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Abstract—Millimeter-wave wireless LANs are targeted for use
with bandwidth-intensive applications such as virtual/augmented
reality and real-time high-definition video. To maintain high
throughput while addressing mmWave signal blockages, multiple
access points (APs) within one room to improve line-of-sight
conditions is considered a promising approach. In a scenario with
fixed and mobile (human) obstacles, we mathematically analyze
LoS blockages produced by mobility, and use the analysis to
develop a multi-AP association scheme. Our scheme statically
assigns primary and backup APs in order to maximize blockage
robustness and perform load balancing among APs. Simulation
results show that: 1) our static approach can provide blockage
tolerance close to that of an expensive dynamic probing approach
while achieving higher throughput, 2) the use of client mobility
patterns, if known, can improve our static approach even further,
and 3) our approach achieves significantly better fairness and
load balancing than existing approaches.

I. INTRODUCTION

Due to the current bandwidth shortage and ever-

increasing demands of various bandwidth-hungry applica-

tions, millimeter-wave wireless local-area networks (mmWave

WLANs) are receiving increased attention due to the avail-

ability of spectrum in the mmWave bands [1]. However, the

narrow beamwidth antennas used in mmWave communications

make the signals extremely sensitive to blockages as com-

pared to their lower-frequency counterparts. Thus, line-of-sight

(LoS) connectivity between access points (APs) and clients

becomes critical to maintain link performance, since non-

LoS (NLoS) paths suffer a large attenuation, which reduces

their data rate substantially compared to LoS paths [2]–[4].

To overcome blockage effects caused by potential obstacles

such as furniture, or even humans, in a typical indoor WLAN

setting, a promising approach is to deploy multiple APs in the

same room [5], as this offers more opportunities to establish

LoS connections between clients and APs.

Some prior research [6] [7] studied multi-AP deployment

issues in mmWave WLANs, e.g. in our previous work [7],

placements of multiple APs that maximize LoS coverage in

typical indoor scenarios were derived. Once an intelligent

multi-AP placement is made, a good matching between APs

and clients becomes critical for improving both network ro-

bustness and the users’ quality of experience. To be practical,

the AP association must account for mobility, both of the user

devices as well as obstacles since even the human body is

capable of obstructing mmWave signals.

In the IEEE 802.11ad standard [8], the AP association

process is based on the highest received signal strength (RSS).

However, in a typical indoor scenario with limited range,

different mmWave APs that have LoS to a client actually pro-

vide very similar RSS and data transmission rates. Therefore,

RSS might not be the best metric for an association policy.

Instead, other metrics important for the network robustness

and performance, such as the link reliability and AP load,

should be taken into account.

In this work, we consider a ceiling-mounted multi-AP

architecture in mmWave WLANs, such as was proposed in [7]

[9]. In [7], it was shown how to optimally place APs on the

ceiling, in order to maximize LoS coverage in the presence

of fixed obstacles such as furniture, thereby increasing the

likelihood that each client has an LoS path to at least one

AP within a room. However, the mmWave LoS links are still

susceptible to the mobility of clients and moving obstacles

such as humans, which may disrupt the data transmissions

or even make established connections fail. For this reason,

we investigate a blockage-robust multi-AP association, which

assigns primary and backup APs for each client based on quan-

tified link reliability in the presence of mobility. The approach

also can factor in the specific mobility patterns of clients if

they are known. Different from prior works that have users

associating with APs based on RSS or dynamically probed

channel conditions, our work conducts a thorough analysis of

complex environments, extracting the useful information about

potential obstacles. Our analysis not only accounts for fixed

obstacles but also accounts for temporary-blockage effects

caused by moving obstacles and mobility of clients. The

proposed multi-AP association scheme maximizes connection

reliability for clients while also load balancing across APs.

Through extensive simulations, we evaluate the performance

of several variations of our AP association scheme in different

network scenarios. The results show that the network per-

formance is superior to existing AP association approaches

in multiple dimensions. In particular, our approaches have

a blockage robustness comparable to the dynamic channel-

probing approach, which checks for the best channel on each

transmission, while our lower run-time overhead produces

higher throughput. Furthermore, our approaches have better

fairness and load balancing than existing approaches.

II. RELATED WORK

Several prior works have studied AP association problems

in multi-AP mmWave WLANs [9]–[13]. In [10], the author

formulated the AP matching problem as a partially observed
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Markov decision process and obtained an optimal policy

to maximize the network throughput. However, this work

did not analyze potential blockages and only a single user

was considered. In [9], two AP assignment schemes with

different complexity were proposed and transmission time

slot scheduling schemes were studied in a 60 GHz WLAN.

In [11], a cluster-based user association scheme was presented,

which was based on strongest received signal in mmWave

femtocell networks and aimed to overcome the performance

loss imposed by co-channel interference. In [12], the authors

devised a multi-AP association framework based on multi-path

TCP protocol and designed a flow-aware scheduling algorithm

that optimizes transport layer performance. The authors of [13]

studied the AP-client association problem to match each user

having a rate requirement with an AP such that the maximum

load among all APs is minimized, but potential blockage

effects were not considered. These prior works mainly fo-

cused on maximizing network throughput or AP utilization

without considering blockage robustness. Due to the blockage

sensitivity of mmWave signals, the connection reliability of

each AP-client pair is critical in avoiding outages and frequent

AP switching, and a good AP association strategy should be

capable of maintaining continuously high-rate transmissions

for all connected AP-client pairs.

To avoid blockages as much as possible, some other works

have users opportunistically select APs based on probing

the channel conditions on every transmission [14]–[16]. As

a typical example, [14] presented a mmWave opportunistic

network model where users probe multiple APs in search of a

channel that provides a maximum transmission rate. However,

this dynamic probing approach incurs a high overhead, which

can degrade data transmission efficiency and user throughput.

Therefore, to avoid extra probing overhead and frequent AP

switching, our work investigates an approach that combines a

statically computed solution with low-complexity on-demand

AP switching, where potential blockage effects caused by fixed

obstacles, moving obstacles, and client mobility are quantified

and pre-computed once for a given network environment. AP

association decisions are made based on a novel robustness

metric arising from our analysis, so as to achieve low-overhead

and blockage-robust mmWave wireless communications.

III. SYSTEM OVERVIEW

In this section, we introduce the network architecture, AP

deployment, and connectivity mode used in this paper.

