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Direct numerical simulations (DNS) of adverse-pressure-gradient turbulent boundary lay-
ers over a planar concave wall are presented for a nominal freestreamMach number of 5, with
the objective of assessing the limitations of the currently available Reynolds-averaged Navier-
Stokes (RANS) models. The wall geometry and flow conditions of the DNS are representative
of the experimental data for a Mach 4.9 turbulent boundary layer that was tested on a two-
dimensional planar concave wall model in the high-speed blow-down wind tunnel located at
the National Aerothermochemistry Laboratory at Texas A&M University (TAMU). The DNS
was validated against the experimental results of TAMU for the same flow conditions and wall
geometry. An analysis of the DNS datasets was also conducted to provide an assessment of
the validity of Morkovin’s hypothesis and the strong Reynolds analog for turbulence subject to
mechanical nonequilibrium. In addition to the DNS results, RANS predictions are obtained by
using the Baldwin-Lomax (BL), Spalart-Allmaras (SA), and the : − l SST turbulence models.
The comparisons between RANS and DNS showed little impact of an adverse pressure gradient
on the accuracy of these models, at least up to an incompressible Clauser pressure gradient
parameter of V8=2 = 1.22 While the Boussinesq assumption provided reasonable predictions
for the Reynolds shear stress, it failed to adequately predict the normal components of the
Reynolds stress.

Nomenclature

�@ = wall heat transfer rate, �@ = @F/(dF�?Dg)F ), dimensionless
� 5 = wall skin friction coefficient, � 5 = gF/( 1

2 d∞*
2
∞), dimensionless

�ℎ = wall heat flux coefficient, �ℎ = @F/
(
d∞�?*∞ ()A − )F )

)
, dimensionless

�? = heat capacity at constant pressure, J/(K·kg)
�E = heat capacity at constant volume, J/(K·kg)
� = total energy per unit mass, � ≡ 4 + 1

2D8D8 , J/kg
� = shape factor, � ≡ X∗/\, dimensionless
" = Mach number, " ≡ D/0, dimensionless
"g = friction Mach number, "g = Dg/(W')F )1/2, dimensionless
# 5 = number of fields used to accumulate statistics, dimensionless
%A = molecular Prandtl number, %A = 0.71, dimensionless
%AC = turbulent Prandtl number, %AC ≡

(
dD′′F′′(m)̃/mI)

)
/
(
dF′′) ′′(mD̃/mI)

)
, dimensionless

' = ideal gas constant, ' = 287, J/(K·kg)
'4\ = Reynolds number based on momentum thickness and freestream viscosity, '4\ ≡ d∞D∞\/`∞, dimensionless
'4X2 = Reynolds number based on momentum thickness and wall viscosity, '4X2 ≡ d∞D∞\/`F , dimensionless
'4g = Reynolds number based on shear velocity and wall viscosity, '4g ≡ dFDgX/`F , dimensionless
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'4∗g = semilocal Reynolds number, '4∗g ≡
√
gF/d∞X/a∞, dimensionless

(8 9 = rate-of-strain tensor, (8 9 = 1
2

(
mD8
mG 9
+ mD 9

mG8

)
, Hz

) = temperature, K
)A = recovery temperature, )A = )∞ (1 + 0.89 W−1

2 "2
∞), K

C 5 = time spanned to accumulate statistics, s
*∞ = freestream velocity, m/s
0 = speed of sound, m/s
4 = internal energy per unit mass, 4 ≡ �E) , J/kg
ℎ = enthalpy per unit mass, ℎ ≡ �?) , J/kg
:̃ = turbulent kinetic energy, :̃ ≡ �D′′

8
D′′
8
/2, J/kg

? = pressure, Pa
@ = conductive heat flux, W/m2

@)
8

= turbulent heat flux term, @)
8
= dℎ′′D′′

8
, W/m2

@F = wall heat flux, W/m2

B = entropy, J/(kg·K)
D = streamwise velocity, m/s
Dg = friction velocity, Dg ≡

√
gF/dF , m/s

D∗g = density weighted velocity scale, D∗g ≡
√
gF/d = Dg

√
dF/d, m/s

E = spanwise velocity, m/s
F = wall-normal velocity, m/s
G = streamwise direction of the local body intrinsic coordinate system, m
G6 = streamwise direction of the right-handed Cartesian coordinate system, m
H = spanwise direction of the local body intrinsic coordinate system, m
H6 = spanwise direction of the right-handed Cartesian coordinate system, m
I = wall-normal direction of the local body intrinsic coordinate system, m
I6 = vertical coordinate that is perpendicular to the plane determined by the G6- and H6-coordinates, m
Ig = viscous length, Ig = aF/Dg , m
I∗g = semilocal length scale, I∗g ≡ ¯̀/( d̄D∗g), m
V = Clauser pressure gradient parameter, V = (3?/3G) (X∗/gF ), dimensionless
V8=2 = incompressible Clauser pressure gradient parameter, V8=2 = (3?/3G) (X∗8=2/gF ), dimensionless
�? = Impulse parameter for bulk dilation, �? = W−1 ln (?2/?1)
�q = Impulse parameter for streamline curvature, �q = Δq
W = specific heat ratio, W = �?/�E , dimensionless
X = boundary-layer thickness (based on 99.5% of the freestream total enthalpy), m
X∗ = displacement thickness, m
^ = von Kármán constant ^ = 0.41, dimensionless
\ = momentum thickness, m
o)
8

