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ABSTRACT: The field of low-frequency vibrational spectroscopy
has grown significantly over the past two decades, based on
advances in both experimental lasers and optics, as well as high-
performance computing and quantum mechanical simulations. The
combination of these techniques has enabled unprecedented
insight into the atomic-level dynamics that occur at terahertz
frequencies, which usually involve large-amplitude motions of
entire molecules. This has ultimately provided the community with
new tools for investigating and engineering crystalline materials
through an understanding of intermolecular forces, as well as
dynamics. In this Perspective, an overview of the field will be
provided and complemented by recent examples where low-
frequency vibrational motions are being used to understand, and
drive, bulk material function.

■ INTRODUCTION

Over the last three decades, the field of low-frequency
(terahertz) vibrational spectroscopy has evolved from humble
beginnings as a boutique method, often performed at large-
scale synchrotron or free-electron laser facilities, to current
state-of-the-art technologies where multiple manufacturers are
producing benchtop instruments costing less than
$100,000.1−3 This has resulted in an explosion of new users,
spanning a range of disciplines, including condensed matter
physics,4,5 chemical engineering,6 biotechnology,7−9 and even
the heritage and archival sciences.10−13 The rapid growth of
the terahertz sciences has resulted in a barrage of new
applications, as the increasing understanding of terahertz
dynamics is unlocking countless new research directions,
particularly for crystalline solids.14,15

Low-frequency vibrational spectroscopy, covering a spectral
range loosely defined from 0.3 to 10 THz or 10 to 333 cm−1,
generally involves the excitation of vibrations that often exhibit
large-amplitude intermolecular motions, in many cases
involving entire molecules. This makes terahertz spectroscopy
an effective probe of the entire potential energy hypersurface,
resulting in the ability to describe phenomena that are
fundamentally linked to weak noncovalent forces. One of the
earliest and continued applications of terahertz spectroscopy is
in the identification of crystalline polymorphs, as the strong
dependence of low-frequency dynamics on the intermolecular
coordinate results in each unique bulk structure exhibiting its
own spectral fingerprint at terahertz frequencies.16−18 Yet,
despite this obvious utility, the dependence of terahertz

dynamics on intermolecular forces is also the technique’s
“Achilles’ Heel”. Unlike more traditional mid-infrared (mid-
IR) spectroscopies, functional group-specific transitions at
terahertz frequencies do not exist, making the analysis of low-
frequency vibrational spectroscopy data near-impossible for
systems containing more than a few atoms without additional
insight. Over the last two decades, advances in high-
performance computing, coupled with the development of
robust periodic density functional theory (DFT) software
packages, have remedied this, with the ability to simulate
terahertz vibrational spectra (along with vibrational motions)
now common in most modern software packages. When
coupled, experimental low-frequency vibrational spectroscopy
and quantum mechanical simulations provide a powerful data
set that can be used to understand the fundamental forces in
crystalline materials, which ultimately dictate the atomic and
bulk properties of materialsall with atomic-level insight.
Over the years, the advantages of obtaining high-quality

terahertz vibrational spectra, along with the simultaneous
interpretation of the data using periodic DFT simulations, have
become increasingly apparent.19 After early studies on the
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identification and characterization of crystalline polymorphs
using low-frequency vibrational spectroscopy, the field grew,
making use of insight gained through the binary experimental
and computational approach to understand the subtle origins
of polymorph stability, in many cases pinpointing the exact
interaction(s) that are responsible for the preference of one
crystalline form over anotherwith some examples involving
differences in energies of less than a kJ mol−1.20,21 While not
inherently a structural technique, the terahertz community
learned to leverage the dependence of terahertz spectroscopy
on weak intermolecular forces to uncover incredibly subtle
differences in the structures and interactions found in crystals
that have similar, and in some cases nearly identical, structures,
where it has been shown that terahertz data can provide details
that are not captured by X-ray diffraction (XRD) methods. In
turn, the coupling of low-frequency vibrational spectroscopy,
XRD, and ab initio simulations has yielded one of the most
powerful combinations of techniques for investigating
crystalline structure and dynamics, and together these
techniques form the basis for new research thrusts into the
field of crystal structure predictionwith the terahertz
analyses often providing critical insight into overcoming
ambiguous diffraction results.
As the field has evolved, the community has learned to

leverage the actual terahertz vibrational motions themselves to
understand material properties from a new perspective. Some
of the first examples in this respect were the discoveries in
which many solid-state phase transformation processes follow a
mechanism that is often correlated to a single low-frequency
vibrational mode.22,23 Even adsorption of gas molecules by
porous organic crystals has been suggested to be dictated by
terahertz dynamics.24,25 Over the years, the intimate link
between solid-state phase transitions and terahertz normal
modes has been validated numerous times, and it is now
becoming common practice not only to characterize phase
transitions using low-frequency vibrational spectroscopy but
also to promote such processes using terahertz radiation
alonedemonstrated for example in polymers,26 disordered
solids,27 and inorganic crystals.28 This area of the terahertz
sciences is highly active and represents some of the most
cutting-edge work currently being performed.29,30