A. Network model

We consider a centralized ceiling-mounted multi-AP net-

work (CCMN) architecture for mmWave LANs, as shown

in Fig. 1. In this architecture, multiple APs are mounted on

the ceiling and serve the clients in the room, because this

achieves better LoS coverage as compared to placing APs at

a lower height, e.g. on the wall or on a desk or table [7].

We also assume that there is a centralized network controller

in the back end, with all mmWave APs connected to this

controller via wired connections. The controller is responsible

for making association decisions based on inputs about active

users in the network. Each AP collects information about the

clients and sends it to the central controller, and then the

controller conveys its decisions to the APs, which then notify

the clients. With the wide deployment of high-speed Ethernet

and optimized servers, such a centralized control architecture

has been adopted for many different purposes in multi-AP

WLANs in recent years [17], [18].

Although, traditionally, AP association decisions in WLANs

have been left to the clients, we believe the substantial benefits

of our centralized blockage-robust association mechanism,

which are quantified in Section VI, are strong justification

for adopting a centralized association scheme for mmWave

multi-AP WLANs specifically.

In this work, we adopt a channel model accounting for both

LoS and NLoS conditions in indoor mmWave communication,

where the path loss model is extended to include multipath and

shadowing components (more detail on the model is provided

in Sec. VI-A). As is typical in mmWave network analysis,

we adopt a narrow-beam directional antenna model for each

wireless node, which means that antennas have a high gain

within the main beam, and a much lower gain outside the

main beam.

mmWave

APs

controller

Fig. 1. The centralized ceiling-mounted multi-AP network architecture.

B. Infrastructure planning

It is known that the LoS connectivity is a critical require-

ment in mmWave WLANs, and the client can communicate

with an AP at a high rate through the LoS path. In this work,

we adopt the optimal placement of APs that was derived in

our previous work [7]. With this intelligent approach, full LoS

coverage of most indoor scenarios can be achieved with a few

APs in the presence of fixed obstacles such as furniture. This

ensures that each client can have at least one LoS AP, when

considering the fixed obstacles.

C. Dual connectivity

Considering the fragile links in mmWave WLANs, today’s

IEEE 802.11ad standard incorporates a beam-searching mech-

anism that is triggered to find a new AP after the current path

is blocked, but this is a time-consuming process that can take

2
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up to a few seconds [19]. To tackle this problem, several works

have proposed pre-establishing connections to several LoS

APs with trained beams, associating to the primary AP that

can potentially provide the best performance, and maintaining

other paths in a backup mode for fast recovery [12], [20]–[25].

Since maintaining more than one backup link increases the

beam-tracking overhead on clients, which could lower network

performance [24], we consider the dual-connectivity mode

[24], [25], i.e., each client will associate with one primary

AP and one backup AP. With dual connectivity, an efficient

beam tracking mechanism, such as in [26]–[28], can be used

for fast AP switching once the blockage occurs. In this way,

the link connectivity can be efficiently maintained with a small

overhead.

IV. QUANTIFICATION OF BLOCKAGE TOLERANCE IN

MULTI-AP MMWAVE WLANS

In this section, we give a mathematical framework to

analyze the reliability of mmWave links, and quantify the

blockage effects caused by moving obstacles and mobility of

clients, which are referred to as the moving-obstacle tolerance

(MOT) and the client-mobility tolerance (CMT), respectively.

A. Moving-obstacle tolerance

In this part, we first consider temporary-blockage effects

caused by humans or movable objects in a typical indoor sce-

nario, which may block established LoS connections between

APs and clients. The problem we consider in this section is as

follows. Assuming a mmWave WLAN with full LoS coverage

and based on the dual-connectivity mode, find a pair of APs

with maximum MOT from all of client’s LoS APs.

Here, we use geometric analysis to quantify MOT of two

LoS links of a client, and the derived result, as we show later,

can also be applied for the case when there exists a single LoS

link or no LoS links for some client. Based on the random

shape theory from [30], obstacles such as temporarily stopped

humans are assumed to form a Boolean scheme of rectangles,

in which the centers of the rectangles fall within the room

and form a homogeneous Poisson point process (PPP) C of

density λ, where λ is the mean number of obstacles in an unit

area. The width, W , and length, L, are assumed to be i.i.d.

distributed and follow normal distributions, i.e. W ∼ N (µw

σw
2) and L ∼ N (µl, σl

2). The orientation distribution Θ of

every obstacle is uniform over [0, π]. In this way, a random

obstacle is characterized by the quadruple {c, w, l, θ}, which

is generated by sampling the distributions C, W , L, Θ.

From the 2-dimensional perspective in Fig. 2, when the

client has two LoS connections with its primary and backup

APs (eg. AP1 and AP2), the blockage region (e.g., S1, S2,

and S1,2) is determined by the size of the obstacle, the

separation distances between the client and its LoS APs, and

the intersected angle of two LoS links. For example, if the

center of an obstacle falls in the blockage region S1, only

the link between client and AP1 will be blocked, but if the

center of obstacle falls in the blockage region S1,2, both of

the LoS links will be blocked. In what follows, we derive the

probability that at least one of the LoS links is still connected

in the presence of multiple obstacles, which we use as the

metric of MOT.

θ

γ

d1

d2

AP1

AP2

l

w

client

obstacle

S1

S2

S1,2

Fig. 2. Blockage area of two LoS links.

First, we derive the blockage area Ai (i.e. the area of Si ∪
S1,2, i ∈ [1, 2]) in Eq. (1), and one LoS link between client

and APi is blocked if the center of an obstacle falls in the

blockage region Si ∪ S1,2.

{

A1 = d1 · (| cos θ| · w + | sin θ| · l) + w · l
A2 = d2 · [| cos(θ − γ)| · w + | sin(θ − γ)| · l] + w · l,

(1)

where di is the horizontal distance between APi and client,

w, l, θ are the obstacle’s width, length and orientation, respec-

tively. Then, let random variable K denote the total number

of random obstacles blocking the link between client and APi,

and its expectation is derived as:

E[K]Ai
=

∫

W

∫

L

∫

Θ

1

π
Ai(w, l, θ, d)fW (w)fL(l) dw dl dθ

=
2di · (µw + µl)

π
+ µw · µl.

