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Polymer composites are currently replacing metals in applications requiring design flexibility, high strength-to-
weight ratio, and corrosion resistance. However, the damage modes in these materials are very different from
metals and require specialized techniques to detect internal flaws which may exist even in the absence of visible
surface damage. This study proposes a technique for damage detection in polymer composites which uses
naturally absorbed moisture as an ‘imaging’ agent. The locally higher concentration of water in the ‘free’ state at
damaged regions and the tendency of such water to quickly migrate to and from damage sites—exhibiting
damage-dependent hysteresis—is leveraged for damage detection. To identify damaged regions, a machine
learning approach is adopted using logistic regression to classify local regions as ‘undamaged’ or ‘damaged’. New
possibilities resulting from higher sensitivity levels achievable by damage-dependent hysteresis are highlighted,

providing a pathway to field deployment of the novel damage detection technique.

1. Introduction

Polymer composites are becoming widely adopted in engineering
applications. As they replace metals in various safety—critical moderate
temperature service environments [1,2], ascertaining their damage state
and fitness for service becomes more crucial. This is confounded by the
difference in behavior of these layered materials with regards to dam-
age. Unlike metals, internal damage may be present in the absence of
visible surface damage [3,4], especially when paint or coatings are
applied. Such damage may be induced during routine operations such as
thermal cycling, hail or dropped-tool impact, and cyclic loading. These
may lead to matrix cracking, fiber-matrix debonding, and delaminations
which may weaken the structure without any warning signs [5,6].

All current nondestructive examination (NDE) techniques for poly-
mer matrix composites have various limitations. These include: inability
to characterize beyond a certain depth, limitation to flaws of specific
orientation, challenges in flaw localization and characterization, limi-
tations to materials of specific electrical conductivity, and system
complexity—requiring a skilled operator [6-8]. Hence, many NDE
procedures for safety critical parts have adopted the use of multiple
techniques to ascertain structural integrity or they simply incorporate
larger design safety factors to compensate for these shortcomings [9].
Therefore novel approaches to NDE of polymer composites are still

required to provide reliable, simple, and cost effective solutions. One
such approach which may provide a viable solution to many of these
challenges is the use of naturally absorbed water as an ‘imaging agent’
for damage detection in these materials [10-13].

Polymer matrix composites have a tendency to absorb measurable
moisture in nearly all operating environments. Studies have shown as
much as 2% by weight moisture being absorbed in epoxy based polymer
matrix composites [14], and over 0.4% absorbed at steady state for
environments with relative humidity as low as 21.5% [15]. This ab-
sorption is typically driven by traditional diffusion kinetics [16-22],
polymer polarity [23,24], and damage state of the material [25,26].
Studies have shown the effective diffusion process could be deconvo-
luted into a combination of these multiple independent diffusion pro-
cesses [26], providing an opportunity to focus on moisture diffusion due
to damage state as a means for damage detection [27]. Critical reviews
of these studies have been provided in our previous publications
[10,27].

Water absorbed by the polymer matrix has been reported to exist in
the ‘free’ state—having no interaction with the polymer matrix, or
‘bound’ state—interacting with the polymer matrix via secondary
bonding interactions such as hydrogen bonding with polar functional
groups, dipole-dipole attractions, or van der Waals forces with polymer
chains [25,28-30]. These interactions restrict the mobility of the water
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molecules, limiting their ability to rotate with an electromagnetic field
at microwave frequencies and also influencing the resonant frequency of
the oxygen-hydrogen bond vibrations [11,31,32]. These effects have
enabled the ability to characterize these polymer-water interactions
using near-infrared spectroscopy [12,32] and microwave-frequency
dielectric properties [11,33,34], amongst other techniques [28,35,36].