In addition, over the past decade as the community has
learned more about the role that THz dynamics play on
material functions ranging from sub-nanometer to bulk
phenomena, a number of creative applications have resulted.
One recent example was the discovery that electron−phonon
coupling in organic semiconducting crystals is dominated by a
single terahertz phonon mode, which has provided unprece-
dented insight into a process that was previously difficult to
understand and has opened up a new research field into
“phonon engineering” to design more effective semiconducting
materials.31,32 Another example, an entirely new area of
research involving the determination of the mechanical
response of solids using low-frequency vibrational spectrosco-
py, has grown over the past decade due to the dependence of
both elastic constants and terahertz dynamics on intermo-
lecular forces. This has resulted in methods for extracting bulk
elastic information from experimental terahertz spectra, as well
as new computational tools for decomposing the elastic
constants into contributions from individual vibrational normal
modes.33 As the field has grown, insights into the mechanical
response of biomolecular crystals,34 porous frameworks,35 and
organic semiconductors36 have all been uncovered.

Overall, the terahertz sciences have exploded in popularity
over the past few decades, and the efforts of the small, but
active and growing, community have laid the foundation for
exciting new directions that link molecular and bulk structures,
dynamics, and properties. In this Perspective, a historical
account of the major developments in the terahertz and low-
frequency Raman (LFR) fields is discussed, followed by a
description of the origins of terahertz vibrations in solids.
Subsequently, the applications of low-frequency vibrational
spectroscopy to the study of crystalline polymorphs are
reviewed, including more recent applications for studying
solid-state phase transitions, including state-of-the-art applica-
tions in driving phase transitions using terahertz radiation
alone. Finally, the cutting-edge application of low-frequency
spectroscopy to determine the mechanical response of
materials is highlighted, and future directions are addressed.

■ TECHNIQUES

Terahertz Spectroscopy. Historically, there has been
considerable difficulty in generating and detecting terahertz-
frequency electromagnetic radiation, as it is too high in
frequency to detect and generate electronically and too low in
energy to be detected by semiconductors. While previously
referred to as the “terahertz gap”, the field of far-infrared
spectroscopy accessed this region prior to the mid-20th
century, but investigations were limited to techniques that
employed incoherent light sources, including the extension of
Fourier-transform infrared spectroscopy (FTIR) to the
terahertz region, or synchrotron/free-electron laser sources.2,37

Many of these studies used helium-cooled bolometers as
detectors, which, while expensive to operate, are very sensitive
and continue to be used today.38,39

Surprisingly, modern terahertz spectroscopy did not grow
from the FTIR community; rather, it emerged from work in
electrical engineering, originating from the pursuit of detecting
ultrafast electrical signalsbeginning with the utilization of
picosecond gratings in semiconductor devices to control
electronic switches with ultrafast picosecond optical pulses in
1975 by Auston et al.40,41 Although this was not the original
intention, these switches functioned as photoconductive
transmitters and detectors, which led to the eventual
generation and detection of terahertz pulses.42−44 As shown
in Figure 1, these photoconductive antennae (PCA) operate by
applying a bias voltage to a metal dipole antenna patterned on
a photoconductive substrate. At the same time, ultrafast optical
pulses are focused onto the antenna and generate free carriers

Figure 1. Schematic of (a) generation and (b) detection of terahertz
radiation with PCA. Reprinted with permission from ref 49.
Copyright 2013 Wiley.

Crystal Growth & Design pubs.acs.org/crystal Perspective

https://doi.org/10.1021/acs.cgd.1c00850
Cryst. Growth Des. 2022, 22, 939−953

940

https://pubs.acs.org/doi/10.1021/acs.cgd.1c00850?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.1c00850?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.1c00850?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.1c00850?fig=fig1&ref=pdf
pubs.acs.org/crystal?ref=pdf
https://doi.org/10.1021/acs.cgd.1c00850?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


that are accelerated by the bias voltage to produce a transient
photocurrent that ultimately radiates terahertz pulses. A similar
process is employed for detection, except without a bias
voltage applied to the dipole antenna receiver, and instead, the
terahertz pulse induces a transient bias. An optical pulse is then
used to generate photocarriers, where the measured generated
current is proportional to the incident terahertz field strength.
The delay time between the terahertz and optical pulses allows
for direct measurement of the entire terahertz electric field,
which can be used to directly obtain the complex dielectric
function.45−48

In parallel to work on PCA in the late-20th century, the
development of nonlinear crystals for electro-optic generation
and sampling50−53 was first demonstrated for femtosecond
electrical transients,54 then for detection of free-space
transients.55 From this pioneering work, the field of terahertz
sciences flourished, producing new ways to generate and detect
terahertz radiation in traditional academic laboratories.2,56−60

These advances, coupled with improvements in ultrafast laser
technology, fueled the commercialization of affordable bench-
top spectrometers and increased the accessibility of terahertz
spectroscopy.48,60,61

Low-Frequency Raman Spectroscopy. Unlike terahertz
spectroscopy, which is fundamentally an absorption method,
Raman spectroscopy measures the inelastic scattering of light
to probe molecular motions.62,63 Although the majority of the
signal comes from elastic scattering (i.e., Rayleigh scattering),
Raman scattering occurs through inelastic processes where
incident photons scatter with lower or higher energy than the
excitation source (Stokes and anti-Stokes scattering, respec-
tively), with the energy difference between the incident photon
and the scattered photon corresponding to the energy
difference between vibrational states.64,65

In Raman spectroscopy, the wavelengths of Stokes and anti-
Stokes scattering signals (λscattered) are relative to the incident
excitation wavelength (λincident) and generally are reported as a
Raman shift in wavenumbers (Δν ̃ as shown in eq 1, which
ultimately enables direct comparison between experiments
utilizing different excitation sources.

