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Abstract   

In this survey paper, we critique the optimization studies on the distribution of finished vehicles from 

automobile manufacturers to dealers in the past three decades and propose promising prospective research 

to minimize the gap between industrial practice and academic research. First, we identify major decision 

makers involved in automobile distribution, summarize service models, and briefly describe the automobile 

shipping practice by transportation mode. After defining the automobile shipping optimization problem at 

the operational level, we present the automobile distribution problem taxonomy by classifying existing 

studies by the level of decision making, mode of transportation, and type of optimization decisions. Each 

subcategory of studies is reviewed in detail through comparisons by objective function, constraints, 

formulation, solution algorithm, and test instances. We conclude this survey paper by summarizing major 

review outcomes and proposing potential research directions. This survey will stimulate interested 

transportation researchers to conduct further research to keep pace with the rapid evolution of the 

automobile shipping practice.   
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1. INTRODUCTION   1 

1.1. Significance of automobile distribution  2 

The automotive industry is one of the major industries in the world (Nieuwenhuis and Wells 2015). In some 3 

developed countries, such as Germany and Japan, the share of the automotive industry in the Gross 4 

Domestic Product (GDP) can exceed 5% (Saberi 2018). Over 10% of all manufacturing jobs in the Europe 5 

Union are in automobile production (Volling et al. 2013). Data compiled by the United States Bureau of 6 

Labor Statistics (USBLS) indicate that around 4.4 million people are directly involved in automobile 7 

manufacturing, wholesaling, and retailing in the US (USBLS 2021). According to the International 8 

Organization of Motor Vehicle Manufacturers (abbreviated as OICA in French), the total sales volume of 9 

passenger cars and commercial vehicles in 2019 is approximately 91 million (OICA 2020a), among which 10 

46% are manufactured in China, the US, and Japan (OICA 2020b). In the US, on average 17 million 11 

automobiles are sold in each of the last five years.  12 

As a very important component of the automotive industry, automobile distribution deals with the shipping 13 

of finished automobiles from hundreds of manufacturing plants across several different continents to tens 14 

of thousands of dealers across the US. The distribution of finished automobiles is thus a multi-billion-dollar 15 

industry considering the size of the U.S. automotive industry. In addition to transporting new cars, the 16 

shipping of preowned cars also accounts for a significant portion of the automobile transportation industry 17 

for the following reasons. First, as in the case of new cars, a lot of used cars are also exported from affluent 18 

countries such as Japan and South Korea to developing countries (Wang and Yeo 2016, Nieuwenhuis et al. 19 

2007). Second, when people migrate, they ship rather than drive their own vehicles to a new place. 20 

According to the American Community Survey (ACS) conducted by the US Census Bureau, for various 21 

reasons (e.g., education, employment or lengthy vacations) around 7 million people each year relocate to 22 

another state (U.S Census Bureau 2018). Third, consumers may also purchase second-hand vehicles online 23 

(e.g., online auctions) and have them delivered to their locations. Therefore, the demand for automobile 24 

distribution has been consistently high. 25 

1.2. Motivation and objective of this survey 26 

Despite the long history of the automotive industry and clear significance of automobile distribution, there 27 

is a major gap between the academic research and industrial practice. Research lags behind practice by at 28 

least a few decades: it was not until the 1990s when optimization models for automobile shipping first 29 

appeared in the literature, although the mass production of automobiles started in the 1900s. At the 30 

operational level, Agbegha et al. (1998) first addressed the auto-carrier loading aspect of the highway-based 31 

automobile shipping. At the strategic level, Miller et al. (1996) developed a mixed integer program to 32 

optimize the mode selection and rail terminal location problems for an international automobile 33 

manufacturer. Due to the high competitiveness in the automobile shipping industry, operations research has 34 

been increasingly used to help automobile manufacturers and carriers make better decisions to reduce 35 

distribution costs and increase service quality. Over 50 optimization studies involving various automobile 36 

shipping decisions at different levels have been published since the 1990s. Nonetheless, an important 37 

literature gap remains: no systematic surveys of the academic literature on the automobile distribution 38 

problem have been conducted. Thus, this survey intends to contribute to the literature by bridging this gap.  39 

Given that the focus of this survey is on automobile distribution, we do not review in detail the existing 40 

work that is primarily on transshipment terminal or port management. Interested readers are referred to 41 

Mattfeld and Kopfer (2003) and Mattfeld (2006), among others. Mattfeld (2006) studied some important 42 

issues related to the terminal operations in finished vehicle supply chains, such as vehicle transshipment 43 

planning, storage space allocation, and personnel scheduling. Mattfeld and Kopfer (2003) developed an 44 

https://www.semanticscholar.org/author/Paul-Nieuwenhuis/96382064
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integrated model for manpower planning and inventory management for a large vehicle port, the 1 

Bremerhaven hub in Germany. 2 

Like other distribution problems in supply chain management, automobile distribution is a very complex 3 

decision making problem, because (1) many decision makers with different objectives are involved; (2) 4 

interrelated optimization decisions at various levels (i.e., operational, tactical, and strategic) are made; (3) 5 

different transportation modes (such as rail and highway) are employed to transport automobiles, which 6 

exhibit clear mode-specific features; (4) the problem size in practice tends to be very large; and (5) the 7 

primary factors and key considerations in automobile shipping vary significantly with region, implying a 8 

high diversity across the world. As indicated in a seminal paper Agbegha et al. (1998), one unique feature 9 

of the automobile shipping problem stems from the physical configuration of auto-carrying equipment. 10 

Highway-based automobile distribution can be used as an example to illustrate it. For economic reasons, 11 

on-road auto-carrier trailers are specially designed to allow the compact storage of automobiles on multiple 12 

levels of an auto-carrier while not violating any auto-carrier size regulations. A major operational challenge 13 

due to this special trailer configuration is that automobiles can only be loaded and unloaded through a single 14 

exit of an auto-carrier, which complicates loading and unloading operations for an auto-carrier. 15 

Unfortunately, the loading and unloading decisions, which will eventually determine how automobiles are 16 

stored in an auto-carrier, are interrelated with other decisions in automobile distribution, such as assigning 17 

automobiles to auto-carriers and routing auto-carriers. Therefore, the specialized auto-carrying equipment 18 

involved in automobile distribution clearly distinguishes the automobile distribution problem from other 19 

distribution problems. 20 

Although studies since the 1990s have presented significant methodological advances and algorithmic 21 

improvements, additional research is practically necessary to keep pace with the rapid evolution of the 22 

automobile shipping industry. Therefore, we first provide a comprehensive and in-depth critique of the 23 

existing automobile shipping optimization studies spanning all modes of transportation across multiple 24 

decision-making levels to identify critical research gaps. Then, we propose prospective research directions 25 

for consideration by the transportation research community such that those gaps can be filled through future 26 

research. In addition, we discuss new research opportunities in automobile shipping considering the 27 

potential impact of emerging technologies, such as vehicle automation, artificial intelligence, and 28 

blockchain. 29 

The rest of this paper is structured as follows. Section 2 presents the literature search procedure. We define 30 

major decision makers, summarize service models, introduce automobile shipping practice by mode in 31 

Section 3. An umbrella term named automobile shipping optimization problem is defined and a 32 

classification of this problem is then presented in Section 4. The next four sections (Sections 5 to 8) thus 33 

critique four subcategories of existing studies. In Section 9, we analyze major research gaps, propose 34 

plausible approaches to addressing such gaps, and analyze the impact of emerging technologies. In Section 35 

10, concluding remarks are presented. 36 

2. RESEARCH METHODOLOGY    37 

In this survey paper, we intend to broadly cover those decision-making problems concerned with moving 38 

automobiles from one place to another. In the literature, quite a few terms with varying scopes are used, 39 

such as auto-carrier transportation (Tadei et al. 2002), automobile pickup and delivery (Wang et al. 2018), 40 

outbound logistics of automobiles (Wang and Chen 2020), and automobile distribution (Hei et al. 2014). 41 

All such related problems fall within the scope of this survey. 42 

To ensure most relevant studies are covered in this survey, the following procedure is used to conduct the 43 

literature search systematically. 44 
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 First, we searched Web of Science and Google Scholar with keywords including “automobile 1 

shipping”, “automobile transportation”, “automobile distribution”, “automobile pickup and 2 

delivery”, and “auto-carrier loading and routing”. For those papers found in this step, we 3 

examined whether their main research methods were optimization-based and thus excluded 4 

purely qualitative research.  5 

 Second, for each selected paper from the first step, we scanned its reference list to include those 6 

new studies that were not identified in the first step; we also used Google Scholar to scan relevant 7 

studies that referenced a paper identified from the first step. 8 

 Third, we iterated the above steps until the pool of identified studies for review from the literature 9 

converged.  10 

Although the above systematic approach should cover most of automobile shipping optimization studies 11 

written in English, we note that relevant studies published in other languages or in those journals not 12 

indexed by Web of Science or Google Scholar are not covered in this review. The final list of studies has 13 

more than 50 papers from mainstream journals in the field of operations research, such as Transportation 14 

Science, Transportation Research Parts B & E, Computers & Operations Research, Computers & Industrial 15 

Engineering, European Journal of Operational Research, Annals of Operations Research, and Management 16 

Science. The time period ranges from the 1990s to the present. 17 

As mentioned earlier in this section, due to this paper’s focus on existing studies that use optimization and 18 

operations research as main research methods, existing qualitative studies are out of the scope of our survey. 19 

Two examples of such qualitative studies are Holweg and Miemczyk (2003) who studied the strategic 20 

implications of automotive logistics operations and Chandra et al. (2016b) who reviewed the management 21 

practices of outbound automotive logistics in India.  22 

3. OVERVIEW OF AUTOMOBILE SHIPPING PROBLEM 23 

There exists a wide array of problem variants of automobile shipping, depending on several practical factors, 24 

such as decision makers involved, transportation modes employed, and automobile carrying equipment 25 

used. In this section, we first define decision makers involved in automobile shipping; then, we describe 26 

three service models by characterizing how the decision makers interact with each other; finally, we 27 

introduce various transportation modes and on-road auto-carriers. 28 

3.1. Decision makers 29 

There are quite a few parties involved in the automobile shipping industry, such as customers, lead 30 

aggregators, brokers, and carriers. Those parties work collaboratively to ensure the arrival of automobiles 31 

at the destination. Definitions of such decision makers are given to facilitate further discussions.  32 

Customers are the individuals (e.g., a person relocating to a different place) or corporates (e.g., an 33 

automobile manufacturer) who need to ship automobiles from an origin to a destination. Individual 34 

customers usually move their preowned vehicles from the current location to a new location they relocate 35 

to. Usually, they are both shippers and receivers. Unlike individuals, business customers usually ship 36 

finished vehicles from plants or warehouses to dealer locations. In this case, shippers differ from receivers.  37 

Carriers are individuals or trucking companies which are engaged in the professional conveyance of 38 

automobiles. Most carriers do not communicate directly with shippers. The communication is usually 39 

through a broker, who acts as a facilitator for both shippers and carriers. On one side, brokers work with a 40 

network of carriers and verify the carriers’ licenses, insurances, and credentials; on the other side, brokers 41 

obtain shipping information either from shippers directly or from a lead aggregator that maintains a load 42 
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board. With the information of available automobiles for shipping collected from individual shippers, the 1 

load board is usually accessible by the brokers with a paid subscription and is a critical tool for the brokers 2 

to find the best carrier or carriers to meet the need of one or a group of shippers.  It should be noted that it 3 

is not very common for brokers to own any automobile-carrying (auto-carrying) equipment. Only in certain 4 

cases, an automobile transportation company or a Third-Party Logistics (3PL) company may act as a broker 5 

while it also owns a fleet of auto-carriers. The automobile shipments received by those broker-carriers may 6 

be fulfilled by their own dedicated fleets or get outsourced to other carriers.  7 

Clearly, if a broker-carrier has its fleet and receives shipping orders directly from a shipper such as an 8 

automobile manufacturer, all decisions involved in the shipping process are made by itself, which thus 9 

justifies a centralized decision-making framework. If a broker does not own and operate any fleets, it may 10 

only make those decisions regarding how to assign shipping orders to carriers, while some other decisions 11 

(such as loading automobiles to auto-carriers) could be made by carriers. Depending on the context, routing 12 

decisions may be made by a broker or an individual carrier. Section 3.2 better characterizes the behavioral 13 

interactions among the above decision makers. 14 

3.2. Service models 15 

Depending on how decision makers interact, there are three service models, as illustrated in Figure 1.  16 

In service model 1, the shipper, which is usually an automobile manufacturer, directly works with a carrier 17 

without involving any brokers. It seems that this service model is studied the most in the literature among 18 

the three service models. Tadei et al. (2002), Dell’Amico et al. (2015), Cordeau et al. (2015), 19 