Damage which creates voids within the polymer matrix in the form of
matrix cracks, fiber-matrix debonding, and delamination create ideal
sites for water to exist in the free state [28,37,38]. While, in undamaged
regions water molecules behave differently due to their close proximity
to the polymer network, leading to interactions that limit it to the bound
state [28,37,39]. Hence, a higher concentration of free water could be an
indication of damage. Furthermore, leveraging such a molecular level
phenomenon for NDE could enable damage detection at sub-micron-
scale levels—a limitation of current techniques [10].

In our previous work, we demonstrated how polymer-water in-
teractions can be characterized and the effects of localized impact
damage on the water state distribution [10]. We further investigated
humidity fluctuations in the ambient environment leading to loss or gain
of total moisture and its effect on the water state distributions in a
damaged polymer composite laminate [27]. We concluded that such
variations in moisture content had a significant effect on the sensitivity
to damage of polymer-water interactions. Single-mode sorption was also
observed in undamaged regions and dual-mode sorption in damaged
regions. This led to the discovery of damage-dependent hysteresis in
polymer composites, providing a reliable basis for nondestructive
damage detection [27]. However, in these studies, only a qualitative
determination of damage state based on polymer-water interactions and
damage-dependent hysteresis was outlined. Hence, an approach to map
the location of damaged areas in polymer composites is required.

This study builds on knowledge gained in behavior of polymer-water
interactions and explores ways to quantitatively define the extent of
localized damage in a polymer matrix composite. Polymer-water in-
teractions are characterized using microwave-frequency dielectric
properties by coupling a split post dielectric resonator to a vector
network analyzer [40]. Similar to scans in our previous work [27], water
state distributions are obtained by 2-dimensional scans showing spatial
variation in relative permittivity (real part of dielectric constant) across
the polymer matrix composite laminate. The first method explored is
based on a single scan taken during the absorption process, while the
second method is based on multiple scans taken during the absorption
and desorption processes—an approach based on damage-dependent
hysteresis. To map out the damaged regions and demonstrate predict-
ability, a machine learning based approach is adopted. Finally, progress
towards a highly sensitive generalized approach is discussed, and
further considerations required to achieve this are presented.

2. Materials and methods
2.1. Experimental details

A detailed description of the experimental procedure used in this
study has been provided in our previous work [27]. These include a
description of materials used, fabrication processes, material properties,
sample conditioning, impact setup, dielectric measurement, and the
data collection process at each measurement interval. Reference should
be made to Section 2 (Experimental) of the publication for these details
[27]. Also, a discussion on how confounding factors were mitigated has
been provided in Section 3.1 of our previous study [27]. Hence, the rest
of this section will focus on details relevant to data processing that
would enable successful damage prediction.

2.2. Machine learning model

In order to determine the damage state across the laminate, a pre-
diction of ‘undamaged’ or ‘damaged’ would be required at all points.
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This can be interpreted as a binary classification problem which can be
solved using various machine learning models, i.e. neural network, lo-
gistic regression, clustering, etc. Due to the fairly low number of pre-
dictive features, a logistic regression model is employed. The machine
learning model is implemented using MATLAB® and optimization is
achieved using the ‘fminunc’ (function minimization unconstrained)
advanced optimization function. The fminunc function requires a cost
function as the main input. The cost function outputs the prediction
error for a set of model parameters (weights) and their gradients. Other
inputs required include optimization options such as maximum number
of iterations and ‘GradObj’ which is set to ‘on’—specifying that the
gradient would be provided at each iteration. Initial parameter values
are also required.

The logistic regression cost function is composed of two parts—a log-
loss cost term and a regularization term (see Equation (1)) [41,42]. The
log-loss cost term is ideal to avoid local minimums during optimization
of the logistic regression model. The regularization term is included to
avoid over-fitting the data by adjusting the regularization parameter .
This parameter determines how much effect the term has on the cost
function [41]. The gradient function is the partial derivative of the cost
function with respect to the parameters (see Equation 2) [41]. This helps
point the algorithm in the direction of minimum cost for subsequent
iterations. Note that the derivative of the cost function with respect to
the first parameter (6) is not regularized (hence Equation (2a)) [41].

m
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where

i is the example number

j is the parameter number

m is total number of examples

n is the total number of parameters

0; is the weight for the jth feature

x is the input feature of the i example

y is the output for the i example

hy is the predicted output for an example based on a set of ¢
parameters.