ν
λ λ

Δ ̃ = +
i
k
jjjjj

y
{
zzzzz

1 1

incident scattered (1)

While traditional mid-IR Raman spectroscopy has been a
powerful analytical tool for much of the past decade, LFR
spectroscopy, which corresponds to Raman shifts in the
terahertz region, is much less common. This is primarily due to
the proximity of the terahertz region to the Rayleigh peak,
which requires very tight rejection-wavelength tolerances. For
example, according to eq 1, when using a 532 nm excitation
wavelength, Raman Stokes shifts in the terahertz region (0.3−3
THz) occur between 531.7 and 529.2 nm, while excitation
with 785 nm corresponds to shifts from 784.4 to 778.9 nm.
Notch or edge filters used in traditional Raman instruments

are suitable for accessing the mid-IR spectral region since the
Raman shift is hundreds to thousands of wavenumbers away
from the Rayleigh peak. Although both types of filters
effectively block the Rayleigh peak with rejection bandwidths
on the order of hundreds of wavenumbers, in doing so, they
block most, if not all, of the terahertz region. Revealing useful
signals in the terahertz region has been possible with several
approaches, such as triple grating spectrometers, near
excitation tunable filter accessories, and multiple edge filters,

but the focus here is on the advances in notch filter technology
to properly attenuate the strong Rayleigh peak.66,67 Ultra-
narrow bandwidth notch filters, with rejection bandwidths <10
cm−1 rather than hundreds of wavenumbers like traditional
notch filters, employ volume holographic gratings (VGHs) to
block only the wavelength of the excitation laser while
transmitting Raman signals.68,69

In addition, the efficacy of ultranarrow filters in suppressing
Rayleigh scattering relies on matching the incoming laser
frequency to the particular filter, which influences the rejection
bandwidth. Standard diode lasers often emit multiple wave-
lengths and can increase the background noise of a
measurement through amplified spontaneous emission
(ASE). Wavelength-stable diode lasers coupled with matching
VGH notch and ASE suppression filters have made it possible
to access and collect low-frequency spectra with commercially
available instruments. Accessibility of LFR spectrometers has
grown with these significant improvements in filters and diode
lasers, leading to a number of commercial instruments that are
affordable, while boasting rapid measurement times.61,67,70 It is
important to note that, for Raman measurements, the
detection method is not as complex as in terahertz spectros-
copy, as the detected radiation most often occurs in the visible
region of the electromagnetic spectrum where multiple
detector types are sufficient, and highly sensitive spectrometers
are readily available.67,69

Character of Low-Frequency Modes. All chemical
vibrational phenomena are governed by the same set of
conditions and are commonly described by the solution to the
harmonic oscillator Schrödinger equation,

ν
μ

= + ℏνE
k1

2 (2)

where Eν is the energy of the νth-vibrational level, ℏ is the
reduced Planck’s constant, k is the vibrational force constant,
and μ is the reduced mass of the oscillator. Mid-IR vibrations
involve localized, intramolecular motions, whose force
constants are often dictated by the strengths of the covalent
bonds involved in the motions. This can be inferred from eq 2,
where a vibration involving a covalent bond would have a large
force constant (k) and thus a large transition frequency. While
covalent bond strengths can certainly vary between different
molecules/structures, such variations are rather limited in
magnitude, giving rise to the characteristic functional group
frequencies in the mid-IR.71 On the other hand, low-frequency
vibrations in crystalline materials are dominated by inter-
molecular interactions, which typically have small force
constants as well as large reduced masses and can differ
considerably based on a large number of factors, including the
molecular conformation, the identity and conformations of
surrounding molecules, bulking packing structure, and so on.
Figure 2 illustrates the difference between intramolecular and
intermolecular motions with a comparison of the bending
vibration for a single molecule of carbon disulfide and the
hindered-rotational lattice vibration for crystalline carbon
disulfide.72 From eq 2, these low-frequency vibrations originate
from either small force constants or large reduced masses;
conditions that are satisfied in crystals when weak
intermolecular forces are involved and when many atoms are
in motion.
With the discussion of the origins of the spectral features

found in the mid-IR and terahertz regions, the infrared/Raman
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activity of a vibration must also be addressed. In the mid-IR, a
vibration will be infrared-active if, over the course of the
vibration, there is a change in the dipole moment of a
molecule, and Raman-active if there is a change in polar-
izability.64 These rules extend to the low-frequency vibrations
of crystalline materials, but instead of a change in the dipole
moment or polarizability of a molecule, the change must occur
over the crystalline unit cell.73

