

Science Talks

Exfoliated and Bulk β -Gallium Oxide Electronic and Photonic Devices

--Manuscript Draft--

Manuscript Number:	SCITALKS-D-22-00010
Full Title:	Exfoliated and Bulk β -Gallium Oxide Electronic and Photonic Devices
Article Type:	VSI: ICASS 2021 (Invited)
Keywords:	Gallium Oxide; exfoliation; power electronics; photodetectors; wide bandgap semiconductors; cleaving; rectifiers; edge termination; radiation damage
Corresponding Author:	Steve J. Pearton University of Florida UNITED STATES
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	University of Florida
Corresponding Author's Secondary Institution:	
First Author:	Steve J. Pearton
First Author Secondary Information:	
Order of Authors:	Steve J. Pearton S. Oh S. Kim Jihyun Kim F. Ren
Order of Authors Secondary Information:	
Abstract:	Monoclinic gallium oxide (β -Ga ₂ O ₃) has recently attracted increasing attention due to the availability of high quality, large diameter single crystals from mature melt growth methods and its attractive material properties of wide E _G of 4.6–4.9 eV, good electron mobility (>200 cm ² /Vs) and estimated E _c of ~ 8 MV/cm. Compared to other ultra-wide bandgap materials, the inexpensive substrates lower the manufacturing cost for β -Ga ₂ O ₃ power devices. Applications of deep-UV detectors with solar blindness include inspection of high voltage transmission lines for corona and partial discharges, detection of fires and various defense systems. Si- and GaAs-based UV PDs are not truly solar-blind, as additional, bulky visible-light blocking filters are required. In this short review we discuss the use of bulk and exfoliated β -Ga ₂ O ₃ for these applications and relate this to the basic surface and response of the material to high temperatures, radiation exposure and typical semiconductor processing steps. The material can easily be cleaved along the (100) surface and layers with (100)A surface termination have higher energy than the (100)B termination. The (100)B cleavage plane is the favorable one, observed experimentally.
Additional Information:	
Question	Response

Exfoliated and Bulk β -Gallium Oxide Electronic and Photonic Devices

S.J. Pearton ^{1*}, S. Oh², S. Kim², Jihyun Kim² and F.Ren³

¹ Department of Materials Science and Engineering, University of Florida, Gainesville FL USA

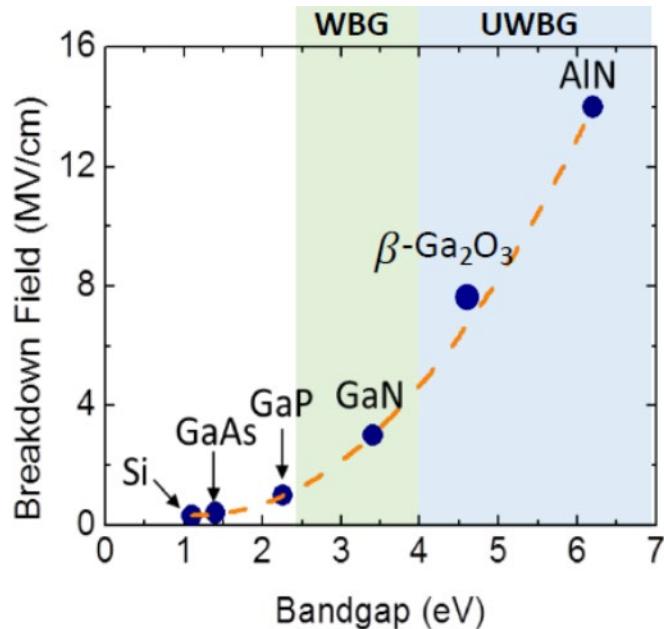
² Department of Chemical and Biological Engineering, Korea University, Seoul, Korea

³ Department of Chemical Engineering, University of Florida, Gainesville FL USA

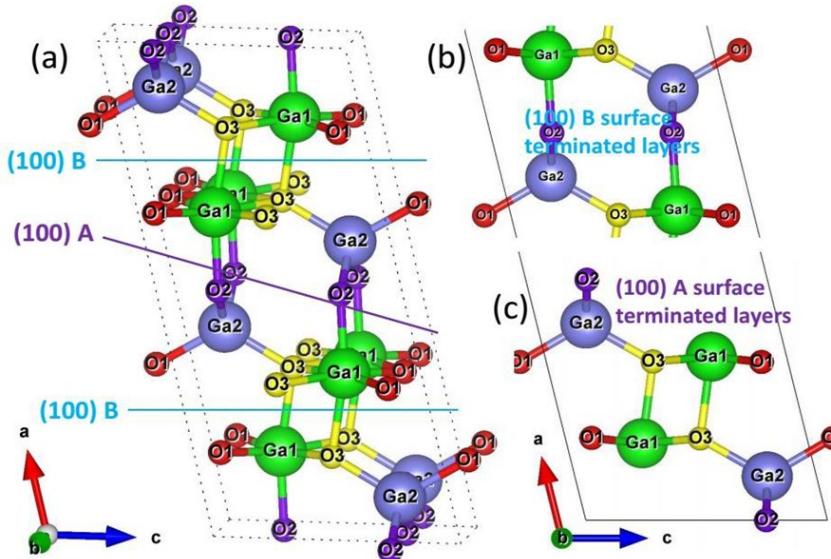
Corresponding author's email address: spear@mse.ufl.edu

