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Monoclinic gallium oxide (B-Ga 2 O 3 ) has recently attracted increasing attention
due to the availability of high quality, large diameter single crystals from mature melt
growth methods and its attractive material properties of wide E G of 4.6-4.9 eV, good
electron mobility (>200 cm 2 /Vs) and estimated E ¢ of~ 8 MV/cm. Compared to
other ultra-wide bandgap materials, the inexpensive substrates lower the
manufacturing cost for -Ga 2 O 3 power devices. Applications of deep-UV
detectors with solar blindness include inspection of high voltage transmission lines for
corona and partial discharges, detection of fires and various defense systems. Si- and
GaAsbased UV PDs are not truly solar-blind, as additional, bulky visible-light blocking
filters are required. In this short review we discuss the use of bulk and exfoliated -Ga
2 O 3 for these applications and relate this to the basic surface and response of the
material to high temperatures, radiation exposure and typical semiconductor
processing steps. The material can easily be cleaved along the (100) surface and
layers with (100)A surface termination have higher energy than the (100)B termination.
The (100)B cleavage plane is the favorable one, observed experimentally.
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Abstract

Monoclinic gallium oxide (8-Ga203) has recently attracted increasing attention due to the
availability of high quality, large diameter single crystals from mature melt growth methods and
its attractive material properties of wide Eg of 4.6-4.9 eV, good electron mobility (>200 cm?/V's)
and estimated E. of~ 8 MV/cm. Compared to other ultra-wide bandgap materials, the
inexpensive substrates lower the manufacturing cost for 3-Ga>O3 power devices. Applications of
deep-UV detectors with solar blindness include inspection of high voltage transmission lines for
corona and partial discharges, detection of fires and various defense systems. Si- and GaAs-
based UV PDs are not truly solar-blind, as additional, bulky visible-light blocking filters are
required. In this short review we discuss the use of bulk and exfoliated 3-Ga>O; for these
applications and relate this to the basic surface and response of the material to high
temperatures, radiation exposure and typical semiconductor processing steps. The material can
easily be cleaved along the (100) surface and layers with (100)A surface termination have
higher energy than the (100)B termination. The (100)B cleavage plane is the favorable one,
observed experimentally.

Figures and tables

Ultra-wide bandgap semiconductors with bandgaps > 4eV are being developed for more
efficient power electronic switching systems and for truly solar-blind UV detection. The
development of power electronics based on wide bandgap semiconductors is attracting much
interest because of the potential for significantly higher switching efficiency and ability to operate
at higher powers and temperatures. Within the next decade, about 80% of all US electricity is
expected to flow through power electronics. These include power distribution systems, electric
vehicle fast chargers, data center power supplies, ship power systems, and renewable
wind/solar energy integration. SiC and GaN power electronics are now commercialized and
provide more efficient performance than conventional Si-based devices. The combination of
high breakdown voltage, low on-state resistance and lower switching losses is improved in the
ultra-wide bandgap semiconductors, such as Ga:Os, diamond, and AIN [1-6]. This leads to their
high Baliga’s figure of merit (BFOM), defined as e.u.E.°, where ¢, y, and E; are the dielectric
constant, carrier mobility, and critical breakdown field strength, respectively [7-11].

Among these ultra-wide bandgap semiconductors, monoclinic gallium oxide (8-Ga20s3)is
attractive because of its large breakdown field, shown in Figure 1.
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Figure 1. Breakdown field versus bandgap for various semiconductors. The monoclinic
polytype of Ga.Os provides higher voltage capability than either of the commercialized
semiconductors GaN and SiC. This allows high voltage capability, efficient switching (low on-
state resistance, Ron), high temperature operation and low cost of production due to the ability
to grow large melt grown crystals. The a-polytype of Ga,O3 has even larger bandgap (5.1 eV)
and is almost lattice matched to sapphire [12,13]. It is also possible to grow (AlxGa1x)203 ,
(InxGa1x)203 alloys, spanning a bandgap rage of 3-8.5 eV. Disadvantages include the low
thermal conductivity of Ga>,O3 and the absence of practical p-type doping.
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Figure 2. Gallium Oxide surface and cleaving. (a) Conventional unit cell of - Ga>O3 with (b)
(100)B and (c)(100)A surface terminated bilayers. In this polytype there are two symmetrically
inequivalent Ga atoms indicated as Ga1 and Ga2, which have octahedral and tetrahedral
coordination, respectively. There are three inequivalent O atoms indicated as O1, O2 and O3.
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The material can easily be cleaved along (100) surface and layers with (100)A surface

termination having higher energy than the (100)B termination. The (100)B cleavage plane is the

favorable one, observed experimentally. Both bulk and exfoliated devices can be fabricated.
Electrode Oxide

