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Direct numerical simulations (DNS) are performed to investigate the spatial evolution
of flat-plate zero-pressure-gradient turbulent boundary layers over long streamwise
domains (>300δi, with δi the inflow boundary-layer thickness) at three different Mach
numbers, 2.5, 4.9 and 10.9, with the surface temperatures ranging from quasiadiabatic to
highly cooled conditions. The settlement of turbulence statistics into a fully developed
equilibrium state of the turbulent boundary layer has been carefully monitored, either
based on the satisfaction of the von Kármán integral equation or by comparing runs
with different inflow turbulence generation techniques. The generated DNS database
is used to characterize the streamwise evolution of multiple important variables in the
high-Mach-number, cold-wall regime, including the skin friction, the Reynolds analogy
factor, the shape factor, the Reynolds stresses, and the fluctuating wall quantities. The
data confirm the validity of many classic and newer compressibility transformations at
moderately high Reynolds numbers (up to friction Reynolds number Reτ ≈ 1200) and
show that, with proper scaling, the sizes of the near-wall streaks and superstructures are
insensitive to the Mach number and wall cooling conditions. The strong wall cooling in
the hypersonic cold-wall case is found to cause a significant increase in the size of the
near-wall turbulence eddies (relative to the boundary-layer thickness), which leads to a
reduced-scale separation between the large and small turbulence scales, and in turn to a
lack of an outer peak in the spanwise spectra of the streamwise velocity in the logarithmic
region.
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1. Introduction

Compressibility and wall cooling are known to be key factors influencing the
boundary-layer characteristics on hypersonic vehicles (Smits & Dussauge 2006). Accurate
modelling of turbulent boundary layers (TBLs) under high-Mach-number cold-wall
conditions is thus critically important to the prediction of the surface heat flux, and
hence, to the design of the thermal protection systems for hypersonic vehicles. So far,
engineering predictions of turbulent heat flux for hypersonic vehicle simulations have
been based mostly on Reynolds-averaged Navier–Stokes (RANS) models. Standard one- or
two-equation RANS models such as the Spalart–Allmaras (SA) model and the Menter’s
shear stress transport (SST) model have been developed largely on the basis of studies
that are limited to subsonic or moderately supersonic Mach numbers and adiabatic walls
(Bertin & Cummings 2006). Therefore, it is not surprising that multiple researchers
(Rumsey 2010; Gnoffo, Berry & Van Norman 2013) have found that even for the simplest
hypersonic configurations involving zero pressure gradient (ZPG) boundary layers, the
predictions of surface heat flux based on these standard one- or two-equation RANS
models are significantly less accurate than the predictions obtained with simpler, algebraic
turbulence models with some form of compressibility corrections. Better physics-based
compressible turbulence modelling is clearly needed for flows in the hypersonic cold-wall
regime, starting with ZPG boundary layers. A thorough characterization of turbulence
scaling laws and other relevant turbulence quantities in the context of turbulence modelling
is critical to accurate physics-based modelling for this class of flows.
There exist rather limited measurements at hypersonic speeds that are detailed and

accurate enough for developing and testing turbulence models. Historically, experimental
investigations of hypersonic turbulence have been conducted with hot-wire anemometry
(see, for example, the review by Roy & Blottner 2006), and the historic hot-wire
measurements of turbulence statistics may suffer from poor frequency response and/or
spatial resolution, as well as from the uncertainties associated with the mixed-mode
sensitivity of the hot wires (Williams et al. 2018). Particle image velocimetry (PIV)
has been used recently to provide direct measurements of spatially varying velocity
fields of high-speed turbulent boundary layers (Tichenor, Humble & Bowersox 2013;
Peltier, Humble & Bowersox 2016; Williams et al. 2018). Although the available
PIV measurements have yielded valuable insights into the behaviour, distribution and
scaling of the mean velocity and the Reynolds stress turbulence field, none of the
existing experiments thus far have been able to provide sufficiently well resolved global
measurements of both the velocity and thermodynamic fields (including in the immediate
vicinity of the wall) to facilitate a systematic investigation of the turbulence scaling laws
and to evaluate other relevant turbulence quantities in the context of turbulence modelling,
and none of the existing experiments include a systematic study into the effects of wall
cooling on boundary-layer turbulence at Mach 5 or above.
Complementary to experiments, direct numerical simulations (DNS) can provide

detailed, global distributions of turbulent fluctuations to understand the effect of
compressibility on the flow statistics, scaling and structures, as well as to inform turbulence
model development. Most of the previous DNS at high Mach number have simulated a
turbulent boundary layer over either a hypothetically adiabatic wall or a moderately cold
wall with wall-to-recovery temperature ratio larger than 0.53 (see, for e.g. Duan, Beekman
& Martin 2011; Lagha et al. 2011; Priebe & Martin 2011). As a result, the existing
literature in regard to DNS studies targeting the effect of wall cooling on hypersonic
boundary-layer turbulence is rather limited. Early DNS of hypersonic boundary layers
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over a cold wall (Martín 2004; Duan, Beekman & Martin 2010) were performed with
the temporal approach, and these temporal simulations may suffer from the assumptions
required to relate the temporal growth with the spatial boundary-layer growth, as well as
from the numerically imposed streamwise periodicity of the fluctuation field. Recently,
Zhang, Duan & Choudhari (2018) developed a DNS database for spatially evolving ZPG
TBLs over a broad range of nominal free-stream Mach number (2.5 < M∞ < 14) and for
a wall-to-recovery temperature ratio between 0.18 and 1.0. They reported detailed mean
and turbulence profiles and also provided an assessment of the performance of several
well-known compressibility transformations, ranging from the classical Morkovin’s
scaling to the strong Reynolds analogy (SRA) and other generalizations. However, the
turbulence statistics reported by almost all of the previous studies of turbulent boundary
layers at high Mach numbers were limited to boundary-layer profiles at a single streamwise
location of the computational domain. Hence the critical information on the spatial
evolution of turbulence statistics for this class of flows is largely unclear.
One of primary objectives of the current paper is to characterize the streamwise

development of the turbulence statistics in the high-Mach-number cold-wall regime for
spatial DNS performed with a turbulent inflow boundary condition. Such a study will also
provide a reliable quantitative database regarding the establishment of turbulence statistics
on a commonly accepted fully developed equilibrium state of a turbulent boundary
layer. Previous experimental and DNS studies have found that the achievement of a
fully developed equilibrium state of a turbulent boundary layer requires a long inflow
adjustment region (Erm & Joubert 1991; Schlatter et al. 2009; Simens et al. 2009; Sillero,
Jiménez & Moser 2013; Wenzel et al. 2018), which makes highly reliable numerical
simulations an extremely challenging task. For instance, Schlatter et al. (2009) studied
incompressible turbulent boundary layers through simulation as well as experimental
measurements, and concluded that a well-established boundary layer is attained only
beyond Reθ ≈ 2000, while an earlier experimental study by Erm & Joubert (1991) had
found the threshold Reynolds number to be Reθ ≈ 3000. The DNS computations of
incompressible turbulent boundary layers by Simens et al. (2009) further showed that at
least one turnover length of the largest eddies (Lto = U∞δ/uτ ) has to be discarded before
the effect of an artificial inflow is forgotten. The DNS study of incompressible turbulent
boundary layers by Sillero et al. (2013) also showed that the eddy turnover length Lto is
a better criterion than the Reynolds number for the recovery of the largest flow scales
following an artificial inflow. The parameters that are linked to the large-scale structures,
such as the shape factor or the strength of the wake associated with a velocity profile,
were found to recover only beyond a streamwise distance of 4–5 eddy turnover lengths,
i.e. approximately 250δi, where δi denotes the boundary-layer thickness at the inflow
boundary. As far as the compressible boundary layers are concerned, Wenzel et al. (2018)
showed that the inflow induction length, which is a measure of the inflow recovery length
based on the location where the relation Cf = 2(dθ/dx) is first satisfied, increases from
28δi at M∞ = 0.3 to 85δi at M∞ = 2.5. Similar information on the length of the inflow
recovery region is lacking in the hypersonic cold-wall regime, on either the experimental
or the numerical side. The current study fills in that gap by performing the DNS of a
hypersonic cold-wall boundary layer developing spatially over an extended region along
the streamwise direction (>300δi) so as to characterize the effect of inflow recovery and
to obtain highly reliable DNS datasets with minimal effects due to the artificial inflow.
A second goal of the current paper is to extend the range of Reynolds numbers

from those typical of the previous DNS studies for hypersonic boundary-layer flows to
a moderately high Reynolds number. Specifically, the turbulence statistics reported by
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almost all of the aforementioned studies of hypersonic TBLs are limited to a narrow
range of Reynolds numbers up to Reτ = 650. The limited range of Reynolds numbers has
prevented a characterization of Reynolds number effects on the boundary-layer statistics
for this important class of flows. Consequently, there is as yet no universal scaling with
respect to Reynolds number in the high-Mach-number cold-wall regime. Given that the
boundary-layer turbulence would be better established at a higher Reynolds number and
less likely to suffer from low-Reynolds-number effects, it would also be beneficial to
reevaluate the compressibility transformations at a high Reynolds number and to assess
whether or not the existing compressibility transformations would perform better at higher
Reynolds numbers. A recent study of compressible channel flows for bulk Mach numbers
between 0.8 and 1.5 and bulk Reynolds numbers in the range 3000–34 000 by Yao &
Hussain (2020) has found that the differences between incompressible and compressible
flows (e.g. the increase in the streamwise Reynolds stress peak with increasing Mach
number) become less prominent as the Reynolds number increases. It remains to be seen
whether or not a similar dependence on the Reynolds number also exists for external
turbulent boundary layers over a wider range of Mach number and wall temperature ratios.
There is increased interest in understanding the dynamics of boundary-layer flows at

both large and small scales to gain additional insight into the mean flow statistics. This is
highlighted by the many recent articles devoted to high-Reynolds-number wall-bounded
flows, largely in the low-speed regime (see, for e.g. Kim & Adrian 1999; Del Alamo &
Jiménez 2003; Marusic 2009; Marusic et al. 2013). For boundary layers, in particular,
Marusic and his coworkers (Hutchins & Marusic 2007a,b) identified superstructures (i.e.
alternating low- and high-speed streamwise structures of length greater than 20δ) in the
logarithmic region of an incompressible turbulent boundary layer, and these logarithmic
structures have a modulating effect on the generation of small-scale near-wall motions.
Superstructures have also been identified in supersonic adiabatic turbulent boundary
layers using data from either PIV (Ganapathisubramani, Clemens & Dolling 2006; Bross,
Scharnowski & Kähler 2021) or DNS (Ringuette, Wu & Martin 2008). Bernardini
& Pirozzoli (2011a) further showed the occurrence of an inner–outer interaction and
the importance of amplitude modulation imposed on the smaller-scale motions by the
large-scale ones in DNS of a Mach 2 turbulent boundary layer. Given that the previous
DNS of hypersonic turbulent boundary layers lacked a long streamwise extent of the
domain that is necessary for capturing the elongated streamwise structures in a boundary
layer, the flow phenomena that occur for incompressible high-Reynolds-number flows,
such as the existence of large-scale motions in the logarithmic region or the superstructures
and their modulation of the near-wall coherent structures, have not been observed in the
hypersonic regime. The current contribution will analyse the near-wall structures as well
as the large-scale motions in the various DNS cases to clarify the variation in the size of
the typical eddies and the significance of the inner–outer interaction as a function of the
Mach number, wall temperature and Reynolds number conditions. The long streamwise
domain of the DNS cases enables the elongated superstructures and their surface footprint
in a hypersonic turbulent boundary layer to be shown for the first time, without having
to resort to Taylor’s hypothesis of ‘frozen’ convection to reconstruct the velocity map
over a large enough streamwise distance. Such analysis of the turbulence structures should
provide further insights into the observed dependence of the turbulence statistics on the
relevant flow parameters.
The paper is structured as follows. The free-stream conditions, numerical methods,

simulation set-up and flow parameters are outlined in § 2. In § 3, we use the DNS
data to investigate the streamwise evolution of the relevant properties of the turbulent
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boundary layer. Section 4 presents local boundary-layer profiles at multiple selected
streamwise locations to explore Reynolds number effects on the turbulence statistics,
followed by the discussion of turbulent structures in § 5. Conclusions from this work are
given in § 6. Additional information pertaining to the effects of the inflow treatment and
grid resolution, along with comparisons with the available experimental measurements,
are described in Appendix A.

2. Simulation details

2.1. Flow conditions
Table 1 outlines the free-stream and wall temperature conditions for all the DNS cases.
The first three cases refer to new DNS that use long streamwise domains to achieve a
high Reynolds number Reτ ≈ 1200 to allow an exploration of the streamwise evolution
and Reynolds number effects under different wall temperature conditions. Specifically,
case M2p5HighRe was run at Mach 2.5 adiabatic wall with the same flow condition
as Duan, Choudhari & Wu (2014) but with a longer streamwise domain length of
313.6δi and a higher Reynolds number up to Reτ = 1199. Case M5Tw091 is a numerical
replication of the high-speed wind tunnel experiment (Mach 4.9) performed at the National
Aerothermochemistry Laboratory (NAL) at Texas A&M University, with a quasiadiabatic
wall of Tw/Tr = 0.91 and a Reynolds number up to Reτ = 1244. Case M11Tw020
simulates flow conditions that are representative of the experimental data for a Mach
11.1 turbulent boundary layer on a cold-wall flat plate with Tw/Tr = 0.2 and Reynolds
number up to Reτ = 1193 that was tested at the Calspan-University of Buffalo Research
Center (CUBRC) (Gnoffo, Berry & Van Norman 2011; Gnoffo et al. 2013). The CUBRC
configuration has previously been used for verification and validation of RANS models
and is denoted as CUBRC Run 7. The remaining cases from table 1 were included in
the DNS database of Zhang et al. (2018); these cases cover ZPG TBLs over a wide
range of free-stream Mach numbers (2.5 < M∞ < 14) and wall-to-recovery temperature
ratios (0.18 < Tw/Tr < 1.0), but have relatively small Reynolds numbers up to Reτ = 686.
Given that the DNS cases presented herein cover a wide range of Mach number, Reynolds
number and wall cooling rate, they allow for a comprehensive study of the dependence of
high-speed turbulence on these parameters.