= turbulent heat flux term, o)
8
= d4′′D′′

8
, W/m2

` = dynamic viscosity, ` = 1.458 × 10−6)3/2/() + 110.4), kg/(m·s)
a = kinematic viscosity, a = `/d, m2/s
d = density, kg/m3

f = viscous stress tensor, Pa
g = shear stress, Pa

Subscripts

8 = inflow station for the domain of direct numerical simulations
8=2 = incompressible variables
A<B = root mean square
F = wall variables
∞ = freestream variables

Superscripts
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) = turbulent quantities in RANS equations
+ = variable in inner wall units, (·)+ ≡ (·)/Ig
(·) = standard (Reynolds) averaged variable
(̃·) = density-weighted (Favre) averaged variable, (̃·) ≡ d(·)/d
(·) ′ = fluctuations around standard averages
(·) ′′ = fluctuations around Favre averages

I. Introduction
All realistic hypersonic vehicles exhibit some degree of streamline curvature that induces favorable and/or adverse

pressure gradients. As such, there is a need to understand how pressure gradients drive the transport of boundary-layer
turbulence in the hypersonic regime, so that the underlying physical processes can be accurately modelled and, hence,
also utilized to the advantage of vehicle designs.

The existing literature on the effect of streamline curvature on hypersonic boundary-layer turbulence is rather
limited, whether in regard to measurements, modeling, or numerical simulations. Most previous studies of fully
turbulent boundary layers (TBLs) that included pressure gradients focused on low-speed boundary layers (see, for
example, Refs. [1–7]), with considerably fewer studies involving supersonic boundary layers, and even less targeting the
hypersonic regime. The existing experiments were largely limited to either single-point measurements of the velocity
fluctuations based on hot-wire anemometry and/or laser Doppler velocimetry [8–14] or global measurements of the
velocity field by the particle image velocimetry (PIV) [15–24]. While the available measurements have yielded valuable
insights into the effect of pressure gradients on the behavior, distribution, and scaling of the mean velocity and the
Reynolds-stresses associated with the turbulence field, none of the existing experiments have been able to provide
sufficiently well resolved, global measurements of both velocity and thermodynamic fields (including in the immediate
vicinity of the wall), so as to facilitate a systematic investigation of the turbulence scaling laws and to enable a detailed
evaluation of the underlying modeling assumptions for RANS turbulence models. As far as the high-fidelity simulations
such as DNS are concerned, nearly all of the existing DNS have been conducted at freestream Mach numbers of less
than 3 [25–30], where the compressibility effects are expected to be too weak to cause any significant deviation of the
turbulence statistics from its incompressible behavior.

Recently, Nicholson et al. [31] presented the results of a new, in-depth DNS dataset of nominally Mach 5 TBLs
subject to favorable pressure gradients (FPG) due to streamline curvature. The DNS simulation simulated the flow
configuration from the experiments performed in the National Aerothermochemistry Laboratory (NAL) at the Texas
A&M University, which included zero, weak, and strong favorable pressure gradients induced via appropriately designed
surface curvature [18]. The DNS has been validated against the experimental results of Tichenor et al. [18] for both
zero and nonzero pressure gradients, as well as through selective comparisons with several other DNS datasets for
a ZPG boundary-layer [32–34]. In general, the DNS results agree well with the velocity profiles measured in the
experiment. For the ZPG case, the Van Driest II transformed velocities from the DNS show good collapse with other
DNS results for a variety of Mach numbers. Consistent with the experiment of Tichenor et al. [18], the DNS predicted
a substantial reduction of Reynolds stresses and turbulent heat flux with increasing pressure gradient; and for strong
pressure gradient, the shear stress and wall-normal heat flux became nearly zero or even slightly negative in the outer
region of the boundary layer, highlighting a decay in the turbulent motion. Both the assumption of a constant Prandtl
number and Huang’s version of strong Reynolds analogy were found to be adequate for zero and weak FPGs, but
failed under the effects of the strong FPG. In addition to characterizing the physics of high-speed turbulence subject to
streamline-curvature-driven FPG, the DNS datasets of Nicholson et al. [31] were used to assess the potential limitations
in the modeling assumptions of several currently available turbulence models. Specifically, the predictions of the
Baldwin-Lomax, Spalart-Allmaras, Wilcox k-l, and the k-l SST turbulence models were evaluated against the DNS
data set. The comparisons showed that each model performed quite well under weak pressure gradients. However, a
strong FPG led to a significant variance among the predictions of those models. Overall, the k-l SST model performed
the best, yielding DNS-like predictions for the skin friction until the flow shifted from a favorable to an adverse pressure
gradient. Nicholson et al. [31] found that the Boussinesq assumption provided reasonable predictions of the Reynolds
shear stress, but could not adequately predict the streamwise and wall-normal Reynolds Stresses. While the constant
turbulent Prandtl number assumption yielded good predictions of the turbulent heat flux in the wall-normal direction, it
was not able to capture the turbulent heat transfer in the streamwise direction. These previous results highlight the need
for higher-fidelity models that can successfully capture the transport of Reynolds stresses and all components of the
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Table 1 Freestream and wall-temperature conditions for Mach 4.9 DNS cases in comparison with the exper-
iment of Tichenor et al. [20]. X8 is the boundary-layer thickness at the inflow of Box 1 DNS (G6 = −0.35 m) as
shown in Figure 2.

Case "∞ *∞, m/s d∞, kg/m3 )∞, K )F , K )F/)A )A X8 , mm
DNS 4.9 794.0 0.272 66.2 317.0 0.91 348 4.0
Exp 4.9 794.9 0.265 65.5 ≈ 321.0 1.01 317 -

turbulent heat flux. One such model is the algebraic energy flux, AEF, model by Bowersox [35], which has recently
shown promising results. The studies of hypersonic TBLs subject to streamline-curvature-driven pressure gradients and
the assessments of turbulence models for such flows have been limited to those with FPG. A similar study for hypersonic
TBLs with adverse pressure gradients is lacking. This important technical gap is targeted in the current paper.