Depletion region contour n

Depletion region contour n

Figure 3. Mitigation of field crowding by edge termination methods. To prevent electric field
breakdown at the edge of Schottky contacts on rectifier structures, various edge termination
methods such as extending the electrode over a dielectric layer, called a field plate (illustrated)
[7-11].
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Figure 4.Metal contacts on Ga,0; show some Fermi level pinning. The Schottky—Mott theory
for ideal metal-semiconductor contacts shows barrier height should be given by ®B = ®M- Xs
where ®B is the Schottky barrier height, ®M is the work function of the metal Xs is the electron
affinity of semiconductor. Experimentally it is observed that (100) B-Ga»O3 shows a strong
positive correlation between barrier heights and work function, while (-201) B-Ga>Os; shows no
discernable correlation. The (010) B-Ga20s3 orientation shows a mixed correlation. Fermi level
pinning on (-201) surface is due to its higher oxygen dangling bond density and oxygen vacancy
concentration.



SCIENCE
TALKS

0 L
E 20}
<
E
> 40r
‘w
5 60
S 60+
=
[(}]
£ 80 —=—D =200um
'S L —e—D =150um
_1 00 1 1 1 1
-2500 -2000 -1500 -1000 -500 0

Voltage (V)

Figure 5. Ga;0; Field-Plated Diode with Vgp of 2300 V. There have been a variety of high
voltage, large area vertical rectifiers and MOSFETs demonstrated, with voltages up to ~4kV and
separately, currents in single scan mode up to 135A [6-11]. Schottky barrier diodes of
corundum-structured gallium oxide have shown on-resistance of 0.1 mQ cm? grown by mist
epitaxy. Heterojunctions have been demonstrated using Cu2O, NiO or IrO, as the p-type oxide
[14-17]. Lateral field effect transistors are also promising for rf applications, with high Ecrit for
ultra-low total dynamic switch power losses, chip-size reduction and fast switching frequency
with reduced passive energy storage requirements at circuit level. It is promising that
experimentally over half of predicted mobility and Ecrit has already been achieved, with an
average Ecrit of ~4 MV cm™ achieved by multiple groups for lateral Ga.O; FETs [1,4,6].
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Figure 6. Exfoliation process for Ga.0:.. It is also possible to make devices on mechanically
exfoliated flakes [18-28].
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Figure 7.Exfoliated layers retain excellent crystalline properties. Raman spectra show no
perturbation by the exfoliation process, while TEM shows good crystal quality. The angle
between the [001] and [100] was 103.5° and the distances between the (200) and between the
(002) were consistent with literature values. The flakes were exfoliated along the (100) plane.
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Figure 8. Back-gated field effect transistors at high temperature. I-Vs of the TFTs at the
elevated operating temp. Ips was modulated by Vs with good saturation and sharp pinch-off
characteristics. n-type channel. No electrical breakdown up to 250 °C. These devices can
deliver high powers at elevated temperatures, which has not been demonstrated in low-
dimensional devices. After a month of storage in air ambient there no degradation, with
excellent air-stability [18].
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Figure 9. Gate field plated flake field effect transistors. Employing a field plate enables a
significantly larger breakdown voltages to be achieved in these lateral devices.
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Figure 10. Exposure to F-based plasmas can tune the thickness of the flake and the
threshold voltage of transistors [22,23].
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Figure 11. Solar-blind photodetectors with graphene electrodes. MSM photodetectors (PD)
can suffer from low responsivity. The MSM PDs with graphene electrodes exhibited excellent
operating characteristics including responsivity (~29.8 A/W), PDCR (~105%), rejection ratio
(R254 nm/R365 nm, ~9.4x103), detectivity (~10'% Jones), and operating speed, compared with
MSM PDs with opaque Ni/Au metal electrodes. Minimization of shading by the graphene
electrode allows maximum exposure to the incident photons, suggesting potential for UV
applications. Transition between MSM-type (dark low leakage current by SBH) and
photoconductive-type (UV-C photocurrent + injected current) because graphene is UV-

transparent [29].
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Figure 12.Comparison of carrier loss by different forms of radiation. Alpha particles are the
most damaging, followed by protons, neutrons, electrons and gamma rays [30]. The main
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conclusions are that useful devices can be made from bulk crystals, epi and mechanical
exfoliation of B-Ga»O3 The main devices are rectifiers, rf transistors, UV photodetectors. For
power devices, edge termination design is improving, with premature breakdown still occurring
at the contact edge. Over 4kV Vg demonstrated with a >30 um drift layer. Other demonstrations
of forward currents as high as135 A achieved in single-sweep voltage mode. Thermal
management also needs to be incorporated. Quasi-2D (3-Ga20s is an appropriate candidate for
solar-blind PDs and high voltage nano electronics. initial data on p, e, n, a and y- irradiation
show similar or higher radiation resistance to GaN devices under the same conditions. All the
initial work on GaOs indicates its application to high power nano-electronic devices for harsh
environments and deep-UV photodetectors as well as the miniaturization of power circuits and
cooling systems in nano-electronics.
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