2.2. Governing equations and numerical methods
The DNS code solves the conservative variables formulation of the full three-dimensional
compressible Navier–Stokes equation. The working fluid is assumed to be a perfect gas,
and the usual constitutive relations for a Newtonian fluid are used. The temperature
dependence of viscosity coefficient μ is computed from Sutherland’s law, and the thermal
conductivity coefficient from κ = μcp/Pr, with cp the heat capacity at constant pressure
and Pr = 0.71 the molecular Prandtl number. A seventh-order weighted essentially
non-oscillatory (WENO) scheme is used for the spatial discretization of inviscid fluxes
for all DNS cases except for case M2p5pHighRe. To reduce the numerical dissipation,
the current scheme is optimized by means of limiters (Taylor, Wu & Martín 2007; Wu
& Martin 2007), compared to the original WENO scheme introduced by Jiang & Shu
(1996). The viscous fluxes are discretized using a fourth-order central difference scheme,
and the time marching is a third-order low-storage Runge–Kutta scheme (Williamson
1980). Fundamentals of the numerical method are described in Martín (2007). The DNS
code has been validated by a number of supersonic and hypersonic turbulent boundary
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Case M∞ U∞ ρ∞ T∞ Tw Tw/Tr Reu × 106 Reθ Reτ Re∗
τ Reδ2

(m s−1) (kg m−3) (K) (K) (m−1)

M2p5HighRe 2.5 823.6 0.100 270.0 568.0 1.0 4.8 2207–8306 395–1199 926–2828 1292–4851
M5Tw091 4.9 794.0 0.272 66.2 317.0 0.91 48.6 13 952–26 762 726–1244 5738–9612 3222–6181
M11Tw020 10.9 1778.4 0.103 66.5 300.0 0.20 41.0 9193–18 502 672–1193 3596–6261 2238–4472

M2p5 2.5 823.6 0.100 270.0 568.0 1.0 4.8 1954–2936 357–517 841–1197 1126–1684
M6Tw025 5.84 869.1 0.044 55.2 97.5 0.25 10.6 1465–2142 318–457 677–950 760–1127
M6Tw076 5.86 870.4 0.043 55.0 300.0 0.76 10.4 6639–9761 331–456 3004–4191 1302–1862
M8Tw048 7.87 1155.1 0.026 51.8 298.0 0.48 8.2 7130–10 024 354–498 2989–4252 1422–2018
M14Tw018 13.64 1882.2 0.017 47.4 300.0 0.18 10.6 10 696–15 316 501–686 3747–5226 1759–2504

Table 1. Free-stream and wall temperature conditions for various DNS cases: Tr is the recovery temperature Tr = T∞[1 + r(γ − 1)M2∞/2] with r = 0.89; Reu =
ρ∞U∞/μ∞ is the unit Reynolds number; Reθ = ρ∞U∞θ/μ∞; Reτ = ρwuτ δ/μw; Re∗

τ = ρδ

√
τw/ρδδ/μδ ; Reδ2 = ρ∞U∞θ/μw. The subscripts ∞,w, δ denote value

in the free stream, at the wall, and at the boundary-layer edge (z = δ). In each case, the specified range of Reynolds number corresponds to the ‘useful’ portion of the
computational domain (i.e. from downstream of the inflow adjustment zone up to the end of the computational domain).
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Spatial evolution of hypersonic turbulent boundary layers

layers (Wu & Martin 2007; Duan et al. 2010, 2011; Duan & Martin 2011; Duan et al.
2014; Duan, Choudhari & Zhang 2016; Zhang, Duan & Choudhari 2017; Zhang et al.
2018). For the high-Reynolds-number case M2p5pHighRe, which has free-stream Mach
number M∞ = 2.5, the inviscid fluxes of the governing equations are computed via an
eighth-order split convective finite difference (SCFD) scheme, proposed by Pirozzoli
(2011). This scheme runs about twice as fast as the conventional WENO method, and
previous numerical experiments have established the accuracy and robustness of the SCFD
scheme for supersonic boundary-layer edge Mach numbers up to Mach 4 (Pirozzoli 2010).

2.3. Computational domain and simulation set-up
Figure 1 shows the computational domain for case M11Tw020. The simulation covers a
long domain, which extends for Lx = 315.8δi, Ly = 14.7δi, Lz = 52.7δi in the streamwise
(x), spanwise (y) and wall-normal (z) directions, where δi is the inflow boundary-layer
thickness. The computations are carried out in three stages involving overlapping
streamwise domains. The inflow boundary condition for Box1 DNS is prescribed by means
of a modified recycling–rescaling method (Duan et al. 2014), and the recycling plane is
placed at 52.7δi downstream of the inflow station (i.e. (xrec − xi)/δi = 52.7). Time series
data for primitive flow variables are saved in Boxes 1 and 2 on four spanwise wall-normal
planes surrounding (x − xi)/δi = 78.9 and 150.0, respectively, with respect to the inflow
plane of Box1 at sampling rate dt+sample = 6.18 × 10−2 for a length Tf uτ,i/δi = 22.2, and
these time series data are provided as the inflow boundary conditions for the downstream
boxes. The data are required on four planes to satisfy the boundary condition requirement
of the selected WENO scheme. At run time for the Box 2 or Box 3 DNS, the saved inflow
data are spline-interpolated in time to the instants dictated by the time stepping in the
downstream DNS box. Numerical experiments have shown that such a procedure results
in minimal disturbances to the reported turbulence statistics and coherent structures, and
a similar procedure has been used widely by many other researchers for prescribing
continuous inflow for DNS (Morgan et al. 2013; Sillero et al. 2013).
For case M11Tw020, uniform grid spacings are used in the streamwise and spanwise

directions, where the grid spacing is �x+ = 7.1 and �y+ = 6.6, respectively. The grid
resolutions are normalized by the viscous length zτ at (x − xi)/δi = 305, which is the
farthest downstream location where boundary-layer profiles are sampled for statistical
analysis as listed in table 4. The grids in the wall-normal direction are clustered in the
boundary layer with �z+min = 0.43 at the first grid point away from the wall, and the
wall-normal spacing near the boundary-layer edge is kept uniform with �z+max = 4.2.
Details of the grid dimensions, domain size and resolutions for case M11Tw020 are

listed in table 2. At the upper and outflow boundaries, unsteady non-reflecting boundary
conditions based on Thompson (1987) are used. The flow in the spanwise direction is
assumed to be statistically homogeneous, hence periodic boundary conditions are applied
in y. At the wall, no-slip conditions are imposed for the three velocity components, and
the wall temperature is set equal to the experimental value, Tw = 300 K. The density is
determined by solving the continuity equation. Additional details on the set-up of case
M11Tw020 are given in Huang et al. (2020). Note that in table 2, we have defined
the boundary-layer thickness δ as the wall-normal height where the local value of the
streamwise velocity is 99% of the free-stream value (ū = 0.99U∞), consistent with
that used in Zhang et al. (2018), while the parameters reported in Huang et al. (2020)
were defined based on 99.5% of the free-stream value (Ht = 0.995Ht,∞) to facilitate
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plane
Box 3 DNS

Box 2 DNS

Box 1 DNS

Interpolation

Interpolation
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Inflow
plane

5
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.7
δ i

78.9δ i

52.7δ i

71.1δ i

154.7δ i

86.6δ i

78.9δ i

165.8δ i

Flow

Flow

Flow
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z

xy

14.7δi x = 0.2 m

x = 0.53 m

x = 0.8 m

x = 0.77 m

x = 1.4 m

x = 0.5 m

Figure 1. Computational domain and simulation set-up for case M11Tw020. x = 0 m corresponds to the
leading edge of experimental flat-plate geometry of CUBRC Run 7 (Gnoffo et al. 2013), and the DNS domain
starts downstream of the leading edge at x = 0.2 m so that it covers only the portion of the flat plate with a
fully turbulent boundary layer in the experiment. The instantaneous flow is shown by the isosurface of the
magnitude of the density gradient, |∇ρ|δi/ρ∞ ≈ 0.98 and coloured by the streamwise velocity component
(with levels from 0 to U∞, blue to red), and the inflow boundary-layer thickness of Box 1 DNS is δi = 3.8 mm.

comparisons with the RANS results by Gnoffo et al. (2013) under the same nominal
conditions as case M11Tw020.
The computational set-ups for cases M2p5HighRe and M5Tw091 parallel the set-up

for the case M11Tw020 simulations, and the computational parameters for these cases
are summarized in table 2. In particular, streamwise computational domains with Lx =
313.6δi and Lx = 183.6δi are used for cases M2p5HighRe and M5Tw091, respectively, to
achieve Reynolds number Reτ ≈ 1200 in both cases. Previous DNS of spatially-developing
turbulent boundary layers in the incompressible and supersonic Mach number regimes
have shown that the use of very long streamwise domains is required for boundary-layer
turbulence to recover from the initial transient due to inflow turbulence generation
techniques and achieve a fully developed equilibrium state, which makes a highly reliable
spatial simulation extremely demanding (Erm & Joubert 1991; Schlatter et al. 2009;
Simens et al. 2009; Sillero et al. 2013; Wenzel et al. 2018). In the current study, the
recovery length is characterized in terms of when the von Kármán integral equation
Cf = 2(dθ/dx) is sufficiently well satisfied or by comparing results from different methods
for inflow turbulence generation. Such a characterization is detailed in § 3.1. We also note
that by isothermally setting the wall temperature to a prescribed constant temperature Tw
as shown in table 1, any fluctuations in the wall temperature have been suppressed, while
the temperature fluctuations may not be zero over the surface of a realistic hypersonic
vehicle. The previous study by Wenzel et al. (2018) reported that allowing or suppressing
wall temperature fluctuations causes no difference in turbulence statistics outside the the
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Dataset M∞ �x+ �y+ �z+ (Lx,Ly,Lz)/δi Nx,Ny,Nz �t+ Tf uτ,i/δi Lx/Lto

M2p5HighRe — — — — 313.6 × 14.2 × 37.2 — 1.98 × 10−2 — 16.6
Box 1 2.5 7.8 4.7 0.51–8.1 59.1 × 14.2 × 37.2 2000 × 800 × 680 — 27.2 3.1
Box 2 2.5 7.8 4.7 0.51–8.1 120.6 × 14.2 × 37.2 4000 × 800 × 680 — 22.0 6.4
Box 3 2.5 7.8 4.7 0.51–8.1 154.5 × 14.2 × 37.2 5200 × 800 × 680 — 15.1 8.2

M5Tw091 — — — — 183.6 × 7.0 × 50.0 — 3.09 × 10−2 — 9.4
Box 1 4.9 6.5 4.9 0.53–8.3 69.3 × 7.0 × 50.0 4500 × 600 × 550 — 15.7 3.6
Box 2 4.9 6.5 4.9 0.53–8.3 69.3 × 7.0 × 50.0 4500 × 600 × 550 — 14.5 3.6
Box 3 4.9 6.5 4.9 0.53–8.3 77.0 × 7.0 × 50.0 5000 × 600 × 550 — 9.3 3.9

M11Tw020 — — — — 315.8 × 14.7 × 52.7 — 6.18 × 10−3 — 12.3
Box 1 10.9 7.1 6.6 0.43–4.2 86.8 × 14.7 × 52.7 3300 × 600 × 500 — 21.3 3.4
Box 2 10.9 7.1 6.6 0.43–4.2 78.9 × 14.7 × 52.7 3000 × 600 × 500 — 16.4 3.1
Box 3 10.9 7.1 6.6 0.43–4.2 165.8 × 14.7 × 52.7 6300 × 600 × 690 — 8.2 6.5
Box 2-Refined 10.9 7.1 5.0 0.43–4.2 78.9 × 14.7 × 52.7 3000 × 800 × 500 — 8.0 3.1

Table 2. Summary of parameters for DNS database: Lx, Ly and Lz are the domain size in streamwise, spanwise and wall-normal directions, respectively; Nx, Ny and Nz are
the grid dimensions; �x+ and �y+ are the uniform grid spacings in the streamwise and spanwise directions; �z+ denotes the wall-normal spacing at the first grid away
from the wall and that near the boundary-layer edge; �t+ denotes the time-step size, and Tf is total time considered for collecting flow statistics; Lto = U∞δi/uτ,i is one
turnover length of the largest eddy at inflow, where δi is the inflow boundary-layer thickness and uτ,i the inflow friction velocity. All grid spacings are normalized by the
viscous scale at the farthest downstream station selected for statistical analysis as listed in table 4.
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viscous sublayer for a Mach 2 adiabatic turbulent boundary layer. However, further study
may be necessary to clarify the influence of the temperature boundary condition for a
hypersonic cold-wall turbulent boundary layer.
Additional information about the validation of DNS cases, including an assessment of

the domain size and grid resolution as well as comparisons with available measurements
from wind tunnel experiments, is given in Appendix A.

2.4. A note on averaging
In the following sections, we present the turbulence statistics that are computed by
averaging first in the spanwise direction and then in the temporal direction over Nf
flow-field snapshots spanning time interval Tf uτ /δ. For the streamwise evolution of the
peak of the Reynolds stresses discussed in § 3.2 and the skewness and flatness profiles
discussed in § 4.4, the statistics are further averaged over a streamwise window ([xa −
0.5δ, xa + 0.5δ]) to enhance statistical convergence, where xa is a reference streamwise
location selected for statistical analysis (table 4). A similar technique has been used by
the DNS study of Pirozzoli & Bernardini (2011). Statistical convergence is verified by
calculating averages over significantly different numbers of snapshots and by making
sure that the differences in flow statistics computed from different averaging intervals are
negligible (<1.3%). Throughout the paper, standard (Reynolds) averages are denoted by
an overbar, f̄ , while density-weighted (Favre) averages are denoted by a tilde, f̃ = ρ̄f /f̄ ;
fluctuations around standard and Favre averages are denoted by single and double primes,
as with f ′ = f − f̄ and f ′′ = f − f̃ , respectively.

3. Spatial evolution of flow statistics

In this section, we use the DNS data to examine the spatial evolution of the various
properties of the turbulent boundary layer. Together with the current DNS cases listed
in table 2, the datasets for an incompressible turbulent boundary layer by Schlatter & Örlü
(2010), as well as the supersonic boundary-layer data by Pirozzoli & Bernardini (2011) and
Wenzel et al. (2018), are included as necessary to better illustrate the effects of the Mach
number and wall cooling.