4 is the regularization parameter

3. Results and discussion
3.1. Effect of moisture on damage sensitivity

Gravimetric moisture uptake and moisture loss behavior with time
has been provided in our previous study showing how absorption/
desorption history affect the sensitivity to damage of polymer-water
interactions [27]. Fig. 1 shows the effect of moisture content on
polymer-water interactions by observing the spatial variation in relative
permittivity with increasing moisture content for a 2 and 3-Joule
impact-damaged specimen. An increased sensitivity to damage is
observed with increasing moisture content. Also, with increasing mois-
ture content a subtle increase in relative permittivity is observed in the
undamaged regions. This is indicative of a higher proportion of free
water relative to bound water migrating to the damaged region, while
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Fig. 1. Effect of moisture content on sensitivity of polymer-water interactions to damage. Length measurements in mm.

the gradual increase in relative permittivity in the undamaged region is
primarily driven by a higher proportion of physically or chemically
bound water [10]. This therefore establishes that the sensitivity to
damage is not only a function of the extent of physical damage but also
the moisture content, forming a sensitivity triangle comprising moisture
content, extent of damage, and relative permittivity as the three main
influences. Thus, the relative permittivity and moisture content could
serve as ideal predictors of the damage state of a moisture contaminated
polymer composite laminate.

3.2. Input features for machine learning model

Based on conclusions from Section 3.1 above, the total moisture
content along with the relative permittivity at the various points across
the laminate would be ideal input features in a machine learning model
for determining the damage state at each point across a laminate. These
are designated as features x; and x3 respectively, while x is the feature
vector. The first step is to label the example data which would serve as
input for training the logistic regression model. To achieve this, a
representative scan image with pixel sizes of 0.5 mm is superimposed on

(b)
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Damaged
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Fig. 2. (a) Representative scans superimposed on test specimens to mark damaged regions (b) Labelled representative scans used as training examples. Length

measurements in mm.
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an actual specimen. The relative permittivity at the edge of the damaged
region is then determined as the threshold relative permittivity, above
which any point would be labelled as damaged (see Fig. 2 (a)). Since the
output label (y) can only be undamaged or damaged, this can be
modelled as a binary classification problem [41], where the undamaged
regions have an output label of ‘0’ and the damaged regions ‘1°.
Therefore, the final labelled examples would be as shown in Fig. 2 (b).
To achieve a non-linear decision boundary with just two features, a
combination of various powers of x; and xz up to the 6h power is used to
generate the feature vector (x) [43]. This results in a feature vector
comprising 28 elements (see Equation (3)). Since the desired output is
either a ‘0’ or ‘1°, a sigmoid function is employed according to Equation
(4) to limit the predictions from this vector to between 0 and 1 [41].

Feature vector : x = [1 x; x; X} X1x2 X5 X..X1x; X3 3)

1

=— _ 4
1+e 0> “)

Sigmoid Function : /i(x)