Venkatachalam and Sundar (2016), and Wensing (2018) considered this service model. An instance of this 20 

service model is described as follows: automobile dealers located in different regions submit orders for new 21 

automobiles to an automobile manufacturer, which then sends newly assembled automobiles (i.e., BTO, 22 

build to order) to a staging area; all the vehicles including those stocked (i.e., BTS, build to stock) in the 23 

staging area are released to the carrier that has contracted with the manufacturer for delivery to the dealers. 24 

In service model 2, automobiles are transported by multiple independent carriers that are selected by a 25 

broker without auto-carrying equipment, given the order information (such as vehicle time and shipping 26 

timeframe) received from a shipper. This service model is studied in Wang et al. (2018), and Bonassa et al. 27 

(2019), among others. In the problem studied by Wang et al. (2018), a 3PL provider, which does not own 28 

any auto-carrying equipment, connects with a network of trucking companies to deliver the finished 29 

automobiles from a manufacturer’s outbound warehouses to various dealer locations. The shipping 30 

optimization decisions are made by the 3PL company.  31 

Service model 3 involves a broker-carrier who has its private fleet and may also outsource its shipping 32 

orders to other carriers, depending on whether the orders it receives from multiple shippers (potentially 33 

through lead aggregators) exceed the capacity of its own fleet. In the first two service models, shippers are 34 

usually business customers (such as automobile manufacturers), whose shipping demand is usually large 35 

(e.g., dozens of automobiles per order) and predictable. In contrast, the shippers in service model 3 are 36 

usually individual customers who relocate to new places for various reasons (new employment or 37 

retirement). Individual shippers’ demand is relatively small (one or two cars per order) and volatile. This 38 

difference also implies that shippers in service model 3 are more diverse than those in the other service 39 

models. Shippers in service model 3 submit the pickup and drop off locations, a timeframe, and other 40 

necessary vehicle details (such as make, model, and year) to the broker-carrier. After receiving all the 41 

shipment orders, the broker-carrier determines what orders can be served in-house and what orders must be 42 

outsourced to other carriers, based on inputs from shippers and carriers. Service model 3 has not been 43 

studied in the literature. Liu et al. (2016) mentioned the possibility of outsourcing remaining orders to other 44 

carriers if the fleet capacity of the logistics company in charge was not enough to cover all orders, although 45 

this was not explicitly incorporated into their optimization model. 46 
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Figure 1: Service models for automobile shipping 2 

3.3. Transportation modes 3 

As shown in Figure 2, all five major transportation modes except pipelines are employed in practice for 4 

transporting automobiles.  Shipping an automobile by air is not only feasible, but also has an incomparable 5 

speed advantage, which is ideal for shipping antique or very high-end vehicles (such as Formula one cars) 6 

overseas rapidly. As it takes at least a few thousand U.S. dollars to ship a car overseas, it is not a viable 7 

mode for large-scale distribution of automobiles.  8 

Maritime transportation is the primary way of intercontinental transportation of automobiles. Leading 9 

automobile exporters such as Germany, Japan, and the U.S. rely on ocean to ship automobiles across 10 

continents or regions, for instance, from East Asia to North America or from Mexico to Northeastern U.S. 11 

Shipping by sea has the lowest transportation cost per car when the shipping volume is relatively large and 12 

the shipping is over a very large distance, while the clear drawback is its very slow speed. It usually takes 13 

weeks to cross the Pacific, which implies significant lead times (Katcoff 2011). Roll-on/roll-off or Ro-Ro 14 

ships (Kang et al. 2012) are used to carry automobiles because vehicles can be driven on and off the vessel 15 

on the vehicle’s own wheels through ramps. A car-carrying vessel can carry thousands of automobiles, 16 

which would be infeasible by any other modes. 17 

 18 
Figure 2: Automobile transportation modes 19 

Railway is the primary long-haul mode for transporting vehicles, due to its cost-effectiveness for longer 20 

trips. According to Jin et al. (2010), around 70% of finished vehicles in the U.S. are shipped by railway. 21 

The special piece of rail rolling stock called autorack is used for carrying automobiles, which has two or 22 

three levels. Smaller vehicles such as sedans can be loaded onto tri-level railcars, while taller vehicles such 23 

(d) Roadway auto-carrier(c) Autorack(a) Car carrying aircraft (b) Ro-Ro ship
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as passenger trucks are loaded onto bi-level railracks (Katcoff 2011). Nowadays more and more autoracks 1 

are partially or fully enclosed to prevent automobiles from being damaged by inclement weather, falling 2 

rocks, being stolen, and other threats. In the U.S., travellers along the East Coast may take their automobiles 3 

while they ride a train, thus avoiding long-distance driving. Such a service is known as Auto Train in the 4 

U.S. or Motorail in Europe. In this case, passengers are carried in passenger rail cars while their automobiles 5 

are loaded into autoracks.  6 

Highway offers the most flexible automobile transportation option, as it is the only mode that can provide 7 

door-to-door services. It has a relatively high delivery speed and medium transportation cost. Therefore, 8 

highway is the primary mode for short-haul automobile transportation. Automobile transportation by 9 

highway can be terminal-to-terminal or door-to-door, using a special type of truck with a tractor and trailer 10 

called car hauler, auto-carrier, or automobile transporter. Figure 3 shows some common auto-carriers. 11 

Auto-carriers come in numerous sizes, types, and shapes. Like autoracks, roadway auto-carriers can be 12 

open or enclosed. Open auto-carriers are very widely used and can transport almost all types of cars, ranging 13 

from new cars to salvage ones. Enclosed transportation offers an extra layer of protection at a higher cost 14 

and can be used for transporting high-end vehicles. Auto-carriers may have one or two levels, with the 15 

carrying capacity (as measured by the number of available slots) ranging from one to more than ten. 16 

Although a single-car hauler, or better known as a tow truck, can be highly flexible to operate and can 17 

navigate narrow roads, it is cost effective for only short distances. A high-capacity carrier is more cost 18 

efficient due to economies of scale. Nonetheless, the maximum number of automobiles that can be carried 19 

by an auto-carrier is regulated to avoid severe damage to the pavement. The US Department of 20 

Transportation has regulations on the dimensions of auto-carriers, for instance, the overall length is up to 21 

75 feet (U.S. Department of Transportation 2004).  22 

 23 

Figure 3: Different types of auto-carriers 24 

Due to the special physical configuration, auto-carriers in general have only one access point from which 25 

automobiles are loaded and unloaded. For the maximum capacity utilization, automobiles of different 26 

dimensions should be loaded onto an auto-carrier in a certain sequence to avoid unnecessary and costly 27 

operations, such as reloading: a vehicle that is not yet destinated must be unloaded and loaded back to allow 28 

other vehicles to be moved. Aghbegha et al. (1998) pointed out that there is a unique combinatorial nature 29 

associated with auto-carrier loading and unloading that stems from the special physical characteristics of 30 

roadway auto-carriers. An auto-carrier has a set of slots of different dimensions, which are used to hold 31 

(a) single level single car (b) single level multi-car (c) multi-level multi-car

Enclosed 

Open 

(d) single level single car (e) single level multi-car (f) multi-level multi-car
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automobiles of various types and sizes. The number of possible ways to sequence automobiles for loading 1 

and assign them to slots increases exponentially with the number of slots in an auto-carrier. 2 

While the above analyses are separated by individual shipping modes, it should be noted that automobiles 3 

are often transported using a combination of waterway, railway, and highway. For instance, imported cars 4 

from Japan can first be transported to a port of entry (such as Long Beach, California) by ocean; then, they 5 

are distributed to major warehouses throughout the U.S. by rail; last, they are delivered to dealer locations 6 

by highway.  7 

4. PROBLEM CLASSIFICATION AND REVIEW OUTLINE 8 

To make the review systematic, we start by defining the automobile shipping optimization problem at the 9 

operational level in Section 4.1; then, we briefly discuss related optimization problems at the strategic and 10 

tactical levels in Section 4.2. Finally, in Section 4.3, all relevant automobile shipping studies are classified 11 

based on the level of decision-making, primary transportation mode, and decision variables involved.  12 

4.1. Automobile shipping optimization problem 13 

The Automobile Shipping Optimization Problem (ASOP) is a class of operational optimization problems 14 

that involve (1) shippers that have automobiles to be shipped from one or more origins to one or more 15 

destinations, (2) carriers that operate auto-carrying equipment for transporting automobiles, and (3) 16 

coordinators that optimize various planning and operational decisions to achieve an objective, subject to 17 

the requirements and restrictions from both shippers and carriers. Each automobile to be shipped is 18 

associated with a pickup location, a drop-off location, a vehicle type, and possibly some other information. 19 

Carriers may be homogeneous and based in a central depot, or heterogeneous with a mixed fleet. As 20 

discussed in Section 3.2., there are multiple service models. Depending on which service model is followed, 21 

there may be an overlap between different roles, such as a hybrid of carrier and broker.  22 

The underlying planning and operational decisions vary significantly with the mode employed to transport 23 

vehicles. Thus, we divide all the automobile shipping optimization studies into two broad categories: 24 

highway-based, and multimodal. As most studies in the literature involve highway transportation only, we 25 

further divide such studies based on what types of decisions are involved. In the first paper on roadway-26 

based automobile transportation optimization problem, Aghbegha et al. (1998) described how various 27 

heuristics were used in the 1990s to solve the automobile shipping optimization problem. They pointed out 28 

that a commonly used heuristic in practice is a sequential approach, which is illustrated in Figure 4 and 29 

described as follows: 30 

First, as not all the vehicles in the staging areas are to be delivered on a day, priorities are given to those 31 

vehicles that have been ordered earliest by dealerships. Dealers are then grouped so that the ordered vehicles 32 

from the dealers in the same group are delivered together by the same auto-carrier.  33 

Next, as the vehicles to be delivered by an auto-carrier are finalized, a routing heuristic is used to determine 34 

the route and sequence to visit dealers. 35 

Third, given a set of automobiles to be delivered and the optimized auto-carrier route, a detailed loading 36 

plan is determined to minimize reloading and avoiding damages. When an auto-carrier is en-route, vehicles 37 

that are not destined may be rearranged (such as temporarily unloaded and loaded back) in order to facilitate 38 

the delivery of some other vehicles. 39 
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Figure 4: Types of decisions 2 

As reviewed later, there are many existing studies that have adopted such a sequential optimization 3 

approach. There are also several existing studies that have focused on loading/unloading decisions only 4 

while assuming that auto-carrier routes are given. Although such a sequential approach is relatively simple 5 

to implement, it has a major drawback - it does not consider the interrelations between decisions made at 6 

different steps (routing and loading). For example, an “optimized” auto-carrier route without consideration 7 

of its associated loading implications may incur very expensive reloading operations. In the case of 8 

transporting very high-end cars, to avoid potential damage during reloading, a strict Last In, First Out (LIFO) 9 

policy may be adopted during loading; however, the resulting auto-carrier route may have significant 10 

detours, which is cost prohibitive. As indicated later in this survey (Section 9.2), although some existing 11 



9 

 

studies have attempted to integrate routing and loading/unloading decisions, no existing study has 1 

developed a fully integrated optimization model, which is also a major motivation for this survey. 2 

4.2. Tactical and strategic problems related to ASOP 3 

The ASOP defined in Sections 4.1 is at the operational level, and involve operational decisions that are 4 

made relatively frequently, such as daily or twice per week. Like in other distribution problems, there are 5 

also tactical and strategic decisions related to automobile shipping. Such decisions are made infrequently 6 

due to their mid-term or long-term effects. An example of tactical decision is inventory control. For instance, 7 

Cachon & Olivares (2010) and Cachon et al. (2019) studied the relation between automobile sales and 8 

inventory with empirical data from auto dealerships in the US. An example of strategic decision is the 9 

location of vehicle distribution centers. For instance, Eskigun et al. (2005) optimized the automobile 10 

distribution network considering a few practical factors including lead time.  11 

At the strategic and tactical levels, there are two types of optimization decisions that are most relevant to 12 

automobile shipping and thus studied extensively in the automobile distribution literature. Those decisions 13 

are: (i) design of automobile shipping networks and selection of proper shipping modes for automobile 14 

distribution, and (ii) management of empty autoracks including making repositioning decisions in railway-15 

based automobile shipping (Sherali and Maguire 2000). Given the importance and relevance of these topics, 16 

we will review each of these problem classes in detail, along with the operational-level problems discussed 17 

in Section 4.1.   18 

It should be noted that although there are multiple decision-making levels, existing studies on automobile 19 

shipping across various decision levels are not uniformly distributed, with most of them at the operational 20 

level. This is understandable because automobile distribution problems at the operational level are 21 

dramatically different from other distribution problems because of the unique auto-carrying equipment 22 

involved, as discussed in Section 1.2. As we climb up the decision hierarchy, fewer and fewer operational 23 

features are present, and the problem uniqueness diminishes. For instance, auto-carrier reloading issue is 24 

prominent at the operational level, while it certainly becomes trivial at the network design level.  25 