(2)

Second, both two LoS links will be blocked if the center

of obstacle B falls in the overlapped blockage region Sol

(i.e., S1,2), and this overlapping blockage area can be derived

through geometric analysis as follow:















( 12 cot γ · cos2θ + 1
4 sin 2θ)w

2 − l2 · ( 14 sin 2θ −
1
2 cot γ ·

sin2θ) + ( 12 cot γ · sin 2θ − 1
2 cos 2θ +

1
2 ) · lw, γ < θ ≤ π

cos θ·cos(θ−γ)
2 sin γ

· w2 + l · w, α < θ ≤ γ

l · w, 0 < θ ≤ α,
(3)

where α equals to max{0, γ − π/2}, and γ is the intersected

angle of two LoS links. Then we further compute the expec-

tation of K blocking both two LoS links as:

E[K]ol =
1
π

∫

W

∫

L

∫

Θ

Sol(w, l, θ)fW (w)fL(l) dw dl dθ

= (µw
2+σw

2)
π

[ 14 (π − α) cot γ − sin(2α−γ)
8 sin γ

− 1
4cos

2γ + 1
8 ]

+ (µl
2+σl

2)
π

[ 14 (π − γ) cot γ + 1
4cos

2γ] + µw·µl(π+γ)
2π .

(4)

In the following parts, we use EAi
and Eol in place of E[K]Ai

and E[K]ol for simplicity.

3
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Now we introduce the height effects of obstacles and extend

the blockage model to 3 dimensions. It is known that an

obstacle1 intersecting the link between client and AP with a

horizontal length of d blocks the LoS path if and only if its

height ho > hx, where hx = HA+ x
d
·(hc−HA), and HA and

hc are the height of AP and client (HA > hc), respectively.

Since the heights of obstacles are usually different in reality,

we assume that the obstacle’s height ho follows the uniform

distribution H∼U(ao, bo). Thus, in this 3-dimensional model,

each obstacle B(w, l, h, θ) is extended to be characterized by

the quintuple {c, w, l, h, θ}. Given an obstacle intersects the

LoS path between AP and client from 2D view, the conditional

probability that an obstacle blocks the LoS path from 3D

perspective is:

ε = 1
d

∫ d

0
P [h > hx] dx

= 1−
1
∫

0

y·Hc+(1−y)HA
∫

0

fH(h) dh dy

= 1− 1
bo−ao

1
∫

0

[max{min{bo, v}, ao} − ao] dy

= bo+ao−2hc

2(HA−hc)
,

(5)

where v = yHc + (1− y)HA. According to the PPP thinning

property, the expectation E[K]′ in 3D blockage model is

εE[K] for incorporating the height effect of obstacles [31].

As such, based on Eq. (2)-(5), we arrive at the probability

that at least one of the LoS links is connected with multiple

random obstacles as:

PMOT = P (A1 ∪A2)
(a)
= Pr(A1) + Pr(A2)− Pr(A1 ∩A2)

(b)
=

∑

i

exp(−λ · εEAi
)− exp[−λ · ε(

∑

i

EAi
−Eol)],

(6)

where (a) is true because of the inclusion-exclusion principle,

and (b) follows the basic property of homogeneous Poisson

distribution with density λ. Taking Eq. (2)-(5) into Eq. (6), we

obtain the close-form expression of probability that at least

one of the LoS links is survival, which indicates the MOT

of a client with a pair of APs. Note that PMOT is equal to

Pr(Ai) = exp(−λ · εEAi
) (i = 1, 2) if there exists only one

LoS APi, and PMOT drops to zero when no LoS APs exist.

Given some specific parameters about obstacles2, we inves-

tigate how the horizontal distance di and intersected angle of

two LoS links γ affect the moving-obstacle tolerance. In Fig. 3,

it is observed that the moving-obstacle tolerance decreases as

di increases since it has more potential to experience blockages

between APs and a client3. On the other hand, as γ increases,

the moving-obstacle tolerance is improved, and this is because

the overlapping blockage area of two LoS links will decrease,

1Here the object with the height larger than general height of client is
considered as the obstacle, since objects with very small heights will have no
effect on LoS paths between ceiling-mounted APs and clients.

2Here we set µl = 0.5, σl = 0.1, µw = 0.25, σw = 0.05, ao = 0.5,
bo = 1.9, hc = 0.6 and HA = 3.

3In Fig. 3, we assume d1 = d2 for simplicity since they have the equivalent
effects on MOT according to Eq. (6).

which is likely to reduce the likelihood of blocking both LoS

links simultaneously with a single obstacle.

Fig. 3. PMOT vs. di and γ.

B. Client-mobility tolerance

Considering the mobility characteristics of clients in a

typical indoor scenario based on [32], the client has potential

to move around or temporarily stay at some places other

than its home location. During the period of leaving its home

location, the primary LoS link and even backup link might

be blocked by existing fixed obstacles or moving obstacles,

therefore, we quantify the client-mobility tolerance (CMT) of

each pair of LoS APs, accounting for both fixed- and moving-

obstacle effects. Note that the derived results in this section

can also be applied for the single LoS-AP case or no LoS-AP

case for some client.

Here we discuss the approaches to quantify CMT

with/without knowledge of mobility patterns of clients as

follows.

1) Without mobility patterns: Based on our previous work

[7], [33], the grid-based search (GSS) algorithm was proposed

to efficiently find the shadowing regions (SR) caused by fixed

obstacles in terms of different APs, where the rectangular room

is divided into a large number of small grids with side length

lg (e.g., see Fig. 4), and we can find all shadowed grids (SG)

whose center points fall in SRs. The grids outside those SRs

are referred to as the non-shadowed grids (NG), and the LoS

connection can be maintained if the client moves to these NGs

rather than SGs in the presence of fixed obstacles.

For a given shadowing-region map, we can incorporate the

moving-obstacle effects at each NG, and derive the probability

that the LoS link is still connected when the client leaves

its home location and moves around within the room, which

accounts for both fixed and moving obstacles as follows:

PCMT

(c)
=

∑

i∈NG

Pr(i ∈ NG) · Pr(LoS|i ∈ NG)

=
∑

i∈NG

1

ng

· PMOTi
=

lg
2

rl · rw
·
∑

i∈NG

PMOTi
,

(7)

4
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where (c) is based on the total probability theorem, ng is

the total number of grids, rl and rw are the room’s length

and width, respectively, and PMOTi
is the MOT at the non-

shadowed grid i, which can be computed by Eq. (6). Here

PCMT is considered as the key performance index of CMT.