3.1. Characterization of inflow recovery length
In this subsection, we quantify the inflow recovery length for each DNS case, in order to
allow one to infer the ‘useful’ part of the overall streamwise domain and the associated
range of the Reynolds number.
In this work, the inflow recovery length is defined as �xind = xind − xi, i.e. the distance

from the inflow plane xi to the downstream location xind where the von Kármán integral
equation Cf = 2(dθ/dx) is first satisfied to a specified level of accuracy. The same method
was used by Wenzel et al. (2018) in their DNS study of turbulent boundary layers
with Mach numbers varying from 0.3 to 2.5. Consistent with Wenzel et al., we refer
to the inflow recovery length based on the von Kármán integral equation as the inflow
induction length. Table 3 lists the values of the inferred induction length �xind in various
non-dimensional forms, and the Reynolds number range over which the boundary layer
changes from the inflow profile to its equilibrium behaviour at xind. The scalings for the
induction length �xind include normalization by the inflow boundary-layer thickness δi,
the eddy turnover length Lto, and the effective turnover length x̃ (Sillero et al. 2013),
respectively. The eddy turnover length, defined as Lto = U∞δi/uτ,i, is the advection
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Case �xind/δi �xind/Lto x̃ Reθ Reτ Reδ2 Re∗
τ

M2p5HighRe,RS 20 1.1 0.9 871–2207 308–395 621–1292 723–926
M2p5HighRe,DF 40 2.2 1.6 1487–2650 287–402 918–1548 682–942
M5Tw091,RS 45 2.3 1.8 8985–13 982 477–724 2075–3229 3783–5691
M11Tw020,RS 70 2.7 1.9 4351–8059 329–584 1067–1957 1731–3101
M11Tw020,DF 85 3.3 2.0 4006–8233 330–575 982–1988 1843–3024
M6Tw025,RS 40 1.8 1.2 851–2142 189–318 455–785 399–677
M6Tw076,RS 40 2.2 1.7 5302–9848 275–392 1042–1621 2553–3563
M8Tw048,RS 55 2.8 2.0 5464–9405 286–464 1123–1428 2439–3909
M14Tw018,RS 80 3.0 2.1 4364–10 696 216–501 717–1759 1758–3747

Table 3. Induction length �xind in various non-dimensional forms and the corresponding variation in
Reynolds numbers from the inflow plane to the end of induction length. The induction length�xind is measured
as the value of (x − xi) where the von Kármán integral equation Cf = 2(dθ/dx) is first satisfied to a specified
level of accuracy of 5%. ‘RS’ and ‘DF’ refer to DNS cases with rescaling and digital-filtering inflow turbulence
generation methods, respectively.

distance of the eddies during a time interval δi/uτ,i (Simens et al. 2009), where uτ,i is
the friction velocity at xi. The effective dimensionless turnover length, first proposed by
Sillero et al. (2013) in their study of incompressible boundary layers, has the form

x̃ =
∫ xind

xi

dx
U∞δ/uτ

. (3.1)

The induction length �xind normalized by δi increases with the Mach number, with
the ratio �xind/δi increasing from 20 at Mach 2.5 to 80 at Mach 14. This finding is
consistent with the observations by Wenzel et al. (2018) based on data at lower Mach
numbers. The induction length normalized by the eddy turnover length also increases with
the Mach number and has range 1 � �xind/Lto � 3. The effective dimensionless turnover
length x̃ appears to better collapse the DNS data at different Mach numbers and has range
1 � x̃ � 2.
Besides the above characterization of the induction length on the basis of Cf =

2(dθ/dx), the inflow recovery length is also quantified by cross-comparing data from
different turbulence inflow methods. Specifically, the results based on the rescaling (RS)
inflow turbulence generation are compared with those based on the digital-filtering (DF)
inflow technique (Dhamankar et al. 2014; Huang & Duan 2016) for cases M2p5HighRe
and M11Tw020. For this purpose, the Box 1 and Box 2 simulations of both cases were
repeated with the DF inflow technique while keeping the other simulation parameters the
same. Simulating the same flow with an identical set-up except for the inflow boundary
condition allows a robust and reliable evaluation of the inflow recovery length.
Table 3 shows that the induction lengths for the DNS solutions based on the DF method

are longer than the corresponding DNS with the RS method, and the increase in �xind
is equal to approximately 20δi for case M2p5HighRe and 15δi for case M11Tw020. The
longer induction length for the DFmethod is also consistent with previous studies (Morgan
et al. 2011; Wenzel 2019). Figure 2 further compares the profiles of the van Driest (VD)
transformed mean velocity and the streamwise Reynolds stress for cases M2p5HighRe and
M11Tw020 at two selected streamwise locations. The upstream and downstream locations
for each case approximately correspond to the end of the induction length based on the DF
method and the first location selected for statistical analysis with Reynolds number Reτ =
774 as listed in table 4, respectively. In the near-wall region, the comparison between
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Figure 2. Comparison in profiles of (a,c) the van Driest transformed velocity, and (b,d) the streamwise
Reynolds stress between DNS with rescaling (RS) and digital-filtering (DF) inflow methods at the end of the
induction length based on the DF method (i.e. x − xi = (Δind)DF) and a downstream location at Reτ = 774.
(a,b) x − xi = (Δind)DF; (c,d) Reτ = 774.

RS and DF methods is almost perfect for both the velocity and the streamwise Reynolds
stress. There exists a small yet visible discrepancy within the wake region of the profiles
between the RS and DF data at the end of the induction length �xind (6.2% for u+

VD, and
1.8% for ρu′′u′′/τw). However, that difference has diminished downstream at Reτ = 774
(1.5% for u+

VD, and 1.0% for ρu′′u′′/τw), yielding a very good comparison between the
boundary-layer profiles at this second (and farther downstream) location.
In summary, the selected DNS domains are long enough to accommodate the region

that is lost to the inflow induction as well as the adjustment length. As a result, a fully
developed equilibrium turbulent boundary layer that is nearly independent of the inflow
effects is established in the downstream portion of the selected DNS domains for both
the supersonic (Mach 2.5 and 4.9) and hypersonic (Mach 11) cases. Given the smaller
recovery length for the RS method in comparison to that of the DF method, only the RS
results past the inflow recovery length will be used in § 3.2 to study the spatial evolution
of wall and turbulence properties and to derive Reynolds number scaling for equilibrium
boundary layers in the high-speed regime.
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Spatial evolution of hypersonic turbulent boundary layers

3.2. Spatial evolution of mean and turbulence properties
The van Driest II transformation (Van Driest 1956) and the Spalding & Chi transformation
(Spalding & Chi 1964) are two of the most commonly used models to estimate the
skin friction associated with a compressible boundary layer in terms of an equivalent,
incompressible boundary layer. For both van Driest II and Spalding & Chi theories, the
transformation can be represented by

Cf ,i = Fc Cf , (3.2)

Reθ,i = Fθ Reθ , (3.3)

where Cf ,i and Reθ,i are the equivalent (i.e. transformed) ‘incompressible’ skin friction
coefficient and momentum thickness Reynolds number, respectively, and Fc and Fθ

are transformation factors that depend on flow parameters such as the Mach number,
free-stream static and wall temperatures, and recovery factor. The transformation factor
Fc is the same in both van Driest II and Spalding & Chi theories, and can be written as
(Rumsey 2010)

Fc = Tr/T∞ − 1(
sin−1 A + sin−1 B

)2 , (3.4)

where A and B are given as

A = 2a2 − b(
b2 + 4a2

)1/2 , B = b(
b2 + 4a2

)1/2
a =

(
r

γ − 1
2

M2
∞

T∞
Tw

)1/2

, b = Tr
Tw

− 1.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.5)

However, the other transformation factor, Fθ , is different between the two theories and is
given as

(Fθ )VD = μ∞/μw, (Fθ )SC = (T∞/Tw)−0.702(Tr/Tw)−0.772, (3.6a,b)

where the subscripts ‘VD’ and ‘SC’ refer to the transformation factors from the van
Driest II and Spalding & Chi theories, respectively. After (3.2) and (3.3) are applied
to compressible data to obtain the equivalent incompressible values of Cf ,i and Reθ,i,
these transformed values can be compared to the friction correlations developed for
incompressible flows. Three commonly used incompressible friction correlations are the
Kármán–Schoenherr relation (Roy & Blottner 2006), the power-law correlation by Smits,
Matheson & Joubert (1983), and the modified Coles–Fernholz relation (Nagib, Chauhan
& Monkewitz 2007):

Kármán–Schoenherr: (Cf ,i)KS = (
log10(2Reθ i)[17.075 log10(2Reθ i) + 14.832]

)−1
,

(3.7a)

Smits et al.: (Cf ,i)SM = 0.024Re−1/4
θ i , (3.7b)

Coles–Fernholz: (Cf ,i)CF = 2[2.604 logReθ i + 4.127]−2. (3.7c)

Although multiple previous studies compared the performance of these two theories for
hypersonic cold-wall turbulent boundary layers, they had drawn different conclusions as
to which theory to recommend. Specifically, Hopkins & Inouye (1971) compared the van
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Driest II and Spalding & Chi transformation theories on skin friction measurements at
M∞ = 2.8–7.4 and Tw/Tr = 0.14–1.0, and they concluded that the van Driest II theory
performed better. Holden (1972) performed skin friction measurement in a shock tunnel
with M∞ = 7–13 and 0.14 � hw/haw � 0.3; he concluded that the theory of Spalding &
Chi was in best agreement with the experimental measurements in the Mach number range
7–10, while the van Driest II transformation was a better predictor of the skin friction
levels at Mach numbers between 10 and 13. The review by Bradshaw (1977) endorsed
Hopkins & Inouye’s choice of the van Driest II theory but also commented that the theory
failed to predict the skin friction on a very cold wall (Tw/Tr � 0.1–0.2). In a more recent
study, Goyne, Stalker & Paull (2003) found that the Spalding & Chi method was the
most suitable theory for high-enthalpy hypersonic boundary-layer flows in an equilibrium
turbulent state, based on their skin friction measurements in a free-piston shock tunnel
with air-flowMach number 4.4 � M∞ � 6.7 and wall-to-stagnation enthalpy ratio 0.02 �
hw/haw � 0.1. Here, the DNS data will be used to extend the comparison between the
two transformation theories to a broader range of Mach number and wall-to-recovery
temperature ratio and, also, to provide an independent assessment related to an optimal
choice for the incompressible correlation.
Figure 3 compares the performance of van Driest II and Spalding & Chi transformations

for the current DNS cases. The skin friction values based on both the van Driest II
and Spalding & Chi transformations are in good agreement with the incompressible
correlations for the Mach 2.5, adiabatic wall case (M2p5HighRe). The performance of
the van Driest II transformation remains good for the hypersonic cases corresponding to a
moderately cold wall (0.3 � Tw/Tr < 1.0). However, for the hypersonic cases M11Tw020
and M14Tw018 that correspond to a highly cooled wall (Tw/Tr � 0.3), neither of the
two theories can provide a good prediction. The van Driest II transformation tends to
overpredict Cf by up to 10–20% and the Spalding & Chi theory underpredicts Cf by
20–40%. Such a trend is consistent with the findings of Hopkins & Inouye (1971). It
is also interesting to note that the discrepancy between the Spalding & Chi transformed
skin friction values for the hypersonic cold-wall case M11Tw020 and the incompressible
correlations decreases gradually at increasing Reynolds numbers. This improvement in the
model accuracy at high Reynolds numbers is consistent with the measurements of Goyne
et al. (2003), who found that the Spalding & Chi method best predicted the skin friction
coefficient in cold-wall, high-Mach-number and high-enthalpy flows, provided that the
boundary layer has a sufficient fetch downstream of the transition region to allow the
boundary-layer turbulence to relax from the transitional to the fully turbulent state. Among
the various combinations of compressible transformations and incompressible correlations
for the skin friction, the combination of van Driest II transformation with the power-law
relation of Smits et al. (1983) correlates best with the DNS data, at least for the Reynolds
number range covered by the current DNS. Such a combination predicts the skin friction
within ±5% for the supersonic adiabatic-wall case, and within −15% to −6% for the
hypersonic cold-wall cases (figure 3c).
With a known skin friction coefficient, the Reynolds analogy factor Raf = 2Ch/Cf

is often used to predict the surface heat flux (Roy & Blottner 2006). Here, Ch =
qw/(ρ∞U∞cp(Tr − Tw)) is the Stanton number, and Cf = 2τw/(ρ∞U2∞) is the skin
friction coefficient. Figure 4(a) shows the distribution of Raf as a function of the friction
Reynolds number Reτ . Over the Reynolds number range covered by the current DNS, the
Reynolds analogy factor Raf is nearly constant for all hypersonic cold-wall cases, with
its value bracketed within the narrow range 1.1 < Raf < 1.2, consistent with the usual
approximation Raf = Pr−2/3 ≈ 1.256. For case M11Tw020, in particular, the Reynolds
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Figure 3. Transformed skin friction coefficient (Cf ,i = FcCf ) versus Reynolds numbers (Reθ,i = Fθ Reθ )
based on (a) the van Driest II theory and (b) the Spalding & Chi theory, wherein the black solid line, the
dashed line and the dash-dotted line denote the incompressible correlations of Kármán–Schoenherr (Roy &
Blottner 2006), Smits et al. (1983) and Coles–Fernholz (Nagib et al. 2007), respectively. The relative difference
between the DNS and the theoretical prediction based on a combination of van Driest II transformation with
the power-law relation of Smits et al. (1983) (i.e. Cf ,the = (Cf ,i)SM/(Fc)VD) is shown in (c).
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Figure 4. The Reynolds analogy factor Raf = 2Ch/Cf as a function of (a) friction Reynolds number Reτ ,
(b) unit Reynolds number Reu = ρ∞U∞/μ∞, and (c) wall-to-total enthalpy ratio hw/h0. Solid triangle symbol
denotes experimental measurement by Goyne et al. (2003), and circle symbol by Holden (1972). The horizontal
solid, dashed and dotted lines denote constant values of unity, 1.16 and Pr−2/3, with Pr = 0.71, respectively.