3.3. Training the machine learning model

The total sample consists of four 2-Joule and 3-Joule impact
damaged specimens (total of eight specimens). The training data set
comprises 75% of the total sample size (three 2-Joule and 3-Joule
impacted specimens—total of six), while 25% (a 2-Joule and 3-Joule
specimen—total of two) is reserved for the test data set. To eliminate
any bias in test set selection, all 16 possible groupings of the specimens
into training and test sets were evaluated. Results in Table 1 shows
variation in training set accuracy of only 0.15% between upper and
lower 95% confidence bounds for the 16 possible combinations, indi-
cating a high level of predictability regardless of grouping. Fig. 3(a)
shows a distribution of undamaged and damaged data points as a
function of relative permittivity and moisture content for a typical
grouping. An interface between the undamaged and damaged data
points can be observed. The goal of the model training process is to
identify the ideal interface, or decision boundary, between the undam-
aged and damaged regions. To determine this ideal decision boundary,
the model weights (@) for the input parameters at the minimum cost is
required. Equations 1 and 2 provides the cost and gradient functions to
be computed at each iteration, where a unique set of @ is tested. The
effect of the regularization parameter remained negligible even when
reduced to the adopted value of 0.0001, indicating minimal effect of the
regularization term in preventing over-fitting. This is simply due to the
large number of data points (~550,000) used in training the model.
Therefore, an additional cross-validation set to optimize this parameter
is not required. After training the model, the optimum decision
boundary is obtained as shown in Fig. 3(a); this is used in developing the
prediction model in Fig. 3(b). The boundary appears to be fairly linear;
therefore, a linear model would be a reasonable approximation for
prediction of damage based on only moisture content and relative
permittivity.

3.4. Damage predictions

Using the prediction model developed in Fig. 3(b), each pixel in the
2-dimensional relative permittivity scan is evaluated and—depending
on where it falls on the prediction model—is classified as an undamaged

Table 1
Training and Test Set Accuracy.

95% Confidence Interval (%)

Upper Bound Lower Bound

Training Set Accuracy 97.35 97.20
Test Set Accuracy — 2-Joule Impact 98.22 96.88
Test Set Accuracy — 3-Joule Impact 96.78 95.36
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or a damaged point. Fig. 4 shows predictions on a typical test set for a 2-
Joule and 3-Joule impact-damaged specimen at various moisture con-
tents. When compared to scans in Fig. 1 where the relative permittivity
increased with moisture content, the prediction model compensates for
this and effectively predicts the damaged regions at different moisture
content. Table 1 shows the associated accuracies in predicting these
damaged areas, being at least 95% accurate. Fig. 4 also shows a severe
under-prediction for the 2-Joule specimen at and below 0.1% moisture
by weight. This indicates that detecting lower levels of damage require
higher amounts of moisture to increase sensitivity of the technique.
Therefore, a minimum level of moisture content could be established
based on the desired level of damage to be detected. Note that studies
have reported over 2% moisture absorbed in polymer matrix composites
[14], and an average steady state moisture content of 0.44% at humidity
levels as low as 21.5% [15]. Such levels of moisture provide adequate
sensitivity even for impact damage as low as 2-Joule.

3.5. Limitations of damage detection based on absorption process scans

The damage detection approach described so far is based on ab-
sorption process scans and relative differences in relative permittivity. It
has the advantage of requiring only one scan and being simple to
implement by training a machine learning model. However, it also has
some limitations which could hamper deployment as a damage detec-
tion technique for polymer composites. Firstly, the need to subtract the
relative permittivity response of the initial dry-pristine condition from
subsequent moisture contamination states is not very practical for many
field applications, where no prior knowledge exists of the dielectric
response of the composite part [6]. Secondly, there is some uncertainty
due to possible desorption before or during scanning, which could lead
to decreased sensitivity to damage [27]. Thirdly, in the presence of
signal noise due to confounding factors [27], relatively low damaged-to-
undamaged ratios as shown in Fig. 5 may result in difficulty in detecting
relative permittivity change as a result of damage. Here we define the
damaged-to-undamaged ratio as the largest change in relative permit-
tivity at the damaged region divided by the average relative permittivity
change of the undamaged regions. This provides an idea of how sensitive
the technique is to damage. Finally, the prediction model developed
would be specific to only a unique combination of materials and mois-
ture absorption process. Hence, different models would be required for
other material systems or test specimens which undergo a different
moisture absorption process or produce a different dielectric response.

