefore,
research on full integration of loading and routing optimization is needed to fill this critical gap in the
literature.

9.2.2 A novel framework for the integrated optimization

It is nontrivial to solve the fully integrated problem from the perspective of optimization. The full
integration requires the real-time interaction between routing optimization and loading optimization, and
can have a significant advantage in solution efficiency. For instance, when routing decisions being
optimized by some insertion-base heuristic, if the effect of an insertion on loading is considered
simultaneously, many routes may have been eliminated in the first place due to their enormous loading
complexities (implying high loading costs). The advantage of the full integration strategy over the routing
first, loading second strategy can also be illustrated with a simple example shown in Figure 7.

Figure 7(a) shows three of the many possible routing plans for a given auto-carrier and a predetermined set
of automobiles, as well as all feasible loading plans corresponding to each of these three routes. The
underlined numbers in Figure 7 are the routing or loading costs. If a sequential approach is used (routing
first, loading second), then each route is constructed completely first, followed by constructing all possible
loading plans for the route. Conversely, if an integrated approach is used (route construction and loading
plan generation are considered simultaneously), then the mutual impact of route construction and loading
plan generation is considered simultaneously and timely before a complete route or loading plan is built. In
the process of building route 3 (before it is completely built), it is found that part of the route is identical to
some segment of route 2 (which was already built earlier along with all its loading plans), and based on this
known information, it is calculated that (i) if constructed fully, route 3 would cost at least 7, and (ii) any
loading plan for route 3 would cost at least 2. Thus, any solution combining route 3 and a feasible loading
plan would cost at least 9. Therefore, the partially constructed route 3 can be discarded immediately because
it would never yield a better solution than the solution combination of route 1 and loading plan la (which
has a total cost of 8).

Efficient methods need to be developed to jointly optimize routing and loading decisions. One plausible
approach is to improve the existing sequential approaches and make them more intelligent so that they can
identify suboptimal routes and loading plans and discard them before they are completely constructed. The
example illustrated in Figure 7(b) is based on such an approach. To further improve the loading optimization
efficiency, one can also investigate whether data driven approaches (that are dramatically different from
the existing loading optimization framework based on loading networks) can be applied for evaluating
possible loading plans for a given route. For example, a machine learning algorithm may be trained on the
known loading patterns that can be generated from the practice or simulation experiments. The trained
machine learning model can thus be used to quickly evaluate the loading implications in the process of
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constructing routes. In other words, the trained learning algorithm can instantaneously predict the loading
cost 77(x) for a given route x, thus eliminating the need to solve the loading subproblem (9-11) given
routing decision x. We then can reformulate the integrated optimization model (1-5) into problem (12-14):

(12)
(13)
(14)

max f(x) + n(x)
s.t. gx)=0
xezZm
If this learning algorithm can be successfully developed, inferior routes can thus be identified early on and

hence computational time can be reduced.
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Figure 7: Advantage of the real-time interaction between routing and loading

Finally, we believe that math programming based approaches are ideal if we aim for robust, high quality
solutions. One can investigate whether the column generation framework used by Wang et al. (2018) can
be extended to solve fully integrated problems. The complexity under this methodology is mainly at the
subproblem level. For a fully integrated problem, the subproblem will be much more challenging.

To benchmark the fully integrated optimization algorithms to be developed in the future, additional efforts
are also needed to develop standard test instances that are not yet available in the existing literature.

9.3. Realistic routing constraints and other considerations

9.3.1 Time window constraint
Commonly encountered constraints in vehicle routing problems, such as time window constraints, have not
been fully incorporated in the auto-carrier routing studies. Although it is widely known that the automobile
shipments have their due dates, very few studies have tried to consider the time window requirement
explicitly. As reviewed earlier, Tadei et al. (2002) considered a criticality index and Wang et al. (2018)
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considered an urgency level as proxies. To make the relevant models more realistic, an explicit
consideration of delivery time windows is necessary.

9.3.2 DOT rules

Another important practical issue to consider is that drivers of auto-carriers must follow Department of
Transportation (DOT) rules, which specify working hour rules for the safety of long-haul drivers. To our
knowledge, none of the existing studies in the automobile shipping optimization literature have
incorporated DOT rules into their models. Obviously, consideration of DOT rules will make routing
decisions much more challenging. In the vehicle routing literature, some studies (e.g. Xu et al. 2003,
Rancourt et al. 2013, Alcaraz et al. 2019) have taken driver working hour rules into routing models. It would
be interesting to see if some algorithmic ideas in such existing studies could be further incorporated.