Of particular note, Eq. (7) can quantify CMT for any cases no

matter how many LoS APs of a client existing in the scenario,

especially PCMT drops to zero when no LoS AP exists for

some client since there are no NGs in the shadowing-region

map.

y

X

SR
SR

SR

SR

SR
SR

SR

SR

client (home location)

LoS AP1

LoS AP2

NG

SG

Fig. 4. The shadowing-region map for a client and its associated APs.

2) With mobility patterns: Here we discuss the approach to

quantify CMT if the mobility patterns of clients are known.

During a period of time, we can investigate the client mobil-

ity features by recording their frequently visited locations (FL)

within the room. When the client leaves its home location and

moves around, it tends to visit those hotspot locations (i.e.,

FLs) and temporarily stays for some time [32]. By collecting

this mobility information, we can obtain a mobility-pattern

map for each client (e.g., as shown in Fig. 5), in which

the popularity weight Pw of each FL (shown with the stars)

indicates the time percentage taken by the client at this FL.

With the knowledge of FLs, we only need to consider

whether or not the candidate APs can cover those FLs. We

can, therefore, extend Eq. (7) to derive the CMT in terms of

the popularity weights Pw of the known FLs as follows:

PCMT =
∑

i∈NG

1
ng

· IFL(i) · PMOTi
· Pwi

=
lg

2

rl·rw
·

∑

i∈NG

IFL(i) · PMOTi
· Pwi

,
(8)

where IFL(·) is the indicator function, which is equal to 1

if NGi covers one of FLs, otherwise it is 0. The popularity

weight Pwi
of NGi is equal to the Pw of its covered FL.

Note that the blockage tolerance on pathways between visited

locations is ignored here since the walking time is quite short

as compared to the pause time at each FL in a typical indoor

scenario, and the walking time therefore has a negligible

impact on network performance4.

C. Robustness index

Based on preceding analyses, considering both moving-

obstacle and client-mobility effects, we finally define a robust-

4The detailed validation results are omitted here due to the space limitation,
but they show that factoring in blockages on clients’ pathways only causes
less than a 1% performance drop with typical pause times at FLs.

y

X

SR
SR

SR

SR

SR
SR

SR

SR

client (home location)

Pw= 0.1

Pw= 0.15

Pw= 0.2

Pw= 0.03
Pw= 0.12

Pw= 0.2
Pw= 0.15

Pw= 0.05

Fig. 5. The mobility-pattern map for a client.

ness index (RI) that takes both MOT and CMT into account

as follow:

RI = (1− η) · PMOTh
+ η · PCMT , (9)

where PMOTh
denotes the MOT at the home location of

client, and η ∈ [0, 1) is a client-mobility factor that indicates

how frequently the client leaves its home location and moves

around. For instance, the smaller η (<0.5) should be chosen if

the client spends over 50% of time staying at its home location,

otherwise we set η to a larger value (>0.5) if the client has

more tendency to move around. This derived metric will be

utilized in our association protocol design in the next section.

V. BLOCKAGE-ROBUST MULTI-AP ASSOCIATION SCHEME

In this section, we present a multi-AP association approach,

which adopts either a highly reliable multi-AP selection algo-

rithm, referred to as HRS, or a modified version, referred to

as AHRS, which achieves better load balancing across APs.

A. Highly reliable multi-AP selection algorithm

In multi-AP mmWave WLANs, consistently high user

throughput is mainly dependent on two factors: 1) the re-

liability of connections, and 2) the load on the APs. An

AP may become overloaded if a large number of clients are

associated with it, which would significantly degrade the users’

quality of experience since fewer resources can be allocated

for each client on the overloaded AP. In this part, we propose

a highly reliable multi-AP selection (HRS) algorithmm, which

considers both connection reliability and AP load.

Algorithm 1 shows the pseudocode of Algorithm HRS. In

the input, Sap and U are sets that contain location information

of placed APs and clients within the room, respectively, and

Obs includes the dimensions and positions of fixed obstacles.

D is a set that contains the data demands of clients. First, the

LoS status between each placed AP and client uk is checked,

and then we include all LoS APs of uk in LSk (Lines 1-6).

Next, the robustness index RIi,j for each pair of LoS APs

is calculated based on the analytical model in Sec. III-C, and

we choose the AP pair with maximum RI as candidate for

uk (Lines 11-14). In this way, the AP pairs that establish

the most reliable connections for corresponding clients are

obtained, and then we start to do the load balancing procedure

among all selected APs of clients. It is known that LoS is

5
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critical to provide high throughput in mmWave networks [2],

and the performance benefits brought by different LoS APs

becomes very close due to the limited range of a typical indoor

scenario. Therefore, we allow either AP from the selected AP-

pair for a given client to be chosen as its primary AP. Then,

for load balancing purposes, we can formulate the primary-AP

selection problem so as to minimize the maximum AP load

as follows:

min Lmax (10)

s.t. Lmax ≥
1

Ri

·
∑

k∈U

Dk · xk,i, ∀i ∈ Sap (11)

∑

i∈prk

xk,i = 1, ∀k ∈ U (12)

xk,i = 0, ∀i /∈ prk, ∀k ∈ U, (13)

where the continuous variable Lmax is the maximum load over

all APs, which is a metric for WLAN network performance

that explains qualitatively congestion of network service [34],

Ri is the maximum data rate provided by mmWave APi,

Dk indicates the data demand of each client, and xk,i is the

association indicator, which is set as 1 if APi is assigned

as the primary AP to client k, and otherwise it is 0. The

objective in Eq. (10) combined with the constraint in Eq.

(11) is to minimize the maximum traffic load utilization of

each AP. Eq. (12) and Eq. (13) are shown as the primary-AP

assignment constraints, which indicate that only one primary

AP should be assigned for each client, and the APs not in the

selected AP-pair of client k cannot be assigned as the primary

AP. The problem formulated above is a mixed integer-linear

programming problem, which can be solved by optimization

software such as CPLEX [35].