3.6. Damage-dependent hysteresis

The adoption of a damage detection technique based on the damage-
dependent hysteresis behavior in polymer composites could provide a
viable solution to many of the challenges identified in Section 3.5 using
absorption process scans. The possibility of leveraging the hysteresis
effect as a reliable basis for damage detection was proposed in our
previous work [27], where we showed how it can be used to eliminate
the uncertainty resulting from fluctuations in total moisture content. We
also showed that the size of the hysteresis loops can be correlated to the
extent of physical damage within the polymer composite (see Fig. 6).
Therefore, a way to quantify the size of the hysteresis loop to determine
the damage state is required. One way to achieve this is to fit a linear
trend line to the absorption-desorption data and calculate the residual
sum of squares (RSS). For an undamaged region, the linear trend would
fit closely, generating a relatively low RSS. While for a damaged region,
a poor linear fit would be achieved leading to a significantly higher RSS
(see Fig. 7 (a) and (b)).

The use of damage-dependent hysteresis also presents an opportu-
nity to eliminate the need for subtraction of the dry-pristine relative
permittivity baseline, which may be impractical in many scenarios. By
excluding the starting data point at the origin and introducing an
intercept term for the linear fit, the use of absolute values of relative
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Fig. 3. (a) Plot of example data showing undamaged and damaged data points. (b) Final prediction model.
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Fig. 4. Damage predictions on test set. Length measurements in mm.

permittivity becomes possible. Fig. 7(c) and (d) shows the plots achieved
by incorporating these changes. The undamaged region plot in Fig. 7(c)
remains almost identical to Fig. 7(a) due to their close linear fit. While
for the damaged region absorption-desorption plot in Fig. 7(d), more

flexibility is provided to the linear fit with the introduction of an
intercept term—enabling a better fit relative to that in Fig. 7(b). Since
our damage quantification metric is based on RSS, a better linear fit
would lead to a lower RSS and hence less sensitivity to damage.
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specimens at 0.6% moisture by weight.

A 2-dimensional plot showing variation in RSS can be produced by
generating an absorption-desorption plot for each point on the laminate
and then fitting a linear trend line to the plot (see Fig. 8). The result
obtained is similar to the change in relative permittivity variation scans
in Fig. 1, with the RSS scans also showing significantly higher RSS at the
damaged regions. However, the RSS scan has some key advantages.
Unlike the absorption process scans where the relative permittivity of
the undamaged region also increases gradually with moisture content
(see Fig. 1), for damage-dependent hysteresis the undamaged regions
remains essentially flat and close to zero for any scenario. This can be
clearly seen in Fig. 9, which shows the variation in RSS for the middle
axis (a horizontal line through the middle) of scans in Fig. 8. Also, the
sensitivity to the extent of damage is much more pronounced as seen in
Figs. 8 and 9, showing much better distinction between damage levels.
The magnitude of this difference is appreciated when we compare the
undamaged-to-damaged ratio for damage-dependent hysteresis and
absorption process scans as shown in Figs. 5 and 10. Damage-dependent
hysteresis shows undamaged-to-damaged ratios close to 400 for the 3-
Joule damaged specimens, compared to just 2.8 for the absorption
process scan. This is over two orders of magnitude greater, which
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suggests sensitivity improvements of similar magnitude. Consequently,
training a machine learning model based on damage-dependent hys-
teresis data should produce more accurate predictions with fewer
limitations.

Also, the loss in sensitivity in moving to a generalized process,
described earlier, can be observed in Fig. 10. This loss appears to be
tolerable considering the very high sensitivity levels being achieved
with damage-dependent hysteresis.

3.7. New possibilities with damage-dependent hysteresis

With significantly higher levels of sensitivity now achievable with
damage-dependent hysteresis, new possibilities in the development of a
nondestructive examination technique based on polymer-water in-
teractions may become feasible; thus providing additional flexibility in
factors that influence sensitivity to damage such as moisture variation
range, detectable level of damage, number of scans required, sensitivity
of dielectric characterization technique, and effects of confounding
factors.

