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Abstract—Deep neural networks (DNNs) have surpassed
human-level accuracy in various learning tasks. However, unlike
humans who have a natural cognitive intuition for probabil-
ities, DNNs cannot express their uncertainty in the output
decisions. This limits the deployment of DNNs in mission-
critical domains, such as warfighter decision-making or medical
diagnosis. Bayesian inference provides a principled approach to
reason about model’s uncertainty by estimating the posterior
distribution of the unknown parameters. The challenge in DNNs
remains the multi-layer stages of non-linearities, which make
the propagation of high-dimensional distributions mathematically
intractable. This paper establishes the theoretical and algorithmic
foundations of uncertainty or belief propagation by developing
new deep learning models named PremiUm-CNNs (Propagating
Uncertainty in Convolutional Neural Networks). We introduce a
tensor normal distribution as a prior over convolutional kernels
and estimate the variational posterior by maximizing the evidence
lower bound (ELBO). We start by deriving the first-order
mean-covariance propagation framework. Later, we develop a
framework based on the unscented transformation (correct at
least up to the second-order) that propagates sigma points of the
variational distribution through layers of a CNN. The propagated
covariance of the predictive distribution captures uncertainty in
the output decision. Comprehensive experiments conducted on
diverse benchmark datasets demonstrate: 1) superior robustness
against noise and adversarial attacks, 2) self-assessment through
predictive uncertainty that increases quickly with increasing
levels of noise or attacks, and 3) an ability to detect a targeted
attack from ambient noise.

Index Terms—Density propagation, first-order approximation,
sigma points, convolutional neural network (CNN), evidence lower
bound (ELBO), tensor normal distribution (TND).

I. INTRODUCTION

DEEP neural networks (DNNs) have achieved state-of-the-
art performance in a wide assortment of tasks, including

computer vision and pattern recognition [1], [2]. However,
DNNs being inherently deterministic, are unable to provide
calibrated confidence or a measure of uncertainty in their pre-
dictions [3]–[7]. The soft-max output is often misinterpreted
as a measure of confidence because the soft-max function
transforms its domain values from (−∞,∞) to a range of
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(0, 1). DNNs are known to assign high soft-max values to the
wrong class when the input sample is far from the training
distribution [8], [9].

Model confidence or uncertainty is critical in systems that
make decisions that affect human life, either directly or
indirectly. For example, a medical diagnostic system for de-
tecting brain tumors from magnetic resonance (MR) scans may
encounter a new tumor shape/structure or an adversarial attack
designed to fake a tumor for benefiting from medical bills.
The model should recognize the out-of-distribution data and
return an output that also conveys a high level of uncertainty
or low confidence in the decision. Failure to indicate when the
networks are likely mistaken can lead to perilous consequences
and limit their competence in applications such as automated
medical diagnostic systems [10].

Besides safety-critical applications, the fundamental re-
search questions in machine learning can also benefit from
uncertain information, including (1) choosing the appropriate
data to learn from and (2) searching for the optimal model
architecture. Central to both questions is the uncertainty
information available at the neural network’s output, which
can guide the learning process and help learn from a small
amount of data. Quantifying uncertainty is often essential
when obtaining labeled data is expensive due to the human
expertise required to annotate data.

Bayesian probability theory provides a mathematically
grounded approach for quantifying uncertainty of a model, in-
cluding DNNs. In the Bayesian framework, model parameters,
i.e., the weights and biases, are defined as random variables
with a prior distribution. The posterior distribution of the
parameters given available data is used to find the predictive
distribution of new data instances by marginalizing the pa-
rameters. The covariance matrix of the predictive distribution
provides a quantitative measure of uncertainty associated with
each prediction. Therefore, estimating uncertainty in DNNs is
directly dependent on estimating the posterior of unknown pa-
rameters given the data. However, the exact Bayesian inference
on the parameters of a DNN is intractable as the functional
form of a DNN does not lend itself to exact integration,
and the number of parameters is very large [11]. Various
approaches have been proposed to approximate the posterior
distribution of the network’s parameters, including the well-
known variational inference (VI) [11]–[18]. The challenge
remains in propagating the variational distribution through the
non-linear layers of DNNs. VI methods in the literature avoid
propagating density by following a sampling paradigm where
one sample from the variational distribution is drawn randomly
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and passed forward through network layers [11], [17], [19].
In this paper, we propose a general framework, named