4.3. Taxonomy and review outline 26 

We classify all relevant studies by the decision-making level and the primary transportation mode involved. 27 

As most of the studies are on operational-level decisions of the automobile shipping, we review such studies 28 

with priority in this survey. This explains why we review such studies before studies on higher-level 29 

decision-making problems, although strategic-level decisions usually precede lower-level decisions in the 30 

decision process. As already explained in Section 4.1, we divide all the operational optimization studies 31 

into two broad categories: highway-based, and multimodal. We further divide all those roadway-based 32 

operational models into two groups, depending on whether they consider routing optimization decisions 33 

explicitly. Studies on tactical and strategic level decisions, including mode selection and network design, 34 

and empty autorack management, are reviewed separately. Figure 5 shows how the reviews of these 35 

different classes of problems are organized in Sections 5 to 8. 36 

It should be noted that operational-level optimization problems involving different transportation modes 37 

differ substantially due to the mode-specific characteristics involved such as loading platform configuration, 38 

carrier capacity, and routing complexity. Thus, it does not make much sense to examine those modeling 39 

differences among different modes in a single section, as there is very little commonality. For instance, a 40 

highway-based auto-carrier carries around ten automobiles and visits multiple dealer locations. Reloading 41 

operations (which are essential) directly contribute to the optimization complexity. On the contrary, a Ro-42 

Ro ship carries thousands of automobiles and has a single destination. When automobiles are shipped by 43 

Ro-Ro ships, reloading becomes irrelevant. Clearly, the resulting optimization models are quite different, 44 
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which further means that they should not be reviewed together. This explains why in each of the following 1 

four sections, one specific group of studies is reviewed as illustrated further in Figure 5.  2 
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Figure 5: Classification scheme and coverages of problem classes in Sections 5 to 8 4 

5. LOADING AND RELOADING OPTIMIZATIONS 5 

As the existing roadway-based automobile shipping optimization models without involving any routing 6 

implications are primarily focused on loading and unloading optimizations, we review such studies in this 7 

section. Loading is the final step in the sequential decision-making process described in Section 4.1, which 8 

is to assign a given set of automobiles to various slots of an auto-carrier whose route is already fixed. Given 9 

the configuration of an auto-carrier, reloading is usually needed when some automobiles that are not to be 10 

delivered at a location prevent the unloading of destinated automobiles. Such automobiles blocking the 11 

unloading path of destinated automobiles must be temporarily unloaded and loaded back either to the 12 

original slot or another available slot, after those destinated automobiles are unloaded and delivered.  13 

5.1. Formulations and solution algorithms 14 

Agbegha was the first to study the auto-carrier loading problem (ACLP), according to Billing et al. (2018) 15 

and Wensing (2018), among others. Agbegha et al. (1998), which was based on Agbegha’s doctoral 16 

dissertation (Agbegha 1992), focused only on loading decisions, although it was acknowledged that loading 17 

decisions were interrelated with other optimization decisions (such as routing) in automobile shipping. In 18 

Agbegha et al. (1998), a so-called loading network was proposed for an auto-carrier trailer, where each 19 

node represents a slot and an arc from one node to another indicates the unloading precedence. Depending 20 

on the configuration of an auto-carrier trailer, certain loading constraints were considered, such as single 21 

car constraint (a slot can accept only a few types of automobiles), and pairwise constraint (some 22 

automobiles cannot be assigned to adjacent slots). The optimization objective was to minimize the reloading 23 

cost, for a given auto-carrier route, which specifies the sequence for visiting auto dealers. The loading 24 

optimization problem was formulated as a geometric assignment problem, which was solved by a heuristic 25 

algorithm involving a branch-and-bound procedure. 26 
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Lin (2010) followed Agbegha et al. (1998) in adopting the loading network and formulated a quadratic 1 

assignment problem. A key assumption made in Agbegha et al. (1998), which requires a reloaded 2 

automobile to be loaded back to the original slot, was relaxed in Lin (2010) by allowing a reloaded 3 

automobile to move to any feasible available slot whenever reloading is needed. The quadratic assignment 4 

problem was directly solved with a nonlinear programming solver. Lin (2010) claimed that (1) the solution 5 

was exact; (2) better solutions were found than Agbegha et al. (1998). 6 

Chen (2016a) followed this line of research and pointed out that the number of reloads was incorrectly 7 

computed in Agbegha et al. (1998) if empty slots were present. After fixing this issue and making other 8 

changes, Chen (2016a) formulated the loading optimization problem as an integer programming problem. 9 

Computational results demonstrated that the new heuristic developed in Chen (2016a) outperformed the 10 

heuristic of Agbegha et al. (1998). 11 

In the three ACLP studies reviewed above (i.e., Agbegha et al. 1998, Lin 2010, Chen 2016a), the loading 12 

optimization problem was solved at an auto-carrier depot, before the auto-carrier was dispatched. Chen 13 

(2016b) studied a sequential auto-carrier loading problem (SACLP) that was solved along the route at each 14 

dealer location, assuming the solution to the ACLP was given as an input. Chen (2016b) formulated SACLP 15 

as a series of binary integer programs, but proposed a heuristic algorithm to solve the problem. 16 

Computational results showed that the solution of SACLP along the auto-carrier route helped reduce the 17 

reloading cost as compared with solving ACLP once at the auto-carrier depot. 18 

Table 1 provides a quick comparison of those four studies that are focused on loading and reloading 19 

decisions. First, the simplifying assumption made by Agbegha et al. (1998) on reloading an automobile to 20 

its original slot was still made in Chen (2016a). Second, the majority of loading optimization problems 21 

were solved by various heuristics, with the exception of Lin (2010) who directly solved their quadratic 22 

assignment problem with a solver. 23 

Table 1: Summary of existing studies on loading and reloading problems 24 

Study Formulation Back to original slot 

once reloaded  

Solution method 

Agbegha et al. 

(1998) 

Geometric assignment 

problem 

Yes Heuristic based on branch-and-

bound 

Lin (2010) Quadratic assignment 

problem 

Not required  Solved directly by a nonlinear 

programming solver 

Chen (2016a) Integer programs (IP) Yes Heuristic 

Chen (2016b) A series of binary IPs Not required Heuristic 

5.2. Test Instances 25 

In the pioneering work Agbegha et al. (1998), four sets of ACLP test instances (named #1, #2, #3, and #4) 26 

were developed based on the auto-carrier loading practice in the U.S. Each set consisted of 15 instances 27 

(numbered from 1 to 15). In each set of the test instances, there were a unique auto-carrier type and four 28 

types of automobiles, such as cars, vans, and long vans. Based on the configuration of an auto-carrier and 29 

types of automobiles, loading constraints were also generated. Each automobile in the set of automobiles 30 

assigned to the auto-carrier (i.e., a load) had a destination (which was a dealer location), although multiple 31 

automobiles may go to the same dealer location. Each instance in a test instance set also had a unique 32 

sequence of dealer locations (i.e., route). Agbegha et al. (1998) reported their optimization results for all 60 33 

instances, which included the computational time and the number of reloads in the solution for each instance. 34 



12 

 

Results showed that for some test instances, feasible solutions were not found using the heuristic they 1 

developed. 2 

Lin (2010) used the same 60 instances in Agbegha et al. (1998) and reported that his formulation yielded 3 

better solutions for a dozen of instances. However, it should be noted that Lin (2010) did not solve the same 4 

problem as Agbegha et al. (1998), because in Lin (2010) it was no longer a requirement to reload an 5 

automobile to its original slot. Lin (2010) also compared their solution time with Agbegha et al. (1998), 6 

despite the clear difference in computing power. The computation time for an instance ranged from less 7 

than a second to nearly one minute. 8 

Chen (2016a) adopted 9 instances from 3 sets (#1, #2, and #4) defined in Agbegha et al. (1998). He reported 9 

a higher solution efficiency than Agbegha et al. (1998), as all instances were solved within 21 seconds. 10 

Chen (2016a) also reported that feasible solutions were found for some unsolvable instances in Agbegha et 11 

al. (1998). As in Lin (2010), the significant difference in computing power was not considered when 12 

solution times were compared. Chen (2016b) tested their method on 5 instances, part of which were from 13 

Agbegha et al. (1998). The rest of them were generated by Chen (2016b). Solution times were not reported 14 

in Chen (2016b). 15 

Table 2 provides an overview of the test instances used in those loading and reloading studies. It clearly 16 

shows that the majority of test instances used for testing loading optimization algorithms were from 17 

Agbegha et al. (1998). All the test instances are available in these papers. In terms of solution efficiency, it 18 

takes at least a few seconds to find an optimized loading plan for a given route covering about five dealer 19 

locations.  20 

Table 2: Overview of test instances in existing loading and reloading studies 21 

Study # of 

instances 

# of auto 

types 

# of carrier 

types 

Data source Instance 

availability 

Agbegha et al. 

(1998) 

60 4 4 Original Yes 

Lin (2010) 60 4 4 Agbegha et al. (1998) Yes 

Chen (2016a) 9 4 3 Agbegha et al. (1998) Yes 

Chen (2016b) 5 4 2 Mixed Yes 

6. OPTIMIZATION OF ROUTING AND RELATED DECISIONS 22 

In the loading and reloading optimization studies reviewed in Section 5, the auto-carrier route is considered 23 

given and no routing related costs are considered. On one hand, routing has a direct impact on loading; on 24 

the other hand, routing decisions are clearly affected by partitioning decisions (which automobiles are 25 

selected and delivered by which auto-carrier), as described in the sequential decision-making approach in 26 

Section 4.1. Therefore, it is very challenging to optimize the routing decisions considering their 27 

interrelations with other decisions. Routing has also attracted much more attention than loading in the 28 

literature (e.g., Tadei et al. 2002, Dell’Amico et al. 2015, and Wang et al. 2018). In this section, we focus 29 

on roadway-based automobile shipping optimization models involving routing and other related decisions. 30 

6.1. Evolution of auto-carrier routing studies considering loading  31 

We first review each relevant study in detail chronologically to show the evolution of those optimization 32 

models. Readers may skip Section 6.1 and proceed to Sections 6.2 to 6.5 for syntheses of our review 33 

findings.  34 
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Tadei et al. (2002) considered three aspects of automobile shipping, namely loading, vehicle selection, and 1 

routing, in a simplified manner. First, regarding loading, an auto-carrier was modelled as a single loading 2 

plane where automobiles were loaded horizontally. Each automobile to be loaded has its equivalent length, 3 

depending on the vehicle class. If the total equivalent length of the automobiles to be loaded did not exceed 4 

the capacity threshold of an auto-carrier, the loading plan was considered feasible. Clearly, loading 5 

solutions generated this way may not even be feasible considering a realistic configuration of an auto-carrier, 6 

such as discrete slots of various sizes in Agbegha et al. (1998). Second, although the routing aspect was 7 

involved in the problem considered by Tadei et al. (2002), detailed auto-carrier routes were not generated 8 

explicitly. Instead, they simply divided geographical regions into clusters and required that only 9 

automobiles with destinations in the same cluster can be delivered together by an auto-carrier.  This replaced 10 

routing decisions by clustering of auto dealers located in a region. Tadei et al. (2002) developed a three-11 

step heuristic based on an integer programming formulation to solve the integrated optimization problem. 12 

The equivalent length concept was later adopted in Li and Zhang (2016) and Wensing (2018), among others.  13 

Miller (2003) also tried to optimize auto-carrier routing while considering loading complications in his 14 

master’s thesis. His work made a few key simplifying assumptions, including not considering automobile 15 

sizes so that any car can be loaded to any slot on an auto-carrier, and not considering distances between 16 

dealer locations. The auto-carrier modeling in Miller (2003) is more realistic than Tadei et al. (2002), 17 

although Miller (2003) assumed that an auto-carrier had two flat levels on which automobiles were loaded 18 

and unloaded straight. Construction and improvement heuristics were designed to solve the optimization 19 

problem in Miller (2003).  20 

Dell’Amico et al. (2015) claimed that they were the first to generate detailed solutions of both the loading 21 

and routing components of the automobile shipping problem simultaneously. Their algorithm was an 22 

iterated local search procedure centered around the routing decisions, coupled with a fairly sophisticated 23 

procedure used as a subroutine to check whether a given route was feasible considering several loading 24 

constraints, such as weight and precedence. Although this work marked a milestone in the auto-carrier 25 

routing optimization, it could be improved. For instance, the notion of equivalent length used in Tadei et al. 26 