Algorithm 1 Highly Robust Multi-AP Selection (HRS)

Input: Sap, U , Obs, D
Output: mAP , bAP

1: for each client uk in U do
2: for each APi in Sap do
3: if CheckLoS(uk, APi, Obs) = true then
4: LSk.add = APi; // LoS-AP set
5: end if
6: end for
7: if size(LSk) = 1 then
8: pair(uk) = LSk(1); // for single-LoS AP case
9: continue;

10: end if
11: for each pair of AP pi,j in LSk do
12: RIi,j = (1− η) · PMOTh

+ η · PCMT ;
13: end for
14: pair(uk) = argmax{RIi,j};
15: end for
16: AP ∗

id = SolveOpt(pair, U ); // Eq. (10)-(13)
17: for each client uk in U do
18: mAP .uk = AP ∗

id(uk); // assign primary AP
19: pairuk

.rmv(mAP .uk); // update pair set
20: bAP .uk = pairuk

(remaining AP); // add backup AP
21: end for
22: return mAP , bAP ;

Back to Algorithm 1, after obtaining the optimal solution

of this load-balancing process (Line 16), the primary AP and

backup AP for each client will be assigned (Lines 17-21). Note

that if only one LoS AP exists for a client, it will be directly

selected as primary AP, and no backup AP will be assigned

(Lines 7-10).

Based on the HRS algorithm and the knowledge of client-

mobility information, we derive two multi-AP association

schemes: 1) the mRI scheme, which uses Eq. (7) to calculate

the robustness index (see Eq. (9)) and is applied to the

scenario where the mobility patterns of clients are unknown;

and 2) the mRI-MP scheme, which uses Eq. (8) to calculate

the robustness index and is used for the scenario where the

mobility patterns of clients are known.

B. Alternative approach to improve load balancing

In some network scenarios where the mobility patterns of

clients are unknown, the load balancing across APs might

be unsatisfactory after running HRS algorithm (as we show

later in Sec. V-D), because most of the clients were originally

assigned the same APs to maximize blockage tolerance. To

avoid this situation, we propose an alternative AP selection ap-

proach (AHRS) that can be used if load balancing across APs

is of equal importance with blockage tolerance. The AHRS

scheme assigns APs for each client by jointly optimizing

AP load and link reliability. In this way, it may worsen the

connection robustness of a few clients, but can achieve better

load balancing than the result produced by the HRS algorithm.

Here we introduce the AHRS approach in detail. Consid-

ering the robustness index of different AP pairs, if a primary

AP (mAPi) of one client is selected, the corresponding optimal

backup AP (bAPi) with the maximum RI among all LoS APs

will be determined, i.e.,

bAPi = argmax
j∈LS,j 6=i

RIi,j , (14)

In what follows, we solely focus on the primary-AP selection

of each client, since once the mAP is assigned, the correspond-

ing backup AP can be matched by solving Eq. (14).

Based on the above discussion, the optimization problem

of jointly maximizing the link reliability and load balancing

among APs can be described by Eq. (15)-(20):

max rmin (15)

s.t. rmin ≤
RIk
Lk

, ∀k ∈ U (16)

RIk =
∑

i∈LSk

max
j 6=i,j∈LSk

{RIki,j} · xk,i, ∀k ∈ U (17)

Lk =
∑

i∈LSk

(xk,i ·
1

Ri

·
∑

k∈U

Dk · xk,i), ∀k ∈ U (18)

∑

i∈LSk

xk,i = 1, ∀k ∈ U (19)

xk,i = 0, ∀i /∈ LSk, ∀k ∈ U, (20)
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where rmin is an auxiliary continuous variable, RIk is the

continuous variable, which indicates the robustness index of

client k determined by assigned primary APi, Lk is the load

utilization of assigned AP of client k, Ri and Dk are the

maximum data rate of APi and data demand of client k,

respectively, and xk,i is the binary variable indicating if APi

is assigned as the primary AP to client k. The objective

in Eq. (15) combined with the constraint in Eq. (16) is to

maximize the minimum of ratio of RIk and Lk, which aims

to jointly optimize the robustness index of a client and the load

utilization of a AP. Eq. (17) and Eq. (18) show the methods to

obtain RIk and Lk. Eq. (19) and Eq. (20) are the primary-AP

assignment constraints.

We note that the above problem is a Mixed-Integer Non-

Linear Problem (MINLP). Although MINLP is NP-hard, we

solve it in our later simulations with the Bonmin toolbox

[36], which is based on a branch-and-bound method [37]

and produces a solution, but the relatively long running time

makes this approach (referred to as AHRSopt) impractical for

network configuration, especially when the scale of network

becomes larger. Therefore, in what follows, we introduce a

heuristic approach for AHRS to efficiently provide multi-AP

association load-balanced solutions.

Algorithm 2 A-mRI: Alternative highly robust multi-AP selection

Input: Sap, U , Obs, D
Output: mAP , bAP

1: LS = getLoSAP(U , Sap, Obs);
2: RI = getRI(U , LS);
3: Li = 0 (i ∈ Sap); // init the load of each AP
4: while size(U) 6= 0 do
5: Uid = argmin

k∈U

{size(LSk)};

6: if size(Uid) > 1 then
7: for each client uk in Uid do
8: for each APi in LSk of uk do
9: rti = ( max

j∈LSk,j 6=i
RIi,j)/(Dk + Li);

10: end for
11: um = argmax{rti};
12: end for
13: end if
14: for each APj in LSm of um do
15: rtj = ( max

i∈LSm,i 6=j
RIj,i)/(Dm + Lj);

16: end for
17: mAPi = argmax{rtj}; // primary AP for um

18: bAP i = argmax
j∈LSm,j 6=i

RIi,j ; // backup AP for um

19: Li = Li +Dm; // update the load of mAPi

20: U .rmv(um);
21: end while
22: return mAP , bAP ;

The pseudocode for our heuristic solution, referred to as A-

mRI, is shown in Algorithm 2. We first obtain LoS APs and

robustness indexes of different LoS link pairs for each client

(Lines 1-2), which is the same procedure as in Algorithm 1

(see Lines 1-13). Then, the client having the minimum number

of LoS APs will be first assigned APs (Line 5). Note that if

there exist multiple clients having the same number of LoS

APs in Uid, we start with the client um who has the maximum

ratio of robustness index and AP load rt among all its LoS APs

(Lines 6-11). After that, the AP with maximum rt is chosen

as the primary AP for the client um (Lines 14-17), and the

corresponding optimal backup AP is determined (Line 18).

Finally, the data demand of client um should be added on the

load of its selected primary AP (Line 19), and the algorithm is

terminated once all clients have been matched with their APs

(Line 4, 21).

C. Reconfiguration with network changes

In WLANs, the network state is changed whenever a new

client arrives or an existing client departs. Recomputing all

AP assignments every time the network state changes might

incur a large overhead and unnecessarily disrupt current as-

sociations. Therefore, we adopt a threshold-based strategy to

periodically reconfigure the network only after the network

state has changed substantially.