9.3.3 Customized shipping option

The final set of practical issues that we think deserve research is related to individual automobile shipping
options. There are two options for individual automobile shipping, namely terminal-to-terminal and door-
to-door. In the case of terminal-to-terminal, the owner of a vehicle (an individual shipper) first drops off
the vehicle at a terminal (such as a rail terminal or port) and later picks it up from a different terminal close
to the shipper’s destination. On the contrary, the door-to-door option saves the drop-off and pickup hassles
for the shipper. The door-to-door option is thus more convenient and less time consuming for shippers.
From the perspective of auto shipping, terminal-to-terminal shipping enables a carrier to achieve economies
of scale by grouping and hauling multiple automobiles with the same origin and destination terminals.
Therefore, terminal-to-terminal shipping is more affordable than door-to-door. For a broker that offers both
terminal-to-terminal and door-to-door auto delivery services, there are two new routing issues to be
considered. First, the broker needs to decide whether to treat terminal-to-terminal orders separately from
door-to-door orders or consider them together by possibly mixing these two different types of orders in a
shipment. The corresponding routing and loading optimization obviously will be very different. Second, if
some auto shippers are flexible and accept both delivery options, which are associated with different
shipping costs, then an additional decision that the broker needs to make is to determine which shipping
option to deliver the car of each such auto shipper. Understandably, routing decisions are different under
the two shipping options discussed here. As of now, there is no research that has addressed the issues
discussed here.

9.4. Intermodal optimization models

At the strategic decision-making level, the intermodal automobile shipping has been studied, while there
are no operational optimization studies that have considered the intermodal automobile shipping. Thus,
there is a research need in this area. At the operational level, special attention is needed to model the transfer
operations between different modes of transportation at intermodal terminals. For instance, at a rail-to-truck
transfer terminal, autorack arrivals should be coordinated with auto-carrier departures to minimize the
transfer time of automobiles at the terminal for timely delivery. In addition, considering that train arrivals
may be subject to delays, real-time train holding strategies (Sun and Schonfeld 2016) may be developed to
minimize the impact of random delays on the transfer coordination at terminals.

9.5. Stochastic optimization models

Strategic automobile distribution decisions are very infrequently made, which have a major impact on the
automobile distribution in the next few decades. Such decisions must be carefully evaluated considering a
wide range of future scenarios, instead of a single averages-based scenario. In the existing literature, very
few strategic studies have considered uncertainties in automobile distribution. Clearly, the automobile
shipping demand could be uncertain; the shipping cost parameters may also fluctuate as technologies (such
as vehicle automation) evolve over time. Therefore, another promising research direction is to develop

31



stochastic optimization models, which can be solved by approaches such as the sample average
approximation technique (Kiya and Davoudpour 2012), among others.

9.6. Impact of natural and man-made disasters

Natural and man-made disasters can both create significant disruptions to supply chains and logistics
systems and cause sudden shifts in demand patterns. Automobile distribution is no exception. In particular,
as indicated by many experts (Ivanov 2020, Choi 2020, Choi 2021), the ongoing COVID-19 public health
crisis has reshaped the norm of logistics operations. On one hand, the sales of new vehicles dropped in 2020
because car buyers were more cautious about getting a new car due to the uncertain economic condition.
On the other hand, the demand for used cars increased because many people who relied on public transit
for commuting decided to buy preowned cars due to concerns with virus transmission inside public transit
vehicles (Rosenbaum 2020). The increased online trading of preowned cars have increased automobile
shipping demand. Given such new changes, a promising direction for future research is to build a robust
automobile distribution network that could withstand various changes ranging from changing consumer
preferences to technologies innovations.

Another area that we think needs more research is disruption management in automobile distribution. When
a part of the distribution network experiences a reduced capacity or is closed off completely due to
emergencies caused by disasters, already dispatched auto-carriers must be re-routed quickly, and new
routing and loading plans may have to be created for the auto-carriers soon to be dispatched. Similar actions
may have to be taken in other situations such as auto-carrier breakdowns and last-minute change of time
windows due to emergencies. There is a well-developed body of literature on vehicle routing problems with
disruptions (e.g., Li et al. 2009, Ju et al. 2017, Eglese and Zambirinis 2018). It will be interesting to see if
some of the existing algorithms from this literature can be extended to tackle automobile shipping problems
under various disruption scenarios.

9.7. Opportunities due to emerging technologies

9.7.1 Impact of vehicle automation

With various policy and funding support from the US government (USDOT 2020), cities across the US
have started hosting autonomous vehicle pilots, which implies autonomous vehicles (AVs) are likely to
become a reality in the foreseeable future. When the self-driving technology is market ready, the current
automobile distribution scheme will be disrupted. For instance, at present, driving new vehicles directly
and individually from a warehouse to dealer locations is economically infeasible, considering the high cost
associated with delivery drivers. Nonetheless, when drivers are no longer needed for operating a vehicle, it
may become feasible to eliminate the expensive auto-carrier operations by dispatching each AV
individually to the corresponding dealer location. More importantly, when auto-carriers can also self-drive,
a new vehicle distribution scheme can bring significant benefits through the routing cost tradeoff between
auto-carriers and finished automobiles. This distribution requires the collaboration of larger autonomous
vehicles (i.e., auto-carriers) and smaller autonomous vehicles (i.e., finished automobiles). Although both
auto-carriers and finished automobiles can operate autonomously, their routing costs clearly differ due to
their various sizes, weights, and vehicle technologies. Therefore, the collaboration between auto-carriers
and finished vehicles presents a promising solution, as it strikes a balance between routing auto-carriers
exclusively and operating finished autonomous automobiles only. New optimization models and algorithms
will be needed to support this novel distribution scheme.