(2002) was kept, which prevented the consideration of detailed loading plans, as in Agbegha et al. (1998). 27 

Dell’Amico et al. (2015) strictly imposed the last-in-first-out (LIFO) policy, which implied no reloading 28 

was considered at all. Cordeau et al. (2015) extended Dell’Amico et al. (2015) by considering a multi-day 29 

planning problem with a rolling horizon approach. 30 

Hu et al. (2015) approached the loading constraints differently by modeling each automobile as a three-31 

dimensional irregular shape. The nature of loading in their study was thus to pack irregular items to an auto-32 

carrier. They also introduced a learning procedure to discover loading patterns that mapped a combination 33 

of automobiles to an auto-carrier. They developed an evolutionary algorithm to solve a vehicle routing 34 

problem with packing constraints. Similarly, Liu et al. (2016) considered the three-dimensional geometric 35 

contour of finished automobiles when automobiles were assigned to auto-carriers. Routing decisions were 36 

not studied, because it was assumed that an auto-carrier followed a fixed route. Nonetheless, Liu et al. (2016) 37 

did include routing costs, which was determined only by the fixed route of an auto-carrier. 38 

In an unpublished working paper by Venkatachalam and Sundar (2016), a simple heuristic was used to 39 

determine the auto-carrier route; a branch-and-price algorithm was developed to solve the subsequent 40 

loading problem for the given route. In the loading subproblem, precise automobile-to-slot assignment 41 

decisions were considered, subject to various loading constraints about automobile height, weight, and 42 

length. Although the loading aspect considered in this work was relatively sophisticated, loading was not 43 

taken into account when routing decisions were made. Thus, the overall solution approach was essentially 44 

a sequential approach. The full integration of routing and loading in the branch and price framework was 45 

explicitly mentioned as prospective research. 46 
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Wang et al. (2018) studied how to optimize the assignment of automobiles to auto-carriers and the route of 1 

each auto-carrier so as to maximize the total value of the assigned automobiles minus the total transportation 2 

cost. Although Wang et al. (2018) considered some loading constraints, such as the downward compatibility 3 

between cars to be loaded and slots on an auto-carrier, they did not consider precise loading and unloading 4 

plans. A column generation based heuristic was used to solve the resulting pickup and delivery problem. 5 

Wensing (2018) adopted the sequential decision-making framework in Agbegha et al. (1998) without 6 

considering the loading optimization. Like Tadei et al. (2002), Wensing (2018) considered the length 7 

equivalents for both the automobile and auto-carrier. The notion of loading pattern was also used to model 8 

the loading feasibility. The focus of this study was to compare two scenarios, both over a 10-day period: (i) 9 

all arriving shipment orders must be accepted and shipped on the day of their arrival, and (ii) the transport 10 

company can freely accept or reject an arriving order. Two scenarios were evaluated in terms of measures 11 

such as overall profit and driver productivity. A greedy heuristic based on the manual planning experience 12 

and a sophisticated heuristic consisting of construction, perturbation and combination subroutines were 13 

compared through numerical studies.  14 

Billing et al. (2018) used a three-phase heuristic to solve an integrated auto-carrier transportation problem, 15 

where selection of automobiles, assignment of automobiles to auto-carriers, and routing of auto-carriers 16 

were jointly considered, while the precise loading was not involved. A unique contribution was that they 17 

explored the potential of using probabilistic information in reducing various costs.  18 

Bonassa et al. (2019) studied a dynamic version of the partitioning problem where automobiles were 19 

selected and assigned to auto-carriers, considering various loading restrictions. In this study, it was assumed 20 

that the dealers served by an auto-carrier were located in a cluster, which made routing trivial. Also, the 21 

actual route length was not part of the objective function. So, routing decisions were not optimized. Loading 22 

was not optimized either because it was assumed that precise loading plans were up to individual auto-23 

carrier operators after automobiles were assigned to an auto-carrier. 24 

Juárez Pérez et al. (2019) developed a two-phase heuristic for the auto-carrier transportation problem. First, 25 

they used an insertion heuristic to generate an auto-carrier route; then they checked whether it was feasible 26 

for all the assigned automobiles to be loaded to the auto-carrier without violating the automobile height 27 

constraint or the LIFO policy. 28 

Wang and Chen (2020) considered a similar problem to the one studied in Wang et al. (2018), but 29 

significantly simplified routing decisions by approximating the actual transportation cost when the involved 30 

dealers were located within a small radius of the auto-carrier depot, as the authors believed that the precise 31 

optimization of routing was not worthwhile. As in Wang et al. (2018), Wang and Chen (2020) considered 32 

an urgency level of each automobile, a full load requirement, and a downward loading compatibility 33 

constraint. They also developed a column generation based heuristic to solve their problem. 34 

6.2. Optimization objective and cost modeling  35 

Among the several optimization objectives considered in the literature, two most common choices were the 36 

maximization of total profit (revenue minus cost) and minimization of total cost. Table 3 presents a 37 

comparison of all those studies reviewed in Section 6.1 by the cost type being considered. As the choice of 38 

optimization objective is often related to the auto-shipping practice in a region or country, the applicable 39 

country is also listed in Table 3. Routing cost is the travel cost/time related to a few factors, such as the 40 

actual travel distance of auto-carriers, the number of dealership visits, and the number of auto-carriers used. 41 

If the precise routing is not considered, the routing cost may be approximated (Wang and Chen 2020) or 42 

even considered fixed (Liu et al. 2016). Loading cost is usually the number of reload operations. Revenues 43 

represent incomes or rewards for selecting and shipping a subset of automobiles when not all automobiles 44 

can be shipped by available auto-carrier capacity. For instance, some priority measure defined for each 45 
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automobile (“criticality index” in Tadei et al. (2002) and “urgency level” in Wang et al. (2018)) is multiplied 1 

by a coefficient to represent the reward or income for shipping this automobile. It can be seen from Table 2 

3 that routing is considered in almost all the studies, in an exact or approximate manner. While all studies 3 

reviewed in Section 6 involved the loading aspect, very few of them have considered loading cost explicitly. 4 

In those studies, loading feasibility was checked in some simple or sophisticated way, but the quality of 5 

loading decisions (if considered at all) was not quantified. 6 

An illustrative example can be used to demonstrate that checking the loading feasibility only without 7 

measuring the quality of loading plans may yield inferior solutions. Suppose there are two candidate auto-8 

carrier routes associated with the same set of automobiles to be delivered, whose routing costs are 10 and 9 

8, respectively. While for both routes, the loading constraints are satisfied, the minimum numbers of reload 10 

operations for the two routes are 1 and 6, respectively. Suppose the cost of each reloading operation is 11 

equivalent to one unit of routing cost. Clearly, in this example, without considering the routing impact on 12 

reloading, the second route would be viewed as “optimal”; however, after considering the number of reloads, 13 

the first route should be more desirable.  14 

Unlike most other studies which did not involve the payments to individual auto-carriers, Bonassa et al. 15 

(2019) carefully analyzed the cost structure of shipping an automobile from the customers’ perspective 16 

based on the practice in Brazil. The cost of delivering a car was based on the distance between a depot and 17 

its destination, not the actual route length. Their optimization problem was defined from the perspective of 18 

a broker (a third-party logistics company), which outsourced shipments to independent truckers. The 19 

objective was thus to minimize the total shipping payments made from a broker to truckers. 20 

Table 3: Comparison by cost types considered 21 

Study Routing 

cost 

Loading 

cost 

Revenues Country 

Tadei et al. (2002) Yes No Yes NA 

Miller (2003) Yes Yes No NA 

Dell’Amico et al. (2015) Yes No No Italy 

Cordeau et al. (2015) Yes No No Italy 

Hu et al. (2015) Yes No No China 

Liu et al. (2016) Yes No Yes China 

Venkatachalam and Sundar 

(2016) 

Yes Yes No NA 

Li and Zhang (2016) Yes No No NA 

Wang et al. (2018) Yes No Yes China 

Wensing (2018) Yes No Yes Germany 

Billing et al. (2018) Yes No No Germany 

Bonassa et al. (2019) Yes No No Brazil 

Juárez Pérez et al. (2019) Yes No No Mexico 

Wang and Chen (2020) Yes No Yes China 

 22 
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6.3. Constraints  1 

Many constraints on loading, reloading, and routing were considered in the literature, mainly depending on 2 

how the physical configuration of an auto-carrier was modelled. Tadei et al. (2002) treated an auto-carrier 3 

as a single loading plane with a fixed length. Thus, a single capacity constraint was used to model all the 4 

loading complications. Dell’Amico et al. (2015) extended Tadei et al. (2002) by considering multiple 5 

loading platforms instead of only one, while the concept of equivalent length was kept. Dell’Amico et al. 6 

(2015) argued that modern European auto-carriers were very flexible and could not be modelled using slots 7 

(see Agbegha et al. (1998) for the U.S. auto-carrier configuration). Similar to Agbegha et al. (1998) and 8 

based on the practice in China, Wang et al. (2018) modelled an auto-carrier as a set of a fixed number of 9 

slots. Such slots had different dimensions and could hold automobiles of different sizes. Wang et al. (2018) 10 

also considered the so-called downward compatibility, which prevented a small slot from holding a large 11 

automobile while allowing a large slot to hold automobiles of any size. Unlike the above studies, Hu et al. 12 

(2015) and Liu et al. (2016) considered a three-dimensional capacity of an auto-carrier so that loading was 13 

essentially a three-dimensional bin packing problem. Liu et al. (2016) further considered the possibility of 14 

lifting the front of an automobile to form an angle with the loading platform in order to reduce the length 15 

requirement (which would allow more automobiles to be loaded within the fixed platform length). 16 

Understandably, this placement of automobiles at an angle reduced the length requirement but would 17 

require more vertical space. Although the choice of auto-carrier capacity modeling approach was based on 18 

the local context, it is noted that certain approaches prevented the consideration of important operations in 19 

loading. For instance, reloading cannot be further considered in the physical models assumed by Tadei et 20 

al. (2002), Hu et al. (2015), and Liu et al. (2016). 21 

Table 4 shows a comparison of the relevant studies by the constraints considered. Most studies have 22 

considered the detailed dimensions or types/classes of automobiles, and some of them further considered 23 

the automobile weight. The LIFO loading requirement (Dell’Amico et al. 2015) was critical because it 24 

directly related auto-carrier routes to loading plans. Dell’Amico et al. (2015) imposed the LIFO loading to 25 

avoid complex and expensive reloading operations; however, this strict requirement unnecessarily 26 

increased the auto-carrier travel distance, or the number of auto-carriers needed. The impact of this LIFO 27 

loading restriction can be seen in the following example. There are two possible auto-carrier routes, namely 28 

R1: [A+, B+, B-, A-] and R2: [A+, B+, A-, B-], where “+” means pickup and “-” means delivery. In terms 29 

of routing, the second route R2 has a significantly lower cost than R1. However, if the LIFO loading 30 

restriction is considered, R2 is no longer feasible, leaving R1 as the only choice. Clearly, if the LIFO loading 31 

restriction is lifted in some cases, a significantly better solution may be found. Therefore, Venkatachalam 32 

and Sundar (2016) did not adopt this strict LIFO loading requirement and imposed a limit on the number 33 

of reloads instead, which represented a better compromise between two interrelated decisions of loading 34 

and routing.  35 

Although split deliveries (a delivery is split among multiple vehicle visits to a customer, Dror and Trudeau 36 

1989) may not be preferred by customers due to the inconvenience, Dell’Amico et al. (2015) explored the 37 

benefits of allowing split deliveries by conducting a sensitivity analysis of the penalty for split deliveries. 38 

They found that as the penalty for split delivery increased, the number of dealership visits significantly 39 

dropped, while both the number of required auto-carriers and auto-carrier kilometers increased. Therefore, 40 

a good balance between the dealers’ preferences and the carriers’ costs should be carefully selected.  41 

Time window constraints were rarely considered in the existing studies. In most cases, some simple priority 42 

measures or urgency levels were considered, such as in Tadei et al. (2002). As all the studies were for the 43 

delivery problem of finished vehicles, the starting point of all auto-carriers was the same, which was called 44 

depot in Dell’Amico et al. (2015), vehicle distribution center in Hu et al. (2015), or new car storage yard in 45 

Juárez Pérez et al. (2019). It was also assumed that all finished vehicles were loaded all together at the same 46 

location. Miller (2003) pointed out that routing would be much more complex when vehicles were picked 47 
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up at multiple locations or simultaneous pickups and deliveries could occur at one location, such as in the 1 

case of picking up and delivering used vehicles for individual customers. Wang et al. (2018) made a 2 

simplifying assumption on the order of pickup and delivery by restricting all pickups to occur before any 3 

delivery.  4 

While Table 4 shows major constraints, not all constraints that were considered in the literature are included 5 

in this table. Also, a detailed review shows that researchers may have modelled some constraints quite 6 

differently. For instance, a full-load constraint was enforced in Wang et al. (2018) and Wang and Chen 7 