Computational Methods. The ability of low-frequency
vibrational spectroscopy to probe weak intermolecular forces
and excite large-amplitude vibrations is at the core of its utility.
Specifically advanced computational models, often based on
DFT simulations, have proven to be the “gold-standard” for
the assignment of experimental low-frequency vibrational data
for crystals containing more than a few atoms.74

Because of the exceptionally weak forces that drive low-
frequency vibrational dynamics, it is crucial that simulation
methods provide highly accurate and numerically robust
descriptions of the electronic structure and associated values
(i.e., interatomic forces), in order to effectively be used for

understanding experimental data.75 Over the last two decades,
major strides in the field of computational vibrational
spectroscopy of solids have been made, moving the field
from originally being unable to study crystalline vibrational
dynamics accurately, to its current state, where simulations on
large and complex solids can be performed with relative ease.
Some pioneering work involved the realization that gas-phase
simulations were not appropriate for reproducing crystalline
terahertz dynamics,16,76−78 the implementation of vibrational
analyses in periodic DFT software packages,79,80 the inclusion
of London dispersion corrections into the DFT frame-
work,81−88 and, in parallel to these algorithmic developments,
the rapid increase in high-performance computing technology.
Additionally, while most mid-IR vibrations can be accurately
modeled within the harmonic approximation (see eq 2),
terahertz vibrations are often highly excitedeven at low
temperaturesand thus anharmonic effects must often be
considered to accurately describe low-frequency vibrations.
Recently, a number of anharmonic vibrational methods have
been implemented in DFT software packages, and they have
been applied in various capacities to help describe the terahertz
dynamics of crystalline and disordered solids.20,89−92

Over the years, numerous DFT software packages have been
released that enable the inclusion of periodic boundary
conditions, with most still being actively developed. The
most significant difference between these packages involves the
underlying model for reproducing the atomic wave functions,
basing them on atomic-centered Gaussian-type orbitals
(CRYSTAL93), plane waves (VASP,94 Quantum ESPRES-
SO,95,96 DMol397), or a combination of the two (CP2K98,99).
While the different codes might be tailored to different
material types, for example, atom-centered basis sets more
readily enable chemical insight and are well-suited for
molecular crystals,100,101 while plane-wave codes are usually
better for inorganic solids and conductors; ultimately, all of
these software packages are capable of accurately simulating
the low-frequency vibrational dynamics of crystalline solids.

Figure 2. Example of intramolecular bending vibration in a single
carbon disulfide molecule (left) and intermolecular hindered-rotation
motion in crystalline carbon disulfide (right).

Figure 3. LFR spectra of polycrystalline phenobarbital and crystal structures of polymorphic Forms I and II. Image adapted with permission from
ref 18. Copyright 2013 American Chemical Society.
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This has resulted in users having more choice than ever in this
regard, which is apparent in the current literature.102−110

■ APPLICATIONS IN CRYSTALLINE SYSTEMS
Characterization of Crystal Structures and Associated

Properties. The relationship between low-frequency vibra-
tions and weak, often intermolecular, forces results in a strong
dependence of terahertz and LFR spectra on the solid-state
structures of materials, making them excellent tools for
investigating polymorphism. While mid-IR transition frequen-
cies can certainly vary between polymorphs, such differences
are constrained to a narrow range due to the relatively constant
covalent bond force constants. On the other hand, various
factors influence intermolecular forces in solid materials,
including molecular structure, immediate neighbors, and in
many cases, long-range contacts that can extend over a few
nanometers. Thus, any change in the bulk geometry of
condensed phase materials, corresponding to a change in the
intermolecular forces, would dramatically affect the low-
frequency vibrational spectra.
While terahertz and Raman spectroscopies do not directly

measure structural information, they are an indirect probe due
to the strong dependence of terahertz and LFR spectra on bulk
structure. In this sense, low-frequency vibrational spectros-
copies are advantageous compared to common structural
methods, such as XRD, because they can help elucidate the
structures of materials whose diffraction data might be
ambiguous.111,112 In this respect, pioneering work of the
early 2000s grew from the study of pharmaceutical
polymorphs. After the unfortunate case of ritonavir, where a
solid-state phase transition to a previously unknown
polymorphic form rendered the drug useless, the pharmaceut-
ical industry has committed itself to understand, predict, and
uncover polymorphs of active pharmaceutical ingredients
(APIs).17,113 Early applications of low-frequency spectroscopy
focused on polymorphs of well-known APIs, including
carbamazepine,114 ranitidine hydrochloride,115 indometha-
cin,116 sulfathiazole,117 caffeine,118 and many others.61,119−121

