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A B S T R A C T   

Polymer composites are currently replacing metals in applications requiring design flexibility, high strength-to- 
weight ratio, and corrosion resistance. However, the damage modes in these materials are very different from 
metals and require specialized techniques to detect internal flaws which may exist even in the absence of visible 
surface damage. This study proposes a technique for damage detection in polymer composites which uses 
naturally absorbed moisture as an ‘imaging’ agent. The locally higher concentration of water in the ‘free’ state at 
damaged regions and the tendency of such water to quickly migrate to and from damage sites—exhibiting 
damage-dependent hysteresis—is leveraged for damage detection. To identify damaged regions, a machine 
learning approach is adopted using logistic regression to classify local regions as ‘undamaged’ or ‘damaged’. New 
possibilities resulting from higher sensitivity levels achievable by damage-dependent hysteresis are highlighted, 
providing a pathway to field deployment of the novel damage detection technique.   

1. Introduction 

Polymer composites are becoming widely adopted in engineering 
applications. As they replace metals in various safety–critical moderate 
temperature service environments [1,2], ascertaining their damage state 
and fitness for service becomes more crucial. This is confounded by the 
difference in behavior of these layered materials with regards to dam
age. Unlike metals, internal damage may be present in the absence of 
visible surface damage [3,4], especially when paint or coatings are 
applied. Such damage may be induced during routine operations such as 
thermal cycling, hail or dropped-tool impact, and cyclic loading. These 
may lead to matrix cracking, fiber–matrix debonding, and delaminations 
which may weaken the structure without any warning signs [5,6]. 

All current nondestructive examination (NDE) techniques for poly
mer matrix composites have various limitations. These include: inability 
to characterize beyond a certain depth, limitation to flaws of specific 
orientation, challenges in flaw localization and characterization, limi
tations to materials of specific electrical conductivity, and system 
complexity—requiring a skilled operator [6–8]. Hence, many NDE 
procedures for safety critical parts have adopted the use of multiple 
techniques to ascertain structural integrity or they simply incorporate 
larger design safety factors to compensate for these shortcomings [9]. 
Therefore novel approaches to NDE of polymer composites are still 

required to provide reliable, simple, and cost effective solutions. One 
such approach which may provide a viable solution to many of these 
challenges is the use of naturally absorbed water as an ‘imaging agent’ 
for damage detection in these materials [10–13]. 

Polymer matrix composites have a tendency to absorb measurable 
moisture in nearly all operating environments. Studies have shown as 
much as 2% by weight moisture being absorbed in epoxy based polymer 
matrix composites [14], and over 0.4% absorbed at steady state for 
environments with relative humidity as low as 21.5% [15]. This ab
sorption is typically driven by traditional diffusion kinetics [16–22], 
polymer polarity [23,24], and damage state of the material [25,26]. 
Studies have shown the effective diffusion process could be deconvo
luted into a combination of these multiple independent diffusion pro
cesses [26], providing an opportunity to focus on moisture diffusion due 
to damage state as a means for damage detection [27]. Critical reviews 
of these studies have been provided in our previous publications 
[10,27]. 

Water absorbed by the polymer matrix has been reported to exist in 
the ‘free’ state—having no interaction with the polymer matrix, or 
‘bound’ state—interacting with the polymer matrix via secondary 
bonding interactions such as hydrogen bonding with polar functional 
groups, dipole–dipole attractions, or van der Waals forces with polymer 
chains [25,28–30]. These interactions restrict the mobility of the water 
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molecules, limiting their ability to rotate with an electromagnetic field 
at microwave frequencies and also influencing the resonant frequency of 
the oxygen-hydrogen bond vibrations [11,31,32]. These effects have 
enabled the ability to characterize these polymer-water interactions 
using near-infrared spectroscopy [12,32] and microwave-frequency 
dielectric properties [11,33,34], amongst other techniques [28,35,36]. 