analogy factor Raf is approximately 1.19 for Reτ � 400, and gradually decreases to 1.16
as the Reynolds number is increased to Reτ ≈ 1172. The latter value (Raf = 1.16) was
also recommended by Chi & Spalding (1966) and Hopkins & Inouye (1971). Figures 4(b)
and 4(c) further compare Raf = 2Ch/Cf against the experimental measurements of Goyne
et al. (2003) and Holden (1972). The values of the Reynolds analogy factor based on the
DNS fall within the scatter of the experimental measurements at similar unit Reynolds
numbers Reu and enthalpy ratios hw/h0. However, the variation in Raf across the various
DNS cases is significantly smaller than that in the experiments.
Figure 5(a) plots the shape factor H12 = δ∗/θ as a function of the friction Reynolds

number Reτ . The shape factor H12 is observed to be insensitive to the Reynolds number,
but it varies significantly with Mach number and wall temperature conditions, ranging
from H12 ≈ 4 for case M2p5 to H12 ≈ 54 for case M14Tw018. Figure 5(b) shows H12 as
a function of the free-stream Mach number M∞, and its comparison with the empirical
relations of Hopkins et al. (1972), Shahab et al. (2011), and Wood (1964). The three
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Figure 5. Shape factor H12 = δ∗/θ as a function of (a) friction Reynolds number Reτ , and (b,c) free-stream
Mach number M∞. In (b), lines denote the reference adiabatic shape factor value predicted by (3.8) with
Tw/Tr = 1.0. Dash-dotted line, Hopkins et al. (1972); dashed line, Shahab et al. (2011); solid line, Wood
(1964).

empirical relations are given as follows:

Hopkins et al.: H12,the = 4(1 + 0.344M2∞)

3
(
2 − Tw

Tr

)1.35 , (3.8a)

Shahab et al.: H12,the = 1.4 + 0.4M2
∞ − 1.222

Tr
T∞

(
1 − Tw

Tr

)
, (3.8b)

Wood: H12,the = 1.222 + 0.4M2
∞ − 1.222

Tr
T∞

(
1 − Tw

Tr

)
. (3.8c)

Consistent with the above theories, the DNS-predicted H12 increases dramatically with
Mach number, while wall cooling significantly decreases H12 with respect to the reference
adiabatic value at each Mach number. Among the three empirical shape-factor relations,
the relation by Hopkins et al. (1972) provides the best correlation with the DNS data, with
a relative error of approximately 2% for the supersonic adiabatic case, and up to 8% for
the hypersonic cold-wall cases (figure 5c).
In addition to mean wall and integral parameters, the streamwise development of the

fluctuation statistics are investigated by using the DNS data, including the near-wall peak
values of the Reynolds stresses and the fluctuating wall quantities. Figure 6 shows the
magnitude of the near-wall peak of the streamwise Reynolds stress in the semilocal scaling
((u′′

rms)
∗ = (ρu′′u′′/τw)1/2) as functions of Reτ and Re∗

τ . Reference data including the
Mach 2 data of Pirozzoli & Bernardini (2011) and the incompressible data of Sillero et al.
(2013) and Lee & Moser (2015) are also plotted for comparison. At Mach 2.5, the peak
magnitude (u′′

rms)
∗
pk compares well with reference data and shows a weak increase with

both Reynolds numbers, and the dependence of (u′′
rms)

∗
pk with the Reynolds number follows

the logarithmic fits (Pirozzoli & Bernardini 2013; Lee & Moser 2015)

(u′′)∗pk =
√
3.352 + 0.725 logReτ , (u′′)∗pk = √

3.66 + 0.642 logRe∗
τ . (3.9a,b)

However, (u′′
rms)

∗
pk for the hypersonic cold-wall cases remains nearly constant throughout

the Reynolds number range covered by the DNS data. The semilocal scaling largely
accounts for the influence of wall temperature on the near-wall peak magnitude, as seen
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Figure 6. Peak magnitude of the normalized streamwise Reynolds stress (u′′)∗ = (ρu′′u′′/τw)1/2 as a function
of (a) Reτ , and (b) Re∗

τ . Solid symbols: circles, Pirozzoli & Bernardini (2011) at M∞ = 2; triangle, Sillero
et al. (2013) at M∞ ≈ 0; diamond, Lee & Moser (2015) at M∞ ≈ 0. Black solid line denotes (u′′)∗pk =√
3.352 + 0.725 logReτ (Pirozzoli & Bernardini 2013) in (a), and (u′′)∗pk = √

3.66 + 0.642 logRe∗
τ (Lee &

Moser 2015) in (b).

by the collapse of (u′′
rms)

∗
pk between the cases M6Tw025 and M6Tw076. However, the

peak value of the scaled streamwise Reynolds stress indicates a weak increase with the
free-stream Mach number. At Reτ = 1138, for instance, (u′′

rms)
∗
pk increases from 2.9 for

case M2p5HighRe to 3.5 for case M11Tw020. The increase in (u′′
rms)

∗
pk with the Mach

number is consistent with the previous studies of turbulent channel and boundary-layer
flows (Modesti & Pirozzoli 2016; Zhang et al. 2018; Yao & Hussain 2020).
Figure 7 further shows the magnitude of the near-wall peak of the Reynolds shear stress

in the semilocal scaling ((u′′w′′)∗ = −ρu′′w′′/τw) as functions of Reτ and Re∗
τ . Similar to

the streamwise Reynolds stress (u′′
rms)

∗, the magnitude of (u′′w′′)∗ shows a weak increase
with Reynolds number and follows the scaling relation

(u′′w′′)∗pk = 1 − 8.5Re∗−2/3
τ (3.10)

for Re∗
τ � 2000, and the relation

(u′′w′′)∗pk = 1 − 3.0Re∗−1/2
τ (3.11)

for higher Re∗
τ (Yao & Hussain 2020).

Figure 8 shows the distribution of the normalized intensity of wall pressure fluctuations
as a function of the Reynolds number. The intensity of wall pressure fluctuations
normalized by the mean wall pressure (figure 8a) decreases with Reynolds number and
increases with Mach number and the wall temperature ratio. For instance, p′

w,rms/p̄w
increases from approximately 4% at Mach 2.5 to 25% at nominally Mach 11. The
intensity of wall pressure fluctuations becomes less sensitive to the flow parameters
when normalized by the local wall shear stress τw (figure 8b), consistent with multiple
previous findings (Pirozzoli & Bernardini 2011; Duan et al. 2014, 2016; Zhang et al.
2017). For adiabatic or nearly adiabatic cases (Tw/Tr = 0.7–1.0), p′

w,rms/τw shows a weak
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Figure 7. Peak magnitude of the normalized Reynolds shear stress (u′′w′′)∗ = −ρu′′w′′/τw as a function of
(a) Reτ , and (b) Re∗

τ . In (b), the solid line denotes (u′′w′′)∗pk = 1 − 8.5Re∗−2/3
τ , and the dashed line denotes

(u′′w′′)∗pk = 1 − 3.0Re∗−1/2
τ .
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Figure 8. Intensity of wall pressure fluctuation as a function of Reynolds number, normalized by (a) wall
mean pressure p′

w,rms/pw, (b) wall shear stress p
′
w,rms/τw, and (c) mixed scale p′

w,rms/(ρwuτU∞). In (b), the
black solid line denotes p′

w,rms/τw = √
6.5 + 1.86 log10(max(Reτ /333, 1)) (Pirozzoli & Bernardini 2011), and

the triangular and diamond solid symbols represent supersonic adiabatic and incompressible DNS data by
Bernardini & Pirozzoli (2011b) and Schlatter et al. (2009), respectively. The dashed horizontal line in (c)
corresponds to a typical incompressible value of 0.112 as reported by Schlatter et al. (2009, 2010).

logarithmic increase with the friction Reynolds number as (Pirozzoli & Bernardini 2011)

p′
w,rms/τw = √

6.5 + 1.86 log10(max(Reτ /333, 1)), (3.12)

and the DNS values of the normalized pressure fluctuations fall within the narrow
range 2.6–2.8. This range is also in agreement with the adiabatic results of Pirozzoli &
Bernardini (2011) at M∞ = 2–4. For cold-wall cases (Tw/Tr < 0.5), however, p′

w,rms/τw
is almost a constant in the Reynolds number range covered by the current DNS. For cases
M6Tw025 and M8Tw048, we found that p′

w,rms/τw ≈ 3.6 , whereas and p′
w,rms/τw ≈ 4.5

at Mach 11 and 14. Figure 8(c) further shows the wall pressure fluctuation normalized
in mixed scaling, p′

w,rms/(ρwuτU∞), which has been found to yield the best collapse of
the wall pressure fluctuations in incompressible boundary layers over a wide range of
Reynolds numbers (Schlatter et al. 2009, 2010; Tsuji et al. 2007). For the supersonic and
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Figure 9. (a) The r.m.s. wall shear stress fluctuation τ ′
w,rms/τw, and (b) the r.m.s. wall heat flux fluctuation

q′
w,rms/q̄w as a function of the friction Reynolds number Reτ . In (a), the solid black symbols represent the
incompressible DNS data of Schlatter & Örlü (2010), and the black solid line denotes the incompressible fit of
τ ′
w,rms/τw = 0.298 + 0.018 logReτ (Schlatter & Örlü 2010).

hypersonic cases simulated in the present work, the value of p′
w,rms/(ρwuτU∞) varies

between 0.12 and 0.17, and this range is narrower than the corresponding variations in
p′
w,rms/pw and p′

w,rms/τw. The compressible values of p′
w,rms/(ρwuτU∞) are larger than

the typical incompressible value of 0.112, as reported by Schlatter et al. (2009, 2010).
Figure 9 displays the root-mean-square (r.m.s.) fluctuations in wall shear stress and

surface heat flux as functions of the friction Reynolds number Reτ . In both cases, the
fluctuation amplitudes account for an even larger fraction of the respective mean values, in
comparison with the wall pressure fluctuation p′

w,rms/pw as shown in figure 8(a). At Mach
2.5, τ ′

w,rms/τw is approximately 0.4 at low Reynolds numbers (Reτ � 400); τ ′
w,rms/τw for

adiabatic or nearly adiabatic cases (Tw/Tr = 0.7–1.0) increases slowly with the Reynolds
number and matches the incompressible fit of Schlatter & Örlü (2010),

τ ′
w,rms/τw = 0.298 + 0.018 logReτ . (3.13)

For hypersonic cold-wall cases, τ ′
w,rms/τw and q′

w,rms/qw show a small decrease with
increasing Reynolds number, with τw,rms/τw � 0.45–0.5 and qw,rms/qw � 0.5–0.7 among
various Mach number and wall temperature conditions and the Reynolds number range
covered by the current DNS.

4. Local turbulence statistics

In this section, boundary-layer profiles are extracted at selected streamwise locations
from various DNS cases, and the local turbulence statistics at each location are
presented. The results are used to assess various compressibility scaling relations at
higher Reynolds numbers as well as to study Reynolds number effects on turbulence
statistics in the high-Mach-number cold-wall regime. Table 4 lists the values of the mean
boundary-layer parameters at the locations selected for the statistical analysis. For each
DNS case, boundary-layer profiles at two selected streamwise locations, both of which
are downstream of the initial adjustment zone, are used to gauge the effects of the

937 A3-19

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e,
 o

n 
su

bj
ec

t t
o 

th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

80

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.80


J.H
uang,L.D

uan
and

M
.M

.C
houdhari

Dataset (xa − xi)/δi Reθ Reτ Reδ2 Re∗
τ θ (mm) H12 δ (mm) zτ (μm) uτ (m s−1) −Bq Mτ

M2p5HighRe,BL1 138 4982 774 2913 1819 1.03 4.1 12.7 16.4 37.3 ≈0 0.078
M2p5HighRe,BL2 298 8093 1172 4728 2761 1.67 4.1 20.6 17.6 34.9 ≈0 0.073
M5Tw091,BL1 54 14847 774 3429 6125 0.31 10.2 6.7 8.7 38.9 ≈0 0.109
M5Tw091,BL2 159 24674 1172 5699 9114 0.51 10.5 11.0 9.4 36.3 ≈0 0.102
M11Tw020,BL1 127 10926 774 2654 4123 0.27 26.0 9.9 12.8 63.1 0.163 0.182
M11Tw020,BL2 305 18247 1172 4409 6149 0.45 26.7 16.7 14.2 57.9 0.148 0.167

Table 4. Boundary-layer properties at the DNS station xa selected for analysis. xi denotes the streamwise coordinate at the inflow plane. The boundary-layer thickness δ is
defined as the wall-normal distance from the wall to the location where ū = 0.99U∞; H12 = δ∗/θ is the shape factor; uτ = √

τw/ρw is the friction velocity; zτ = νw/uτ is
the viscous length; Bq = qw/(ρwcpuτTw) is the non-dimensional surface heat flux;Mτ = uτ /

√
γRTw is the friction Mach number. Reynolds numbers are defined in table 1.
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Spatial evolution of hypersonic turbulent boundary layers

streamwise evolution (or, alternatively, the effects of the local Reynolds number) on the
boundary-layer statistics.