(2020), while in Bonassa et al. (2019), the number of automobiles per auto-carrier ranged from 8 to 11. For 8 

another example, in most studies the supply of auto-carriers was assumed to be limited. Nonetheless, Billing 9 

(2018) and Bonassa et al. (2019) assumed an unlimited supply of auto-carriers, which implied that all orders 10 

available on one day could be shipped on the same day. Some additional side constraints were also 11 

considered, such as carrier-city compatibility constraint (Wang et al. 2018) that required an auto-carrier to 12 

visit a limited set of dealers, and the infrastructure-carrier compatibility constraint (Wensing 2018) that 13 

prevented a fully loaded auto-carrier from traversing a specific narrow road segment or bridge.  14 

Note that “NA” in Table 4 means not applicable. For instance, Tadei et al. (2002) did not study precise 15 

routing or loading optimization, and hence whether LIFO was required or not and whether there were time 16 

windows become irrelevant in their problem. 17 

  18 
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Table 4: Comparison by constraints considered 

Study Auto-carrier Capacity Automobile 

dimension 

Weight 

limit 

LIFO 

required 

Reload  Split 

delivery  

Time 

windows 

Tadei et al. (2002) One level, equivalent length Yes No NA NA NA NA 

Miller (2003) Two levels, ten slots No No NA Yes NA No 

Dell’A. et al. (2014) Multi-platform, equivalent length Yes Yes Yes No Allowed No 

Cordeau et al. (2015) Multiple levels, equivalent length Yes Yes Yes No Allowed Yes 

Hu et al. (2015) Three-dimensional space Yes Yes NA NA Prohibited Yes 

Liu et al. (2016) Three-dimensional space Yes Yes NA NA Allowed NA 

Venkatachalam and 

Sundar (2016) 

Multiple heterogeneous slots Yes Yes No Yes Allowed No 

Li and Zhang (2016) Two levels, equivalent length Yes No NA NA NA No 

Wang et al. (2018) Multiple heterogeneous slots Yes No NA NA NA No 

Wensing (2018) As in Hu et al. (2015) Yes No NA NA NA No 

Billing et al. (2018) As in Hu et al. (2015) Yes No NA NA Prohibited No 

Bonassa et al. (2019) Equivalent length Yes No NA NA NA NA 

Juárez Pérez et al. (2019) Multiple levels Yes No Yes No NA Yes 

Wang and Chen (2020) Multiple heterogeneous slots Yes No NA NA NA No 
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6.4. Solution algorithms 

The auto-carrier routing problem with loading considerations is clearly NP-hard, as Tadei et al. (2002) 

showed that the simplified version of the problem they studied was already strongly NP-hard. Therefore, 

almost all existing studies developed heuristics to solve their problems. The heuristic algorithms used in 

the literature can be classified into the following types: sequential heuristics, iterated heuristics, math 

programming (MP) based heuristics, and other heuristics. 

Sequential heuristics can be used when multiple types of decisions are optimized sequentially in separate 

steps. They include the three-step heuristic in Tadei et al. (2002), the three-phase heuristic in Billing et al. 

(2018), and the two-phase heuristics in Venkatachalam and Sundar (2016) and Juárez Pérez et al. (2019). 

In the first step, Tadei et al. (2002) simplified the auto-carrier capacity constraints and developed an integer 

program to assign auto-carriers to a subregion of the whole geographic area. For each auto-carrier in a 

subregion, initial feasible solutions were constructed in Step 2 and improved in Step 3. Similarly, in Phase 

1 of their algorithm, Billing et al. (2018) selected orders for delivery on a day based on the relative distance 

between dealers. In Phase 2, they used the routing heuristic of Clark and Wright (1964) to construct vehicle 

routes; in Phase 3, vehicle routes were improved through some ad hoc strategies. Although such sequential 

heuristics were relatively easy to implement and may work well in some cases, a primary drawback is that 

possible effect of decisions made in a later stage on earlier decisions was ignored. For instance, without 

fully exploring the routing possibilities, it is suboptimal to determine whether an auto-carrier should be 

assigned to a specific region or whether an automobile should be selected for delivery. Venkatachalam and 

Sundar (2016) used a heuristic to solve the routing subproblem of the overall problem first. Given an auto-

carrier route, the loading problem was then solved by a column generation based branch-and-bound 

algorithm. Juárez Pérez et al. (2019) used an insertion heuristic to generate routes first, followed by another 

heuristic to generate feasible loading plans for the given routes.  

Unlike sequential heuristics, iterated heuristics repeatedly evaluate the quality of earlier decisions so as to 

improve the current decisions. Miller (2003) proposed a construction heuristic to generate an initial solution 

and improvement heuristics such as k-opt or 2-opt to improve the initial solution. Dell’Amico et al. (2015) 

started with some initial solutions generated by a greedy heuristic. Then, in each iteration, they perturbed 

the current solution to obtain an updated solution, which triggered the next iteration. The loop was iterated 

until a time limit was reached. Under this iterated solution framework, Dell’Amico et al. (2015) designed 

their own greedy heuristic, perturbation method, and local search operators. For instance, they considered 

the following local search operators: intra-route move, one-to-one dealer swap, auto-carrier interchange, 

and route addition, among others, to obtain a better auto-carrier route. To ensure the loading feasibility of 

an auto-carrier route, a procedure for checking loading feasibility was invoked throughout this iterated 

heuristic. Cordeau et al. (2015) generalized the iterated heuristic of Dell’Amico et al. (2015) to a more 

general problem. Wensing (2018) proposed two heuristics: a greedy construction type of heuristic based on 

the manual planning technique, and an iterated heuristic consisting of construction, local search, 

perturbation and recombination procedures. 

While most papers formulated their problems mathematically as MIP or IP formulations, only a few of 

them actually designed algorithms based on these formulations. A column generation based heuristic was 

developed in Wang et al. (2018) based on a set packing type of formulation for their problem. In this 

heuristic, they used a two-step heuristic to generate initial auto-carrier routes for each auto-carrier as an 

initial set of columns, and solved the problem heuristically by decomposing the formulation into a master 

problem and a subproblem. The LP relaxation of the master problem was solved to generate dual variable 

values, which were then used in the subproblem. The subproblem was solved to generate new auto-carrier 

routes, which were added to the master problem. A similar column generation based heuristic was also used 

in a later study Wang and Chen (2020). Liu et al. (2016) formulated a loading problem as an integer program 

and designed a branch-and-bound algorithm with a greedy search based on oscillation analysis to solve it. 
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Bonassa et al. (2019) formulated their problem as an integer program and solved it directly by a commercial 

solver.   

The heuristics used in a couple of other papers do not seem to fall within any type of heuristics reviewed 

above. Hu et al. (2015) developed an evolutionary algorithm. A sequence of dealers represented an auto-

carrier route, as the auto-carrier began and ended a route at the same depot. This sequence was also coded 

as a chromosome in the evolutionary algorithm. Selection, crossover and mutation operators were also used 

to generate better routes. Li and Zhang (2016) combined simple heuristics with integer programming. They 

first used Dijkstra’s algorithm to calculate the shortest paths from the distribution center to all customers. 

Then, according to the demand of the customers on each shortest path, they used an integer linear 

programming model to calculate the number of cars unloaded at each point of the shortest path. Finally, a 

heuristic was used to figure out the loading plan and routing strategy of each transporter traveling along the 

shortest path. 

Table 5 presents a comparison of those studies by formulation and solution method. Although in some 

studies, dynamic or stochastic information was involved, most studies deal with static and deterministic 

problems. While the underlying problems can all be formulated as IP or MIP formulations, few studies 

utilized such formulations to develop heuristics. It is known that math programming based heuristics 

generally have a more robust performance than rule or local search based heuristics. As Agbegha et al. 

(1998) pointed out, since automobile transportation was a major industry, even one percent of cost savings 

could represent millions of dollars. Therefore, there is a clear need to develop better optimization methods, 

especially IP / MIP based heuristics, to yield more cost savings.  

Table 5: Comparison by formulation and solution method 

Study Formulation Solution Method 

Tadei et al. (2002) Mixed integer 

program (MIP) 

Sequential heuristics 

Miller (2003) NA Iterated heuristics 

Dell’Amico et al. (2015) Integer program (IP) Iterated heuristics 

Cordeau et al. (2015) NA Iterated heuristics 

Hu et al. (2015) MIP Other heuristics 

Liu et al. (2016) IP MP-based heuristics 

Venkatachalam and Sundar 

(2016) 

MIP Sequential heuristics 

Li and Zhang (2016) IP Other heuristics 

Wang et al. (2018) IP MP-based heuristics 

Wensing (2018) NA Iterated heuristics 

Billing et al. (2018) MIP Sequential heuristics 

Bonassa et al. (2019) MIP MIP solved directly by a commercial 

solver 

Juárez Pérez et al. (2019) IP Sequential heuristics 

Wang and Chen (2020) IP MP-based heuristics 
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6.5. Test Instances 

Randomly generated test instances as well as real-world instances were used to test the solution methods 

reviewed in Section 6.4. Table 6 compares the existing studies by the test instances used. They are divided 

into three groups by the overall size of test instances (small, medium, and large), in terms of the number of 

auto-carriers available, the number of automobiles to be shipped, and the number of dealers involved. Very 

few of those test instances were made publicly available with the exception of the ones used by Dell’Amico 

et al. (2015). Not all studies have described clearly how those test instances were generated, with Billing et 

al. (2018) as one of the exceptions. We thus review in detail the instances used in Dell’Amico et al. (2015) 

and Billing et al. (2018). 

Dell’Amico et al. (2015) considered in total 23 test instances, one for each working day. For all instances, 

two types of auto-carriers with various carrying capacities were used. The first type of auto-carrier had four 

loading platforms, while the second type had two platforms. The platform dimension, payload and other 

relevant parameters were also provided for both types of auto-carriers. There were 723 automobile models, 

which were consolidated into 14 loading classes for the first type of auto-carrier and 8 loading classes for 

the second type of auto-carrier. Each order had detailed information about the vehicle to be shipped and its 

destination dealer. In each instance, the shortest distance between each pair of locations (auto-carrier depot 

or dealer location) derived from some GIS software was also provided. The test instances can be found at 

http://www.or.unimore.it/site/home/online-resources/auto-carrier-transportation-problem/instances.html 

Billing et al. (2018) considered all the cities with a population larger than 30,000 in a German state called 

North Rhine-Westphalia. Each city was assumed to have at least one auto dealer, while for cities with a 

much larger population, there were more dealers proportionally. The travel distance between any pair of 

locations was a linear function of the geographical distance. The probability for each dealer to make an 

order was given and on average 50 dealers made at least one order. The order size (number of automobiles) 

was uniformly distributed on the range 1 to 3. The automobile type was uniformly sampled from small, 

medium and large. The delivery deadline was also uniformly sampled from 0, 1, 2, and 3 days into the 

future.  As Billing et al. (2018) solved a multi-period planning problem, the length of the planning horizon 

was 30 days.  

Table 6: Comparison of test instances 

 

Size 

Study Instance type # of 

instances 

# of auto-

carriers 

# of 

automobiles 

# of dealers 

S
m

al
l 

Miller (2003) Synthetic 12 3 30 15-30 

Li and Zhang 

(2016) 

Synthetic 1 10 ~100 9 

Liu et al. (2016) Real-world 18 1-18 3-20 - 

Wensing (2018) Real-world 1 3 25 11 

M
ed

iu
m

 

Venkatachalam 

and Sundar (2016) 

Synthetic 72 15-100 100-600 5-25 

Wang et al. (2018) Synthetic 27 5-15 100-250 5-50 

Real-world 7 1-15 68-241 28-49 

Billing et al. 

(2018) 

Synthetic 20 - - 159 



22 

 

Bonassa et al. 

(2019) 

Synthetic 30 unlimited 8-23 - 

Real-world 4 - 535-863 7-78 

Wang and Chen 

(2020) 

Synthetic 24 5-40 100-500 10-80 

L
ar

g
e 

Tadei et al. (2002) Synthetic 12 100-400 2,000-4,000 400-800 

Real-world 3 146-160 1,610-3,569 553-762 

Dell’Amico et al. 

(2015) 

Real-world 23 30-117 272-1,139 96-251 

Cordeau et al. 

(2015) 

Same test instances as in Dell’Amico et al. (2015) 

Hu et al. (2015) Synthetic 12 - - 50-420 

Juárez Pérez et al. 