A smaller moisture variation range may now be adequate to observe
the hysteresis effect. The method could simply take advantage of the
rapid non-linear increase during absorption and similar decrease during
desorption [10,27], rather than waiting for much slower moisture up-
take in the undamaged region. This could lead to a faster damage
detection process. Alternatively, the higher sensitivity would allow for
detection of lower damage levels, which could enable sub-micron scale
damage detection in polymer composites. Such resolution is necessary
for detecting damage at the initiation phase [44], which could enable
better prediction of yield point and remaining useful life in polymer
composites.

The number of scans required to generate adequate number of data
points for the hysteresis loop could also be reduced since the sensitivity
is also closely related to the number of points used in calculating the
RSS. Increasing the number of data points would add smaller RSS values
to undamaged regions but much larger values to damaged regions,
leading to increased sensitivity. Hence depending on the level of sensi-
tivity required, the number of required scans could be optimized. In-
terpolations between scans to generate additional data points could be
another potential means for increasing sensitivity.

Another factor which affects sensitivity is the dielectric character-
ization method. The use of more robust but less sensitive dielectric
characterization techniques could now be possible with the higher
sensitivity. The split post dielectric resonance technique which was used
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Fig. 6. Plot showing damage-dependent hysteresis in relative permittivity [27].
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Fig. 8. 2-diemsional spatial variation in residual sum of squares for a 2-Joule
and 3-Joule impact damaged laminate. Length measurements in mm.

for dielectric property characterization is currently the most accurate
technique, with only 0.3% uncertainty [45,46]. However, it has very
limited specimen size requirements—0.95 mm, 1.95 mm, and 3.1 mm
maximum thickness for 10 GHz, 5 GHz, and 2.4 GHz. Also they work in
transmission mode [10,27], requiring access to both sides of a laminate.

The less restrictive free space technique could be used in reflectance
mode, allowing one-sided characterization in applications where only
one side of the laminate is accessible. The downside of the free space
technique is its reduced accuracy [46], which could be compensated for
by the higher sensitivity of the damage-dependent hysteresis technique.

Further studies are required to confirm how each of these newly
unlocked possibilities can be leveraged in developing this method from
the current laboratory scale to suitability for field applications. Field
deployment studies could begin with marine applications, which may be
a natural fit for the damage-dependent hysteresis technique. During
service, the extreme exposure to moisture can accelerate the absorption
phase, while desorption can be achieved naturally during dry docking
for maintenance. Also, since polymers of various material chemistries
are being used as matrix material and majority of polymer composites in
service are painted and coated, it would be useful to know how these
affect moisture uptake, microwave signal degradation, distribution of
the various water states in a damaged polymer composite, and ulti-
mately the ability to detect damage using this technique.

4. Conclusion

This study provides an avenue for the nondestructive detection of
damage in polymer matrix composites by analysis of polymer-water
interactions and damage-dependent hysteresis. We build on our prior
studies which investigated the effect of damage on water state distri-
bution and the role fluctuations in total moisture content plays in
determining their degree of sensitivity to damage. These studies
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Fig. 10. Damaged-to-undamaged ratio for 2 and 3-Joule impact damaged
specimens using damage-dependent hysteresis.

concluded that a higher proportion of free water exists in voids created
due to damage in a moisture-contaminated polymer composite, and that
damage-dependent hysteresis exists for absorption and desorption pro-
cesses. In this study, a machine learning approach for quantifying
damaged regions in a polymer composite is presented. A logistic
regression model is trained and evaluated, showing satisfactory perfor-
mance in mapping out damaged regions in a polymer matrix composite
laminate. Furthermore, a generalized basis for nondestructive exami-
nation of polymer composites based on damage-dependent hysteresis is
demonstrated. This is shown to achieve sensitivity levels which are over
two orders of magnitude greater than results obtained by leveraging
polymer-water interactions through a single absorption process scan.
This improvement in sensitivity enables new possibilities which would
allow further development of the technology and scale-up from the lab
to a system ready to be applied in the field.
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