4.1. Mean velocity profile
The van Driest transformation (Van Driest 1951) is commonly used to transform the
mean velocity profile in a compressible boundary layer to an equivalent profile from an
incompressible boundary layer by accounting for the mean property variations across the
thickness of the boundary layer:

u+
VD =

∫ ū+

0
(ρ̄/ρ̄w)1/2 dū+. (4.1)

Although the classic van Driest transformation is able to collapse the compressible
velocity profile to the incompressible law of wall for supersonic boundary layers with
an adiabatic wall, its performance was found to deteriorate under hypersonic cold-wall
conditions (Duan et al. 2010; Zhang et al. 2018). Recently, Trettel & Larsson (2016)
proposed a new transformation based on the log-law and stress-balance conditions

u+
TL =

∫ u+

0

(
ρ̄

ρw

)1/2 [
1 + 1

2
1
ρ̄

dρ̄
dz

z − 1
μ̄

dμ̄
dz

z
]
du+, (4.2a)

z∗ = ρ̄(τw/ρ̄)1/2z
μ̄

. (4.2b)

While the Trettel & Larsson transformation was quite successful in collapsing the viscous
sublayer and buffer layer of a velocity profile from a non-adiabatic turbulent boundary
layer to an equivalent incompressible profile, there is still substantial disagreement in the
log-law region of the velocity profile (Wu et al. 2017; Zhang et al. 2018). To improve
the overall collapse of the mean velocity profile for the boundary-layer cases, Volpiani
et al. (2020) proposed a data-driven approach that uses data fitting to determine the
non-dimensionalizations for wall disturbance and velocity

u+
V =

∫ u+

0

(ρ̄/ρ̄w)1/2

(μ̄/μ̄w)1/2
du+, (4.3a)

z+V =
∫ z+

0

(ρ̄/ρ̄w)1/2

(μ̄/μ̄w)3/2
dz+. (4.3b)

They showed that the data-driven transformation led to an improved overall collapse of
the mean velocity profile for hypersonic cold-wall boundary layers when compared to
that of Trettel & Larsson (2016). Griffin, Fu & Moin (2021) further proposed a velocity
transformation for compressible wall-bounded turbulent flows by accounting for distinct
effects of compressibility on the viscous stress and turbulent shear stress. Their method is
referred to as the total-stress-based transformation and has the form

u+
TS =

∫ u+

0

S+
eq

1 + S+
eq−S+

TL
dz∗, (4.4)

where S+
eq = (μ̄w/μ̄)(∂u+/∂z∗) and S+

TL = (μ̄/μ̄w)(∂u+/∂z+). By scaling the viscous
stress with the semilocal non-dimensionalization in the viscous sublayer and treating the
Reynolds shear stress to maintain the approximate equilibrium of turbulence production
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and dissipation in the log-law region, the total-stress-based transformation was found
to successfully collapse the velocity profile for a wide range of flows, including heated,
cooled and adiabatic boundary layers, and fully developed channel and pipe flows.
All the previous studies on mean velocity transformations for hypersonic turbulent

boundary layers were limited to low Reynolds numbers (Reτ � 600), therefore their
performance at higher Reynolds numbers is largely unknown. Here, we will provide a
more systematic study of velocity transformations by using the latest DNS database, in an
attempt to shed further light on the effect of Reynolds number on the efficacy of these
compressibility transformations.
Figure 10(a) plots the van Driest transformed mean streamwise velocity profiles at

two different Reynolds numbers for each DNS case. At each of these Mach numbers,
the van Driest transformed velocity profile includes an approximately logarithmic region,
wherein u+

VD = (1/k) log(z+) + CVD, and the extent of this logarithmic region increases
with the Reynolds number. Compared to the quasiadiabatic cases at Mach 2.5 and 4.9, the
transformed velocity for the hypersonic cold-wall case shows an apparent decrease in the
mean slope within the linear and viscous sublayer and an increase in the log-layer intercept
CVD. Such a trend is consistent with the previous studies of hypersonic turbulent boundary
layers at lower Reynolds numbers (Duan et al. 2011; Zhang et al. 2018). Under the Trettel
and Larsson transformation, the velocity profiles u+

TL at different Mach numbers and wall
cooling rates collapse in the viscous sublayer and buffer layer (figure 10b). However, an
apparent difference is still seen in the log-layer intercept CTL between the two different
flow conditions. Although not shown in the figure, a scatter of u+

TL similar to that of the van
Driest transformed velocity u+

VD remains even at a common semilocal Reynolds number
Re∗

τ = ρδ

√
τw/ρδδ/μδ . We also noted that the significant scatter among the log-law

intercept CTL values for the different Mach number and wall temperature cases was not
observed for compressible channel flows, where the Trettel and Larsson transformation
was found to yield a nearly perfect collapse among the isothermally cold-wall velocity
profiles (Trettel & Larsson 2016; Yao & Hussain 2020). The difference in the behaviour of
the log-law intercept between boundary layers and channel flows may suggest a stronger
influence of the cooling parameter on the balance between turbulent and viscous shear
stresses in the case of external boundary layers.
An assessment of the data-driven-based transformation of Volpiani et al. (2020) is

shown in figure 10(c) for various DNS cases. The transformed mean velocity profiles at
different Mach numbers and wall cooling rates successfully collapse to the incompressible
law of the wall both in the viscous sublayer and in the log-layer regions, consistent with the
findings of Volpiani et al. (2020) at lower Reynolds numbers. Such a good performance is
not unexpected as the data-driven method of Volpiani et al. (2020) was developed using
non-adiabatic boundary-layer cases in their training database. Figure 10(d) further shows
the total-stress-based transformed mean velocity profiles for current DNS data. A similarly
good agreement is achieved among various DNS data. Given that the total-stress-based
transformation of Griffin et al. (2021) was developed by scaling separately the viscous
stress with the semilocal non-dimensionalization and the Reynolds shear stress with the
assumption of turbulence quasi-equilibrium (i.e. approximate equilibrium of turbulence
production and dissipation), the good collapse of the total-stress-based transformed
velocity profiles suggests that a physics-based mapping between the compressible and
incompressible mean velocity profiles of wall-bounded turbulent flows must account for
distinct effects of compressibility on the viscous stress and turbulent shear stress.
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Figure 10. Effect of applying, to the mean velocity profile, (a) the van Driest (VD) transformation (U+
VD), (b)

the Trettel and Larsson (TL) transformation (U+
TL), (c) the data-driven-based transformation of Volpiani et al.

(2020) (U+
V ), and (d) the total-stress-based transformation of Griffin et al. (2021) (U+

TS).

To quantify further the extent of the region with a logarithmic velocity variation, a
log-law diagnostic function similar to that of Pirozzoli & Bernardini (2013) is introduced:

Ic = Ẑ(du+
c /dẐ), (4.5)

where u+
c and Ẑ are the transformed mean velocity and non-dimensional wall disturbance,

respectively, for various compressibility transformations. Based on the above definition, a
constant value of the diagnostic function Ic would imply a perfectly logarithmic behaviour.
Figure 11 shows that the diagnostic function for the van Driest transformed velocity, IVD,
is nearly constant over the range z+ ≈ 40–100 for the two supersonic cases M2p5HighRe
and M5Tw091 at Reτ = 1172 (i.e. Re∗

τ = 2626 for M2p5HighRe, and Re∗
τ = 9178 for

M5Tw091). On the other hand, the hypersonic cold-wall case M11Tw020 does not
display a significantly wide region of constant diagnostic function IVD for Reynolds
numbers up to Reτ = 1172 (Re∗

τ = 6213). The lack of constancy in the diagnostic function
for case M11Tw020 may suggest the absence of a wall-normal region with a strictly
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Figure 11. The diagnostic function Ic = Ẑ(du+
c /dẐ) of transformed velocities for cases M2p5HighRe,

M5Tw091 and M11Tw020, with (a) u+
c = u+

VD and Ẑ = z+ for van Driest (VD) transformation,
(b) u+

c = u+
TL and Ẑ = z∗ for Trettel and Larsson (TL) transformation, (c) u+

c = u+
V and Ẑ = z+V for the

data-driven-based transformation of Volpiani et al. (2020) (V), and (d) u+
c = u+

TS and Ẑ = z∗ for the
total-stress-based (TS) transformation of Griffin et al. (2021). The solid red square symbol in (a) indicates
DNS data (Reτ ≈ 1113) by Pirozzoli & Bernardini (2013), and the solid black circle symbol from DNS data
(Reτ ≈ 5200) by Lee & Moser (2015). The black dashed line represents the general shape of the composite
profile by Monkewitz, Chauhan & Nagib (2007).

logarithmic behaviour for the hypersonic cold-wall case. The strong wall cooling in this
case tends to reduce the scale separation between the large and small turbulence scales,
preventing the velocity profile from forming a visible log-law region, even at Reynolds
numbers as high as Reτ = 1172 (Re∗

τ = 6213). The diagnostic function for the other three
transformations shows existence and absence of constancy similar to that of the van Driest
transformation for the supersonic and hypersonic cases, respectively. A comparison in Ic
at Ẑ � 100 among the various diagnostic functions further suggests that the total-stress
based transformation provides the best collapse of the DNS data across the inner layer
of the boundary layer (including the viscous sublayer, buffer layer and logarithmic
layer).
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Figure 12. The power-law diagnostic function for (a) the streamwise velocity, and (b) the van Driest
transformed streamwise velocity. The horizontal dashed line denotes N = 5, and the horizontal dash-dotted
line denotes N = 8.

The turbulent velocity profile may also be represented by a power law of the form
(Johnson & Bushnell 1970)

ū
U∞

=
(

z
δ∞

)1/N

, (4.6)

where δ∞ is the thickness where the streamwise velocity first reaches the free-stream
velocity U∞. A quantitative verification of the power-law behaviour can be obtained by
plotting the power-law diagnostic function defined as

N =
(
z
ū

∂ ū
∂z

)−1

, (4.7)

whose constancy would imply a perfect power-law behaviour. Figure 12(a) plots
the power-law diagnostic function as a function of the wall-normal distance for
cases M2p5HighRe, M5Tw091 and M11Tw020. The diagnostic function for the mean
streamwise velocity ū nearly plateaus in the region 0.2 � z/δ � 0.6, and the power-law
exponent N varies between 5 and 8 among the different DNS cases. A similar diagnostic
function for the van Driest transformed streamwise velocity can be defined to gauge
the power-law behaviour of ūVD. Figure 12(b) shows that the van Driest transformed
streamwise velocity ūVD follows a power-law behaviour over a larger wall-normal
extent 0.2 � z/δ � 0.9, and a power-law exponent N = 5 provides a good fit to the
different Mach number, wall cooling and Reynolds number conditions covered by the
DNS. The good fit of the power-law relation over 0.2 � z/δ � 0.9 suggests that the
power-law approximations work reasonably well as a description for the outer-layer
velocity distribution and may be used as engineering approximations for calculating the
boundary-layer integral parameters. However, they fail to approximate the velocity profile
in the near-wall region of z/δ � 0.2 wherein the stress-balance condition is satisfied and
the log law would provide a better fit to the data.

4.2. Reynolds stresses
Figures 13 and 14 show the normal and shear components of the Reynolds stress tensor,
respectively, for cases M2p5HighRe, M5Tw091 and M11Tw020. The incompressible data
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Figure 13. Reynolds normal stresses ρu′′
i u

′′
i /τw at different Reynolds numbers for cases M2p5HighRe,

M5Tw091 and M11Tw020 in (a–c) inner scaling z+ and (d–f ) semilocal scaling z∗. Solid symbols represent
the DNS data of Pirozzoli & Bernardini (2011) (Reτ = 1116, M = 2.0) and Sillero et al. (2013) (Reτ =
1307, M ≈ 0). In (a,d), black dashed lines denote ρu′′u′′/τw = 2.39 − 1.03 log(z/δ) (Pirozzoli & Bernardini
2011). In (b,e), the lines represent ρv′′v′′/τw = B2 − 0.27 log(z/δ) with B2 = 1.3 (dashed line) and B2 = 1.5
(dash-dotted line) (Baidya et al. 2021). (a,d) Streamwise component; (b,e) spanwise component; (c, f )
wall-normal component.
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Figure 14. Reynolds shear stress ρu′′w′′/τw at different Reynolds numbers for cases M2p5HighRe, M5Tw091
and M11Tw020 in (a) inner scaling z+, and (b) semilocal scaling z∗. Solid symbols represent the DNS data of
Pirozzoli & Bernardini (2011) (Reτ = 1116, M = 2.0) and Sillero et al. (2013) (Reτ = 1307, M ≈ 0).

of Sillero et al. (2013) and the Mach 2 data of Pirozzoli & Bernardini (2011) are also
included to allow comparison. The Reynolds stresses with Morkovin’s scaling, ρu′′

i u
′′
j /τw,

for case M2p5HighRe compare well with those based on the incompressible and Mach 2
data at a similar value of the friction Reynolds number Reτ . Morkovin’s scaling appears
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to yield a good collapse of the Reynolds stresses between the two nearly adiabatic
cases (M2p5HighRe and M5Tw091), except that there is a noticeable increase in the
peak value of the streamwise normal stress ρu′′u′′/τw as the free-stream Mach number
increases from 2.5 to 4.9. Such an increase in ρu′′u′′/τw with the free-stream Mach
number is also observed in previous studiesc (Modesti & Pirozzoli 2016; Zhang et al.
2018). However, for the hypersonic cold-wall case M11Tw20, the streamwise normal stress
ρu′′u′′/τw shows a significantly larger peak magnitude than the corresponding range in
the lower Mach number cases. The combined influence of a high Mach number and
appreciable wall cooling also causes a reduction in the peak magnitude of the spanwise and
wall-normal components of the normal Reynolds stresses (ρv′′v′′/τw and ρw′′w′′/τw) in
case M11Tw020. Compared with the conventional inner scaling based on z+, the semilocal
scaling z∗ of Huang, Coleman & Bradshaw (1995) better collapses the near-wall peak
location of the Reynolds stresses among the DNS data at all Mach numbers.
With respect to the influence of the Reynolds number, figure 13 shows that the peak

magnitude of the Reynolds stresses shows a slight increase with increasing Reynolds
number for cases M2p5HighRe, M5Tw091 and M11Tw20. Such an increase in near-wall
peak magnitude may be attributed to the increased influence of the inactive outer modes
on the near-wall dynamics (Pirozzoli & Bernardini 2011, 2013; Yao & Hussain 2020).
Consistent with the prediction of the attached eddy hypothesis (Perry & Li 1990; Marusic
& Monty 2019), the streamwise and spanwise Reynolds stresses in the quasiadiabatic
cases at Mach 2.5 and 4.9 exhibit a logarithmic variation at the highest Reynolds number,
Reτ = 1172:

ρu′′
i u

′′
i

τw
= Bi − Ai log (z/δ). (4.8)

The subscripts i = 1 and 2 denote the streamwise and spanwise directions, respectively.
In the streamwise direction, the constants are determined to be B1 = 2.39, A1 = 1.03, the
same as those reported in Pirozzoli & Bernardini (2011). The spanwise Reynolds stress
shows a common logarithmic slope A2 = 0.27 (Baidya et al. 2021), and the intercept
constant B2 varies from 1.5 (M2p5HighRe) to 1.3 (M5Tw020). A similar logarithmic
behaviour has not yet been identified for Reτ � 1172 in the hypersonic cold-wall
case M11Tw20. Again, consistent with the attached eddy hypothesis, the wall-normal
component of the Reynolds stresses ρw′′w′′/τw exhibits a plateau in the near-wall region
at Reτ = 1172 for both the supersonic and hypersonic cases, with the wall-normal extent
of the plateau region being smaller in the hypersonic case M11Tw020. Figure 14 further
shows that the Reynolds shear stress for case M11Tw020 also exhibits a near-wall plateau
within 15 � z∗ � 1000, and that the extent of the plateau region increases with increasing
Reynolds number. Such a trend is similar to the incompressible and supersonic data
included in the figure.