The primary objective of this paper is to extend the DNS database of Nicholson et al. [31] to hypersonic TBLs
subjected to APG. Specifically, we will present the results of a new DNS of a nominally Mach 5 APG TBL that simulates
the experimental flow configuration from Neel et al. [36]. In particular, the current study will extend the assessment of
the assumptions underlying the AEF model of Boxersox for high-speed TBLs subject to streamline-curvature-driven
APG.

The paper is structured as follows. The flow conditions and numerical methodology are outlined in Section II and
III, respectively. While section IV presents a comparison of the DNS results against the experiments of TAMU of
streamline curvature-driven APG TBLs at Mach 4.9; and section V provides an assessment of several Reynolds stress
and turbulent heat flux formulations for the RANS of hypersonic TBLs against the DNS results. A summary of the
paper is given in Section VI.

II. Flow Conditions
The present work targets both DNS and RANS computations of streamline-curvature-driven APG TBLs with an

incoming Mach number of 4.9. The flow conditions are selected to match the experiments by Tichenor et al. [18],
while the wall geometry has been selected to match those from the experiment by Tichenor et al. [20] in the National
Aerothermochemistry Laboratory (NAL) at the Texas A&M University. This results in a small difference of the
freestream conditions used with respect to those from Tichenor et al. [20]. However, this choice was made so that
the results from this study can be readily compared with those of an ongoing DNS study[31] that models the FPG
experiments of Tichenor et al. [18]. The wall geometry in the experiment by Tichenor et al. [20] consisted of a tunnel
wall with a changeable floor insert that could be varied from a flat wall with zero pressure gradient to a curved surface
inducing an adverse pressure gradient. Table 1 outlines the freestream and wall-temperature conditions for the cases
of interest during the present work. The DNS simulates a baseline ZPG TBL region over a flat plate followed by an
APG TBL developing spatially over a concave wall geometry that is defined by an 8-degree arc of a circle with a
50.8 cm radius, followed by an inverted arc that is used to return the tunnel wall to a horizontal contour. This wall
geometry is the same as that of the APG model investigated during the TAMU experiment and is shown in Figure 1.
The experiments had three sample locations labeled as U, D1, and D2, which are located at an G6 of 0.154 m, 0.292 m,
and 0.308 m, respectively. These locations correspond to a location upstream (U) of the curved wall that corresponds to
a ZPG TBL, and two locations (D1 and D2) downstream of the starting point of the curved wall. The locations D1 and
D2 correspond to APG TBLs.

III. DNS of Hypersonic Turbulent Boundary Layers
To perform the DNS of turbulent boundary layers, the compressible Navier-Stokes equations in conservation form

are solved numerically. The inviscid fluxes of the governing equations in curvilinear coordinates are computed by
using a seventh-order weighted essentially nonoscillatory (WENO) scheme. The viscous fluxes are discretized with
a fourth-order central difference scheme and the time integration is performed by using a third-order, low-storage,
Runge-Kutta scheme [37].

Figure 2 shows the computational domain for the DNS. The computations are carried out in three overlapping
streamwise domains. Boxes 1 and 2 simulate the ZPG TBL over a flat plate, while box 3 simulates the TBL over a curved
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Fig. 1 Schematic of the DNS case M5APG. The grey contours correspond to numerical schlieren, whereas the
color contours represent the vorticity magnitude and are intended to highlight the large-scale motions within
the boundary layer. Locations U, D1, and D2 denote the measurement locations corresponding to G6 = 0.154 m,
0.292 m, and 0.308 m respectively. The curved wall is defined by two 8-degree arcs that begin and end at 0.2731
m and 0.4145 m, respectively.

wall geometry that produces an adverse pressure gradient. The three boxes have a combined extent of !G = 206.5X8 ,
!H = 7X8 , !I = 50X8 in the streamwise(G6), spanwise(H6) and wall normal(I6) directions, respectively, where X8 is the
boundary layer thickness at the inflow of the Box 1 DNS. The grids in the wall normal direction are clustered near the
wall, with I+

<8=
. 0.6 at the first grid point away from the wall and the grid spacing near the boundary layer edge is kept

uniform with I+<0G . 9.3. Details of the grid dimensions, domain size and resolutions are listed in Table 2.
In Box 1, i.e., the ZPG region, a modified rescaling/recycling method [38] is used to generate inflow turbulence, with

the recycling station set at 69.3X8 downstream of the inlet. The selected recycling length falls within the range required
to accommodate the eddy decorrelation length and to minimize the effect of inlet transients associated with the recycling
process. According to Simens et al. [39], this range corresponds to approximately 30X8 to 99X8 . The inflow location of
the Box 1 DNS is more than 125X8 upstream of the first sampling location at G6 = 0.154 m (labeled as Location U in
the experiment [19]) so that the DNS can achieve a fully developed equilibrium state of a ZPG TBL at the sampling
location. The computational setup for Box 1 DNS and, also, for the downstream simulations is sketched in Figure 2.

For both the ZPG and APG boxes, no-slip conditions are applied for the three velocity components at the wall
and isothermal wall conditions are used for the temperature, with )F = 317 . At the top and the outflow boundaries,
unsteady nonreflecting boundary conditions based on Thompson [40] are imposed, and periodic boundary conditions
are used in the spanwise direction. The DNS methodology has been extensively validated in previous work for spatially
developing supersonic/hypersonic turbulent boundary layers [32, 38, 41–43].