As shown in Algorithm 3, when a new client u joins the

network, if the number of state changes since the previous full

reconfiguration divided by the total number of clients in the

network exceeds a threshold value ǫ, we re-run the HRS or

AHRS algorithm to reconfigure the entire network (Lines 5-8).

Otherwise, we only conduct the AP assignment for that new

client (Lines 9-10). In a similar way, when an existing client

leaves the network, the reconfiguration process is triggered

only if the percentage of changed clients since the last full

reconfiguration exceeds ǫ (Lines 16-19).

Algorithm 3 Threshold-based reconfiguration

Input: Sap, u, Obs, D, Norig , Ncur , Nchange ǫ
Output: mAP , bAP

1: if the arrival of u then
2: Nchange = Nchange + 1;
3: Ncur = Ncur + 1;
4: do Alg. 1 (Lines 2-14); // do calculations for u
5: if Nchange/Norig ≥ ǫ then
6: do Alg. 1 (lines 16-21) or Alg. 2 (lines 3-21);
7: Norig = Ncur; // reset the number of clients
8: Nchange ← 0;
9: else

10: AssignAP(u, pair); // directly assign APs
11: end if
12: end if
13: if the departure of u then
14: Nchange = Nchange + 1;
15: Ncur = Ncur − 1;
16: if Nchange/Norig ≥ ǫ & Ncur > 1 then
17: do Alg. 1 (lines 16-21) or Alg. 2 (lines 3-21);
18: Norig = Ncur; // reset the number of clients
19: Nchange ← 0;
20: end if
21: end if
22: return mAP , bAP ;

VI. SIMULATION RESULTS

In this section, we evaluate the network performance of our

mRI, mRI-MP, and A-mRI algorithms in multi-AP mmWave

LANs. In addition, we also choose some common AP associ-

ation schemes as comparison points: 1) the strongest RSS AP
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connection scheme (StrongCon), where each client associates

to the AP with the strongest received signal strength and

maintains that association as it moves around the room, which

is the mechanism specified in the IEEE 802.11ad standard;

2) the dynamic channel probing scheme (ProbeCon) from

[14], where the client searches for the AP with the best

channel condition before every transmission, which has a high

probing overhead and frequent AP switching but provides

good blockage tolerance; and 3) a naive random AP pair

association scheme (RandCon), i.e., first randomly choosing a

pair of LoS APs for each client, and then randomly assigning

the primary and backup APs from the chosen pair.

A. Simulation settings

1) Network scenario: We consider a typical indoor scenario

in a lab room (16m×10m×3m), with a number of fixed

obstacles (e.g., furniture) that are modeled as cuboids and

placed on the floor. The center of each fixed obstacle follows

a Poisson point process with a specific density (λ = 0.1), the

width, length, and height follow truncated normal distributions

(W∼ T N (0.56, 0.08, 0.25, 1.25), L∼ T N (1.08, 0.18, 0.5,

1.75) and H∼ T N (1.2, 0.6, 0.5, 1.9)), and the orientation

follows a uniform distribution Θ ∼ U(0, π). Fig. 6 (a) shows

a scenario example with a number of generated fixed obstacles.

Then, by running the optimal multi-AP placement algorithm

in [7], we deploy the APs in specific positions such that the

network achieves full-coverage operation, e.g., the five APs

shown in Fig. 6 (a), and each randomly-located client can

find at least one LoS APs for high-rate communication. Here

each wireless device is viewed as a random and uniformly

distributed point in the 2-D area of a room and its height

follows the uniform distribution U (0.3, 1.5). Besides the initial

generated clients, the arrival of new clients and the departure

of existing clients follow a Poisson distribution, where the

expected time interval is set as 1 minute since each of our

simulation case will last about 20 minutes, and the threshold

ǫ for network reconfiguration is set to 0.2, i.e. a new global

AP assignment is computed only when 20% of the clients

have changed since the last global assignment. The distribution

parameters for obstacles and clients were chosen by using a

real-life lab environment as a guiding example. All length units

are in meters throughout the paper.

2) Mobility model: To model the mobility characteristics of

clients, who also act as moving obstacles, we adopt the mo-

bility modeling approach from [38], [39] (referred to as Kim

Kotz Kim model in Chapter 10.2 of [38]), which was shown

to generate realistic movement traces in WLANs since the

synthetic tracks highly match real tracks with a small relative

error. First, we generate 15 hotspot locations with different

popularity weights. For each moving obstacle or client, the

next destination point is determined by the popularity weights

of those hotspot locations, and the mobile entity moves on a

straight-line path from the current location to the next one.

Both the pause time at each destination point and the speed of

movement follow the log-normal distribution, where the speed

ln(v)∼N (-0.05, 0.69) (the mean is 1.21m/s) and pause time

ln(tp)∼N (3.15, 0.70) (the mean is 30.0s).

3) Obstacle model: The moving obstacles are modeled

as cuboids, where their lengths, widths and heights follow

truncated normal distributions (L∼ T N (0.5, 0.1, 0.2, 0.9),

W∼ T N (0.25, 0.05, 0.1, 0.5), and H∼ T N (1.68, 0.25, 1.4,

1.9)). Obstacle orientations follow the uniform distribution Θ
∼ U (0, π).

Fig. 6 (b)-(d) show some sample cases, where a number of

clients are distributed at their respective home locations within

the room (shown with blue triangles). By adopting mRI, mRI-

MP, and A-mRI schemes, we get the multi-AP association

result for each client in Fig. 6 (b), (c) and (d), respectively,

where each client connects to its assigned primary AP (shown

with red dashed line), and the assigned AP pair including the

backup AP is shown with the annotated numbers around the

client. Depending on different multi-AP selection algorithms,

and whether or not the mobility patterns are known, it is

observed that clients will be associated with different APs in

the same network scenario.

(a) (b)

(c) (d)

Fig. 6. (a) A mmWave WLAN scenario; (b) mRI results; (c) mRI-MP results;
(d) A-mRI results.