Damage which creates voids within the polymer matrix in the form of 
matrix cracks, fiber–matrix debonding, and delamination create ideal 
sites for water to exist in the free state [28,37,38]. While, in undamaged 
regions water molecules behave differently due to their close proximity 
to the polymer network, leading to interactions that limit it to the bound 
state [28,37,39]. Hence, a higher concentration of free water could be an 
indication of damage. Furthermore, leveraging such a molecular level 
phenomenon for NDE could enable damage detection at sub-micron- 
scale levels—a limitation of current techniques [10]. 

In our previous work, we demonstrated how polymer-water in
teractions can be characterized and the effects of localized impact 
damage on the water state distribution [10]. We further investigated 
humidity fluctuations in the ambient environment leading to loss or gain 
of total moisture and its effect on the water state distributions in a 
damaged polymer composite laminate [27]. We concluded that such 
variations in moisture content had a significant effect on the sensitivity 
to damage of polymer-water interactions. Single-mode sorption was also 
observed in undamaged regions and dual-mode sorption in damaged 
regions. This led to the discovery of damage-dependent hysteresis in 
polymer composites, providing a reliable basis for nondestructive 
damage detection [27]. However, in these studies, only a qualitative 
determination of damage state based on polymer-water interactions and 
damage-dependent hysteresis was outlined. Hence, an approach to map 
the location of damaged areas in polymer composites is required. 

This study builds on knowledge gained in behavior of polymer-water 
interactions and explores ways to quantitatively define the extent of 
localized damage in a polymer matrix composite. Polymer-water in
teractions are characterized using microwave-frequency dielectric 
properties by coupling a split post dielectric resonator to a vector 
network analyzer [40]. Similar to scans in our previous work [27], water 
state distributions are obtained by 2-dimensional scans showing spatial 
variation in relative permittivity (real part of dielectric constant) across 
the polymer matrix composite laminate. The first method explored is 
based on a single scan taken during the absorption process, while the 
second method is based on multiple scans taken during the absorption 
and desorption processes—an approach based on damage-dependent 
hysteresis. To map out the damaged regions and demonstrate predict
ability, a machine learning based approach is adopted. Finally, progress 
towards a highly sensitive generalized approach is discussed, and 
further considerations required to achieve this are presented. 

2. Materials and methods 

2.1. Experimental details 

A detailed description of the experimental procedure used in this 
study has been provided in our previous work [27]. These include a 
description of materials used, fabrication processes, material properties, 
sample conditioning, impact setup, dielectric measurement, and the 
data collection process at each measurement interval. Reference should 
be made to Section 2 (Experimental) of the publication for these details 
[27]. Also, a discussion on how confounding factors were mitigated has 
been provided in Section 3.1 of our previous study [27]. Hence, the rest 
of this section will focus on details relevant to data processing that 
would enable successful damage prediction. 

2.2. Machine learning model 

In order to determine the damage state across the laminate, a pre
diction of ‘undamaged’ or ‘damaged’ would be required at all points. 

This can be interpreted as a binary classification problem which can be 
solved using various machine learning models, i.e. neural network, lo
gistic regression, clustering, etc. Due to the fairly low number of pre
dictive features, a logistic regression model is employed. The machine 
learning model is implemented using MATLAB® and optimization is 
achieved using the ‘fminunc’ (function minimization unconstrained) 
advanced optimization function. The fminunc function requires a cost 
function as the main input. The cost function outputs the prediction 
error for a set of model parameters (weights) and their gradients. Other 
inputs required include optimization options such as maximum number 
of iterations and ‘GradObj’ which is set to ‘on’—specifying that the 
gradient would be provided at each iteration. Initial parameter values 
are also required. 

The logistic regression cost function is composed of two parts—a log- 
loss cost term and a regularization term (see Equation (1)) [41,42]. The 
log-loss cost term is ideal to avoid local minimums during optimization 
of the logistic regression model. The regularization term is included to 
avoid over-fitting the data by adjusting the regularization parameter λ. 
This parameter determines how much effect the term has on the cost 
function [41]. The gradient function is the partial derivative of the cost 
function with respect to the parameters (see Equation 2) [41]. This helps 
point the algorithm in the direction of minimum cost for subsequent 
iterations. Note that the derivative of the cost function with respect to 
the first parameter (θj) is not regularized (hence Equation (2a)) [41]. 
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where 

i is the example number 
j is the parameter number 
m is total number of examples 
n is the total number of parameters 
θj is the weight for the jth feature 
x(i) is the input feature of the ith example 
y(i) is the output for the ith example 
hθ is the predicted output for an example based on a set of θ 
parameters. 
λ is the regularization parameter 