For the current spatial simulations, the boundary-layer grows slowly in the streamwise direction, the boundary-layer
thickness X increases by a factor of approximately three prior to the APG region (Figure 3). As part of this evolution, the
friction Reynolds number '4g increases from approximately 500 at the inlet G6 = −0.35 m to approximately 1150 at the
location where the curvature begins. The streamwise computational domain is large enough to allow the memory of the
inflow generation to fade out, so that the DNS predicted boundary-layer thickness X and Clauser equilibrium pressure
gradient parameter V show good comparison with the experimentally measured values upstream of the curvature at all 3
locations
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Table 2 Summary of parameters forDNSdatabase. !U, U = G, H, I are the domain sizes in streamwise, spanwise,
and wall-normal directions, respectively. #G , #H , and #I are the grid dimensions. ΔG+ and ΔH+ are the uniform
grid spacings in the streamwise and spanwise directions. ΔI+ denotes the wall-normal spacing at the first grid
point away from the wall and that near the boundary-layer edge. The superscript “+” denotes normalization by
the viscous length Ig at G6 = 0.0 m for Boxes 1 and 2 and at Location D1 (G6 = 0.292 m) for Box 3, as in Table 3.

Dataset xbeg-xend, m ΔG+ ΔH+ ΔI+ !G/X8 !H/X8 !I/X8 #G × #H × #I ) 5 Dg/X
Box1,ZPG -0. 350-0. 073 6.9 5.2 0. 56-8. 8 69.3 7.0 50.0 4500 × 600 × 550 10.9
Box2,ZPG -0. 085-0. 191 6.9 5.2 0. 56-8. 8 69.3 7.0 50.0 4500 × 600 × 550 6.1
Box3,APG 0. 077-0. 476 7.3 5.5 0. 59-9. 3 99.7 7.0 50.0 6500 × 600 × 550 2.5

Interpolation

Interpolation

y
g

x
g

z
g

Fig. 2 Computational domain and simulation setup for Mach 5 DNS over wall models of APG case. The
instantaneous flow is shown by the isosurface of the magnitude of the density gradient, |∇d |X8/d∞ ≈ 0.98 and
colored by the streamwise velocity component (with levels from 0 to*∞, blue to red).

6

D
ow

nl
oa

de
d 

by
 L

ia
n 

D
ua

n 
on

 D
ec

em
be

r 1
5,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

21
-2

89
1 



x
g
 (m)

δ
 (

m
)

­0.4 ­0.2 0 0.2 0.4 0.6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

ZPG

APG

(a)

x
g
 (m)

R
e

τ

­0.4 ­0.2 0 0.2 0.4 0.6
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

ZPG

APG

(b)

x
g
 (m)

δ
 (

m
)

z
g
 (

m
)

0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

0.04

0

0.01

0.02

0.03

0.04

0.05

DNS

U

D1

D2

(c)

x
g
 (m)

β
in

c
=

(d
p

w
/d

x
)(

δ∗ in
c
/τ

w
)

z
g
 (

m
)

0.1 0.2 0.3 0.4

­2

­1

0

1

2

0

0.01

0.02

0.03

0.04

0.05

DNS

U

D1

D2

(d)

Fig. 3 Evolution of boundary-layer parameters with the axial coordinate G6, (a) boundary-layer thickness X;
(b) friction Reynolds number '4g; (c) boundary-layer thickness X; (d) Clauser equilibrium pressure gradient
parameter V8=2 .
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IV. DNS Results for Mach 4.9 APG TBLs
In this section, the DNS data is used to evaluate the statistics of the Mach 4.9 APG TBLs, which are compared

with TAMU’s experiments as well as with other experimental and simulation results to help establish the physical
realism and the accuracy of the computed results. The DNS statistics at each streamwise location of interest (G = G0)
are obtained by first averaging over a streamwise (axial) window ([G0 − 0.5X8 , G0 + 0.5X8]) and the spanwise direction
for each instantaneous flow field; then, an ensemble average over flow-field snapshots spanning a time interval of
) 5 Dg/X is calculated. Statistical convergence is verified by calculating averages over varying streamwise window sizes
or over a different number of snapshots and by making sure that the differences in flow statistics among the different
data-averaging parameters are negligible (< 1%). Throughout the paper, statistics are reported based on fluctuations
around either the standard (Reynolds) averages or the density-weighted (Favre) averages. The standard Reynolds
averages are denoted by an overbar, 5 , whereas the Favre averages are denoted by a tilde, 5̃ = d 5 /d; fluctuations around
standard and Favre averages are denoted by single and double primes, as with 5 ′ = 5 − 5 and 5 ′′ = 5 − 5̃ , respectively.
For the statistics reported in this article, only small differences (< 3%) have been found between the standard and
the density-weighted (Favre) averages. Table 3 lists the values of the mean boundary-layer parameters at the selected
locations (U, D1, D2) for statistical analysis.

The Van Driest transformed mean-velocity profile based on the DNS at Location U (G6 = 0.154 m) is shown in
Figure 4. Here, D+

+�
is defined as

D+VD =

∫ D+

0
(d/dF )1/23D+. (1)

The Van Driest transformed velocity at the ZPG location (U) conforms well with the incompressible law of the wall
and has a logarithmic region that is comparable in extent to the simulations of ZPG TBLs by Duan et al. [32] at Mach
5.86, and Schlatter and Örlü [34] at a nearly zero Mach number. The transformed velocity in the outer region of the
boundary layer conforms particularly well with the transformed velocity of the TAMU experiment of Tichenor et al.
[18]. Additionally, an excellent comparison is seen for the van Driest transformed deficit velocity in Figure 4(b). Here,
we compared the DNS profiles at the ZPG location against those from Tichenor et al. [18] whose conditions better
match the DNS conditions than those of Tichenor et al. [20]. We found that the measured profiles by Tichenor et al. [18]
at the ZPG location have some differences from the measurements from Tichenor et al. [20]. Such differences between
the two measured profiles are not likely to be caused by the small difference in the freestream conditions alone. We are
conducting further investigation to identify the cause behind the discrepancy between the two experimental profiles, so
that the impact of those differences on the comparison at the downstream locations can be assessed.