4) Other simulation parameters: All evaluations are done

at the mmWave frequency of 60 GHz with a 2.16 GHz

bandwidth, and the transmission power at AP side is 10

dBm. To build an accurate channel model for indoor mmWave

communication, we adopt a widely-used log-distance path

loss model extended to include multipath and shadowing

components:

L(d) = L(d0) + 10 · n · log10(
d

d0
) +XΩ +Xs [dB]. (21)

In Eq. (21), L(d) is the path loss in decibels at separation

distance d, L(d0) represents the path loss at a reference

distance d0, n is the path loss exponent. In the NLoS condition,

Xs represents a shadowing term resulting from the penetration

8

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 27,2022 at 15:24:46 UTC from IEEE Xplore.  Restrictions apply. 



loss of the signal traveling through an obstacle, and XΩ

represents the normal distribution of multipath fading, where

Ω is the standard deviation. Note that when the communication

link is in LoS condition, we also consider a fading coefficient

as the channel gain drawn from a known Rician distribution

(κdB = 5.57) based on [14], [40], which mimics a more

dynamic mmWave channel. Here we collect the average of

several sets of experimental estimations of path loss (including

the path loss exponent and distribution of multi-path fading),

where all experiments are performed with LoS connections

in the lab environment [3], and n and Ω are set as 2 and

4.68, respectively. The shadowing term Xs is determined from

obstacles’ locations, dimensions, and materials, based on [41].

According to IEEE 802.11ad protocol, we assume that each

mmWave AP adopts the single carrier PHY, which supports

12 modulation and coding schemes [8].

In what follows, we first randomly generate several network

scenarios with different obstacle and client distributions, and

then evaluate different network performance metrics with pro-

posed association approaches. By performing the simulation

with client mobility in network scenarios, each data point in

following figures is the averaged result of 60 simulation runs.

B. Network blockage tolerance

In this part, we evaluate whether or not our proposed

algorithms can maintain high-rate (i.e., LoS) connections

for each client in the presence of both fixed and moving

obstacles. During each simulation run, we periodically stop the

simulation and evaluate the network conditions. Here, network

blockage tolerance rate (BTR) [42] is adopted as the metric

for evaluation, which represents the percentage of evaluated

moments in which all clients have LoS connections out of all

evaluated moments.

First, we investigate how the client density affects the

network robustness. With the specific client-mobility factor η
= 0.3, we evaluate the performance of different AP association

schemes, and the results are reported in Fig. 7.
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Fig. 7. Network BTR vs. client density.

Fig. 7 shows the performance comparisons between our

algorithms and other existing AP association approaches.

Among all schemes, we observe that the network BTR de-

creases as the client density increases, which is because there

are more clients with mobility acting as moving obstacles,

which increases the overall likelihood of blockage. Compared

to RandCon and StrongCon, our algorithms offer higher block-

age tolerance, with a network BTR of around 80% even

with a high density of clients, while the network BTRs of

RandCon and StrongCon are only 54% and 40%, respectively,

at the same density. The StrongCon scheme shows the worst

performance since only the RSS is evaluated as the metric

to assign AP for each client without considering potential

blockage effects. It is observed that ProbeCon provides the

best blockage tolerance, albeit at the cost of each client

dynamically searching all available APs by probing channel

conditions on every transmission. However, it is noted that

our algorithms can achieve similarly high performance as

ProbeCon does, where the performance gap is less than 4%

for the mRI-MP scheme. Since our algorithms perform a static

assignment, they do not incur any probing overhead and, as

we show later, they offer better performance than ProbeCon

in other important dimensions.

We now focus on the performance comparison among

our different algorithms in Fig. 7. It is worth noting that

the network BTR of the mRI-MP scheme is significantly

higher than for the mRI scheme. Thus, having the knowledge

of mobility patterns of clients provides notable performance

gains, since this allows clients to associate with the best APs to

provide LoS connections at places where they are more likely

to go. Additionally, there is a little performance decrease (less

than 3%) with the A-mRI scheme as compared to the mRI

scheme, since the A-mRI scheme is designed to improve load

balancing across APs (as shown in Sec. V-D) but does so by

trading off some blockage tolerance, i.e., a few clients may

not associate to the APs with maximum robustness index.
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Fig. 8. LTP vs. client density.

We also evaluated the averaged LoS time percentage (LTP)

for each client, which is the percentage of evaluated simulation

moments at which a given client has a LoS connection out of

all evaluated moments. As shown in Fig. 8, we observe that

all of our algorithms provide good LTP performance (always

over 97% even with high client densities), which is nearly

the same as ProbeCon. Thus, in these simulations, high-rate

connectivity is maintained almost all of the time for each client

with our proposed AP association schemes.

Next, we investigate how the client-mobility factor η affects

the network robustness. We know that η denotes how frequent

the clients will leave home locations and move around, thus

the larger η indicates that clients have more potential to move.
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By performing different simulation cases with 15 clients, we

evaluate the network BTR of different schemes with increasing

η. As shown in Fig. 9, the performance of our algorithms is

always superior to that of StrongCon and RandCon, and is also

nearly as good as ProbeCon, particularly the mRI-MP scheme.

In addition, in comparing among our different algorithms, it

is observed that the mRI-MP scheme provides better network

robustness as compared to the AP association schemes without

considering mobility patterns of clients, such as the mRI and

A-mRI schemes. This result confirms that taking into account

the client-mobility information for AP association can provide

substantial benefits for network robustness.
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Fig. 9. Network BTR vs. client-mobility factor.

C. Throughput performance

In this part, we investigate the throughput performances of

the proposed schemes and the comparison schemes. Recall

that in the StrongCon scheme, each client associates to the AP

with the strongest RSS and maintains that association for all

data transmissions and in the ProbeCon approach, each client

associates to the best AP by probing the channel conditions

before every transmission. For RandCon and for our schemes,

each client is assigned to a primary AP and backup AP

according to a random selection strategy (RandCon) or using

our strategies defined in Section V. For these schemes, clients

track both primary and backup APs as they move around the

room, and fast switching is performed from the current AP to

the other AP whenever a blockage occurs.

To calculate the throughputs of these approaches, a few

parameters need to be chosen. For the ProbeCon scheme, a

fixed overhead of 2% is applied to every transmission, which

is in accordance with the results presented in [14]. Based

on [26]–[28], the overhead of beam tracking and switching

between primary and alternative links is 0.55–0.7%. For our

schemes and RandCon, when the client is stationary and a

LoS connection to the current AP is maintained, there is no

overhead added in the simulations. In these two schemes, while

clients are moving or if the client is stationary but the LoS

connection to the current AP is lost, a conservative overhead

of 0.7% is applied to every transmission. Note that, due to

the use of narrow-beam directional antennas, the interference

effects among different transmission links are ignored. Prior

work has shown that the impact of side lobe interference is

small. Furthermore, any such impacts should affect all schemes

in a similar way so that relative performances among them

would be substantially unchanged by adding side lobe effects.