Keywords

Gallium Oxide, exfoliation, power electronics, photodetectors, wide bandgap semiconductors, cleaving, rectifiers, edge termination, radiation damage


Abstract

Monoclinic gallium oxide (β -Ga₂O₃) has recently attracted increasing attention due to the availability of high quality, large diameter single crystals from mature melt growth methods and its attractive material properties of wide E_G of 4.6–4.9 eV, good electron mobility (>200 cm²/Vs) and estimated E_c of ~ 8 MV/cm. Compared to other ultra-wide bandgap materials, the inexpensive substrates lower the manufacturing cost for β -Ga₂O₃ power devices. Applications of deep-UV detectors with solar blindness include inspection of high voltage transmission lines for corona and partial discharges, detection of fires and various defense systems. Si- and GaAs-based UV PDs are not truly solar-blind, as additional, bulky visible-light blocking filters are required. In this short review we discuss the use of bulk and exfoliated β -Ga₂O₃ for these applications and relate this to the basic surface and response of the material to high temperatures, radiation exposure and typical semiconductor processing steps. The material can easily be cleaved along the (100) surface and layers with (100)A surface termination have higher energy than the (100)B termination. The (100)B cleavage plane is the favorable one, observed experimentally.


Figures and tables

Ultra-wide bandgap semiconductors with bandgaps > 4 eV are being developed for more efficient power electronic switching systems and for truly solar-blind UV detection. The development of power electronics based on wide bandgap semiconductors is attracting much interest because of the potential for significantly higher switching efficiency and ability to operate at higher powers and temperatures. Within the next decade, about 80% of all US electricity is expected to flow through power electronics. These include power distribution systems, electric vehicle fast chargers, data center power supplies, ship power systems, and renewable wind/solar energy integration. SiC and GaN power electronics are now commercialized and provide more efficient performance than conventional Si-based devices. The combination of high breakdown voltage, low on-state resistance and lower switching losses is improved in the ultra-wide bandgap semiconductors, such as Ga₂O₃, diamond, and AlN [1-6]. This leads to their high Baliga's figure of merit (BFOM), defined as $\varepsilon \cdot \mu \cdot E_c^3$, where ε , μ , and E_c are the dielectric constant, carrier mobility, and critical breakdown field strength, respectively [7-11].

Among these ultra-wide bandgap semiconductors, monoclinic gallium oxide (β -Ga₂O₃) is attractive because of its large breakdown field, shown in Figure 1.

Figure 1. Breakdown field versus bandgap for various semiconductors. The monoclinic polytype of Ga_2O_3 provides higher voltage capability than either of the commercialized semiconductors GaN and SiC. This allows high voltage capability, efficient switching (low on-state resistance, R_{on}), high temperature operation and low cost of production due to the ability to grow large melt grown crystals. The α -polytype of Ga_2O_3 has even larger bandgap (5.1 eV) and is almost lattice matched to sapphire [12, 13]. It is also possible to grow $(\text{Al}_x\text{Ga}_{1-x})_2\text{O}_3$, $(\text{In}_x\text{Ga}_{1-x})_2\text{O}_3$ alloys, spanning a bandgap range of 3-8.5 eV. Disadvantages include the low thermal conductivity of Ga_2O_3 and the absence of practical p-type doping.

Figure 2. Gallium Oxide surface and cleaving. (a) Conventional unit cell of β - Ga_2O_3 with (b) (100)B and (c)(100)A surface terminated bilayers. In this polytype there are two symmetrically inequivalent Ga atoms indicated as Ga1 and Ga2, which have octahedral and tetrahedral coordination, respectively. There are three inequivalent O atoms indicated as O1, O2 and O3.

The material can easily be cleaved along (100) surface and layers with (100)A surface termination having higher energy than the (100)B termination. The (100)B cleavage plane is the favorable one, observed experimentally. Both bulk and exfoliated devices can be fabricated.

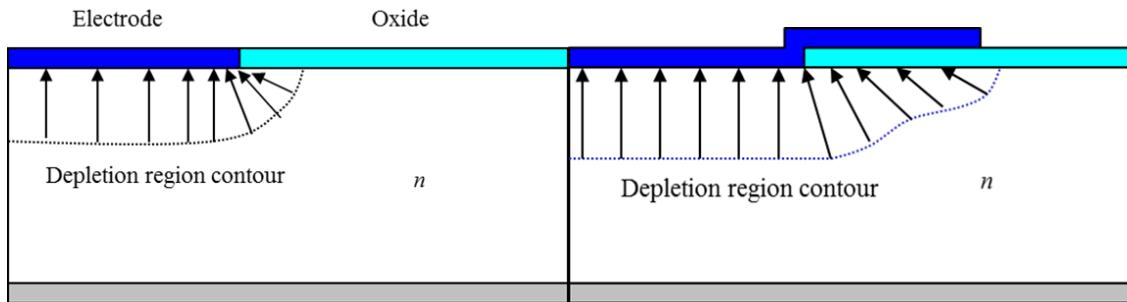


Figure 3. **Mitigation of field crowding by edge termination methods.** To prevent electric field breakdown at the edge of Schottky contacts on rectifier structures, various edge termination methods such as extending the electrode over a dielectric layer, called a field plate (illustrated) [7-11].