(2019) 

Synthetic 10 4-490 20-3,000 44 

Real-world 1 655 3,884 44 

 

A review of the test instances used in the literature yields the following findings: 

First, the test instances were used to test algorithms that were not developed for the same loading and 

routing problem. In fact, as reviewed in Sections 6.2 and 6.3, the problems studied can differ significantly 

in terms of both the objective function and the constraints involved. Thus, it is not recommended to directly 

compare sizes of the test instances (e.g., number of auto-carriers, number of dealer locations) without 

looking into the problem context first. 

Second, unlike in the loading and reloading studies reviewed in Section 5, which all used the entirety or 

part of the test instances from Agbegha et al. (1998), in the studies on the integrated optimization problem, 

almost all the authors only used the instances developed by themselves or their co-authors. For instance, 

Cordeau et al. (2015) adopted the instances of Dell’Amico et al. (2015), while Dell’Amico was a co-author 

of Cordeau et al. (2015); Billing et al. (2018) partially adopted the instances of Wensing (2018), who co-

authored Billing et al. (2018). The only test instances that are made available online are the ones used by 

Dell’Amico et al. (2015). This means that it is difficult to replicate the computational experiments in all 

those studies except Dell’Amico et al. (2015). 

Third, the computational times reported in those studies were not comparable, because (1) different 

computing platforms (e.g., programming language, CPU, RAM) were used, and (2) the underlying 

optimization problem was not the same, as discussed above. 

Although the various heuristics proposed in the existing studies may have worked well for their problems, 

it is not clear whether these algorithms will still be efficient for problems where routing and loading 

decisions are more closely integrated than in the existing problems. For instance, the column generation 

based heuristic takes a few hundred seconds to an hour to solve an instance in Wang et al. (2018), which 

did not involve loading optimization. The iterated local search heuristic of Dell’Amico et al. (2015) had a 

solution time limit of 1,500 seconds, among which 534 seconds on average were spent on checking only 

the loading feasibility for each test instance. As Dell’Amico et al. (2015) only checked the loading 

feasibility rather than generating a precise loading plan, the computation time will likely be much higher 

when loading optimization is further incorporated.  
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7. AUTO SHIPPING BY RAIL AND SEA  
Despite the authors’ extensive literature search, no optimization studies for automobile shipping by air have 

been found in the literature. In this section, we briefly review existing optimization studies related to 

automobile shipping by rail and sea. 

7.1. Motorail load planning  

As reviewed in Section 3.3, motorail transportation is the long-haul transportation of passengers with their 

personal vehicles on the same train. The loading aspect of motorail transportation is to assign many 

automobiles of various types and dimensions to the auto-carrying wagons, decks, and slots, respecting 

weight, height, width, and other technical constraints. As the train to be loaded has a fixed origin and 

destination, all automobiles to be loaded to a train must also have the same origin and destination, which 

means all automobiles are loaded (and unloaded) simultaneously, eliminating any reloading complexities 

during the train route.  

Lutter and Werners (2015) developed the first loading optimization model for motorail transportation. In 

their problem, each auto-carrying wagon has two decks, on each of which there are a fixed number of 

positions/slots. Lutter and Werners (2015) proposed a 4-index integer programming formulation with the 

objective of maximizing the total number of loaded automobiles. With this loading optimization model, 

they further developed a decision support system to help determine whether an arriving automobile order 

should be accepted. Lutter (2016) later extended Lutter and Werners (2015) by proposing two tighter 

reformulations of the original 4-index formulation. The first 3-index reformulation was derived by 

converting the height constraint in Lutter and Werners (2015) into a knapsack-type constraint for each 

loading deck, which was shown to yield a stronger linear programming formulation. To overcome the 

symmetry in the 3-index reformulation, Lutter (2016) proposed another extended formulation, which was 

solved by a customized branch and price algorithm. Lutter (2016) demonstrated the performance of the 

proposed various formulations by solving 100 real-world test instances from a company named DB 

Fernverkehr AG in Germany. Computation results indicated that the last formulation solved by the branch 

and price algorithm had the best efficiency: 95% of the test instances could be solved to optimality in 90 

seconds. 

In contrast with the highway-based auto-carrier loading problem, the loading optimization problem for 

motorail transportation could be solved much more efficiently. The primary reason is that in motorail 

loading only assignment decisions are considered, while no reloading complications are involved.  

7.2. Ro-Ro shipping and container shipping  

When automobiles are shipped overseas, they are usually shipped via Ro-Ro vessels. It is also possible that 

some of them are shipped in containers via container ships. 

Øvstebø et al. (2011a) formulated the Ro-Ro ship stowage problem for a given Ro-Ro ship whose sailing 

route was pre-determined. In this ship stowage problem, Øvstebø et al. (2011a) tried to determine what 

automobiles should be selected for transportation and how to assign them to a deck of a Ro-Ro ship and 

further to a lane on a deck, at each port of the sailing route. When vehicles were selected for loading, they 

were rolled on board the Ro-Ro ship; they were rolled off at the destination port. Each lane on the Ro-Ro 

ship could take automobiles in a LIFO fashion. Some penalty costs were incurred if automobiles in the back 

were rolled off before those in the front. Øvstebø et al. (2011a) developed a mixed integer program with 

the objective of maximizing the difference between total revenues and penalties due to the temporal 

rearrangements. A special stability constraint was incorporated to avoid placing too many automobiles on 

one side of a ship. They proposed two solution approaches: solving directly with the solver Xpress and 

using a customized heuristic. Through solving a large set of randomly generated instance, they concluded 

that neither solution approach dominated the other. In other words, the solver Xpress outperformed the 
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proposed heuristic for some instances, not all. Øvstebø et al. (2011b) extended their study Øvstebø et al. 

(2011a) by further considering the routing and scheduling of a Ro-Ro ship. They developed a mixed integer 

program, which was solved by the solver Xpress directly or a tabu search algorithm. Computational results 

indicated that only the tabu search algorithm could solve realistically sized problem instances. 

The stowage problem in Øvstebø et al. (2011a) was analogous to the auto-carrier loading problem studied 

by Agbegha et al. (1998). While there were many other mode-specific differences (such as quite different 

auto-carrying equipment), a clear difference was that in auto-carrier loading, stability was not given as 

much attention as in Ro-Ro ship stowage. In addition, in the routing and scheduling problem studied by 

Øvstebø et al. (2011b), only a single Ro-Ro ship was considered, while in the highway-based auto-carrier 

routing problem, such as those in Dell’Amico et al. (2015) and other papers reviewed in Section 6, multiple 

auto-carriers were considered.  

Kang et al. (2012) developed an integer program to determine car allocations to each vessel and the voyage 

route with the objective of minimizing the total logistics cost. The integer program was solved by a genetic 

algorithm. Additional studies related to other aspects of Ro-Ro shipping, such as fleet deployment, 

inventory management (Chandra et al. 2016a) and speed optimization (Andersson et al. 2015), were not 

reviewed in detail here. This is because in most such general Ro-Ro shipping studies, very few specific 

considerations with respect to automobiles were included, as Ro-Ro ships are designed to carry any wheeled 

cargo, such as automobiles, trailers, railroad cars, farming equipment, and military equipment.  

In contrast with shipping via Ro-Ro ships, not many studies have studied shipping automobiles in containers. 

Xuan (2014) studied the containerized automobile shipping and indicated all Tesla vehicles were shipped 

using containers. Xuan conducted cost-benefit analyses from automobile manufacturers and container lines 

and identified target markets for the China Shipping Group. Dael (2014) also proposed the stowage of 

automobiles in a container to take advantage of the excess capacity in a container vessel. Through an 

analysis, Dael (2014) tried to convince auto manufacturers that shipping automobiles in containers may be 

more cost-effective than shipping them on a pure car carrier. As a container can hold very few automobiles 

(e.g., no more than 4) and it is impossible to rearrange them until the container is delivered, automobile 

reloading complexities are likely to be avoided. Once automobiles are properly loaded into a container, the 

optimization problem is a general containership routing and scheduling problem, which was reviewed by 

Christiansen et al. (2013). 

As compared with those automobile shipping optimization studies involving rail and water, it is relatively 

clear that highway-based automobile shipping has been studied the most extensively and thoroughly. 

Therefore, highway-based optimization models may be adapted to for the water-based and rail-based 

automobile distribution problems, despite various mode-specific characteristics.  

8. STRATEGIC AND TACTICAL PLANNING STUDIES  
All studies reviewed in Sections 5, 6, and 7 are at the operational level, as all those underlying optimization 

decisions are made every day or every few days. Those decisions at the tactical or strategic level are made 

much less frequently, such as every five years or once in a decade. Examples of such tactical and strategic 

decisions are locating rail terminals in a multimodal automobile distribution network and negotiating a 

contract with a major railway company.  In this section, we review those automobile shipping optimization 

studies at a higher level than operational.  

8.1. Mode selection and network design   
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The design of automobile distribution network is critical because the network structure eventually defines 

how efficient automobile distribution can become in the long run. As pioneers in this area, Miller et al. 

(1996) developed a mixed integer program to help an international automobile manufacturer to design the 

automobile distribution network in North America in the long run. Cars and light trucks that were 

manufactured in the U.S. or imported from about 100 ports of entry should be delivered to approximately 

275 dealer regions throughout the U.S. As there were a few candidate transportation modes, such as truck, 

rail, and containerized intermodal rail, the first decision was to determine the optimal modal mix. As rail 

played an essential role in the intermodal distribution network, the second decision was to optimize the 

locations of rail terminals. The objective of the proposed mixed integer program was to minimize the total 

logistics cost of delivering automobiles. Miller et al. (1996) used this optimization model to compare a few 

different network scenarios by the delivery cost, mode share, and transit time. 

Eskigun et al. (2005) also studied the automobile distribution network design problem considering lead-

time related costs, due to the increasing interest of the automotive industry in reducing lead-time. They 

formulated a nonlinear programming model to minimize the sum of the fixed cost of opening distribution 

centers, transportation cost, and lead-time related cost. After introducing additional binary variables and 

constraints, the nonlinear program was linearized and solved with a Lagrangian heuristic. They generated 

and solved 56 problem instances based on the real-world data. Numerical analyses indicated that the 

proposed heuristic solved the formulation very well: achieving a less than 1 percent optimality gap in about 

10 hours on average. 

Along this research line, Jin et al. (2010) optimized the mode choice (truck or rail) for each plant-dealer 

pair for a U.S. manufacturer based on delivery cost. Trucking companies charged a fixed cost per 

automobile and a variable cost based on mileage, while a railcar’s cost followed a piecewise linear function 

of the shipping volume, reflecting the quantity discounts or scale economies. An integer program was 

developed for this mode choice problem, which was solved directly by a commercial solver. Results from 

solving randomly generated test instances showed that the integer program could be solved in a few seconds. 

Jin et al. (2010) also simulated the multi-round contract negotiation process between the auto manufacturer 

and a rail company. 

Hei et al. (2014) considered the optimal distribution of automobiles from one distribution center to other 

locations on a multimodal freight network. Three modes were considered, namely direct trucking, road-rail, 

and road-water. While trucking was the most flexible (i.e., can be dispatched almost at any time), both 

trains and ships had weekly schedules. Hei et al. (2014) built an integer program to determine what mode 

and route should be selected for those vehicles heading to each destination. In the numerical studies, 

vehicles were to be distributed from Shanghai to other 17 locations in China. The multimodal network 

consisted of 17 trucking routes, 18 road-rail intermodal routes, and 8 road-water routes. In the numerical 

studies, a commercial solver was used to directly solve the integer program, as the solution time was within 

1 minute. Meng et al. (2015) expanded the sensitivity analyses of train and ship capacities in Hei et al. 

(2014) by considering the uncertain automobile shipment volume. As the auto manufacturer must purchase 

train and ship capacities in advance for a fixed time period (e.g., 1 year), Meng et al. (2015) developed an 

optimization model to determine the optimal amount of capacity to procure from rail and shipping 

companies. The problem was complicated by uncertain delivery demand, which fluctuated over time. 

Therefore, a two-stage stochastic program was formulated to minimize the expected delivery cost, which 

was solved by a sample average approximation method. They also presented a case study based on the 

network used by the Shanghai Automobile Industry Corporation in China. 

Wang et al. (2016) used a fuzzy Delphi method to evaluate the multimodal auto transportation network 

design to ship used cars from South Korea to Centra Asia, based on the following five factors: cost, 

reliability, transportation capability, total time, and security. Chandra et al. (2020) studied the viability of 

modal shift from in-land transportation to short-sea shipping at a strategic level for auto shipping in India. 
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They developed a mixed integer program to select the route alternative, ship type and share of shipment 

volumes by coastal shipping. One origin (Chennai) and a set of destinations in India were considered in the 

case study. Depending on the availability of coastal shipping and cost parameters, they considered 22 

configurations. The formulation was solved directly by a commercial solver with computation time ranging 

from a few minutes to more than two hours. In a follow-up study (Dong et al. 2020), the tradeoff between 

economic costs and environmental impacts of the distribution network design was furthered considered. 