First, with the specific η = 0.3 and varied client densities,

we evaluate the average user throughput that indicates the

averaged data bytes received by each user per second.
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Fig. 10. Throughput vs. client density.

Fig. 10 shows the throughput performance over different

multi-AP association schemes. As is expected, the average

user throughput decreases when the number of client increases

since more clients are going to share the same mmWave AP.

It is observed that our schemes maintain higher user through-

put performance than the other approaches. In particular, as

compared to ProbeCon, the average user throughput can be

improved by around 12%, 6%, and 3% with our mRI-MP,

mRI, and A-mRI schemes, respectively. This is because our

approaches eliminate the overhead for dynamically probing

the channel condition every time, by statically assigning APs

with the maximum LoS probability for each client based on

the detailed blockage analysis of the environment.
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Fig. 11. Throughput vs. client-mobility factor.

Additionally, we evaluate the impact of client-mobility

factor η on the throughput performance with Nu = 15 and the

results are shown in Fig. 11. We observe that the throughput

drops slightly as η increases since more clients tend to

move around in the room, which aggravates the blockage

effects. However, our proposed schemes can still maintain

much higher user throughput and outperform other approaches,

especially the mRI-MP scheme which makes use of knowledge

of the mobility patterns of clients.

D. Fairness and load balancing

In addition to the blockage tolerance and throughput perfor-

mance, here we also show some secondary benefits brought by

our approach. First, we investigate whether or not it can offer
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fair resource allocations for clients in mmWave WLANs. The

time-based fairness index is used to evaluate if all clients can

be allocated equal channel occupancy time, and the fairness

metric is defined as F = (
∑

i∈U

Ti)
2/(Nu ·

∑

i∈U

Ti
2), where Ti

is the time slot duration allocated to each client, and Nu is

the number of clients.
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Fig. 12. Fairness comparisons among different schemes.

With Nu = 15 and η = 0.3, Fig. 12 shows that our

approaches have significantly better fairness than the other

schemes. In particular, the fairness indexes of all of our

proposed schemes are above 0.9, while the other schemes are

all below 0.75 in fairness.

We also evaluate the load balancing performance with

proposed schemes. The maximum load utilization Lmax (see

Sec. IV-A) is used as the metric to qualitatively reflect the

congestion of network, where a higher Lmax causes more

network congestion and unbalanced resource usage. Here, the

data demand of each client is assumed to follow the normal

distribution N (Dµ, Dσ). As the results show in Fig. 13, all

of our schemes provide better load balancing across APs

than other approaches, because we included consideration

of the load in the proposed HRS and AHRS algorithms.

With the growth of expected traffic demand of each client,

the performance benefits provided by our proposed schemes

become more obvious, while other schemes are likely to cause

more severe network congestion, because clients have a higher

likelihood of selecting the same AP for their connections.
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Fig. 13. Lmax vs. expected data demand of each client (Dσ = 0.3).

To better illustrate the load balancing benefits of the A-

mRI scheme, we vary η and evaluate the performance of

mRI and A-mRI, which both operate under the assumption

of no knowledge of client mobility patterns. With Dµ = 2,

Dσ = 0.3, and two different client densities, the results are

reported in Fig. 14. First, it is observed that mRI scheme does

not perform well when η becomes large. This is because, as

η increases, the client-mobility tolerance PCMT becomes a

more dominant factor in the derived robustness index, and

without any mobility pattern information, most of clients

are likely to be assigned with the same APs having the

similar PCMT , which causes an uneven AP-load distribution.

However, as is expected, the A-mRI scheme always offers

good load balancing across APs, because it incorporates the

load as a primary factor in determining the association. The

performance benefits of A-mRI become larger as both η and

client density increase. Thus, if load balancing is a primary

concern in some dynamic and large-scale network scenarios,

it is advisable to adopt the A-mRI scheme for AP association.

However, as a trade-off, the blockage tolerance and throughput

performance might decrease slightly, as was shown in Fig. 7

and Fig. 10.
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Fig. 14. Lmax vs. client-mobility factor η with 15 and 25 clients.

E. Performance of AHRS approach

In the AHRS approach (see Sec. IV.B), both the optimal

method (AHRSopt) and the heuristic A-mRI can be used

to obtain results. Here we compare the performance of the

heuristic scheme against the optimal solution. With different

obstacle distributions, we generate network scenarios with

different number of APs and clients (with η = 0.3). As shown

in Fig. 15, it is observed that A-mRI provides near-optimal

results, with performance gaps of less than 2% even for larger

networks.
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Fig. 15. Comparisons between optimal method and Alg. 2 vs. network scale.

However, when comparing the running time to compute an

AP association for the two methods5, we found that the exe-

cution time increases rapidly with network size. The running

time ranges from 4.74 minutes to 37.52 minutes over the data

5We evaluate the running time on an Intel(R) Core(TM) i5-6200U 2.3GHz
CPU workstation with 2 cores and 4 logical processors.
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points shown in Figure 15, which makes it impractical for

timely configuration in real network scenarios. By comparison,

A-mRI only takes 3.87 seconds to 16.96 seconds over the same

data points. Thus, A-mRI has execution times that are practical

while experiencing almost no drop-off in blockage tolerance,

as compared to the optimal scheme.

F. Discussion

Here we summarize the key findings from this section:

• When comparing a basic static method (mRI) against

the dynamic channel-probing approach, we see that the

static approach can achieve higher throughput (due to

lower run-time overhead) with only a small reduction in

blockage tolerance.

• If client mobility patterns are known, this information

can be used to boost the performance of the static

approach further, resulting in a more than 10% increase in

throughput compared to dynamic probing while achieving

almost the same blockage tolerance.

• All our proposed approaches achieve significantly better

fairness and load balancing than existing approaches for

typical cases.

• For scenarios with high mobility and a load balancing

requirement, our A-mRI scheme is a better choice since

it always maintains very good load balancing across APs

at the cost of a modest reduction in blockage tolerance.

VII. CONCLUSION

In this paper, we studied the multi-AP association problem

in mmWave WLANs. Based on a detailed analysis of blockage

tolerance under mobility conditions, several novel association

schemes were proposed to maximize connection reliability

for all clients in a WLAN. Numerical simulation results

showed that our AP association policies can substantially

improve network robustness, user throughput, load balancing,

and fairness, as compared to other AP association methods.
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