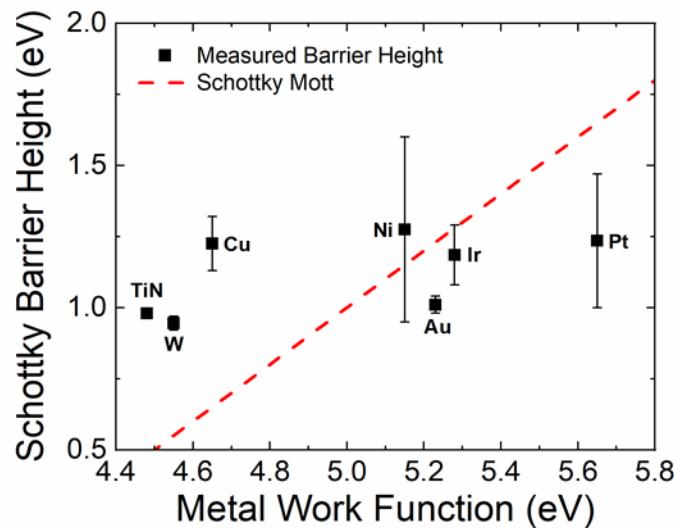


Figure 4. **Metal contacts on Ga_2O_3 show some Fermi level pinning.** The Schottky–Mott theory for ideal metal–semiconductor contacts shows barrier height should be given by $\Phi_B = \Phi_M - X_s$ where Φ_B is the Schottky barrier height, Φ_M is the work function of the metal X_s is the electron affinity of semiconductor. Experimentally it is observed that (100) $\beta\text{-}\text{Ga}_2\text{O}_3$ shows a strong positive correlation between barrier heights and work function, while (-201) $\beta\text{-}\text{Ga}_2\text{O}_3$ shows no discernable correlation. The (010) $\beta\text{-}\text{Ga}_2\text{O}_3$ orientation shows a mixed correlation. Fermi level pinning on (-201) surface is due to its higher oxygen dangling bond density and oxygen vacancy concentration.

Figure 5. **Ga₂O₃ Field-Plated Diode with V_{BD} of 2300 V.** There have been a variety of high voltage, large area vertical rectifiers and MOSFETs demonstrated, with voltages up to \sim 4kV and separately, currents in single scan mode up to 135A [6-11]. Schottky barrier diodes of corundum-structured gallium oxide have shown on-resistance of $0.1 \text{ m}\Omega \text{ cm}^2$ grown by mist epitaxy. Heterojunctions have been demonstrated using Cu₂O, NiO or IrO₂ as the p-type oxide [14-17]. Lateral field effect transistors are also promising for rf applications, with high Ecrit for ultra-low total dynamic switch power losses, chip-size reduction and fast switching frequency with reduced passive energy storage requirements at circuit level. It is promising that experimentally over half of predicted mobility and Ecrit has already been achieved, with an average Ecrit of $\sim 4 \text{ MV cm}^{-1}$ achieved by multiple groups for lateral Ga₂O₃ FETs [1,4,6].