The utility of LFR for differentiating between polymorphs is
highlighted in Figure 3 for the anticonvulsant phenobarbital. In
crystalline phenobarbital, there are two nearly identical
polymorphic forms with only very subtle differences in the
packing, which result in Form II having a doubled crystallo-
graphic b-axis compared to Form I.18 While the two similar
structures can be effectively differentiated using single-crystal
XRD, they are indiscernible when using powder XRD. A
comparison between the far- and mid-IR behavior of
phenobarbital is shown in Figure 3. The mid-IR Raman shifts
for both phenobarbital polymorphs are nearly identical; yet,
the subtle structural differences are sufficient to alter the
intermolecular potential energy landscape, resulting in two
different LFR spectra.
Chemometric analysis of mixtures with low-frequency

vibrational techniques was demonstrated to be comparably
effective to more traditional techniques, including mid-IR
spectroscopy and diffraction methods. However, the strong
sensitivity of low-frequency vibrational spectra to the bulk
packing arrangement makes the terahertz region more
attractive for chemometric studies of polymorphic systems,
where mid-IR data would likely be ambiguous. Although the
first applications were in mixtures of polymorphic APIs,122,123

and even in determining the amount of crystalline content in
bulk samples,124,125 recent applications have spanned a wide

range of materials including binary mixtures of visually similar
pigments,126 ternary mixtures of polymorphs of piroxicam,127

mixtures of crystalline amino acids,128 and the quantification of
cocrystal species.129

While these examples showcased the ability to discern
between different polymorphs with low-frequency vibrational
spectroscopy, they did not offer a means for interpretation of
the experimental spectra. Supplementing experimental spectra
with quantum mechanical simulations provides a detailed
description of the low-frequency vibrations, including mode-
types, frequencies, and intensities.74 Critically, the combination
of experimental low-frequency vibrational spectroscopy and
accurate DFT simulations provides a powerful data set that
firmly supports the use of such a binary approach to the study
of crystalline materials. The first successful demonstrations of
this powerful combination were carried out on carbamaze-
pine,16 ephedrine,130 octogen,131 and hydrogen-bonded
systems.132−135 Following these early demonstrations, the
utility of this approach was apparent and led to applications
spanning biologically relevant molecules,102,103,110,136 illicit
drugs,137−140 pharmaceuticals,8,141−143 explosives,144−146 and
pigments.147,148

Specifically, because of the dependence of terahertz
vibrations on some of the weakest intermolecular forces
found in crystals, the successful reproduction of low-frequency
vibrational spectra implies that the forcesnot only the weak
forces but, by extension, all forcesare well-modeled, lending
significant confidence to the theoretical model. This can be
illustrated with an OH bond, wherein if the interactions of that
bond are incorrectly modeled, then subsequently all related
forces will likely be flawed, ultimately yielding a poor terahertz
spectral simulation. However, if the predicted low-frequency
vibrational spectra are well reproduced, then not only are the
intermolecular forces well modeled but, also, the covalent
forces as well.
This, in turn, enables a deeper understanding of related

phenomena without the need for further experimentation. For
example, the direct dependence of thermodynamic parameters
on the vibrational energy levels implies that accurate
reproduction of the low-frequency vibrational spectrum results
in an equally accurate determination of thermodynamic values
such as entropy and Gibbs/Helmholtz energies. This facet of
the binary approach has been leveraged to uncover the
stabilities of polymorphs on countless occasions, with a high
degree of success.149−153

An example of this binary approach was used to understand
the thermodynamics surrounding the temperature- and
pressure-induced phase transformation between an ordered
and orientationally disordered phase of camphor.20 In this
work, temperature- and pressure-dependent terahertz spec-
troscopy measurements were used to characterize the phase
transformation, which was readily achieved due to the dramatic
change in the experimental spectra between the two phases.
When coupled to ab initio molecular dynamics and DFT
simulations, the low-frequency vibrational spectroscopy data
were used to help uncover the structure of the orientationally
disordered phase, which was previously unknown, as well as
the mechanism of the transition. The structure for the HT
phase was used as the basis for the thermodynamic evaluation.
Using static harmonic, as well as quasiharmonic (QHA), DFT
simulations, the thermodynamic parameters for the two phases
were determined, and the points at which the phase transition
occur were predicted based on the temperatures and pressures
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at which one phase became more stable than the other. The
results, shown in Figure 4, highlight that there was an excellent
agreement between experiment and theory. This insight was
then used to predict the energy barrier for the transformation
and calculations using the Arrhenius theory produced a
frequency factor that was in excellent agreement with the
experimentally observed vibrational frequency for the mode
that mapped out the phase change mechanism.
Phase Transformation. Understanding the thermody-

namic driving forces can yield useful information involving the
stability of crystalline forms but on its own does not provide
insight into the mechanisms behind solid-state transforma-
tions, including recrystallization of amorphous materials to
crystalline, amorphization of crystalline to amorphous,
solvation or desolvation, and polymorphic transformations,
all of which can be influenced by external forces such as
temperature, pressure, and humidity.154,155 Understanding
these transformations is especially useful in solid pharmaceut-
icals, where these changes can impact the bioavailability and
stability of APIs, as well as in other applications such as
semiconductors where changes in crystal packing can strongly
affect the electrical properties of the materials.156,157