Figure 5 plots the wall-normal profiles of the turbulence intensities and the Reynolds shear stress for Case M5ZPG
at Location U (G6 = 0.154 m). In general, Morkovin’s scaling [44] leads to a good collapse among the data across a
wide range of Mach numbers, consistent with the previous experimental and computational observations of ZPG TBLs
[18, 45–47]. The streamwise Reynolds-stress based on the current DNS compares very well with the PIV measurements
of Tichenor et al. [18] and Williams et al. [47]. However, the wall-normal component of turbulence intensity and
the Reynolds shear stress based on the PIV measurements [47] are significantly smaller than those predicted by the
various DNS at high Mach numbers. Such reductions in magnitude are typical of particle-based velocimetry studies of
supersonic flows [47]. As noted by Williams et al. [47], this loss in the accuracy of the PIV-derived statistics is largely
due to particle response limitations that result in significantly reduced levels of wall-normal velocity fluctuations.

Figure 6 shows the mean-velocity profiles from the DNS at the ZPG location and also at the two APG locations

Table 3 Boundary-layer properties at the sample stations, Location U (G6 = 0.154 m), D1 (G6 = 0.292 m) and
D1 (G6 = 0.308 m), selected for the analysis for various DNS cases.

Dataset G0, m '4\ '4g '4X2 '4∗g �12 X, mm Ig , `m Dg , m/s V V8=2 �? �q

DNS, U 0.154 21674 1060 5008 10046 10.4 9.7 9.2 37 0.03 0.01 0 0
Exp, U 0.154 - - - - - 7.8 - - - 0.09 - -
DNS, D1 0.292 26411 1280 6100 11317 9.2 10.7 8.4 35.2 3.48 0.96 0.1 0.04
Exp,D1 0.292 - - - - - 11.4 - - - 0.85 - -
DNS, D2 0.308 30966 1384 7152 11357 6.8 10.3 7.5 34.1 3.69 1.22 0.2 0.07
Exp,D2 0.308 - - - - - 10.7 - - - 1.05 - -
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and compares them with the corresponding measurements from the TAMU experiment. Additionally, results from the
simulations of Nicholson et al. [31] for both weak and strong FPG flows are included to allow a comparison between the
effects of adverse and favorable pressure gradients. Figure 6(a) indicates that, similar to the experiment, the streamwise
velocity profile becomes less full in moving from the ZPG location U to the APG locations D1 and D2. The Van Driest
transformed velocity profiles at these locations (Fig. 6(b)) collapse well in the viscous sublayer as well as within the
buffer-layer and the log-law regions and compare fairly well with the measured data in this region. However, the DNS
profiles within the wake region are somewhat higher in comparison with the experimental results. A partial contributor
to this discrepancy may be the small changes in the corresponding freestream conditions. Conversely to the effects of an
adverse pressure gradient, the favorable pressure gradient tends to make the velocity profile fuller (Fig. 6(c)), while
increasing the log-law intercept and reducing the wake function (Fig. 6(d)).

Figure 7 plots the axial, wall-normal, and shear components of the Reynolds-stress at each sampling location with
the corresponding data from the TAMU experiments. Consistent with the findings of the experiment [20], the DNS
shows a progressive increase in all components of the Reynolds-stress within the inner part of the boundary layer
(I/X < 0.6) as the flow moves downstream into the APG region. The computed profiles of the axial component of the
Reynolds-stress are close to the experimental results at all three locations, with the exception of the near-wall portion of
experimental profile at Location U. The latter discrepancy is believed to be due to inaccuracies in the PIV measurement.
The DNS predictions for the wall-normal component of the Reynolds stress are consistently higher than the measured
values, and the same is true for the shear stress component at Location U. On the other hand, the DNS-based shear stress
agrees quite well with the measurement at Location D1 and is lower than the measured values at location D2. The above
differences in the wall-normal and shear components of the Reynolds stress may be related to the previously discussed
issues with the PIV measurements.

Figure 8 examines Morkovin’s scaling for the turbulence intensities and the Reynolds shear stress. Unlike the good
collapse of the ZPG profiles at different Mach numbers and wall temperature ratios in Figure 5, the Reynolds stress
profiles at different pressure gradients at the same Mach number do not collapse as well under Morkovin’s scaling. The
differences across the three sampling locations are particularly striking in the case of the Reynolds shear stress profiles
in Fig. 8(d).