3. Results and discussion 

3.1. Effect of moisture on damage sensitivity 

Gravimetric moisture uptake and moisture loss behavior with time 
has been provided in our previous study showing how absorption/ 
desorption history affect the sensitivity to damage of polymer-water 
interactions [27]. Fig. 1 shows the effect of moisture content on 
polymer-water interactions by observing the spatial variation in relative 
permittivity with increasing moisture content for a 2 and 3-Joule 
impact-damaged specimen. An increased sensitivity to damage is 
observed with increasing moisture content. Also, with increasing mois
ture content a subtle increase in relative permittivity is observed in the 
undamaged regions. This is indicative of a higher proportion of free 
water relative to bound water migrating to the damaged region, while 

O. Idolor et al.                                                                                                                                                                                                                                   



Composite Structures 287 (2022) 115377

3

the gradual increase in relative permittivity in the undamaged region is 
primarily driven by a higher proportion of physically or chemically 
bound water [10]. This therefore establishes that the sensitivity to 
damage is not only a function of the extent of physical damage but also 
the moisture content, forming a sensitivity triangle comprising moisture 
content, extent of damage, and relative permittivity as the three main 
influences. Thus, the relative permittivity and moisture content could 
serve as ideal predictors of the damage state of a moisture contaminated 
polymer composite laminate. 

3.2. Input features for machine learning model 

Based on conclusions from Section 3.1 above, the total moisture 
content along with the relative permittivity at the various points across 
the laminate would be ideal input features in a machine learning model 
for determining the damage state at each point across a laminate. These 
are designated as features x1 and x2 respectively, while x is the feature 
vector. The first step is to label the example data which would serve as 
input for training the logistic regression model. To achieve this, a 
representative scan image with pixel sizes of 0.5 mm is superimposed on 

Fig. 1. Effect of moisture content on sensitivity of polymer-water interactions to damage. Length measurements in mm.  

Fig. 2. (a) Representative scans superimposed on test specimens to mark damaged regions (b) Labelled representative scans used as training examples. Length 
measurements in mm. 
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an actual specimen. The relative permittivity at the edge of the damaged 
region is then determined as the threshold relative permittivity, above 
which any point would be labelled as damaged (see Fig. 2 (a)). Since the 
output label (y) can only be undamaged or damaged, this can be 
modelled as a binary classification problem [41], where the undamaged 
regions have an output label of ‘0’ and the damaged regions ‘1’. 
Therefore, the final labelled examples would be as shown in Fig. 2 (b). 

To achieve a non-linear decision boundary with just two features, a 
combination of various powers of x1 and x2 up to the 6th power is used to 
generate the feature vector (x) [43]. This results in a feature vector 
comprising 28 elements (see Equation (3)). Since the desired output is 
either a ‘0’ or ‘1’, a sigmoid function is employed according to Equation 
(4) to limit the predictions from this vector to between 0 and 1 [41]. 

Feature vector : x =
[
1 x1 x2 x2

1 x1x2 x2
2 x3

1...x1x5
2 x6

2

]
(3)  

Sigmoid Function : hθ(x) =
1

1 + e−θT x
(4)  