9.7.2 Impact of artificial intelligence and machine learning

Major breakthroughs made in artificial intelligence can be used to advance the automobile distribution
practice by marrying machine learning (ML) to integer programming (IP). There is a rapidly growing
interest in using ML to help solve combinatorial optimization problems (Bengio et al. 2021). ML is valuable
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because it can be used to make accurate predictions on some key values in real time for given inputs when
sufficient training data are presented. For instance, in solving a vehicle routing problem, a vehicle route can
be provided as an input to an ML algorithm while an approximate routing cost is a possible output from
this algorithm. When a ML algorithm is extensively trained under various problem settings, the learning
algorithm could identify hidden relations between certain problem characteristics and solution patterns.
Therefore, ML can complement IP by guiding the search in the solution space by, for example, avoiding
some computationally expensive subproblems, or by deciding whether or not a specific solution approach
should be used (Kruber et al. 2017). Clearly, there is a great need to build the methodological foundation
for the integration of ML and optimization algorithms for the automobile distribution problem and develop
a set of new ML enhanced algorithms for solving this problem.

9.7.3 Impact of blockchain

A blockchain is an expanding chain of linked data packages or blocks, each of which has a cryptographic
hash of the previous block, a random number for validating the hash, a timestamp, and transaction data
(Nofer et al. 2017). This design ensures the integrity of the entire chain. Representing a new way of
organizing data, blockchain has attracted an increasing number of supply chain researchers to explore its
impact on supply chain operations (Dutta 2020). As automobile distribution involves multiple parties, who
frequently exchange their data, such as orders, contracts, and payments, blockchain has the potential to
innovate the way automobile distribution related data are collected, stored, and managed. This will also
have a major implication for real-time decision-making in automobile distribution, such as dynamic pricing
of automobile shipments, and dynamic routing of auto-carriers.

10. CONCLUDING REMARKS

This paper contributes to the literature by presenting the first systematic review of the automobile
distribution and related optimization problems. This survey covers three major modes of transportation
employed for shipping automobiles (i.e., highway, railway, and waterway), and involves optimization
decisions at operational, tactical, and strategic levels. Reflecting the reality of the existing literature, the
bulk of the survey is on highway-based auto-carrier routing optimization with various levels of auto-carrier
loading and unloading complexities.

Even though the automobile shipping optimization literature has rapidly evolved in the last few decades
and significant advancements have been made in developing efficient and effective optimization algorithms,
we conclude that several major gaps remain between the practical needs in the industry and solution
capabilities of the existing methods. First, hybrid service models with additional real-world elements of
automobile distribution should be considered. Second, the full integration of loading and routing
optimization is a promising research direction. Third, the impacts of uncertainties, disruptions, and
emerging technologies on automobile distribution should also be well incorporated into relevant
optimization studies.

By critiquing the automobile distribution optimization literature and proposing potential strategies to
address identified research gaps, we expect this survey to stimulate transportation researchers to develop
advanced optimization models to keep pace with the rapid development of the automobile distribution
practice.
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APPENDIX

Table 7 provides a quick comparison of 35 selected optimization studies that have been carefully reviewed
in this paper due to their high relevance. The comparison is by the type of decisions involved (strategic or
tactical (abbreviated as ST), operational without routing (O1), and operational with routing (O2)), and the
transportation mode used for automobile distribution (highway (H), rail (R), water (W), intermodal (I)).
See Sections 5 to 8 for detailed reviews of these studies.

Table 7: Overview of 35 selected studies that have been reviewed in detail

Authors & Year Type Mode
Agbegha et al. (1998) 01 H
Billing et al. (2018) 02 H
Bonassa et al. (2019) 02 H
Chandra et al. (2020) ST I
Chen (2016a) Ol H
Chen (2016b) Ol H
Wang and Chen (2020) 02 H
Cordeau et al. (2015) 02 H
Dael (2014) Ol W
Dell’ Amico et al. (2015) 02 H
Dong et al. (2020) ST I
Eskigun et al. (2005) ST I
Hei et al. (2014) ST I
Hu et al. (2015) 02 H
Jin et al. (2010) ST I
Juarez Pérez et al. (2019) 02 H
Kang et al. (2012) 02 W
Li and Zhang (2016) 02 H
Lin (2010) 01 H
Liu et al. (2016) 02 H
Lutter (2016) O1 R
Lutter and Werners (2015) Ol R
Meng et al. (2015) ST I
Miller (2003) 02 H
Miller et al. (1996) ST I
Ovstebo et al. (2011a) 01 w
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Ovstebg et al. (2011b) 02 W
Sherali and Lunday (2011) ST R
Sherali and Suharko (1998) ST R
Sherali and Tuncbilek (1997) ST R
Tadei et al. (2002) 02 H
Venkatachalam and Sundar (2016) 02 H
Wang et al. (2016) ST I

Wang et al. (2018) 02 H
Wensing (2018) 02 H
Xuan (2014) 0O1 W
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