PremiUm-CNN, that propagates the variational probability
distribution through layers of a convolutional neural network
(CNN) and enables the estimation of uncertainty at the output.
PremiUm-CNN adopts powerful statistical frameworks from
sequential Bayesian estimation for tracking distributions in
non-linear and non-Gaussian dynamical systems [20]. The
specific contributions of this paper are summarized as follows,
• We employ the first-order Taylor series approximation

(termed Extended Variational Density Propagation, i.e.,
exVDP) for estimating the first two moments of the vari-
ational distribution after non-linear activation functions
in DNNs (extension of our preliminary work in [21]).

• We develop the Unscented Variational Density Propaga-
tion, i.e., unVDP model for approximating the posterior
distribution using the unscented transformation (UT). The
UT propagates sigma points through the network’s layers
and results in a posterior distribution approximation that
can tackle non-Gaussian distributions and is accurate at
least up to the second order [20], [22], [23].

• We establish superior robustness by analyzing the mod-
els’ performance (compared to the state-of-the-art DNNs’
performance) under noisy conditions and adversarial at-
tacks using a variety of benchmark datasets, including
MNIST, CIFAR-10, Synthetic Aperture Radar (SAR), and
Brain Tumor Segmentation (BraTS 2015) datasets.

The remainder of this paper is organized as follows. We
briefly recall the state-of-the-art Bayesian approximation ap-
proaches for DNNs in Section II. In Section III, we describe
the detail of the proposed PremiUm-CNN. We evaluate the
performance and study the robustness and self-awareness of
the proposed framework under noise and adversarial attacks
in Sections IV and V, respectively. A summary of the main
contributions is provided in Section VI.

II. BACKGROUND AND RELATED WORK

Earlier efforts for integrating Bayesian inference into neural
networks included Laplace approximation, which assumes that
the posterior is a Gaussian distribution [24]. The mean of the
posterior is given by the maximum a posteriori estimate and
the covariance by the inverse of the Hessian of the negative
log-likelihood, which is intractable for DNNs. Ritter et al.
recently proposed a scalable approximation for estimating the
Hessian; however, the Laplace approximation was employed
at the test time only, i.e., the training was performed in a
deterministic setting without learning uncertainty from the
training dataset [16]. Another earlier effort included Hamil-
tonian Monte Carlo (HMC), i.e., a method based on Markov
chain Monte Carlo (MCMC), for generating samples from
the posterior distribution, which suffered from computational
challenges [25]. Stochastic gradient MCMC was proposed to
scale sampling methods to large datasets and DNNs using
sub-samples of the dataset; nevertheless, the approximation
efficiency remains questionable [26]–[28].

Expectation Propagation (EP) and assumed density fil-
tering (ADF) are posterior approximation methods that it-
erate simple local computations to approximate factors of

the posterior distribution for each data point [13], [14],
[29]. Hernandez-Lobato and Adams proposed the probabilistic
back-propagation (PBP), which applied approximate inference
in the form of ADF to refine a Gaussian posterior approxima-
tion for regression problems [13]. Later, Ghosh et al. extended
PBP to the multi-class classification problems [14]. The ADF
approximation proposed by Hernandez-Lobato and Adams
eliminated the dependence on ordering by doing multiple ADF
passes over the data; however, the full EP implementation
was impractical for DNNs due to massive computational and
memory requirements [29].

Variational inference (VI) is a classical posterior density
approximation technique that has been efficiently scaled to
DNNs in recent years [11], [12], [15], [17]–[19], [30], [31].
Blundell et al. used VI and introduced a fully factorized
Gaussian over the weights of the fully-connected layers of
a DNN, referred to as the Bayes-by-Backprop (BBB) [11].
In a followup work, Shridhar et al. extended BBB to Bayes-
CNN by proposing a fully factorized Gaussian distribution
over convolutional kernels [17]. On the other hand, Gal and
Ghahramani proposed Dropout CNNs using VI by interpret-
ing dropout as a Bernoulli distribution over convolutional
kernels [19]. Roth and Pernkopf proposed a closed-form
approximation to the log-likelihood (first term in (2)) for fully-
connected networks and ReLU activation [31]. Later, Wu et
al. extended Roth and Pernkopf’s work for the Heaviside
activation function and developed an empirical Bayes method
for tuning prior distribution during training [18]. Authors
in [31] and [18] provided a closed-form approximation for
the Gaussian posterior in fully-connected networks; however,
the approximation was only limited to ReLU and Heaviside
activation functions and did not perform well on classification
problems as compared to the state-of-the-art. In [32], [33],
the authors estimated observation (input signal) uncertainty
using a deterministic pre-trained fully-connected neural net-
work; however, they ignored the uncertainty in the network’s
parameters and its link to the output prediction.