3.3. Training the machine learning model 

The total sample consists of four 2-Joule and 3-Joule impact 
damaged specimens (total of eight specimens). The training data set 
comprises 75% of the total sample size (three 2-Joule and 3-Joule 
impacted specimens—total of six), while 25% (a 2-Joule and 3-Joule 
specimen—total of two) is reserved for the test data set. To eliminate 
any bias in test set selection, all 16 possible groupings of the specimens 
into training and test sets were evaluated. Results in Table 1 shows 
variation in training set accuracy of only 0.15% between upper and 
lower 95% confidence bounds for the 16 possible combinations, indi
cating a high level of predictability regardless of grouping. Fig. 3(a) 
shows a distribution of undamaged and damaged data points as a 
function of relative permittivity and moisture content for a typical 
grouping. An interface between the undamaged and damaged data 
points can be observed. The goal of the model training process is to 
identify the ideal interface, or decision boundary, between the undam
aged and damaged regions. To determine this ideal decision boundary, 
the model weights (θ) for the input parameters at the minimum cost is 
required. Equations 1 and 2 provides the cost and gradient functions to 
be computed at each iteration, where a unique set of θ is tested. The 
effect of the regularization parameter remained negligible even when 
reduced to the adopted value of 0.0001, indicating minimal effect of the 
regularization term in preventing over-fitting. This is simply due to the 
large number of data points (~550,000) used in training the model. 
Therefore, an additional cross-validation set to optimize this parameter 
is not required. After training the model, the optimum decision 
boundary is obtained as shown in Fig. 3(a); this is used in developing the 
prediction model in Fig. 3(b). The boundary appears to be fairly linear; 
therefore, a linear model would be a reasonable approximation for 
prediction of damage based on only moisture content and relative 
permittivity. 

3.4. Damage predictions 

Using the prediction model developed in Fig. 3(b), each pixel in the 
2-dimensional relative permittivity scan is evaluated and—depending 
on where it falls on the prediction model—is classified as an undamaged 

or a damaged point. Fig. 4 shows predictions on a typical test set for a 2- 
Joule and 3-Joule impact-damaged specimen at various moisture con
tents. When compared to scans in Fig. 1 where the relative permittivity 
increased with moisture content, the prediction model compensates for 
this and effectively predicts the damaged regions at different moisture 
content. Table 1 shows the associated accuracies in predicting these 
damaged areas, being at least 95% accurate. Fig. 4 also shows a severe 
under-prediction for the 2-Joule specimen at and below 0.1% moisture 
by weight. This indicates that detecting lower levels of damage require 
higher amounts of moisture to increase sensitivity of the technique. 
Therefore, a minimum level of moisture content could be established 
based on the desired level of damage to be detected. Note that studies 
have reported over 2% moisture absorbed in polymer matrix composites 
[14], and an average steady state moisture content of 0.44% at humidity 
levels as low as 21.5% [15]. Such levels of moisture provide adequate 
sensitivity even for impact damage as low as 2-Joule. 

3.5. Limitations of damage detection based on absorption process scans 

The damage detection approach described so far is based on ab
sorption process scans and relative differences in relative permittivity. It 
has the advantage of requiring only one scan and being simple to 
implement by training a machine learning model. However, it also has 
some limitations which could hamper deployment as a damage detec
tion technique for polymer composites. Firstly, the need to subtract the 
relative permittivity response of the initial dry-pristine condition from 
subsequent moisture contamination states is not very practical for many 
field applications, where no prior knowledge exists of the dielectric 
response of the composite part [6]. Secondly, there is some uncertainty 
due to possible desorption before or during scanning, which could lead 
to decreased sensitivity to damage [27]. Thirdly, in the presence of 
signal noise due to confounding factors [27], relatively low damaged-to- 
undamaged ratios as shown in Fig. 5 may result in difficulty in detecting 
relative permittivity change as a result of damage. Here we define the 
damaged-to-undamaged ratio as the largest change in relative permit
tivity at the damaged region divided by the average relative permittivity 
change of the undamaged regions. This provides an idea of how sensitive 
the technique is to damage. Finally, the prediction model developed 
would be specific to only a unique combination of materials and mois
ture absorption process. Hence, different models would be required for 
other material systems or test specimens which undergo a different 
moisture absorption process or produce a different dielectric response. 

3.6. Damage-dependent hysteresis 

The adoption of a damage detection technique based on the damage- 
dependent hysteresis behavior in polymer composites could provide a 
viable solution to many of the challenges identified in Section 3.5 using 
absorption process scans. The possibility of leveraging the hysteresis 
effect as a reliable basis for damage detection was proposed in our 
previous work [27], where we showed how it can be used to eliminate 
the uncertainty resulting from fluctuations in total moisture content. We 
also showed that the size of the hysteresis loops can be correlated to the 
extent of physical damage within the polymer composite (see Fig. 6). 
Therefore, a way to quantify the size of the hysteresis loop to determine 
the damage state is required. One way to achieve this is to fit a linear 
trend line to the absorption–desorption data and calculate the residual 
sum of squares (RSS). For an undamaged region, the linear trend would 
fit closely, generating a relatively low RSS. While for a damaged region, 
a poor linear fit would be achieved leading to a significantly higher RSS 
(see Fig. 7 (a) and (b)). 