As mentioned in the previous section, low-frequency
vibrational spectroscopy has been used to identify and quantify
polymorphs because of the sensitivity of low-frequency
motions to long-range order and changes in the intermolecular
forces and thus the structure and energy of a system. However,
at its core, low-frequency vibrational methods are dynamic
methods, meaning that they are probing quantized vibrational
motionsmotions that, in the terahertz region, involve large-
amplitude displacements of entire molecules. These properties
directly lend themselves to characterizing the mechanisms of
solid-state phase transformation processes. Investigations of
such dynamical transitions have historically been limited, as
XRD data only provide an averaged (and effectively static)
view of atomic dynamics. Recently, the connections between

low-frequency dynamics and phase transformations have been
established, making low-frequency spectroscopies ideal tools
for characterizing these solid-state changes.20

Early investigations into solid-state transformations mainly
focused on polymorphic changes that could be controlled
externally via temperature. Zeitler et al. explored the kinetics of
the transformation between Forms I and III of carbamazepine
at 433 K utilizing principle component analyses of terahertz
spectra collected at various points throughout the transi-
tion.77,114 The increased accessibility to LFR spectrometers has
enabled both low-frequency techniques to be used in a similar
manner to characterize the temperature-dependent transitions
of the five polymorphs of sulfathiazole.117

More recently, LFR spectroscopy has been effectively
utilized to detect and track the temperature-dependent
single-crystal to single-crystal reversible transitions between
the conformational polymorphs of desloratadine.109 Addition-
ally, LFR spectroscopy paired with solid-state DFT methods
has been used to identify the transformation pathway and
energetics behind the observed temperature-induced phase
transition of 1,2,4,5-tetrabromobenzene, an organic crystal that
undergoes a rapid structural transition when heated and
suddenly releases built-up mechanical strain, causing the
crystals to physically jump.23 In this work, a low-frequency
vibration at 15 cm−1 was found to map out the transformation
pathway, enabling understanding the mechanism and ener-
getics of the phase transition, with the authors referring to this
particular mode as a “gateway vibration”.
Suzuki et al. utilized time-dependent terahertz spectroscopy

to establish the temperature-induced transition kinetics
between polymorphic phases of crystalline cyclohexanol from
150 to 330 K.158 Two-dimensional plots of first derivatives of
terahertz absorbance with respect to time revealed the stepwise
kinetic behavior behind the transitions. This is shown for the
two-step transition between Phases I and III via an
intermediate in Figure 5.

Figure 4. Comparison between the perfectly ordered low-temperature experimental structure (LT phase) and the orientationally disordered high-
temperature (HT phase) of the molecular solid camphor. The structure of the HT phase was uncovered using experimental terahertz spectroscopy
and AIMD simulations with the predicted and experimental powder XRD data, as shown. The vibrational results were used to predict the
temperatures and pressures at which the energetic ordering between the two forms flips, which was shown to be in agreement with experimental
data. Reproduced from ref 20. Copyright 2018 American Physical Society.
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Understanding transformation pathways is especially com-
plicated in disordered systems where structural details are
limited or unclear. The sensitivity of low-frequency spectros-
copy provides a unique approach to understanding disorder in
crystalline materials. In many cases, growing large single
crystals of a material is not possible, or materials might be
disordered to the extent that a single-crystal XRD data set is
not able to determine the specific three-dimensional structure
of the material. Both low-frequency techniques can be used to
probe the vibrational dynamics and, when coupled with
theoretical models, can pinpoint the correct structure. This has
been demonstrated for a variety of disordered molecular
crystals including the ordered and disordered phases of
camphor159 and the conformational disorder in irbesartan.160

A similar approach was used to deduce the high-temperature
crystal structure and presumed phase transformation kinetics
for barbituric acid dihydrate. From theoretical models and
terahertz spectroscopy, Paul et al. determined that rather than
undergoing a temperature-dependent phase change at high
temperatures barbituric acid dihydrate exists in a thermally
disordered state.21 Low-frequency vibrational spectroscopy can
even be used to confirm the structures of unknown materials,
often in conjunction with other methods such as crystal
structure prediction.161

Transformations between amorphous and crystalline phases
are affected by several external factors including humidity,
temperature, and pressure. In the presence or absence of
humidity, solid-state hydration and dehydration processes will
affect the long-range interactions of a solid material.155 This

change has been monitored with terahertz spectroscopy to
determine the dehydration kinetics of glucose monohydrate
and in studying the hydration and subsequent crystallization of
amorphous anhydrous lactose.162,163 Low-frequency spectros-
copy has been especially popular in studying the solid-state
isothermal transformations between crystalline and amorphous
forms of pharmaceuticals such as acetaminophen, caffeine, and
indomethacin, to name a few.118,164−166 The transformations
of indomethacin, a nonsteroidal anti-inflammatory drug,
between the crystalline and amorphous phase, has been the
focus of numerous low-frequency spectroscopic studies to
evaluate the transition mechanisms and kinetics underpinning
this process. LFR spectroscopy has been demonstrated to be
particularly sensitive in detection of the first traces and
quantification of crystallization to the stable γ-phase at a
temperature below the glass transition temperature.27,142

In addition to these phase transitions, terahertz techniques
have been used to monitor solid-state reactions167 and track
cocrystal formation.168−170 An early demonstration of this
capability was the quantitative monitoring of the mechano-
chemical formation of a cocrystal between phenazine and
mesaconic acid. Lien Nguyen et al. utilized an identifying
spectral feature at 1.2 THz to deduce that mechanochemical
cocrystal formation began with an amorphization of the
individual components through grinding, with the amorphous
component crystallizing as the cocrystal after a few days.171