4.3. Thermodynamic variables
In this section, an assessment of velocity–temperature relations at higher Reynolds
numbers is provided to complement those discussed in Zhang et al. (2018).

4.3.1. Mean temperature profile
The mean temperature distribution across the boundary layer is important in determining
the mean velocity profile, and the empirical relation between the skin friction and
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Model α β

Crocco–Busemann (Tw − Tδ − βu2δ )/uδ 1/(2Cp)

Walz (1962) (Tw − Tδ − βu2δ )/uδ r/(2Cp)

Huang et al. (1993) (Tw − Tδ − βu2δ )/uδ Prt/(2Cp)

Duan & Martin (2011) (Tw − Tδ − βu2δ )/uδ rg/(2Cp)

Zhang et al. (2014) (Tw − Tδ − βu2δ )/uδ rg/(2Cp)

Table 5. Mean temperature–velocity relation models, T̄ = T̄w − αū − βū2. The subscript δ represents the
local value at z = δ; r = 0.89 is the recovery factor; Prt = 0.9 is the turbulent Prandtl number; rg is a general
recovery factor, which is defined as rg = r[a + (1 − a)(Tw − Tδ)/(Tr − Tδ)] with a = 0.8259 for the model
by Duan & Martin (2011), and rg = 2Cp(Tw − Tδ)/u2δ − 2Pr qw/(uδτw) for the model by Zhang et al. (2014).

heat transfer (Fernholz & Finley 1980). A critical summary of the temperature–velocity
relationship is given in Roy & Blottner (2006), where the basic relation can be written as

T̄ = T̄w − αū − βū2, (4.9)

where the parameters α and β are defined via different scaling relations. Table 5 lists the
values of α and β for several commonly used temperature–velocity relations, including
the classic Crocco–Busemann relation (Busemann 1931; Crocco 1932), the Walz relation
(Walz 1962), the Huang relation (Huang, Bradshaw & Coakley 1993), the modified
relation by Duan & Martin (2011), and the generalized Reynolds analogy by Zhang et al.
(2014). As seen from table 5, these different temperature–velocity relations differ only in
the expression for the β parameter.
Figure 15 compares the different model relations with the DNS data for cases

M2p5HighRe and M11Tw020 at Reτ = 1172. While all of the temperature–velocity
relations match well with the DNS data for the supersonic adiabatic-wall case, they show
large discrepancies with each other for the hypersonic cold-wall case. Among all of these
relations, the empirical relations of Duan & Martin (2011) and the generalized Reynolds
analogy by Zhang et al. (2014) show the best fit with the DNS data, although the Duan &
Martin relation is significantly simpler. A similar trend is seen for the other DNS cases, as
reported in Zhang et al. (2018) at lower Reynolds numbers.

4.3.2. Thermodynamic fluctuations
The turbulent heat flux term plays an important role in RANS modelling of high-speed
turbulent boundary layers (Wilcox 2006; Bowersox 2009; Bowersox & North 2010).
Figure 16 shows the wall-normal profiles of the turbulent heat flux components at the
selected streamwise stations. The semilocal scaling z∗ of Huang et al. (1995) collapses
successfully the location of the near-wall peak in the wall-normal profiles of the
streamwise and wall-normal components of the turbulent heat flux. However, there is a
significant increase in the peak amplitude of each quantity with the Mach number, and
an apparent reduction of the peak value as the Reynolds number increases. For all Mach
number and Reynolds number conditions, the streamwise component of the turbulent heat
flux ρu′′T ′′ has much larger peak values than those of the wall-normal component ρw′′T ′′.
The relationship between velocity and temperature is of great importance due to the

strong coupling between thermal heating and boundary-layer development (Pirozzoli &
Bernardini 2011). The strong Reynolds analogy (SRA) deduces the following correlations
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Figure 15. Comparison of the temperature–velocity relationship for (a) M2p5HighRe and (b) M11Tw020 at
Reτ = 1172. The subscript δ represents the value at the boundary-layer edge δ.
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Figure 16. Streamwise and wall-normal components of the turbulent heat flux for cases M2p5HighRe,
M5Tw091 and M11Tw020.

by neglecting the total temperature fluctuations (Morkovin 1962):

Ru′′T ′′ =
˜u′′T ′′√
T̃ ′′2

√
ũ′′2

= −1, (4.10)

Prt = [−ρu′′w′′](∂T̃/∂z)

[−ρw′′T ′′](∂ ũ/∂z)
= 1, (4.11)

√
T̃ ′′2/T̃

(γ − 1)M2
√
ũ′′2/ũ

= 1, (4.12)

where M2 = ũ2/(γRT̃).
Figure 17(a) shows the temperature–velocity correlation coefficient −Ru′′T ′′ for cases

M2p5HighRe, M5Tw091 and M11Tw020. Unlike the SRA relation of (4.10) that predicts
perfect anticorrelation between velocity and temperature fluctuations, u′′ and T ′′ are not
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Figure 17. (a) Temperature–velocity correlation coefficient −Ru′′T ′′ and (b) turbulent Prandtl number Prt as
functions of wall-normal distance for cases M2p5HighRe, M5Tw091 and M11Tw020, with different Reynolds
numbers. Solid square symbols denote reference data by Pirozzoli & Bernardini (2011) withM∞ = 2 at Reτ =
1116, and the solid line in (b) is Prt = 1 − (1/4)(z/δ) by Subbareddy & Candler (2011).

perfectly anticorrelated anywhere in the boundary layer, and the correlation Ru′′T ′′ even
becomes positive in the immediate vicinity of the wall. As expected, the regions of positive
and negative correlations between u′′ and T ′′ coincide with regions of positive and negative
streamwise turbulent heat flux ρu′′T ′′ (figure 16a). Although −Ru′′T ′′ exhibits significant
variation with flow parameters very close to the wall, it becomes insensitive to Reynolds
number, Mach number and wall cooling conditions in the outer layer of the boundary layer.
At z/δ � 0.2, −Ru′′T ′′ asymptotes to −Ru′′T ′′ ≈ 0.55.
Figure 17(b) shows the turbulent Prandtl number Prt as a function of wall-normal

distance for various DNS cases. The turbulent Prandtl number of case M2p5HighRe
compares well with that of Pirozzoli & Bernardini (2011) at a similar Reynolds number.
Close to the wall, Prt shows a large overshoot at the location where the wall-normal
component of the turbulent heat flux ρw′′T ′′ has a sign change (figure 16b). Farther away
from the wall, Prt is of order one and is insensitive to the Mach number, wall cooling
and Reynolds number conditions. The linear relation Prt = 1 − (1/4)(z/δ) proposed by
Subbareddy & Candler (2011) provides a reasonable fit to all the DNS data in the outer
region of the boundary layer.
Figure 18(a) compares the SRA relation of (4.12) among various DNS cases. Similar to

the previous findings of Duan et al. (2010) and Shadloo, Hadjadj & Hussain (2015), this
original SRA relation fails to collapse DNS data under different Mach number and wall
temperature conditions. Figure 18(b) plots the modified version of SRA by Huang et al.
(1995) (HSRA): √

T̃ ′′2/T̃

(γ − 1)M2
√
ũ′′2/ũ

(
1 − ∂T̄0

∂T̄

)
Prt = 1. (4.13)

The HSRA relation collapses all the DNS data at different free-stream Mach number, wall
cooling rate and Reynolds number conditions with a common value close to unity in the
outer layer of the boundary layer. Given the mean boundary-layer profile and a constant
turbulent Prandtl number Prt ≈ 1, such a relation provides an effective way of estimating
the r.m.s temperature fluctuations, T ′

rms, in the outer part of the boundary layer based on
the r.m.s. velocity fluctuations u′

rms.
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Figure 18. (a) The SRA relation of (4.12), and (b) the Huang version of SRA (HSRA) for cases
M2p5HighRe, M5Tw091 and M11Tw020 with different Reynolds numbers.

4.4. Higher-order statistics

The skewness of the fluctuations in a flow quantity φ is given by S(φ) = φ′3/(φ′2)3/2,
and the flatness is computed as F(φ) = φ′4/(φ′2)2. The skewness and flatness profiles of
the streamwise velocity fluctuation u′ are shown using semilocal scaling in figures 19(a)
and 19(b), respectively. The streamwise velocity fluctuation in cases M2p5HighRe and
M5Tw091 is positively skewed in the immediate vicinity of the wall, and the skewness
becomes negative for z∗ � 15. Within 30 � z∗ � 1000, the skewness S(u) is almost zero
and the flatness F(u) is approximately 3, indicating a nearly Gaussian behaviour. Such
near-wall behaviour of the skewness and flatness of u′ at Mach 2.5 and 4.9 is similar to
that observed in the incompressible channel flow data by Moser, Kim & Mansour (1999)
at a similar Reynolds number. The finding that the supersonic cases M2p5HighRe and
M5Tw091 compare well with the incompressible data supports the belief that without
intense wall cooling, the turbulence dynamics is essentially incompressible up to Mach
4.9. Under the hypersonic cold-wall condition of case M11Tw020, the magnitude of both
skewness S(u) and flatness F(u) are reduced in the viscous sublayer (z∗ � 10), indicating
weaker and less intermittent u′ motion in this region. In the log layer (30 � z∗ � 1000),
however, the hypersonic turbulent boundary layer includes u′ disturbances of stronger
negative skewness and larger flatness, suggesting more significant deviation from the
nearly Gaussian behaviour as in the incompressible and supersonic cases. The larger
deviation of S(u) and F(u) from Gaussian values in the log-layer region is also evident for
other hypersonic cold-wall turbulent boundary layers not shown here (cases M6Tw025 and
M14Tw018). It is remarkable that the skewness S(u) and flatness F(u) have similar values
in the buffer layer (z∗ ≈ 15) for all of the DNS cases, although the local Mach number
M̄ has more than doubled (M̄ = 0.8 and 2.0 for cases M2p5HighRe and M11Tw020,
respectively) when the free-stream Mach number is increased from M∞ = 2.5 to 10.9.
The similar values of skewness S(u) and flatness F(u) for the various DNS cases may
imply that the low-/high-speed streaks within this region of the boundary layer are similar
in semilocal coordinates among all Mach number conditions. S(u) and F(u) may be seen
to have an apparent Reynolds number dependence in both the viscous sublayer and the log
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Figure 19. Skewness and flatness of the streamwise velocity fluctuation as a function of wall-normal distance
in (a,b) semilocal scaling, and (c,d) outer scaling, for cases M2p5HighRe, M5Tw091 and M11Tw020 at
different Reynolds numbers. The solid symbols denote the incompressible channel DNS data of Moser et al.
(1999) at Reτ = 590 (square) and supersonic turbulent boundary layer of Pirozzoli & Bernardini (2011) at
Reτ = 1116 (left triangle). The horizontal line denotes Gaussian skewness and flatness values (i.e. S(u) = 0 and
F(u) = 3).

layer, while neither of them is particularly sensitive to the Reynolds number within the
buffer layer region.
The distributions of S(u) and F(u) in the outer scaling z/δ for cases M2p5HighRe,

M5Tw091 and M11Tw020 are plotted in figures 19(c) and 19(d), wherein the DNS data for
an incompressible channel (Moser et al. 1999) and a Mach 2 adiabatic turbulent boundary
layer (Pirozzoli & Bernardini 2011) are also included for comparison. As expected, the
distributions of both skewness and flatness at Mach 2.5 and 4.9 compare well with those
in the Mach 2 turbulent boundary layer from Pirozzoli & Bernardini (2011). Although a
similarly good comparison of cases M2p5HighRe and M5Tw091 to the incompressible
channel flow by Moser et al. (1999) is also achieved within most of the boundary layer,
differences in S(u) and F(u) between the channel flow and the boundary-layer flow can be
seen very clearly for z/δ � 0.8. The streamwise velocity fluctuation for the boundary-layer
flows shows a rapid drop in skewness and a rapid rise in flatness when approaching the
free stream from within the boundary layer, while such rapid changes in S(u) and F(u)
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are missing for the channel flow. The rapid changes in S(u) and F(u) for boundary-layer
flows indicate the onset of intermittency that measures the wall-ward extent of incursions
of the external, irrotational flow into the boundary layer. The drop in S(u) and the rise in
F(u) near the boundary-layer edge are delayed to a higher wall-normal position for case
M11Tw020 in comparison to the positions in cases M2p5HighRe and M5Tw091. A similar
delay in the onset of intermittency near the boundary-layer edge can be extended to other
hypersonic cold-wall cases.