The use of damage-dependent hysteresis also presents an opportu
nity to eliminate the need for subtraction of the dry-pristine relative 
permittivity baseline, which may be impractical in many scenarios. By 
excluding the starting data point at the origin and introducing an 
intercept term for the linear fit, the use of absolute values of relative 

Table 1 
Training and Test Set Accuracy.   

95% Confidence Interval (%)  

Upper Bound Lower Bound 

Training Set Accuracy  97.35  97.20 
Test Set Accuracy – 2-Joule Impact  98.22  96.88 
Test Set Accuracy – 3-Joule Impact  96.78  95.36  
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permittivity becomes possible. Fig. 7(c) and (d) shows the plots achieved 
by incorporating these changes. The undamaged region plot in Fig. 7(c) 
remains almost identical to Fig. 7(a) due to their close linear fit. While 
for the damaged region absorption–desorption plot in Fig. 7(d), more 

flexibility is provided to the linear fit with the introduction of an 
intercept term—enabling a better fit relative to that in Fig. 7(b). Since 
our damage quantification metric is based on RSS, a better linear fit 
would lead to a lower RSS and hence less sensitivity to damage. 

Fig. 3. (a) Plot of example data showing undamaged and damaged data points. (b) Final prediction model.  

Fig. 4. Damage predictions on test set. Length measurements in mm.  
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A 2-dimensional plot showing variation in RSS can be produced by 
generating an absorption–desorption plot for each point on the laminate 
and then fitting a linear trend line to the plot (see Fig. 8). The result 
obtained is similar to the change in relative permittivity variation scans 
in Fig. 1, with the RSS scans also showing significantly higher RSS at the 
damaged regions. However, the RSS scan has some key advantages. 
Unlike the absorption process scans where the relative permittivity of 
the undamaged region also increases gradually with moisture content 
(see Fig. 1), for damage-dependent hysteresis the undamaged regions 
remains essentially flat and close to zero for any scenario. This can be 
clearly seen in Fig. 9, which shows the variation in RSS for the middle 
axis (a horizontal line through the middle) of scans in Fig. 8. Also, the 
sensitivity to the extent of damage is much more pronounced as seen in 
Figs. 8 and 9, showing much better distinction between damage levels. 
The magnitude of this difference is appreciated when we compare the 
undamaged-to-damaged ratio for damage-dependent hysteresis and 
absorption process scans as shown in Figs. 5 and 10. Damage-dependent 
hysteresis shows undamaged-to-damaged ratios close to 400 for the 3- 
Joule damaged specimens, compared to just 2.8 for the absorption 
process scan. This is over two orders of magnitude greater, which 

suggests sensitivity improvements of similar magnitude. Consequently, 
training a machine learning model based on damage-dependent hys
teresis data should produce more accurate predictions with fewer 
limitations. 

Also, the loss in sensitivity in moving to a generalized process, 
described earlier, can be observed in Fig. 10. This loss appears to be 
tolerable considering the very high sensitivity levels being achieved 
with damage-dependent hysteresis. 

3.7. New possibilities with damage-dependent hysteresis 

With significantly higher levels of sensitivity now achievable with 
damage-dependent hysteresis, new possibilities in the development of a 
nondestructive examination technique based on polymer-water in
teractions may become feasible; thus providing additional flexibility in 
factors that influence sensitivity to damage such as moisture variation 
range, detectable level of damage, number of scans required, sensitivity 
of dielectric characterization technique, and effects of confounding 
factors. 