Having examined the effects of APG on the velocity fluctuations, we next scrutinize the DNS results for the
wall-normal profiles of the streamwise and wall-normal components of the turbulent heat flux. Similar to the Reynolds
stress results discussed earlier, the profiles of the wall-normal turbulent heat flux in figure 9(b) indicate an increase in
peak values from the upstream profile U to the downstream profiles D1 and D2.
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Fig. 4 (a) Van Driest transformed mean velocity profile and (b) Van Driest transformed mean deficit velocity
for the ZPG TBL at Location U (G6 = 0.154 m). For comparison, experimental data at the ZPG location
for experiments of Tichenor et al. [18] ("∞ = 4.9, '4X2,8=2 = 9000) along with DNS data by Duan et al. [32]
("∞ = 5.86, '4g = 453), and Schlatter and Örlü [34] ("∞ ≈ 0, '4g = 1145) are also plotted in this figure.
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(c) Wall-normal turbulence intensity
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(d) Reynolds shear stress

Fig. 5 Turbulence intensities and Reynolds shear stress transformed according to Morkovin as a function of
wall-normal distance I/X for the ZPG TBL at Location U (G6 = 0.154 m), where D∗ = Dg

√
dF/d is the Morkovin

transformed velocity scale. For comparison, PIV data by Tichenor [48] ("∞ = 4.9, '4X2,8=2 = 9000) and
Williams et al. [47] ("∞ = 7.5, '4g = 279) along with DNS data by Duan et al. [32] ("∞ = 5.86, '4g = 453),
Bernardini and Pirozzoli [33] ("∞ = 4.0, '4g = 506), and Schlatter and Örlü [34] ("∞ ≈ 0, '4g = 1145) are
also plotted in this figure.
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Fig. 6 (a/b) Mean velocity distribution at locations U, D1, D2 in comparison with experiments. Symbols
represent experimental data of Tichenor et al. [20]. (c/d) Mean velocity distributions compared with weak
(WFPG) and strong (SFPG) experiments of Nicholson et al. [31]
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Fig. 7 Reynolds-stress profiles at U, D1, D2 locations in comparison with experiments. Symbols represent
experiment data of Tichenor et al. [20].
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Fig. 8 Turbulence intensities and Reynolds shear stress transformed according to Morkovin as a function of
wall-normal distance I/X for locations U, D1, D2.
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Fig. 9 Turbulent heat-flux distribution of the three locations (U, D1, and D2), (a) the streamwise turbulent
heat-flux; (b) the wall-normal turbulent heat-flux.

One of the important modeling parameters is the turbulent Prandtl number, which is defined as

%AC ≡
dD′′F′′(m)̃/mI)
dF′′) ′′(mD̃/mI)

. (2)

The modified strong Reynolds analogy (SRA) by Huang [49] is given as

) ′′A<B/)̃
(W − 1)"2

∞ (D′′A<B/D̃)
≈ 1
%AC (1 − m)̃>/m))

. (3)

Figure 10 displays the wall-normal profiles of the turbulent Prandtl number and the ratio of the left-hand side of Eq. 3 to
its right-hand side. Consistent with the previous studies of ZPG TBLs [43, 45, 46, 50], %AC is close to unity across most
of the boundary layer at the ZPG location. Figure 10(a) shows that the same observation also holds for the two APG
locations D1 and D2, which also show minimal difference with respect to the ZPG values for the SRA (Fig. 10(b)).
These results indicate that the pressure gradient has little effect on either %AC or the SRA ratio from Eq. 3.
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Fig. 10 Evaluation of strong Reynolds analogy of the three locations (U, D1, and D2), (a) the turbulent Prandtl
number %AC and (b) the modified SRA of Huang et al. [49].

V. RANS Simulation of Hypersonic Turbulent Boundary Layers
RANS computations were conducted for the ZPG and the APG TBLs with the same flow conditions and

thermodynamic equation of state as the DNS cases listed in Table 1. In RANS, NASA’s CFL3D code [51] is used to
solve the compressible Favre-averaged Navier-Stokes equations [52]. The Favre-averaged RANS equations can be
written as:

md

mC
+
mdD̃ 9

mG 9
= 0 (4)

mdD̃8

mC
+
mdD̃8 D̃ 9

mG 9
= − m?

mG8
+
mf8 9

mG 9
+
mg)
8 9

mG 9
(5)

md�̃

mC
+ mdD̃8 (�̃ + ?/d)

mG 9
=

m

mG 9

(
f8 9 D̃8 + f8 9D′′8

)
− m

mG 9

(
@ 9 + @)9 − D̃8g)8 9 +

1
2
dD′′
8
D′′
8
D′′
9

)
(6)

where �̃ = 4̃ + 1
2 D̃8 D̃8 + :

) , @ 9 ≈
�? ˜̀
%A

m)̃
mG 9

, and f8 9 ≈ 2˜̀ (
(̃8 9 − 1

3
mD̃:
mG:

X8 9

)
.

In the one- and two-equation turbulence models used herein, the Reynolds stress term g)
8 9
= −dD′′

8
D′′
9
is modeled by

the Boussinesq approximation:

g)8 9 = −dD′′8 D′′9 = 2`C
(
(̃8 9 −

1
3
mD̃:

mG:
X8 9

)
− 2

3
d:) X8 9 (7)

where (̃8 9 is the mean strain, and `C is the eddy viscosity obtained via either of the turbulence models, and :) denotes the
turbulent kinetic energy. In the current study, we consider two representative turbulence models that are in widespread
use within the aerospace community, namely, the one-equation model of Spalart–Allmaras [53] and the shear-stress
transport :-l model by Menter [54]. Unless otherwise mentioned, the "standard" form" (i.e., the original published
form) of the model equations was used, and the details of the model formula and the various coefficients may be found
in Refs. [55–57].