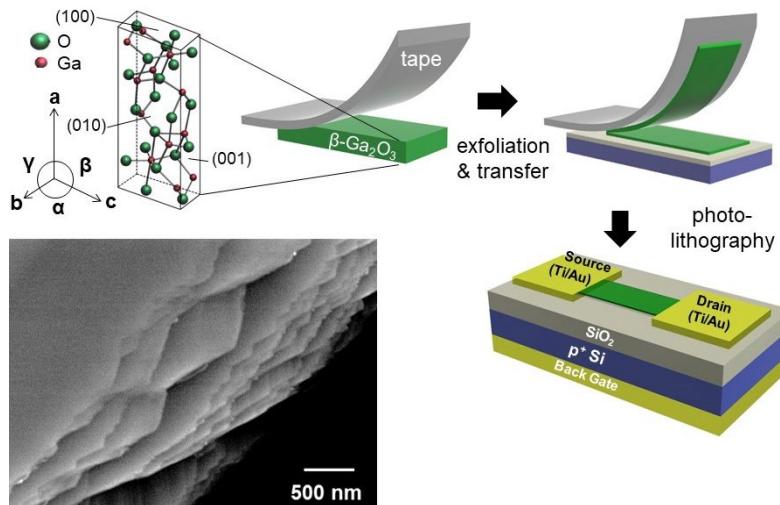
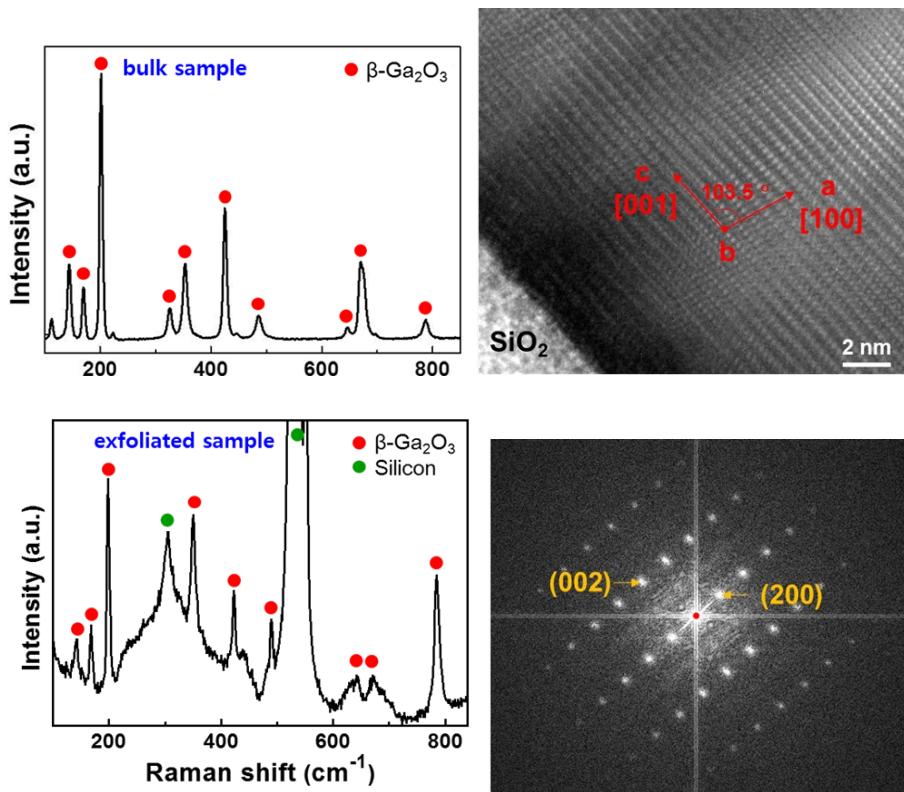



Figure 6. **Exfoliation process for Ga₂O₃.** It is also possible to make devices on mechanically exfoliated flakes [18-28].

Figure 7. Exfoliated layers retain excellent crystalline properties. Raman spectra show no perturbation by the exfoliation process, while TEM shows good crystal quality. The angle between the [001] and [100] was 103.5° and the distances between the (200) and between the (002) were consistent with literature values. The flakes were exfoliated along the (100) plane.

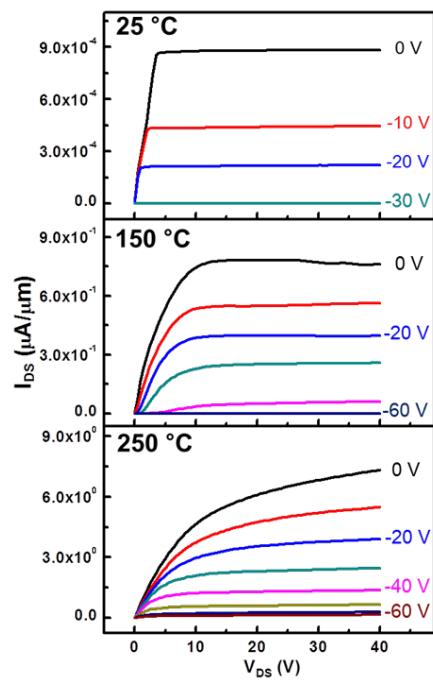


Figure 8. **Back-gated field effect transistors at high temperature.** I-Vs of the TFTs at the elevated operating temp. I_{DS} was modulated by V_{GS} with good saturation and sharp pinch-off characteristics. n-type channel. No electrical breakdown up to 250 °C. These devices can deliver high powers at elevated temperatures, which has not been demonstrated in low-dimensional devices. After a month of storage in air ambient there no degradation, with excellent air-stability [18].