A smaller moisture variation range may now be adequate to observe 
the hysteresis effect. The method could simply take advantage of the 
rapid non-linear increase during absorption and similar decrease during 
desorption [10,27], rather than waiting for much slower moisture up- 
take in the undamaged region. This could lead to a faster damage 
detection process. Alternatively, the higher sensitivity would allow for 
detection of lower damage levels, which could enable sub-micron scale 
damage detection in polymer composites. Such resolution is necessary 
for detecting damage at the initiation phase [44], which could enable 
better prediction of yield point and remaining useful life in polymer 
composites. 

The number of scans required to generate adequate number of data 
points for the hysteresis loop could also be reduced since the sensitivity 
is also closely related to the number of points used in calculating the 
RSS. Increasing the number of data points would add smaller RSS values 
to undamaged regions but much larger values to damaged regions, 
leading to increased sensitivity. Hence depending on the level of sensi
tivity required, the number of required scans could be optimized. In
terpolations between scans to generate additional data points could be 
another potential means for increasing sensitivity. 

Another factor which affects sensitivity is the dielectric character
ization method. The use of more robust but less sensitive dielectric 
characterization techniques could now be possible with the higher 
sensitivity. The split post dielectric resonance technique which was used 

Fig. 5. Damaged-to-undamaged ratio for 2 and 3-Joule impact damaged 
specimens at 0.6% moisture by weight. 

Fig. 6. Plot showing damage-dependent hysteresis in relative permittivity [27].  
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for dielectric property characterization is currently the most accurate 
technique, with only 0.3% uncertainty [45,46]. However, it has very 
limited specimen size requirements—0.95 mm, 1.95 mm, and 3.1 mm 
maximum thickness for 10 GHz, 5 GHz, and 2.4 GHz. Also they work in 
transmission mode [10,27], requiring access to both sides of a laminate. 

The less restrictive free space technique could be used in reflectance 
mode, allowing one-sided characterization in applications where only 
one side of the laminate is accessible. The downside of the free space 
technique is its reduced accuracy [46], which could be compensated for 
by the higher sensitivity of the damage-dependent hysteresis technique. 

Further studies are required to confirm how each of these newly 
unlocked possibilities can be leveraged in developing this method from 
the current laboratory scale to suitability for field applications. Field 
deployment studies could begin with marine applications, which may be 
a natural fit for the damage-dependent hysteresis technique. During 
service, the extreme exposure to moisture can accelerate the absorption 
phase, while desorption can be achieved naturally during dry docking 
for maintenance. Also, since polymers of various material chemistries 
are being used as matrix material and majority of polymer composites in 
service are painted and coated, it would be useful to know how these 
affect moisture uptake, microwave signal degradation, distribution of 
the various water states in a damaged polymer composite, and ulti
mately the ability to detect damage using this technique. 

4. Conclusion 

This study provides an avenue for the nondestructive detection of 
damage in polymer matrix composites by analysis of polymer-water 
interactions and damage-dependent hysteresis. We build on our prior 
studies which investigated the effect of damage on water state distri
bution and the role fluctuations in total moisture content plays in 
determining their degree of sensitivity to damage. These studies 

Fig. 7. Linear fit to absorption–desorption data for a 3-Joule impact damage specimen in (a) an undamaged region for specific case (b) a damaged region for specific 
case (c) an undamaged region for generalized case (d) a damaged region for generalized case. 

Fig. 8. 2-diemsional spatial variation in residual sum of squares for a 2-Joule 
and 3-Joule impact damaged laminate. Length measurements in mm. 
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concluded that a higher proportion of free water exists in voids created 
due to damage in a moisture-contaminated polymer composite, and that 
damage-dependent hysteresis exists for absorption and desorption pro
cesses. In this study, a machine learning approach for quantifying 
damaged regions in a polymer composite is presented. A logistic 
regression model is trained and evaluated, showing satisfactory perfor
mance in mapping out damaged regions in a polymer matrix composite 
laminate. Furthermore, a generalized basis for nondestructive exami
nation of polymer composites based on damage-dependent hysteresis is 
demonstrated. This is shown to achieve sensitivity levels which are over 
two orders of magnitude greater than results obtained by leveraging 
polymer-water interactions through a single absorption process scan. 
This improvement in sensitivity enables new possibilities which would 
allow further development of the technology and scale-up from the lab 
to a system ready to be applied in the field. 
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