5. Turbulent structures

In this section, near-wall structures and large-scale motions in various DNS cases are
analysed to provide further insights into the observed dependence of turbulence statistics
on flow parameters. In particular, the flow phenomena that occur for incompressible high
Reynolds number flows, such as the existence of superstructures and their modulation of
near-wall coherent structures, are investigated in the hypersonic Mach number, cold-wall
regime for the first time.
Figure 20 shows the top view of the instantaneous vortical structures in the

near-wall region (z∗ � 100), visualized by the λ2 criterion (Jeong & Hussain 1995). The
streamwise–spanwise (x–y) coordinates are normalized either by the inner scale (left
column) or by the semilocal scale (right column). The streamwise velocity fluctuations
|√ρu′′/√τw| � 2 at z∗ ≈ 15 are also included to visualize the near-wall streaks. These
fluctuations are normalized by using the local density ρ rather than the averaged density
ρ̄ in order to better accentuate the modulation of the streak magnitude, similar to Patel
et al. (2015). In terms of the inner coordinates, the vortical structures become thicker and
more coherent for the cold-wall case M11Tw020 (figure 20e) in comparison with those in
the quasiadiabatic cases (figures 20a and 20c). The near-wall streaks in inner coordinates
also show a larger spanwise spacing of λ+y ≈ 200 for the cold-wall case than the typical
adiabatic and incompressible value of λ+y ≈ 100. This trend is consistent with the previous
studies of cold-wall, wall-bounded flows (Coleman, Kim & Moser 1995; Duan et al.
2010). When the semilocal scaling is employed, the behaviour of the near-wall vortical
and streaky structures appears to become more similar across all three Mach numbers.
Specifically, the vortical structures for case M11Tw020 show a size similar to those of
the quasiadiabatic cases, and the spanwise spacings of the near-wall streaks are similar at
λ∗y ≈ 100 for all three cases.
To characterize more quantitatively the characteristic length scales of the near-wall

streaks, figure 21 plots the premultiplied streamwise and spanwise spectra of
√

ρu′′/√τw
for the various DNS cases at z∗ ≈ 15. The spectra of several incompressible turbulent
boundary layers (Hutchins & Marusic 2007b; Monty et al. 2009; Eitel-Amor et al. 2014)
are also included for comparison with the compressible cases. Here, the wavelength
λx = 2π/kx or λy = 2π/ky, rather than the corresponding wavenumber kx or ky, is shown
on the horizontal axis to highlight the length scales of the turbulence structures. The
spectrum is computed for the streamwise velocity fluctuation u′′ weighted by the square
root of the local density

√
ρ so that the area under the spectral curve Eρuu represents

the intensity of the streamwise Reynolds stress ρu′′u′′. Given the quasiperiodic nature
of the boundary layer in the streamwise direction, the kx spectrum is calculated by first
detrending the instantaneous signal with the local mean value at each x location and then
conducting the fast Fourier transform of the derived fluctuations along the x direction. For
each Mach number, the streamwise and spanwise spectra at z∗ ≈ 15 clearly show a peak
that corresponds to the cycle of near-wall streak generation, and the peak locations in the
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Figure 20. Top view of near-wall vortical structures coloured with the streamwise velocity 0 � u/U∞ � 1
from blue to red for (a,b) M2p5HighRe, (c,d) M5Tw091, and (e, f ) M11Tw020. In each case, xref is selected
as xa with Reτ ≈ 1172 in table 4. Vortical structures are visualized by the isosurface of λ2 = −0.1(λ2,rms)max
within z∗ � 100, where λ2,rms is the r.m.s. value of λ2 for each case. Near-wall streaks are also shown by
underlying contours of streamwise velocity fluctuations −2 � √

ρu′′/√τw � 2 (from dark to light shades) at
z∗ ≈ 15.

λx and λy spectra provide a measure of the characteristic length and characteristic spacing
of the near-wall streaks, respectively. Consistent with the flow visualization (figure 20),
the streamwise length and spanwise spacing of the near-wall streaks in the classical wall
units (λ+x , λ+y ) are more than doubled under the hypersonic cold-wall condition when
compared to those of the quasiadiabatic and incompressible cases. However, the semilocal
scaling reduces the disparity between the peak locations in both spectra, yielding peak
length scales λ∗x ≈ 1000 and λ∗y ≈ 120 at all three Mach numbers. Similar values of
streak length and spacing have also been reported for incompressible boundary layers
(Hutchins & Marusic 2007b; Monty et al. 2009) and moderately supersonic channel and
boundary-layer flows (Pirozzoli & Bernardini 2013; Yao & Hussain 2020). There is an
apparent increase in the peak value of the near-wall streamwise and spanwise spectra
with the free-stream Mach number, which is consistent with the increase in the near-wall
peak values of the streamwise Reynolds stress (figures 13a and 13d). The premultiplied
spanwise spectra for the quasiadiabatic cases at Mach 2.5 and 4.9 appear to exhibit a local
plateau near λ∗y ≈ 1000 that is similar to the incompressible data, being indicative of a
k−1
y scaling associated with the attached eddy hypothesis (Perry & Li 1990; Pirozzoli &
Bernardini 2013; Marusic & Monty 2019). A similar k−1

y scaling is not observed in the
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Figure 21. Premultiplied streamwise and spanwise spectra kEρuu/τw at z∗ ≈ 15. The wavelength λ = 2π/k
is normalized in (a,c) inner scale and (b,d) semilocal scale. The solid symbols denote incompressible
boundary-layer data by Monty et al. (2009) at Reτ ≈ 3020 (black circle), Hutchins & Marusic (2007b) at
Reτ ≈ 1000 (red left triangular), and Eitel-Amor, Örlü & Schlatter (2014) at Reτ ≈ 2479 (black gradient). The
black horizontal lines in (c,d) are indicative of k−1

y behaviour.

hypersonic cold-wall case M11Tw020, at least up to Reτ = 1172, which is consistent with
the apparent lack of logarithmic variation in the ρu′′u′′ profiles for this case as shown in
figures 13(a) and13(d). The strong wall cooling for case M11Tw020 tends to reduce the
scale separation between the large and small turbulence scales, diminishing an overlap
region wherein the attached eddy model is valid, even at Reynolds numbers as high as
Reτ = 1172 (Re∗

τ = 6213).
The influence of flow parameters on the scale separation between the small-scale

(inner) peak and the larger-scale (outer) peak is further demonstrated in figure 22, which
plots the contours of the premultiplied spanwise spectra kyEρuu/τw of the streamwise
velocity

√
ρu′′/√τw. Although the small-scale peak corresponding to the near-wall streaks

is centred at a common wall-normal distance of z∗pk ≈ 15 for all cases, as shown in
figure 21(d), this peak occurs at a larger value in terms of outer units (i.e. zpk/δ) for case
M11Tw020, which also has an increased inner peak wavelength (λy)pk/δ in comparison
with the two quasiadiabatic cases. While the two quasiadiabatic cases show a distinct
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Figure 22. Contours of premultiplied spanwise spectra kyEρuu/τw at (a–c) Reτ = 774, and (d–f ) Reτ = 1172.
Wall-normal coordinates and spanwise wavelength are normalized in outer scale, and both axes are plotted in
log scale. Premultiplied streamwise spectra are normalized by the maximum value of each case, and contour
levels are chosen as 0.2(0.1)0.8, from grey to dark. The dash-dotted horizontal lines indicate wall-normal
position of inner peak: (a,b) z/δ ≈ 0.02, (c) z/δ ≈ 0.03, (d,e) z/δ ≈ 0.01, and ( f ) z/δ ≈ 0.02. The dash-dotted
vertical lines indicate inner peak wavelength: (a,b) λy/δ ≈ 0.14, (c) λy/δ ≈ 0.28, (d,e) λy/δ ≈ 0.09, and ( f )
λy/δ ≈ 0.18. The dashed horizontal lines in (a,b,d,e) indicate wall-normal position of outer peak: z/δ ≈ 0.22.
And the dashed vertical lines in (a,b,d,e) indicate outer peak wavelength: λy/δ ≈ 0.8.

second peak that scales in outer units at zpk/δ ≈ 0.22, a similar outer peak is not apparent
for the cold-wall case M11Tw020, even at friction Reynolds numbers as high as Reτ =
1172. The strong wall cooling in case M11Tw020 has significantly increased the size of
the near-wall small-scale turbulence eddies in relation to the boundary-layer thickness δ,
leading to a reduction in the scale separation between the large and small turbulence scales,
and an apparent merger of the two peaks for this case.
To visualize the large-scale coherent structures in the logarithmic region of the

current DNS datasets, figure 23 plots contours of the instantaneous velocity fluctuations√
ρu′′/√τw at z∗ ≈ 200. For all the DNS cases, there exist alternating long streamwise

structures of uniform low- and high-speed fluid with length at least 10δ, suggesting the
presence of superstructures similar to those identified in the studies of Hutchins &Marusic
(2007a) and Ringuette et al. (2008). The premultiplied streamwise and spanwise spectra
of

√
ρu′′/√τw at z∗ ≈ 200 (figure 24) confirm that these structures have characteristic

lengths that scale on the outer units with typical length scales λx/δ = 2–10 and λy/δ ≈ 1 in
the streamwise and spanwise directions, respectively. However, we note that the significant
spanwise meandering of the superstructures along their length may severely shorten
the streamwise length scale inferred from the premultiplied energy spectra (Hutchins &
Marusic 2007a).
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Figure 23. Streamwise velocity fluctuation field (z∗ ≈ 200) normalized by the density-weighted friction
velocity for each DNS case. Flood contour levels are shown for −2.0 � √

ρu′′/√τw � 2.0, from dark to
light shades. A streamwise range of 25δ centred at the most downstream portion of the computation domain
is selected for each case, where δ is the local boundary-layer thickness at the reference location xref . (a)
M2p5HighRe, (b) M5Tw091, (c) M11Tw020.
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Figure 24. Premultiplied streamwise and spanwise spectra kEρuu/τw at z∗ ≈ 200. The solid symbols in (a)
denote incompressible boundary-layer data by Monty et al. (2009) at Reτ ≈ 3020 (black circle), and by
Hutchins & Marusic (2007b) at Reτ ≈ 1000 (red left triangular).

To show whether large-scale structures in the logarithmic region of a high-speed
turbulent boundary have a similar modulating effect on the generation of small-scale
near-wall motions as those in an incompressible turbulent boundary layer, figure 25
plots the premultiplied spanwise spectrum kyEττ /τ

′2
w,rms for the wall shear stress τw at

different Mach number conditions. Also included is the premultiplied spanwise spectrum
kyEρuu/ρu′′u′′ for the streamwise velocity at z∗ ≈ 200. As expected, the spanwise
spectrum for the wall shear stress kyEττ /τ

′2
w,rms displays a distinct inner peak that

corresponds to the near-wall streaks, located at λ+ ≈ 100 for the two quasiadiabatic cases
and λ+ ≈ 200 for the hypersonic cold-wall case. At Reτ = 1172 (figure 25b), a secondary
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Figure 25. Premultiplied spanwise spectra for the wall shear stress kyEττ /τ
′2
w,rms and the streamwise velocity

kyEρuu/ρu′′u′′ at z∗ ≈ 200. The vertical dash-dotted lines denote the peak locations of kyEρuu/ρu′′u′′ for each
case. (a) Reτ ≈ 774, (b) Reτ ≈ 1172.
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Figure 26. Premultiplied streamwise and spanwise spectra kEρuu/τw at z/δ = 0.5.

and outer peak develops in the wall shear stress spectrum for the two quasiadiabatic cases,
and this outer peak has length scale λy/δ ≈ 1. Given that such an outer spectral peak in the
wall shear stress almost coincides with the peak of the velocity spectrum in the logarithmic
region, it can be attributed to the footprint of the large-scale motions in the outer regions
(Hutchins & Marusic 2007b). However, a similar outer spectral peak for the wall shear
stress kyEττ /τ

′2
w,rms is not visible for the cold-wall case M11Tw020, even at the larger

Reynolds number Reτ = 1172 (Re∗
τ = 6213). The lack of an outer peak in the wall shear

stress spectrum kyEττ for the cold-wall case may suggest weakened inner–outer interaction
as a result of the reduced scale separation between the large and small turbulence scales.
Figure 26 further shows the premultiplied streamwise and spanwise spectra of the

instantaneous velocity fluctuations
√

ρu′′/√τw at z/δ ≈ 0.5. The spectra of all the DNS
cases almost collapse onto each other and collectively manifest peaks at λx/δ ≈ 3 and
λy/δ ≈ 1 in the case of the streamwise and spanwise spectra, respectively. Such similarity
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Figure 27. Instantaneous streamwise velocity fluctuations (
√

ρu′′/√τw) field in (left) the streamwise
wall-normal (x–z) plane and (right) the spanwise wall-normal (y–z) plane. Contours levels are shown for
−4.0 � √

ρu′′/√τw � 4.0, from dark to light shades. The red vertical dashed line denotes the streamwise
location at which the y–z plane is plotted on the right. (a) M2p5HighRe, Reτ ≈ 1172; (b) M5Tw091, Reτ ≈
1172; (c) M11Tw020, Reτ ≈ 1172.

among the spectra in all three DNS cases suggests that the large-scale motions in the
outer region of the boundary layer are relatively insensitive to the Mach number and wall
cooling conditions. Similar sizes of the large-scale motions on the order of λx/δ ≈ 3 and
λy/δ ≈ 1 are also suggested by the instantaneous visualizations of the streamwise velocity
fluctuations

√
ρu′′/√τw at all three Mach numbers (figure 27). The flow visualizations

in the streamwise wall-normal (x–z) plane also suggest that the onset of intermittency
occurs successively closer to the boundary-layer edge as the Mach number increases. A
similar delay in the onset of intermittency until the very edge of the boundary layer in
the hypersonic cold-wall case M11Tw020 is also suggested by the flatness of the velocity
fluctuations as shown in figure 19(d).