In summary, quite a few studies have addressed the design of a multimodal automobile distribution network, 

although the optimization decisions considered in such studies differed. In those studies, a centralized 

decision-making framework was adopted for the auto manufacturer. However, in reality, trucking 

companies, rail companies and other carriers were also involved. In those existing studies, behavioral 

responses from other parties involved were not properly modelled. Therefore, a game-theoretic approach 

may be considered to fully characterized the behavioral interactions between the manufacturer and other 

parties in the design of automobile distribution network. 

8.2. Empty autorack management  

Sherali and his collaborators (Sherali and Tuncbilek 1997, Sherali and Suharko 1998, Sherali and Lunday 

2011) have studied various problems in the fleet management of autorack (railcars used for shipping 

automobiles) for about three decades. After automobiles were delivered, the empty autoracks should be 

distributed to load other automobiles. Under a naive approach, empty autoracks were returned to their 

points-of-origin, known as reverse routing. A more efficient approach was based on the pooling of empty 

autoracks as a common resource among multiple shippers and carriers. Sherali and Tuncbilek (1997) 

studied how many autoracks an automobile manufacturer should acquire in any given year, i.e., fleet sizing 

problem. Sherali and Suharko (1998) focused on a tactical planning problem of repositioning empty 

autoracks to where they needed to be reloaded. Sherali and Lunday (2011) focused on the potential equity 

issues in the pooling agreement and proposed a few alternative schemes to apportion autoracks to 

automobile manufacturers. Although the empty autorack repositioning problems studied by Sherali were 

motivated by the rail-based auto shipping practice, the general class of empty fleet (not necessarily autorack 

fleet) management problems has been extensively studied in the literature. Interested readers are directed 

to Dejax and Crainic (1987), Spieckermann and Voß (1995), and Gorman (2015), among others. 

9. RESEARCH GAPS AND PROSPECTIVE OPPORTUNITIES 
In this section, we identify important literature gaps and propose strategies to address them. We also 

evaluate the impacts of disruptions and emerging technologies. 

9.1. Hybrid service model 

Three service models are summarized in Section 3.2. The review findings indicate that all the existing 

automobile optimization studies assume the first two service models, because they focus on the shipping of 

finished vehicles. Service model 3 is a hybrid one, as shippers may be individuals rather than auto 

manufacturers; the broker may have its own fleet that can be used to deliver orders, but may also outsource 

some orders to other independent carriers. The consideration of service model 3 has a few important 

implications for the automobile distribution optimization, which are discussed as follows. 

9.1.1 Pickup and drop-off precedence 

In the case of finished vehicle distribution, all automobiles for shipping are often loaded simultaneously at 

a common location and delivered at their respective dealer locations. Route design usually involves delivery 

destinations only and is essentially about sequencing of dealer locations. Conversely, individual shippers 

generally have not only different drop-off locations, but also different pickup locations, which means route 

design will need to consider the sequencing of both pickup and drop-off locations. It is quite possible that 
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not all pickups should occur prior to any deliveries, unlike what is assumed in most existing studies 

reviewed in Section 6. Clearly, when multiple individual shippers are served by an auto-carrier, the routing 

complexity is much higher than that for an auto manufacturer that has all vehicles ready for pickup at a 

single location, even though the number of automobiles assigned to an auto-carrier remains the same.   

9.1.2 Auto-carrier capacity 

Because in service models 1 and 2, there is only one pickup location where the auto-carrier has the highest 

load, which means if the auto-carrier capacity constraint is not violated at the beginning of a route, the 

capacity constraint is met at any other locations. Service model 3 is more general, because not all pickups 

occur at the same location, and some locations may even allow for simultaneous pickups and drop-offs. In 

other words, the cumulative load in an auto-carrier route (measured by the total number of automobiles, or 

the sum of their equivalent lengths, depending on how an auto-carrier is modelled) may exceed the auto-

carrier capacity (measured by either the number of slots or an equivalent length limit). Thus, from a capacity 

constraint point of view, automobile shipping optimization in the context of service model 3 becomes much 

more complex.  

9.1.3 Pricing of auto shipments in customer quotes 

In finished vehicle distribution, the automobile manufacturer usually has a long-term contract with a carrier, 

which is renewed annually or every five years. A manufacturer usually negotiates with rail carriers every 

five years (Jin et al. 2010), because the competition in the rail sector is relatively low and locations of rail 

assets (e.g., tracks, intermodal terminals) are fixed (Katcoff 2011). The contract with a highway carrier is 

mostly renewed annually. Unlike corporate shippers, individual shippers do not sign any long-term contract 

with a broker or carrier; instead, they seek a customized and one-time quote, usually from a broker, as 

shown in Figure 6. A shipper may try to obtain quotes from multiple brokers. When serving individual 

shippers, a broker needs to optimize the quote for an individual shipper, by taking into account what other 

automobile shipping orders it receives, and the available capacity of the auto-carrier fleet owned by itself 

or its contractors. Clearly, the optimization of a quote is interrelated with other operational decisions, such 

as automobile assignment, auto-carrier loading, and routing. We also note that quote optimization is largely 

about pricing, which has a direct impact on whether a shipper will accept a quote or not, and hence directly 

affects a broker’s profitability.  

 

Figure 6: Getting a quote from two anonymous automobile shipping brokers 

9.1.4 Consideration of partially filled auto-carriers 

In service models 1 and 2, all auto-carriers are assumed to be empty at the vehicle depot. Such an empty 

auto-carrier does not have a predetermined destination, because its destination depends on the assigned 

automobile shipments to it. As the distribution is usually one-way, meaning auto dealers do not ship 
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automobiles to auto manufacturers, and hence those auto-carriers are assumed to return to the auto-carrier 

depot empty (Liu et al. 2016). In contrast to other two service models, in service model 3, individual truckers 

(also called owner-operators) may make capacity of their trucks (auto-carriers) partially available to a 

broker, because their trucks are partially filled already (through another source, such as load board or a 

different broker) and must follow a preliminary itinerary (e.g., arrive at a prespecified location by a due 

date). Those owner-operators accept further automobile shipment orders allocated by the broker, on the 

condition that their predetermined schedules are not violated. Therefore, in service model 3, it is necessary 

to consider both those auto-carriers with full capacity ready and no predetermined travel plans and other 

partially filled auto-carriers that must follow a predetermined travel plan. Moreover, in service models 1 

and 2, it might be reasonable to assume auto-carriers return to their depots carrying no automobiles on a 

return trip, while in service model 3, such empty backhaul miles can probably be avoided through optimized 

matching of loads and auto-carriers.  

9.2. Full integration of loading and routing optimization 

9.2.1 Shortcoming of the sequential heuristic  

For ease of discussion, we first present a general mathematical program for the integrated auto-carrier 

loading and routing optimization problem. We use 𝑥 and 𝑦 to represent routing and loading decisions, 

respectively. The formulation is written as follows: 

𝑚𝑎𝑥   𝑓(𝑥) + ℎ(𝑦) (1) 

𝑠. 𝑡.      𝑔(𝑥) ≥ 0   (2) 

𝑝(𝑥, 𝑦) ≥ 0  (3) 

𝑥 ∈ 𝑍𝑚   (4) 

𝑦 ∈ 𝑍𝑛 (5) 

The objective (1) is to minimize the sum of routing cost 𝑓(𝑥) and loading cost 𝑔(𝑥). Constraint (2) is a 

routing constraint. Constraint (3) models the interrelation between routing and loading.  

Although quite a few studies (e.g., Dell’A. et al. 2014) have considered loading and routing aspects of 

automobile shipping and attempted to solve the integrated problem (1-5), none of the existing studies have 

managed to develop an optimization model that produces simultaneously precise routing plans and precise 

loading plans. A majority of existing studies focused on routing optimization, while considering loading 

feasibility only.  In these existing studies, even though the problems were already simplified by not 

considering precise loading plan, the simplified optimization problems were not solved optimally, as 

various heuristics were used that did not provide any solution quality guarantee. 

The idea of the widely adopted sequential heuristic (described in Section 4.1) can be formally stated as 

follows. First, the routing subproblem (6-8) is solved to find the optimal routing plan 𝑥∗.  

𝑚𝑎𝑥 𝑓(𝑥) (6) 

𝑠. 𝑡.      𝑔(𝑥) ≥ 0   (7) 

𝑥 ∈ 𝑍𝑚 (8) 

Then, the loading subproblem (9-11) is solved to obtain the best possible loading plan given the “optimal” 

route 𝑥∗. 

𝑚𝑎𝑥 ℎ(𝑦) (9) 

𝑠. 𝑡.      𝑝(𝑥∗, 𝑦) ≥ 0   (10) 
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𝑦 ∈ 𝑍𝑛 (11) 

The above-mentioned sequential heuristic has a major drawback: it does not consider the interrelations 

between decisions made at different steps (routing and loading, i.e. x and y variables). For example, an 

“optimized” auto-carrier route without consideration of its associated loading implications may incur very 

expensive reloading operations. In the case of transporting very high-end cars, to avoid potential damage 

during reloading, a strict Last In, First Out (LIFO) policy may have to be adopted during loading; however, 

the resulting auto-carrier route may have significant detours, which can result in an excessively high routing 

cost. In a representative study, Venkatachalam and Sundar (2016) run their branch and price algorithm to 

solve the loading problem for each auto-carrier route. As the number of possible auto-carrier routes is very 

large and for each given auto-carrier route there are many possible loading plans, this sequential strategy 

(routing first, loading second) used in Venkatachalam and Sundar (2016) does not work efficiently, which 

may be the reason this sequential strategy was not implemented in their computational experiments. As of 

now, there are no studies that have explored full integration of loading and routing decisions. Therefore, 

research on full integration of loading and routing optimization is needed to fill this critical gap in the 

literature.  

9.2.2 A novel framework for the integrated optimization  

It is nontrivial to solve the fully integrated problem from the perspective of optimization. The full 

integration requires the real-time interaction between routing optimization and loading optimization, and 

can have a significant advantage in solution efficiency. For instance, when routing decisions being 

optimized by some insertion-base heuristic, if the effect of an insertion on loading is considered 

simultaneously, many routes may have been eliminated in the first place due to their enormous loading 

complexities (implying high loading costs). The advantage of the full integration strategy over the routing 

first, loading second strategy can also be illustrated with a simple example shown in Figure 7. 

Figure 7(a) shows three of the many possible routing plans for a given auto-carrier and a predetermined set 

of automobiles, as well as all feasible loading plans corresponding to each of these three routes. The 

underlined numbers in Figure 7 are the routing or loading costs. If a sequential approach is used (routing 

first, loading second), then each route is constructed completely first, followed by constructing all possible 

loading plans for the route. Conversely, if an integrated approach is used (route construction and loading 

plan generation are considered simultaneously), then the mutual impact of route construction and loading 

plan generation is considered simultaneously and timely before a complete route or loading plan is built. In 

the process of building route 3 (before it is completely built), it is found that part of the route is identical to 

some segment of route 2 (which was already built earlier along with all its loading plans), and based on this 

known information, it is calculated that (i) if constructed fully, route 3 would cost at least 7, and (ii) any 

loading plan for route 3 would cost at least 2. Thus, any solution combining route 3 and a feasible loading 

plan would cost at least 9. Therefore, the partially constructed route 3 can be discarded immediately because 

it would never yield a better solution than the solution combination of route 1 and loading plan 1a (which 

has a total cost of 8). 

Efficient methods need to be developed to jointly optimize routing and loading decisions. One plausible 

approach is to improve the existing sequential approaches and make them more intelligent so that they can 

identify suboptimal routes and loading plans and discard them before they are completely constructed. The 

example illustrated in Figure 7(b) is based on such an approach. To further improve the loading optimization 

efficiency, one can also investigate whether data driven approaches (that are dramatically different from 

the existing loading optimization framework based on loading networks) can be applied for evaluating 

possible loading plans for a given route. For example, a machine learning algorithm may be trained on the 

known loading patterns that can be generated from the practice or simulation experiments. The trained 

machine learning model can thus be used to quickly evaluate the loading implications in the process of 
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constructing routes. In other words, the trained learning algorithm can instantaneously predict the loading 

cost η(𝑥) for a given route 𝑥, thus eliminating the need to solve the loading subproblem (9-11) given 

routing decision 𝑥. We then can reformulate the integrated optimization model (1-5) into problem (12-14): 

𝑚𝑎𝑥 𝑓(𝑥) + η(𝑥)  (12) 

𝑠. 𝑡.      𝑔(𝑥) ≥ 0   (13) 

𝑥 ∈ 𝑍𝑚 (14) 

If this learning algorithm can be successfully developed, inferior routes can thus be identified early on and 

hence computational time can be reduced. 
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Figure 7: Advantage of the real-time interaction between routing and loading 

Finally, we believe that math programming based approaches are ideal if we aim for robust, high quality 

solutions. One can investigate whether the column generation framework used by Wang et al. (2018) can 

be extended to solve fully integrated problems. The complexity under this methodology is mainly at the 

subproblem level. For a fully integrated problem, the subproblem will be much more challenging. 