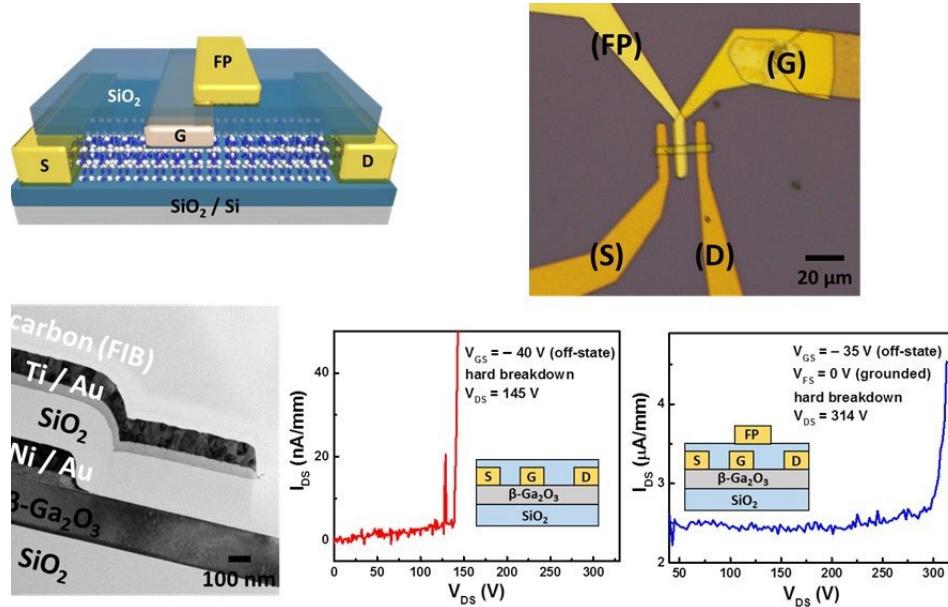
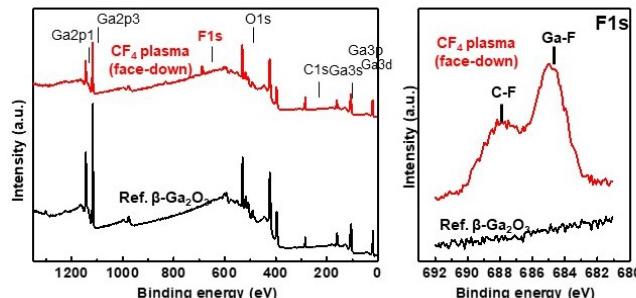



Figure 9. **Gate field plated flake field effect transistors.** Employing a field plate enables a significantly larger breakdown voltages to be achieved in these lateral devices.

XPS spectra of pristine and CF_4 plasma treated $\beta\text{-Ga}_2\text{O}_3$

V_{th} shift of $\beta\text{-Ga}_2\text{O}_3$ bottom gate FET \rightarrow E/D mode (inverter)

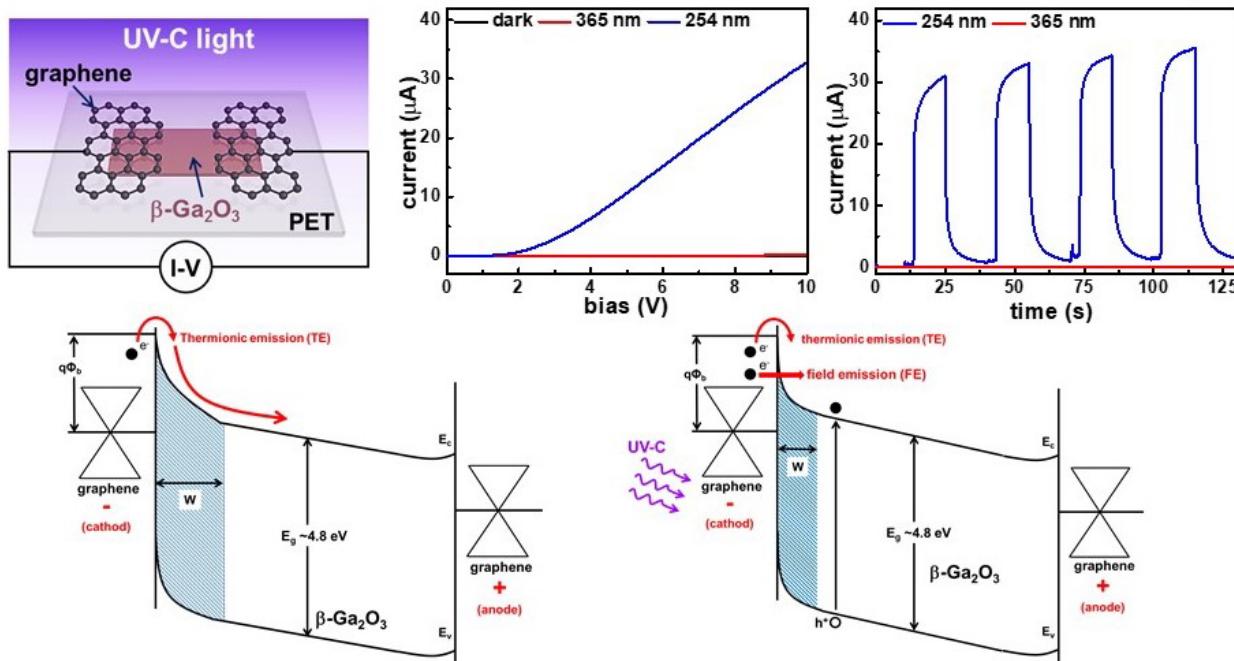
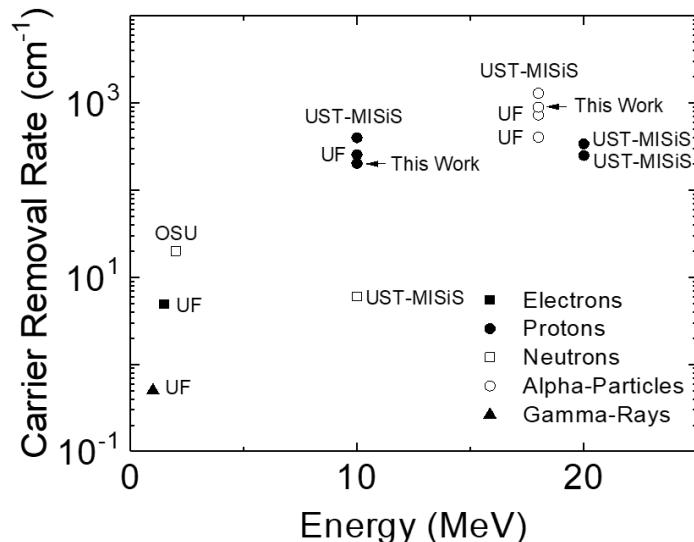