Finally, the direct link between particular terahertz
vibrations and the phase transformations has opened the
door to utilizing terahertz radiation alone to drive these

Figure 5. (a) Terahertz spectra of temperature-induced two-step transformation of cyclohexanol from Phase I (274 K) to III (233 K) via an
intermediate over 60 min. (b) The first derivative of the terahertz spectra for this transformation with respect to time, where red and blue areas
correspond to an increase and decrease in spectral intensity, respectively. Figure adapted with permission from ref 158. Copyright 2014 American
Chemical Society.
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processes in a variety of complex materials.28,172 In one
example, high-field terahertz pulses from a free-electron laser
were shown to promote crystallization of indomethacin, an
active pharmaceutical ingredient, from the amorphous state
even when cooled well-below the glass transition temper-
ature.173 In that work, not only did terahertz radiation drive
crystallization but also the terahertz-induced crystallization
process produced a different polymorphic form than what is
generated via thermally induced transformations, suggesting
terahertz radiation can preferentially guide crystal growth. A
similar investigation by Hoshina et al. nondestructively
induced rearrangements of intermolecular conformations and
increased the crystallinity of polymers with terahertz irradiation
generated by a free-electron laser.26 Recently, Li et al.
discovered that upon excitation of strontium titanate
(SrTiO3) with high-field ultrafast terahertz pulses, a previously
unknown metastable ferroelectric phase is induced with a
reduced symmetry compared to the stable form.28 The
metastable crystal, because of its structural changes, exhibits
a unique terahertz spectrum than can be observed using
standard terahertz transmissions measurements and ultimately
highlights the utility of terahertz radiation for not only
understanding lattice dynamics but also controlling them,
opening the door to an entirely new area of research within the
terahertz sciences.
Probing the Mechanical Response of Solids. In

addition to mapping out phase transformation pathways,
there are a number of examples in the literature where

terahertz vibrational motions have been directly linked to bulk
material properties and functions.15,35,174,175 This is a result of
years of efforts devoted to the acquisition of experimental low-
frequency vibrational spectra, coupled with advances in
simulation methods for interpreting the experimental data,
and represents the current state-of-the-art in the field of
terahertz vibrational spectroscopy.
One eloquent application of low-frequency vibrational

spectroscopy involves the mechanical properties of solids.176

In general, the mechanical response of materials can be
quantified through an understanding of the elastic tensor,
which originates from Hooke’s law.177 The elastic tensor
contains terms (elastic constants) that relate the change in
energy of a system with respect to an applied strain (or
deformation),

η η
= ∂

∂ ∂
C

V
E1

vu
v u

2

0 (3)

where Cvu are the elastic constants, E is the total energy, η are
the strain tensors, and the subscripts v and u represent the
direction of the applied strain.178,179 Thus, the elastic tensor
elements provide insight into how a material responds to an
applied strain. From eq 3, it can be observed that the
calculation of elastic constants is very similar to the
determination of vibrational force constants, which also arises
from Hooke’s law, with the vibrational expression given by,

Figure 6. (a) Rotational motion along the displacement coordinate for the low-energy collective vibration at 16.32 cm−1 in HKUST-1 visualized
along the <100> and <110> directions. (b) Predicted Poisson’s ratio depiction in HKUST-1, where green and red regions correspond to positive
and negative ratios, respectively. Blue regions denote maximum Poisson’s ratio. (c) Proposed mechanism of the auxetic response associated with
the low-energy collective vibration at 16.32 cm−1. Figure adapted with permission from ref 35. Copyright 2016 Royal Society of Chemistry.
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= ∂
∂ ∂

k
E

R Rvu
v u

2

0 (4)

where k is the vibrational force constant and R is the
displacement vector for a particular coordinate. While eqs 3
and 4 are not identical, they are very similar−with the key
difference being the nature of the applied displacement−with
C arising from the deformation of the unit cell, while k relies
on deformation of only pairs of atoms.180 Thus, all vibrational
modes can be related to elastic properties. However, this does
not provide much utility for a majority of vibrational modes,
since most vibrations are quite localized in nature, effectively
providing insight into the elastic nature of chemical bonds, for
example. However, low-frequency vibrational dynamics are
large-amplitude and intermolecular, which implies that in some
cases terahertz vibrations can be effective probes of bulk
elasticity since they inherently probe intermolecular strain.
The link between lattice dynamics and elasticity has been