The turbulent heat flux term @)
8
= dℎ′′D′′

8
was modeled either by assuming a constant turbulent Prandtl number

or via an algebraic model for the turbulent energy flux that was developed by Bowersox [35]. In the constant Prandtl
number model, the turbulent heat flux term is modeled as:

@)8 = dℎ
′′D′′
8
≈ −

�? ˜̀C
%AC

m)̃

mG8
(8)
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where the turbulent Prandtl number %AC is assumed to be a constant, and is set equal to 0.9. The algebraic model of
Bowersox [35, 58] is based on a simplified form of the transport equation for the energy flux \)

8
= d4′′D′′

8
:

08:\
)
: = 18

08: =

[
1
g\
+ '

�E

mD̃<

mG<

]
X8: +

mD̃8

mG:

18 = g
)
8:

(
mℎ̃

mG:
− 1
d

m?

mG:

)
+ 1
d

(
g):;

mD̃;

mG:

)
m?

mG8
g4 .

(9)

Here, g\ = f\gD and g4 = f4gD are time scales that are proportional to the turbulence time scale gD = :) /n as in the
: − n model, and the Reynolds stress term g)

8:
can be modeled by the selected turbulence model. Once \)

8
is calculated

using Eq. 9, the turbulent energy flux @)
8
= dℎ′′D′′

8
can be found as @)

8
= W\)

8
. Additionally, the streamwise turbulent

heat flux @)1 is modified by a damping function, 31 = 1− 4G?(−I∗/�+1 ), such that @
)
1 = W\

)
1 /31 to help with its near-wall

behavior. Table 4 summarizes the model constants used in the evaluation of Bowersox’s algebraic energy flux model.

Table 4 Model Constants used for the Bowersox Model.

f\ f4 �+1 01 2`

0.28/W 0.4/W 90 0.28 0.09

The terms associated with molecular diffusion f8 9D′′8 and turbulent transport − 1
2 dD

′′
8
D′′
8
D′′
9
within the Favre-averaged

energy equation are neglected in the current study [59]. Similar to the DNS, ideal gas relations were used in the RANS
computations with air as the working fluid, and Sutherland’s law was used for molecular viscosity. A constant molecular
Prandtl number of 0.71 is used for calculating the molecular thermal conductivity.

Figure 11 shows the schematics of the computational domains for the ZPG and the APG geometries, respectively,
along with the boundary conditions used in each case. Informatation on the grid resolution and domain size can be
found in table 5. The RANS mesh employs a hyperbolic tangent distribution in the wall normal direction to cluster the
grid near the wall, while a uniform grid distribution is used in the streamwise direction.

To monitor potential sensitivity to grid resolution, a grid study was conducted for the : −l SST model by comparing
the results obtained with the baseline grid and those based on a refined grid with twice the baseline grid resolution
in each direction. The two grids yielded very close results as shown in Figure 12. The difference in � 5 between the
baseline grid and the refined grid is less than 4.0 percent over the entire domain. Because the same inflow was used for
the two cases with and without wall curvature, respectively, the � 5 values for the ZPG and APG cases match within the
upstream part of the computational domain, until the start of the curved wall region at G = 0.2731 m.

Table 5 Grid resolution and domain sizes for RANS cases. Here, grid spacing quantities are nondimensional-
ized by the Ig evaluated at Location U. I<8= refers to the first grid spacing, while I<0G refers to the grid spacing
at the boundary-layer edge.

Case !G × !H × !I x range #G × #H × #I ΔG+ ΔI+
<8=

ΔI+<0G
(m) (m)

RANS-ZPG 1.1 × 1 × 0.24 -0.553 - 0.547 857 × 2 × 385 146.5 0.186 22.3
RANS-APG 1.1 × 1 × 0.24 -0.553 - 0.547 857 × 2 × 385 146.5 0.186 22.3
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(a)

(b)

Fig. 11 Schematics of RANS domains for Cases M5ZPG and M5APG, respectively, along with the boundary
conditions.

A. A Priori Study of Turbulent Heat Flux Models
In this section, we present the results of an a priori study to assess the turbulent heat-flux predictions based on both

the commonly used assumption of a constant turbulent Prandtl number and the AEF model of Bowersox [35, 58]. The
results of this study are summarized in figure 13. While the constant %AC assumption provides a good comparison with
DNS for the wall normal turbulent heat-flux regardless of the local pressure gradient, it fails to capture the streamwise
turbulent heat-flux. Regardless of pressure gradient, the constant Prandtl number assumption predicts essentially zero
streamwise turbulent heat-flux despite the fact that it is nearly an order of magnitude greater than the wall-normal
component. On the other hand, the advanced algebraic energy flux (AEF) model is able to capture the streamwise
component reasonably well, while maintaining a satisfactory accuracy of the wall-normal component. This particular
finding highlights the potential benefit of the AEF model.

B. A Posteriori Study of RANS Modeling for Hypersonic APG TBLs
This section presents comparisons involving RANS computations of hypersonic boundary layers under an adverse

pressure gradient. Specifically, common eddy viscosity models based on a constant turbulent Prandtl number of 0.9 are
assessed by comparing the RANS predictions against the DNS data set.

Figure 14 shows a comparison of the predicted skin friction evolution of each model against the results from the
DNS. Within the zero pressure gradient, all models give reasonable predictions with the : −l SST model providing the
best comparison with the DNS data. Moving into the APG region, both the SA and : − l SST models continue to give
DNS-like predictions while the Baldwin Lomax model shows a delayed increase in predicted skin friction.
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Fig. 12 Grid sensitivity study for the skin-friction coefficients for the ZPG and APG cases, respectively, as
obtained with with the : − l SST model .

As flow moves into the favorable pressure gradient region, the : − l SST continues to provide excellent comparison
with DNS. Additionally, the skin friction predicted by the method of Van Driest II [60] compares excellently within the
ZPG region, but fails to capture the increase in skin friction due to the pressure gradient.