Figure 10. **Exposure to F-based plasmas can tune the thickness of the flake and the threshold voltage of transistors** [22,23].

Figure 11. Solar-blind photodetectors with graphene electrodes. MSM photodetectors (PD) can suffer from low responsivity. The MSM PDs with graphene electrodes exhibited excellent operating characteristics including responsivity ($\sim 29.8 \text{ A/W}$), PDCR ($\sim 10^{6\%}$), rejection ratio ($R_{254 \text{ nm}}/R_{365 \text{ nm}}$, $\sim 9.4 \times 10^3$), detectivity ($\sim 10^{12} \text{ Jones}$), and operating speed, compared with MSM PDs with opaque Ni/Au metal electrodes. Minimization of shading by the graphene electrode allows maximum exposure to the incident photons, suggesting potential for UV applications. Transition between MSM-type (dark low leakage current by SBH) and photoconductive-type (UV-C photocurrent + injected current) because graphene is UV-transparent [29].

Figure 12. Comparison of carrier loss by different forms of radiation. Alpha particles are the most damaging, followed by protons, neutrons, electrons and gamma rays [30]. The main

conclusions are that useful devices can be made from bulk crystals, epi and mechanical exfoliation of β -Ga₂O₃. The main devices are rectifiers, rf transistors, UV photodetectors. For power devices, edge termination design is improving, with premature breakdown still occurring at the contact edge. Over 4kV V_B demonstrated with a >30 μ m drift layer. Other demonstrations of forward currents as high as 135 A achieved in single-sweep voltage mode. Thermal management also needs to be incorporated. Quasi-2D β -Ga₂O₃ is an appropriate candidate for solar-blind PDs and high voltage nano electronics. Initial data on p, e, n, α and γ -irradiation show similar or higher radiation resistance to GaN devices under the same conditions. All the initial work on Ga₂O₃ indicates its application to high power nano-electronic devices for harsh environments and deep-UV photodetectors as well as the miniaturization of power circuits and cooling systems in nano-electronics.

CRediT author statement

Stephen Pearton: Writing- Reviewing and Editing, **S. Oh:** Conceptualization, Methodology, **S. Kim:** Data curation, **Jihyun Kim:** Conceptualization, Investigation, **Fan Ren:** Supervision, Writing- Reviewing and Editing.

Acknowledgments

Funding: This work was funded by the Defense Threat Reduction Agency (DTRA) as part of the Interaction of Ionizing Radiation with Matter University Research Alliance (IIRM-URA) under contract number HDTRA1-20-2-0002. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. The work at UF was also supported by NSF DMR 1856662 (James Edgar).

Declaration of interests

Please tick the appropriate statement below and declare any financial interests/personal relationships which may affect your work in the box below.

- The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
- The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

References

1. S. Pearton, F. Ren, M. Tadje and J. Kim, "Perspective: Ga₂O₃ for ultra-high power rectifiers and MOSFETs," *Journal of Applied Physics*, 124, 220901 (2018). <https://doi.org/10.1063/1.5062841>
2. H. Peelaers, J. Lyons, J. Varley and C. Van de Walle, "Deep acceptors and their diffusion in Ga₂O₃," *APL Materials*, 7, 022519 (2019). <https://doi.org/10.1063/1.5063807>
3. X. Chen, F. Ren, S. Gu and J. Ye, "Review of gallium-oxide-based solar-blind ultraviolet photodetectors," *Photonics Research*, 7, 381 (2019). <https://doi.org/10.1364/PRJ.7.000381>
4. H.W. Xue, Qi Ming He, Guang Zhong Jian, Shi Bing Long, Tao Pang and Ming Liu, An Overview of the Ultrawide Bandgap Ga₂O₃ Semiconductor-Based Schottky Barrier Diode for Power Electronics Application", *Nanoscale Research Lett.* 13, 290 (2018). <https://doi.org/10.1186/s11671-018-2712-1>
5. Wenshen Li, Zongyang Hu, Kazuki Nomoto, Zexuan Zhang, Jui-Yuan Hsu, Quang Tu Thieu, Kohei Sasaki, Akito Kuramata, Debdeep Jena and Huili Grace Xing, "1230 V β -