increasingly reported in the literature over the latter half of the
past decade.33,181−184 In a report by Ryder et al., the
connections between terahertz motions and anomalous
mechanical properties in metal−organic frameworks (MOFs)
were elucidated.185 In that work, qualitative comparisons
between particular vibrational modes and elastic constants
were discussed, although no formal link between the two was
established. Following this report, Ryder et al. examined the
deformation mechanisms in the paddle-wheel MOF, HKUST-
1, believed to dictate mechanical properties, including Young’s
and shear moduli and Poisson’s ratio. The results reinforced
the link between low-frequency motions such as soft modes
and intrinsic shear distortions and elastic phenomena. An
example of this connection is highlighted in Figure 6 where the
low-frequency rotational motion that gives rise to a feature at
16.32 cm−1 was linked to the transverse and axial strains under
deformation, which is described by Poisson’s ratio. Interest-
ingly, as seen in Figure 6, the Poisson’s ratio for HKUST-1 in
some crystalline directions is predicted to be negative
indicating auxetic behavior. In a related work involving poly-
L-proline helices, a framework for directly obtaining the bulk
Young’s modulus of solids from vibrational force constants was
reported.34 In that study, the presence of large-amplitude
“spring-type” vibrations of the polymer helices provided a
quantitative description of the mechanical properties of the
material, which were in excellent agreement with the calculated
values from dedicated elastic calculations.
From these two studies, this area of the terahertz sciences

has begun to grow,90,186 as contactless and nondestructive
spectroscopic experiments are more easily performed than
direct mechanical measurements, which often require the
growth of large single crystals coupled with the precise
manipulation of crystalline orientation over the course of the
experiment. An investigation into the nonlinear mechanical
response as a function of pressure in ZIF-8, a common MOF,
by Zhang et al. found that a single terahertz vibrational mode
served as indicator of the compressibility of the material under
pressure.22 Maul et al. developed a new theoretical algorithm
for decomposing the elastic tensor elements into contributions
from individual normal modes, providing for the first time a
means of unifying low-frequency vibrational spectroscopy and
the mechanical response of solids.187 That work relied on both
experimental IR and Raman spectroscopy data, as some crucial

vibrational modes were either Raman- or IR-active, high-
lighting the complementary nature of the two techniques.
Finally, as the clear link between terahertz dynamics and the

description of mechanical response in solids was established,
this has enabled more complex investigations to be considered.
One example is the ability to determine the thermomechanical
response of materials or how the mechanical properties of
materials change as a function of temperature.188,189 While
traditional experimental probes of elasticity are not readily
used with varying temperatures, the ability to acquire variable
temperature spectroscopic data is relatively straightforward.
Thus, by capturing how low-frequency dynamics change upon
heating or cooling, a measure of how the mechanical response
changes can be obtained by extension.190 This was highlighted
in a recent work by Banks et al., where the thermomechanical
response of a pair of organic semiconducting crystals was
reported.36 The investigation, which relied on experimental
terahertz vibrational spectroscopy and quasi-harmonic DFT
simulations, provided an excellent agreement with the room-
temperature mechanical properties of crystalline rubrene,
which were previously determined with Brillouin light
scattering experiments.191 The success of the method was
then extended to a second material, ([1]benzothieno[3,2-
b][1]benzothiophene) (BTBT), with an overview of the data
used to generate the thermomechanical response, as well as the
three-dimensional Young’s moduli as a function of temper-
ature, shown in Figure 7. Overall, this work helps to showcase

how the utilization of terahertz vibrational dynamics can

provide insight into complex phenomena that rely on

fundamental intermolecular forces and how the field is

regularly expanding beyond its core use into new and diverse

applications.

Figure 7. Thermoelastic response of BTBT determined using QHA
simulations and terahertz spectroscopy. (a) QHA-predicted (blue)
and experimental unit cell volumes. (b) Experimental (markers) and
predicted (lines) temperature-dependent terahertz spectroscopy peak
positions, with the spectra shown in (c). (d) Three-dimensional
Young’s moduli as a function of temperature. Figure adapted with
permission from ref 36. Copyright 2020 Royal Society of Chemistry.
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■ CONCLUSION
Originating as boutique techniques, the terahertz sciences have
evolved over the past few decades, driven largely by
technological advances in ultrafast lasers and high-performance
computing. The pioneers in the early 21st century method-
ically laid the groundwork for the current state of affairs by
creating, modifying, and improving experimental and theoreti-
cal methodologies, while helping to establish standard
practices, all of which have contributed to making the terahertz
sciences more accessible than ever before. Over the past few
years, the community has began to evolve and expand beyond
traditional disciplines and applications, largely due to the
increased understanding of the nature of terahertz vibrational
motions. This Perspective does not exhaustively describe the
many different applications of low-frequency dynamics to bulk
material phenomena, and there are new and innovative
examples in the literature on a regular basis. With any growing
method, there are areas where improvement in the terahertz
sciences would only help to further the field. For example, the
limit of many commercial terahertz time-domain spectrometers
to rather narrow bandwidths (0.3−6.0 THz) must be
improved upon in order to be more generally applicable to a
wide variety of materials. In terms of LFR, oftentimes acquiring
Raman shifts in the THz region requires the use of a single
laser source, which can be problematic for fluorescent
materials, for example. Finally, the ability to generate ultrahigh
terahertz electric fields in traditional academic laboratories
represents the next frontier, as currently there is a large gap
between the pulse energies achievable with academic lasers and
those obtainable at large international facilities such as free-
electron lasers. However, in spite of these challenges, the
terahertz community is extremely healthy and active, and there
is no doubt that as the techniques become more mainstream
new and exciting applications will be developed, continuing the
growth and innovation that have been ongoing since the late
1980s.
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