The predicted velocity profiles at locations D1 and D2 are compared with DNS results in FIG. 15. Here both the SA
and : − l SST models compare well with DNS results, while the Baldwin Lomax model predicts an increased wake
function and larger defect throughout the boundary layer.

Figure 16 shows a comparison of the Reynolds stress profiles based on the RANS models mentioned earlier. The
Reynolds stresses were calculated using the Boussinesq assumption (Eq. 7). Here the streamwise Reynolds stress,�(D′′D′′), is significantly underpredicted in the near wall region by the various RANS models, while the wall-normal
Reynolds-stress, �(F′′F′′), is overpredicted by each model. For the Reynolds shear stress, �(D′′F′′), the SA and Baldwin
Lomax models give excellent predictions at location D1, while the : −l SST model slightly underpredicts the Reynolds
shear stress. At location D2, which has a greater pressure gradient, the predictions of all models are found to worsen
significantly.
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Fig. 13 A priori comparison of the turbulent heat-flux calculated using an assumption of constant turbulent
Prandtl number of 0.9 with the DNS results, for (a/c/e) Streamwise turbulent heat-flux; (b/d/f) Wall-normal
turbulent heat-flux.
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Fig. 14 Streamwise development of � 5 predicted by DNS and RANS. The right vertical axis plots the z to
visualize the shape of the wall.
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Fig. 15 Comparison of mean velocity profiles obtained from DNS and at Locations D1 and D2. The profiles
are normalized using (a/b) inner scaling and (c/d) defect-law scaling.
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Fig. 16 Comparison of Reynolds-stress profiles from RANS and DNS at locations D1 and D2, (a/b) streamwise
component D′2/*2

∞, (c/d) wall-normal component F′2/*2
∞, (e/f) shear stress −D′F′/*2

∞ velocity in outer scale,
symbols represent experimental data of Tichenor et al. [18].
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VI. Summary
This paper has presented the results of an ongoing computational study that is aimed at evaluating the accuracy of

commonly utilized Reynolds-averaged Navier-Stokes (RANS) models in predicting high-speed, turbulent boundary-
layers developing under nonzero pressure gradients. Specifically, we have extended the findings of the previous studies
for a Mach 5 boundary layer encountering favorable pressure gradients [31] to include the effects of an adverse pressure
gradient. To help evaluate the RANS models for such flows, the RANS predictions were compared with a new, detailed
numerical dataset based on the direct numerical simulation (DNS) of a Mach 5 experimental flow configuration. The
experiment had been performed in the National Aerothermochemistry Laboratory (NAL) at the Texas A&M University,
and the measurements included data within both a zero pressure gradient region and for adverse pressure gradients due
to suitably designed surface curvature.

The DNS has been validated against the experimental results of Tichenor et al. [18, 20], as well as through selective
comparisons with several other DNS datasets for a zero pressure gradient boundary layer [32–34]. The DNS results
agree well with the velocity profiles measured by Tichenor et al. [18, 20]. Within the zero pressure gradient region,
the Van Driest II transformed velocity profiles reveal good collapse with other DNS results across a broad range of
Mach numbers. For a boundary layer developing under an adverse pressure gradient, the DNS results show a similarly
good collapse; however, the DNS predicts a slightly higher wake function than that inferred from the experimental
measurements [20]. DNS results for the zero-pressure-gradient case indicate that Morkovin’s scaling [44] leads to a
good collapse of the streamwise and spanwise turbulence intensities from the present DNS with the corresponding data
from other DNS at different values of the flow Mach number. On the other hand, the PIV data from the experiment
show a reduced magnitude of the wall-normal turbulent intensity and the Reynolds stress when compared to the DNS
results. This reduction is typical of PIV measurement studies of supersonic flows [47]. For the flow developing
under an adverse pressure gradient, we found that Morkovin’s scaling does not provide a good collapse for turbulence
intensities. In general, the predicted streamwise Reynolds stress compares well with the experimental results of Tichenor
et al. [20]. However, experimental results report a generally lower magnitude for the wall-normal and shear Reynolds
stresses. The DNS predicts a significant increase in both the Reynolds stresses and the turbulent heat flux values for
increasing pressure gradient. Additionally, the constant Prantdl number assumption as well as Huang’s [49] version of
the strong Reynolds analogy are shown to be adequate for both zero and adverse pressure gradients corresponding to
incompressible Clauser pressure gradient parameter V8=2 of up to at least 1.22.

The predictions of the Baldwin-Lomax (BL), Spalart-Allmaras (SA) and the : − l SST turbulence models were
evaluated against the DNS data set. The comparisons showed that for V8=2 values of at least up to 1.22, the BL and SA
models were able to provide adequate predictions for skin friction, and the : −l SST model was able to yield DNS-like
predictions for the bulk of the flow. Overall, within the range of the TAMU experiment, the adverse pressure gradients
has little impact on the accuracy of these models, and the Boussinesq assumption provided reasonable predictions
for the Reynolds shear stress. However, the Boussinesq assumption failed to adequately predict the streamwise and
wall-normal Reynolds stresses.

In addition to the evaluation of the Reynolds stress predictions based on the eddy viscosity models, the predictions
of the turbulent heat flux based on the commonly used assumption of a constant turbulent Prandtl number and, also, on
the more advanced algebraic energy flux (AEF) model of Bowersox [35, 58] are compared with the DNS results. While
both types of models were found to yield good predictions of the wall-normal component of the turbulent heat flux,
the assumption of a constant Prandtl number failed to provide adequate predictions of the streamwise turbulent heat
flux. On the other hand, the AEF model was able to provide improved predictions of both wall-normal and streamwise
components, highlighting the potential of that model for aeroheating predictions for high-speed configurations.
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