Ga₂O₃ trench Schottky barrier diodes with an ultra-low leakage current of <1 μA/cm²”, Appl. Phys. Lett. 113, 202101 (2018), <https://doi.org/10.1063/1.5052368>

6. S. Pearton, J. Yang, P. Carry, F. Ren, J. Kim, M. Tadjer and M. Mastro, "A review of Ga₂O₃ materials, processing, and devices," *Applied Physics Reviews*, 5, 011301, (2018) <https://doi.org/10.1063/1.5006941>
7. W. Li, K. Nomoto, Z. Hu, D. Jena and H. Xing, "Field-plated Ga₂O₃ trench Schottky barrier diodes with a BV²/Ron,sp of up to 0.95 GW/cm²," *IEEE Electron Device Letters*, v 41, 107 (2020). DOI 10.1109/LED.2019.2953559
8. X. Xia, N. Xian, C. Fares, R. Sharma, M. Law, F. Ren and S. Pearton, "Nitrogen Ion Implanted Resistive Regions for Edge Termination of Vertical Ga₂O₃ Rectifiers," *J. Vacuum Sci. Technol. A*, 39, 063405 (2021). <https://doi.org/10.1116/6.0001347>
9. R. Sharma, M. Xian, C. Fares, M. T. M. Law, K. Hobart, F. Ren and S. Pearton, "Effect of probe geometry during measurement of >100 A Ga₂O₃ vertical rectifiers," *Journal of Vacuum Science Technology A*, 39, 013406 (2021). <https://doi.org/10.1116/6.0000815>
10. J. Yang, F. Ren, M. Tadjer, S. Pearton and A. Kuramata, "Ga₂O₃ Schottky rectifiers with 1 ampere forward current, 650 V reverse breakdown and 26.5 MW.cm⁻² figure-of-merit, *AIP Advances*, 8, 055026 (2018). <https://doi.org/10.1063/1.5034444>
11. W. Li, K. Nomoto, Z. Hu, D. Jena and H. Xing, "Guiding Principles for Trench Schottky Barrier Diodes Based on Ultrawide Bandgap Semiconductors: A Case Study in Ga₂O₃," *IEEE Transactions Electron Devices*, 67, 3938 (2020). doi: 10.1109/TED.2020.3003292
12. M. Oda, Rie Tokuda, Hitoshi Kambara, Tomochika Tanikawa, Takahiro Sasaki and Toshimi Hitora, "Schottky barrier diodes of corundum-structured gallium oxide showing on-resistance of 0.1 mΩ cm² grown by mist epitaxy", *Appl Phys Express* 9, 021101 (2016), <https://doi.org/10.7567/APEX.9.021101>
13. K. Kaneko, Shizuo Fujita and Toshimi Hitora, "A power device material of corundum-structured α-Ga₂O₃ fabricated by mist epitaxy", *Jpn J Appl Phys* 57, 02CB18 (2018), <https://doi.org/10.7567/JJAP.57.02CB18>
14. T. Watahiki, Yohei Yuda, Akihiko Furukawa, Mikio Yamamuka, Yuki Takiguchi, and Shinsuke Miyajima, *Heterojunction p-Cu₂O/n-Ga₂O₃ diode with high breakdown voltage*. *App. Phys Lett* 111, 222104 (2017). <https://doi.org/10.1063/1.4998311>
15. F. Zhou, H. H. Gong, Z. P. Wang, W. Z. Xu, X. X. Yu, Y. Yang, F.-F. Ren, S. L. Gu, R. Zhang, Y. D. Zheng, H. Lu and J. D. Ye, "Over 1.8 GW/cm² beveled-mesa NiO/β-Ga₂O₃ heterojunction diode with 800 V/10 A nanosecond switching capability," *Applied Physics Letters*, 119, 262103 (2021). <https://doi.org/10.1063/5.0071280>
16. H. Gong, Feng Zhou, Weizong Xu, Xinxin Yu, Yang Xu, Yi Yang, Fang-fang Ren,
17. Shulin Gu, Youdou Zheng, Rong Zhang, Hai Lu and Jiandong Ye "1.37 kV/12 A NiO/β-Ga₂O₃ Heterojunction Diode With Nanosecond Reverse Recovery and Rugged Surge-Current Capability," *IEEE Transactions on Power Electronics*, 36, 12213 (2021). doi: 10.1109/TPEL.2021.3082640.
18. Janghyuk Kim, Sooyeoun Oh, Michael A. Mastro and Jihyun Kim, "Exfoliated β-Ga₂O₃ nano-belt field-effect transistors for air-stable high power and high temperature electronics", *Phys. Chem. Chem. Phys.*, 18, 15760 (2016), <https://doi.org/10.1039/C6CP01987K>
19. J. Kim, M. A. Mastro, M. J. Tadjer and J. Ki, "Quasi-Two-Dimensional h-BN/β-Ga₂O₃ Heterostructure Metal–Insulator–Semiconductor Field-Effect Transistor", *ACS Appl. Mater. Interfaces*, 9 21322 (2017). <https://doi.org/10.1021/acsami.7b04374>
20. J. Bae, H. W. Kim, I. H. Kang, G. Yang and J. Kim, "High breakdown voltage quasi-two-dimensional β-Ga₂O₃ field-effect transistors with a boron nitride field plate", *Appl. Phys. Lett.*, 112, 122102 (2018). <https://doi.org/10.1063/1.5018238>