6. Conclusions

In this paper, we have described the DNS of flat-plate zero-pressure-gradient turbulent
boundary layers developing spatially across long streamwise domains (exceeding 300δi in
length, where δi is the inflow boundary-layer thickness) under a supersonic adiabatic-wall
condition with Mach 2.5, a nearly adiabatic-wall condition with Mach 4.9, and a
hypersonic highly cooled wall condition with Mach 10.9. For each condition, the
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settlement of turbulence statistics on a fully developed equilibrium state of a turbulent
boundary layer has been carefully monitored, either based on the satisfaction of the von
Kármán integral equation Cf = 2(dθ/dx) or by comparing runs with different techniques
for inflow turbulence generation. The DNS datasets are also validated against multiple
experimental data, including those of a Mach 4.9 turbulent boundary layer on a flat
plate that was tested in the National Aerothermochemistry Laboratory (NAL) at Texas
A&M University, and a Mach 11.1 turbulent boundary layer on a flat plate that was
tested at the Calspan-University of Buffalo Research Center (CUBRC). The current DNS
datasets, with a friction Reynolds number of up to Reτ ≈ 1200, have extended the range
of Reynolds numbers from those typical of the previous DNS studies for hypersonic
turbulent boundary-layer flows (e.g. the DNS database of Zhang et al. (2018) with Reτ up
to 686). These datasets have been used to investigate the streamwise evolution of multiple
mean and turbulence variables, to gauge the performance of important compressibility
transformations at higher Reynolds number, and to understand the turbulence structures in
the high-Mach-number cold-wall regime. The main observations and conclusions may be
summarized as follows.
(i) The inflow recovery length for hypersonic cold-wall boundary layers has been studied

and evaluated quantitatively for the first time. The inflow recovery length based on the von
Kármán integral equation Cf = 2(dθ/dx) is found to be in the range of 1–3 eddy turnover
lengths, and increases with the free-stream Mach number. Cross-comparison between the
rescaling and digital-filtering inflow methods shows that a significantly longer distance
is required for the outer layer discrepancy to disappear than the differences in near-wall
quantities.
(ii) In regard to the streamwise evolution of mean and turbulence quantities, the data

show that the combination of van Driest II transformation with the power-law friction
relation of Smits et al. (1983) predicts Cf within 5% for the supersonic adiabatic-wall
cases, and within 15% for the hypersonic cold-wall cases. Over the Reynolds number
range covered by the current DNS, the Reynolds analogy factor Raf = 2Ch/Cf is nearly a
constant, with 1.1 < Raf < 1.2, which is consistent with the usual approximation Raf =
Pr−2/3 ≈ 1.256. The shape factor relation (3.8a) by Hopkins et al. (1972) correlates
well with the DNS data, with a relative error of approximately 2% for the supersonic
adiabatic case, and up to 8% for the hypersonic cold-wall cases. The peak magnitude of the
streamwise Reynolds stress in Morkovin’s scaling increases with the Mach number, while
the peak magnitude of the Reynolds shear stress is insensitive to the flow parameters and
falls within the range (u′′w′′)∗pk = 0.85–0.9 for the cases studied herein. The fluctuating
wall pressure, wall shear stress and surface heat flux have large fluctuation amplitudes
relative to the respective mean values, and their relative magnitudes reveal a dependence
on both the Mach number and the wall temperature. Therefore, under hypersonic cold-wall
conditions, these quantities fail to follow the empirical relations based on the data for
incompressible and moderately supersonic boundary layers.
(iii) The simulation results also confirm that many of the scaling relations for

high-Mach-number turbulent boundary layers with and without surface heat transfer,
whose validity was assessed previously with low-Reynolds-number DNS data, can still
be applicable at higher Reynolds numbers up to at least Reτ ≈ 1200. Specifically, a
good collapse of the hypersonic data in the viscous sublayer and buffer layer regions
is achieved with the Trettel and Larsson transformation. While the Trettel and Larsson
transformation is unable to yield a satisfactory collapse in the log-layer intercept among
the DNS cases, the more recent data-driven transformation of Volpiani et al. (2020) and
the total-stress-based transformation of Griffin et al. (2021) lead to a much improved
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collapse of the DNS datasets in the logarithmic region. The mean temperature is related
quadratically to the mean velocity according to simple empirical relations of Duan &
Martin (2011) and Zhang et al. (2014). Huang’s version of the strong Reynolds analogy
collapses all of the DNS data at different combinations of Mach number, wall temperature
and Reynolds number conditions, with a common value of close to unity in the outer
layer of the boundary layer. The turbulent Prandtl number Prt is nearly constant across
most of the boundary-layer thickness, and is insensitive to the flow parameters. The
semilocal scaling z∗ collapses successfully the location of the near-wall peak of the various
components of the Reynolds stresses. However, the combined influence of high Mach
number and wall cooling causes an increase in the peak magnitude of the streamwise
Reynolds stress in comparison to low-Mach-number boundary-layer flows and a deviation
in streamwise and spanwise Reynolds stresses from a logarithmic variation according to
the attached eddy hypothesis.
(iv) The evaluation of the skewness (S) and flatness (F) of the velocity fluctuations

shows that, in comparison with the incompressible and supersonic TBLs, the u′ motion
becomes weaker and less intermittent in the hypersonic cold-wall case, with reduced
magnitudes of both S(u) and F(u) in the viscous sublayer and shows a larger deviation
from the Gaussian behaviour in the log region. S(u) and F(u) have similar values in the
buffer layer (z∗ ≈ 15) for all of the DNS cases, implying a similarity in the low-/high-speed
streaks within this region, regardless of the Mach number and wall cooling. The skewness
and flatness of the u′ motions display an apparent Mach number dependence near the
boundary-layer edge, where the onset of intermittency occurs increasingly closer to the
boundary-layer edge as the Mach number increases. A similar Mach number dependence
is found for the skewness and flatness of the T ′ motions.
(v) Flow visualizations and energy spectra show that the streamwise length and spanwise

spacing of the near-wall streaks in the classical wall units (i.e. λ+x , λ+y ) are more than
doubled under the hypersonic cold-wall condition when compared to the corresponding
values for the quasiadiabatic and incompressible cases. However, when scaled on the
semilocal units, these streaks at all three Mach numbers have the characteristic lengths
λ∗x ≈ 1000 and λ∗y ≈ 120, which are similar to those of incompressible flows. The flow
phenomena that occur for incompressible high-Reynolds-number flows, such as the
existence of superstructures and their modulation of near-wall coherent structures, are
also observed for high-speed flows. However, the strong wall cooling in the hypersonic
cold-wall case significantly increases the size of the near-wall small-scale turbulence
eddies (relative to the boundary-layer thickness δ), leading to a reduction in the scale
separation between the large and small turbulence scales. Additionally, the Mach 11
cold-wall case indicates a lack of an outer peak in the spanwise spectra of the streamwise
velocity in the logarithmic region, and an apparent weakening of the inner–outer
interaction. Such variation in turbulence structures sheds light on the changes in the
turbulence statistics from quasiadiabatic flows at incompressible and supersonic Mach
numbers to the hypersonic cold-wall condition. Although previous work on hypersonic
turbulent boundary layers at Mach 5 with different wall temperatures by Duan et al.
(2010) had strongly suggested that it is the strong wall cooling, rather than the free-stream
Mach number, that is primarily responsible for the observed trends in streak spacing
and small-scale near-wall eddies, additional computations are necessary to determine the
dominant contributor to the present trends in the flow structures.

Funding. Financial support for this work is being provided by the Office of Naval Research (under grant
N00014-20-1-2194, managed by Dr E. Marineau) and the National Science Foundation (under grant CBET
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Appendix A

In this Appendix, additional information is given about the validation of DNS cases.
Specifically, we address the accuracy of the DNS by assessing the adequacy of domain
size and grid resolution (§A.1) as well as via comparisons with available measurements
from wind tunnel experiments (§A.2).

A.1. Domain/grid sensitivity assessment
The dependence of numerical results on the spanwise grid resolution for case M11Tw020
is investigated first. The streamwise and wall-normal resolutions for case M11Tw020
are comparable if not higher than those reported in the literature for computing similar
flows. However, the spanwise resolution �y+ = 6.6 is slightly larger than the values
reported in the literature. For example, the previous DNS by Zhang et al. (2018) used
spanwise resolution �y+ ≈ 5.0. To check the adequacy of the spanwise resolution for case
M11Tw020, the baseline run for Box2 is refined in the spanwise direction to �y+ ≈ 5.0,
while all other factors, including the flow conditions, the numerical method and the
computational set-up, are kept the same. As a result, the grid sensitivity can be quantified
by comparing the differences between the baseline run and the refined run (referred to as
Case Box 2-Refined in table 2). Figure 28 shows a comparison of the wall heat flux, the
van Driest transformed mean velocity, and the Reynolds stresses between the baseline and
refined-grid cases. All of the quantities collapse to within approximately 1.0%, indicating
an acceptable convergence of both the wall quantities and the boundary-layer profiles
with respect to grid refinement in the spanwise direction. Figure 29 displays the spanwise
wavenumber spectrum for the streamwise velocity Euu for case M11Tw020. The magnitude
of the spanwise wavenumber spectrum falls off by several decades and does not show any
pileup in disturbance energy at the higher wavenumbers. The Kolmogorov −5/3 spectrum
and the −7 spectrum for the viscous decay are recovered in the Euu spectrum at z/δ ≈ 0.5,
where the turbulence eddies are expected to be in an equilibrium state that is free from
the influences of the wall and the large-scale motions in the outer layer. The multiple
decades of spectral rolloff, and the recovery of the Kolmogorov and viscous spectra at
the intermediate and small scales, provide additional support that the numerical method
is able to resolve the wide range of flow scales up to the dissipation scales. A similar
approach has been used by multiple researchers for illustrating the spatial convergence of
a turbulent flow (Kim, Moin & Moser 1987; Pirozzoli & Bernardini 2011; Poggie, Bisek
& Gosse 2015).
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Figure 28. Comparison of (a) the Stanton number Ch, (b) the van Driest transformed mean velocity, and
(c) density-weighted normalized Reynolds stresses, for case M11Tw020 with varying spanwise resolutions.
The mean velocity and Reynolds stresses are taken at Reτ = 774.
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Figure 29. One-dimensional energy spectra of case M11Tw020 as a function of the spanwise wavenumber,
ky: (a) for two different Reynolds numbers at z/δ ≈ 0.5; and (b) at multiple heights for Reτ = 1172. Here, η =
ρ̄−1/2(μ3/φ)1/4 and υ = ρ̄−1/2(μφ)1/4 are the Kolmogorov length and velocity scales, respectively, where
φ = τ ′

ik(∂u
′
i/∂xk) is the viscous dissipation rate per unit volume (Zhang et al. 2018).

The adequacy of the spanwise domain size is evaluated by monitoring the decay in
cross-correlation of the streamwise velocity Cuu as a function of the spanwise separation
ry at the downstream location with Reτ ≈ 1172. Figure 30 shows that the correlation near
the wall, as well as in the outer region of the boundary layer, has become very small at
large spanwise separations. Although not shown, a similar decay in the cross-correlation
at large spanwise separations is also seen for the other two velocity components and the
thermodynamic quantities, indicating that the adequacy of the spanwise domain size to
contain the largest turbulence structures in the boundary layer.

A.2. Comparison with experiments
The validity of the current DNS is further established by comparing the DNS results with
experiments and other well-established simulations.
Figure 31 shows the comparison between case M5Tw091 and the particle image

velocimetry (PIV) data of Tichenor et al. (2013), including the mean streamwise velocity
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Figure 30. The correlation coefficient of streamwise velocity fluctuations Cuu as a function of spanwise
separation ry at (a) z∗ ≈ 4, (b) z∗ ≈ 200, and (c) z/δ ≈ 0.5. The streamwise location is selected at the most
downstream location of Reτ ≈ 1172 for each case. Horizontal dashed lines represent zero.

u+ = ū/uτ , the mean streamwise defect velocity (ū − U∞)/uτ , the mean strain rate
Sxz = (∂ ū/∂z + ∂w̄/∂x)/2, and the Reynolds stresses (ρu′′

i u
′′
j /τw)1/2. The experimental

data correspond to those measured at Location 1 along the ZPG model from Tichenor
et al. (2013), and the DNS profile is selected at (x − xi)/δi ≈ 81 to match the experiment
Reynolds number Reδ2,inc ≈ 9000, where Reδ2,inc = ρ∞U∞θinc/μw, and θinc is the
incompressible momentum thickness. The comparison in figure 31 reveals very good
agreement between the DNS and the experimental data for all quantities plotted herein.
Although the wall-normal component of velocity fluctuations and the Reynolds shear
stress from the wind tunnel measurement have lower magnitudes than the current DNS
data, such reductions are typical of the PIV studies of supersonic flows as discussed
previously by multiple researchers (Burns et al. 2015; Brooks et al. 2018; Williams et al.
2018; Zhang et al. 2018). Additional comparisons against Tichenor’s experiment, including
the data at weak and strong pressure gradients, can be found in Nicholson et al. (2021).
Figure 32 further compares the results for the wall shear stress and wall heat flux

among case M11Tw020, the wind tunnel measurements of CUBRC and the RANS
results by Gnoffo et al. (2013). The DNS results for the wall shear stress τw and the
wall heat flux qw agree well with the corresponding predictions based on the RANS
calculations with the Baldwin–Lomax algebraic turbulence model. The above agreement
extends throughout the DNS region following the initial transient, i.e. for approximately
x > 0.35 m. In general, the difference in τw and qw distributions between the DNS and the
Baldwin–Lomax RANS calculations, respectively, decreases progressively as x becomes
larger. Thus at the x = 1.35 m location that is just upstream of the outflow boundary of
the DNS domain, the discrepancy between the DNS and RANS predictions for τw and
qw values is about 1.9% and 1.7%, respectively. The good match between DNS and
Baldwin–Lomax predictions of skin friction is consistent with the RANS study by Rumsey
(2010), who reported that simple algebraic models such as Baldwin–Lomax perform better
in hypersonic boundary-layer applications than two-equation models.
The τw measurements from the CUBRC experiment are limited to a relatively short

streamwise region within 0.75 m < x < 1.1 m, and exhibit considerable oscillations as
a function of the x coordinate. The wall heat flux (qw) values measured at CUBRC
also display significant scatter along the streamwise direction and seem to indicate a
considerably faster decrease with increasing x in relation to either of the computational
predictions. Based on private communications with the CUBRC group (Dr Timothy P.
Wadhams, 8 April 2020), the uncertainty due to the heat flux sensor alone is approximately
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Figure 31. Comparison of DNS (case M5Tw091) results of (a) the mean streamwise velocity u+ = ū/uτ ,
(b) the mean streamwise defect velocity (ū − U∞)/uτ , (c) the mean strain rate Sxz = (∂ ū/∂z + ∂w̄/∂x)/2, and
(d) the Reynolds stresses (ρu′′

i u
′′
j /τw)1/2 with the ZPG data at Mach 4.9 and Reδ2,inc ≈ 9000 measured with

PIV by Tichenor et al. (2013).
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Figure 32. Comparison of the DNS results of (a) wall shear stress τw, and (b) wall heat transfer qw, for case
M11Tw020 with the experimental measurements of CUBRC Run 7 and RANS results of the Baldwin–Lomax
turbulence model (Gnoffo et al. 2013). The 12% error bars represent the experimental uncertainties caused by
surface sensors.
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12%, and it would not be possible to quantity all the other sources of experimental
uncertainty. Given the relatively large uncertainties in the experimental measurements as
indicated by the vertical error bars in figure 32, the comparison between DNS and the
post-transition region from the experiment is deemed quite satisfactory.
Additional comparisons between the DNS results and both experiments and other

high-quality simulations have been presented in the main sections.
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