To benchmark the fully integrated optimization algorithms to be developed in the future, additional efforts 

are also needed to develop standard test instances that are not yet available in the existing literature. 

9.3. Realistic routing constraints and other considerations 

9.3.1 Time window constraint 

Commonly encountered constraints in vehicle routing problems, such as time window constraints, have not 

been fully incorporated in the auto-carrier routing studies. Although it is widely known that the automobile 

shipments have their due dates, very few studies have tried to consider the time window requirement 

explicitly. As reviewed earlier, Tadei et al. (2002) considered a criticality index and Wang et al. (2018) 
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considered an urgency level as proxies. To make the relevant models more realistic, an explicit 

consideration of delivery time windows is necessary.  

9.3.2 DOT rules  

Another important practical issue to consider is that drivers of auto-carriers must follow Department of 

Transportation (DOT) rules, which specify working hour rules for the safety of long-haul drivers. To our 

knowledge, none of the existing studies in the automobile shipping optimization literature have 

incorporated DOT rules into their models. Obviously, consideration of DOT rules will make routing 

decisions much more challenging. In the vehicle routing literature, some studies (e.g. Xu et al. 2003, 

Rancourt et al. 2013, Alcaraz et al. 2019) have taken driver working hour rules into routing models. It would 

be interesting to see if some algorithmic ideas in such existing studies could be further incorporated.  

9.3.3 Customized shipping option  

The final set of practical issues that we think deserve research is related to individual automobile shipping 

options. There are two options for individual automobile shipping, namely terminal-to-terminal and door-

to-door. In the case of terminal-to-terminal, the owner of a vehicle (an individual shipper) first drops off 

the vehicle at a terminal (such as a rail terminal or port) and later picks it up from a different terminal close 

to the shipper’s destination. On the contrary, the door-to-door option saves the drop-off and pickup hassles 

for the shipper. The door-to-door option is thus more convenient and less time consuming for shippers. 

From the perspective of auto shipping, terminal-to-terminal shipping enables a carrier to achieve economies 

of scale by grouping and hauling multiple automobiles with the same origin and destination terminals. 

Therefore, terminal-to-terminal shipping is more affordable than door-to-door. For a broker that offers both 

terminal-to-terminal and door-to-door auto delivery services, there are two new routing issues to be 

considered. First, the broker needs to decide whether to treat terminal-to-terminal orders separately from 

door-to-door orders or consider them together by possibly mixing these two different types of orders in a 

shipment. The corresponding routing and loading optimization obviously will be very different. Second, if 

some auto shippers are flexible and accept both delivery options, which are associated with different 

shipping costs, then an additional decision that the broker needs to make is to determine which shipping 

option to deliver the car of each such auto shipper. Understandably, routing decisions are different under 

the two shipping options discussed here. As of now, there is no research that has addressed the issues 

discussed here. 

9.4. Intermodal optimization models 

At the strategic decision-making level, the intermodal automobile shipping has been studied, while there 

are no operational optimization studies that have considered the intermodal automobile shipping. Thus, 

there is a research need in this area. At the operational level, special attention is needed to model the transfer 

operations between different modes of transportation at intermodal terminals. For instance, at a rail-to-truck 

transfer terminal, autorack arrivals should be coordinated with auto-carrier departures to minimize the 

transfer time of automobiles at the terminal for timely delivery. In addition, considering that train arrivals 

may be subject to delays, real-time train holding strategies (Sun and Schonfeld 2016) may be developed to 

minimize the impact of random delays on the transfer coordination at terminals. 

9.5. Stochastic optimization models 

Strategic automobile distribution decisions are very infrequently made, which have a major impact on the 

automobile distribution in the next few decades. Such decisions must be carefully evaluated considering a 

wide range of future scenarios, instead of a single averages-based scenario. In the existing literature, very 

few strategic studies have considered uncertainties in automobile distribution. Clearly, the automobile 

shipping demand could be uncertain; the shipping cost parameters may also fluctuate as technologies (such 

as vehicle automation) evolve over time. Therefore, another promising research direction is to develop 
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stochastic optimization models, which can be solved by approaches such as the sample average 

approximation technique (Kiya and Davoudpour 2012), among others.  

9.6. Impact of natural and man-made disasters 

Natural and man-made disasters can both create significant disruptions to supply chains and logistics 

systems and cause sudden shifts in demand patterns. Automobile distribution is no exception. In particular, 

as indicated by many experts (Ivanov 2020, Choi 2020, Choi 2021), the ongoing COVID-19 public health 

crisis has reshaped the norm of logistics operations. On one hand, the sales of new vehicles dropped in 2020 

because car buyers were more cautious about getting a new car due to the uncertain economic condition. 

On the other hand, the demand for used cars increased because many people who relied on public transit 

for commuting decided to buy preowned cars due to concerns with virus transmission inside public transit 

vehicles (Rosenbaum 2020).  The increased online trading of preowned cars have increased automobile 

shipping demand. Given such new changes, a promising direction for future research is to build a robust 

automobile distribution network that could withstand various changes ranging from changing consumer 

preferences to technologies innovations.  

Another area that we think needs more research is disruption management in automobile distribution. When 

a part of the distribution network experiences a reduced capacity or is closed off completely due to 

emergencies caused by disasters, already dispatched auto-carriers must be re-routed quickly, and new 

routing and loading plans may have to be created for the auto-carriers soon to be dispatched.  Similar actions 

may have to be taken in other situations such as auto-carrier breakdowns and last-minute change of time 

windows due to emergencies. There is a well-developed body of literature on vehicle routing problems with 

disruptions (e.g., Li et al. 2009, Ju et al. 2017, Eglese and Zambirinis 2018). It will be interesting to see if 

some of the existing algorithms from this literature can be extended to tackle automobile shipping problems 

under various disruption scenarios.  

9.7. Opportunities due to emerging technologies 

9.7.1 Impact of vehicle automation 

With various policy and funding support from the US government (USDOT 2020), cities across the US 

have started hosting autonomous vehicle pilots, which implies autonomous vehicles (AVs) are likely to 

become a reality in the foreseeable future. When the self-driving technology is market ready, the current 

automobile distribution scheme will be disrupted. For instance, at present, driving new vehicles directly 

and individually from a warehouse to dealer locations is economically infeasible, considering the high cost 

associated with delivery drivers. Nonetheless, when drivers are no longer needed for operating a vehicle, it 

may become feasible to eliminate the expensive auto-carrier operations by dispatching each AV 

individually to the corresponding dealer location. More importantly, when auto-carriers can also self-drive, 

a new vehicle distribution scheme can bring significant benefits through the routing cost tradeoff between 

auto-carriers and finished automobiles. This distribution requires the collaboration of larger autonomous 

vehicles (i.e., auto-carriers) and smaller autonomous vehicles (i.e., finished automobiles). Although both 

auto-carriers and finished automobiles can operate autonomously, their routing costs clearly differ due to 

their various sizes, weights, and vehicle technologies. Therefore, the collaboration between auto-carriers 

and finished vehicles presents a promising solution, as it strikes a balance between routing auto-carriers 

exclusively and operating finished autonomous automobiles only. New optimization models and algorithms 

will be needed to support this novel distribution scheme. 

9.7.2 Impact of artificial intelligence and machine learning 

Major breakthroughs made in artificial intelligence can be used to advance the automobile distribution 

practice by marrying machine learning (ML) to integer programming (IP). There is a rapidly growing 

interest in using ML to help solve combinatorial optimization problems (Bengio et al. 2021). ML is valuable 
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because it can be used to make accurate predictions on some key values in real time for given inputs when 

sufficient training data are presented. For instance, in solving a vehicle routing problem, a vehicle route can 

be provided as an input to an ML algorithm while an approximate routing cost is a possible output from 

this algorithm. When a ML algorithm is extensively trained under various problem settings, the learning 

algorithm could identify hidden relations between certain problem characteristics and solution patterns. 

Therefore, ML can complement IP by guiding the search in the solution space by, for example, avoiding 

some computationally expensive subproblems, or by deciding whether or not a specific solution approach 

should be used (Kruber et al. 2017). Clearly, there is a great need to build the methodological foundation 

for the integration of ML and optimization algorithms for the automobile distribution problem and develop 

a set of new ML enhanced algorithms for solving this problem.  

9.7.3 Impact of blockchain 

A blockchain is an expanding chain of linked data packages or blocks, each of which has a cryptographic 

hash of the previous block, a random number for validating the hash, a timestamp, and transaction data 

(Nofer et al. 2017). This design ensures the integrity of the entire chain. Representing a new way of 

organizing data, blockchain has attracted an increasing number of supply chain researchers to explore its 

impact on supply chain operations (Dutta 2020). As automobile distribution involves multiple parties, who 

frequently exchange their data, such as orders, contracts, and payments, blockchain has the potential to 

innovate the way automobile distribution related data are collected, stored, and managed. This will also 

have a major implication for real-time decision-making in automobile distribution, such as dynamic pricing 

of automobile shipments, and dynamic routing of auto-carriers. 

10. CONCLUDING REMARKS 
This paper contributes to the literature by presenting the first systematic review of the automobile 

distribution and related optimization problems. This survey covers three major modes of transportation 

employed for shipping automobiles (i.e., highway, railway, and waterway), and involves optimization 

decisions at operational, tactical, and strategic levels. Reflecting the reality of the existing literature, the 

bulk of the survey is on highway-based auto-carrier routing optimization with various levels of auto-carrier 

loading and unloading complexities.  

Even though the automobile shipping optimization literature has rapidly evolved in the last few decades 

and significant advancements have been made in developing efficient and effective optimization algorithms, 

we conclude that several major gaps remain between the practical needs in the industry and solution 

capabilities of the existing methods. First, hybrid service models with additional real-world elements of 

automobile distribution should be considered. Second, the full integration of loading and routing 

optimization is a promising research direction. Third, the impacts of uncertainties, disruptions, and 

emerging technologies on automobile distribution should also be well incorporated into relevant 

optimization studies.  

By critiquing the automobile distribution optimization literature and proposing potential strategies to 

address identified research gaps, we expect this survey to stimulate transportation researchers to develop 

advanced optimization models to keep pace with the rapid development of the automobile distribution 

practice. 
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APPENDIX    
Table 7 provides a quick comparison of 35 selected optimization studies that have been carefully reviewed 

in this paper due to their high relevance. The comparison is by the type of decisions involved (strategic or 

tactical (abbreviated as ST), operational without routing (O1), and operational with routing (O2)), and the 

transportation mode used for automobile distribution (highway (H), rail (R), water (W), intermodal (I)).  

See Sections 5 to 8 for detailed reviews of these studies. 

Table 7: Overview of 35 selected studies that have been reviewed in detail 

Authors & Year Type Mode 

Agbegha et al. (1998) O1 H 

Billing et al. (2018) O2 H 

Bonassa et al. (2019) O2 H 

Chandra et al. (2020) ST I 

Chen (2016a) O1 H 

Chen (2016b) O1 H 

Wang and Chen (2020) O2 H 

Cordeau et al. (2015) O2 H 

Dael (2014) O1 W 

Dell’Amico et al. (2015) O2 H 

Dong et al. (2020) ST I 

Eskigun et al. (2005) ST I 

Hei et al. (2014) ST I 

Hu et al. (2015) O2 H 

Jin et al. (2010) ST I 

Juárez Pérez et al. (2019) O2 H 

Kang et al. (2012) O2 W 

Li and Zhang (2016) O2 H 

Lin (2010) O1 H 

Liu et al. (2016) O2 H 

Lutter (2016) O1 R 

Lutter and Werners (2015) O1 R 

Meng et al. (2015) ST I 

Miller (2003) O2 H 

Miller et al. (1996) ST I 

Øvstebø et al. (2011a) O1 W 
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Øvstebø et al. (2011b) O2 W 

Sherali and Lunday (2011) ST R 

Sherali and Suharko (1998) ST R 

Sherali and Tuncbilek (1997) ST R 

Tadei et al. (2002) O2 H 

Venkatachalam and Sundar (2016) O2 H  

Wang et al. (2016) ST I 

Wang et al. (2018) O2 H 

Wensing (2018) O2 H 

Xuan (2014) O1 W 

 

  

     