21. Dongryul Lee, Hyoung Woo Kim, Janghyuk Kim, Jeong Hyun Moon, Geonyeop Lee and Jihyun Kim, *Ultra-Wide Bandgap β -Ga₂O₃ Heterojunction Field-Effect Transistor Using p-Type 4H-SiC Gate for Efficient Thermal Management*, *ECS J. Solid State Sci. Technol.* 9 065006 (2020). <https://orcid.org/0000-0002-5634-8394>
22. M. Kim, Y. Kim, J. Kim, K. Baik, S. Jang, “BCl₃-Based Dry Etching of Exfoliated (100) β -Ga₂O₃ Flakes”, *ECS J. Solid State Sci. Technol.* 9, 075001 (2020). <https://doi.org/10.1149/2162-8777/abae14>
23. Y. Kwon, G. Lee, S. Oh., J. Kim, S.J. Pearton, F. Ren, “Tuning the thickness of exfoliated quasi-two-dimensional β -Ga₂O₃ flakes by plasma Etching”, *Appl. Phys. Lett.* 110, 131901 (2017). <https://doi.org/10.1063/1.4979028>
24. Janghyuk Kim and Jihyun Kim. “Monolithically Integrated Enhancement-Mode and Depletion-Mode β -Ga₂O₃ MESFETs with Graphene-Gate Architectures and Their Logic Applications”, *ACS Appl. Mater. Interfaces* 12, 7310 (2020). <https://doi.org/10.1021/acsami.9b19667>
25. G. Yang, S. Jang, F. Ren, S. J. Pearton, J. Kim, “Influence of High-Energy Proton Irradiation on β -Ga₂O₃ Nanobelt Field-Effect Transistors”, *ACS Appl. Mater. Interfaces* 9, 40471 (2017). <https://doi.org/10.1021/acsami.7b13881>
26. Jinho Bae, Hyoung Woo Kim, In Ho Kang and Jihyun Kim, “Field-plate engineering for high breakdown voltage β -Ga₂O₃ nanolayer field-effect transistors”, *RSC Adv.*, 9, 9678 (2019). DOI <https://doi.org/10.1039/C9RA01163C>
27. Jinho Bae, Hyoung Woo Kim, In Ho Kang and Jihyun Kim, “Dual-field plated β Ga₂O₃ nano-FETs with an off-state breakdown voltage exceeding 400 V”, *J. Mater. Chem. C*, 8, 2687 (2020). <https://doi.org/10.1039/C9TC05161A>
28. W. S. Hwang, A. Verma , H. Peelaers, V. Protasenko, S. Rouvimov, H. Xing, A. Seabaugh, W. Haensch, C. V. de Walle and Z. Galazka, *High-voltage field effect transistors with wide-bandgap β -Ga₂O₃ nanomembranes*, *Appl. Phys. Lett.*, 10, 203111 (2014). <https://doi.org/10.1063/1.4879800>
29. Sooyeoun Oh, Chang-Koo Kim, and Jihyun Kim, “High Responsivity β -Ga₂O₃ Metal–Semiconductor–Metal Solar-Blind Photodetectors with Ultraviolet Transparent Graphene Electrodes”, *ACS Photon.*, 5, 1123 (2018). <https://doi.org/10.1021/acsphotonics.7b01486>
30. S. Pearton, A. Aitkaliyeva, M. Xian, F. Ren, A. Khachattrian, A. Ildefonso, Z. Islam, M. Rasel, A. Haque, A. Polyakov and J. Kim, “Review-Radiation Damage in Wide and Ultra-Wide Bandgap Semiconductors,” *ECS Journal of Solid State Science and Technology*, 10, p. 055008, (2021). <https://doi.org/10.1149/2162-8777/abfc23>

Click here to access/download
Video
steve_pearton.mp4

Steve Pearton is Distinguished Professor of Materials Science and Engineering at the University of Florida, Gainesville, FL, USA. He has a Ph.D in Physics from the University of Tasmania and was a postdoc at UC Berkeley prior to working at AT&T Bell Laboratories in 1994-2004 .His interests are in the electronic and optical properties of semiconductors. He is a Fellow of the IEEE, AVS, ECS, TMS, MRS, SPIE and APS.

Steve Pearton is Distinguished Professor of Materials Science and Engineering at the University of Florida, Gainesville, FL, USA. He has a Ph.D in Physics from the University of Tasmania and was a postdoc at UC Berkeley prior to working at AT&T Bell Laboratories in 1994-2004 . His interests are in the electronic and optical properties of semiconductors. He is a Fellow of the IEEE, AVS, ECS, TMS, MRS, SPIE and APS.