In the VI-based methods, the moments of the variational dis-
tribution defined over the network parameters are generally not
propagated from one layer of the DNN to the next layer. Only
one sample is drawn randomly from the variational posterior
and is passed forward through network layers [11], [17], [19].
The uncertainty in the output of the model is estimated using
the frequentist approach, i.e., averaging stochastic forward
passes through the model at test time using Monte Carlo and
computing the sample variance [11], [17], [19].

III. PREMIUM-CNN — PROPAGATING UNCERTAINTY IN A
CONVOLUTIONAL NEURAL NETWORK

We consider a CNN with a total of C convolutional layers
and L fully-connected layers. A non-linear activation func-
tion follows every convolutional and fully-connected layer.
Moreover, every convolutional layer is followed by a max-
pooling layer. The network’s weights (and biases) are rep-
resented by Ω = {{{W(kc)}Kckc=1}Cc=1, {W(l)}Ll=1}, where
{{W(kc)}Kckc=1}Cc=1 is the set of Kc kernels in the cth convo-
lutional layer, and {W(l)}Ll=1 is the set of weights in L fully-
connected layers. We consider input tensor X ∈ RI1×I2×K ,
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where I1, I2, and K represent image height, width, and
number of channels respectively.

A. Variational Inference

We introduce a prior distribution over the network weights
Ω ∼ p(Ω). We assume that convolutional kernels are indepen-
dent of each other within a layer as well as across different
layers; however, within a kernel, we assume that a covariance
structure exits. This independence assumption is reasonable,
perhaps even desirable as it promotes convolutional kernels
to extract uncorrelated features within and across layers [34],
[35]. Given the training data D = {X(i),y(i)}Ni=1 and the
prior p(Ω), the estimation of the posterior p(Ω|D) is typi-
cally intractable. VI methods approximate the true posterior
p(Ω|D) with a simpler parametrized variational distribution
qφ(Ω). The optimal parameters of the variational posterior
φ∗ are estimated by minimizing the Kullback-Leibler (KL)
divergence between the approximate and the true posterior
[36].

φ∗ = argminKL [qφ(Ω)‖p(Ω|D)]
= argminKL [qφ(Ω)‖p(Ω)]− Eqφ(Ω) {log p(D|Ω)} .

(1)

The optimization objective is given by the evidence lower
bound (ELBO), L(φ;y|X):

L(φ;y|X) = Eqφ(Ω)(log p(y|X,Ω))−KL [qφ(Ω)‖p(Ω)] . (2)

ELBO consists of two parts, the expected log-likelihood of
the training data given the weights and a regularization term,
which can be re-written as:

KL [qφ(Ω)‖p(Ω)] =
C∑
c=1

Kc∑
kc=1

KL
[
qφ(W

(kc))‖p(W(kc))
]

+
L∑
l=1

KL
[
qφ(W

(l))‖p(W(l))
]
.

(3)

B. Tensor Normal Distribution (TND)

We consider convolutional kernels as three-dimensional (3-
D) tensors and define tensor normal distributions (TNDs) as
prior distributions over these kernels [37]. A TND of order 3 is
represented by: W ∼ T N n1,n2,n3

(M,T), where M = E[W]
is the mean tensor, and T is the covariance tensor of order 6
defined as,

Ti1i2i3j1j2j3 = E
[
Wi1i2i3 Wj1j2j3

]
. (4)

It can be shown that the covariance tensor in (4) is positive
semi-definite. In a separable or Kronecker structured model,
the covariance matrix of the vectorized multi-dimensional
array is the Kronecker product of a number of covariance
matrices equal to the number of dimensions, which is 3 in
our case, i.e., T =

⊗3
j=1 U(j), where {U(j)}3j=1 are positive

semi-definite matrices [37]. The Kronecker structured model
reduces the number of parameters to be estimated.

Proposition 1. The existence of the factorization, T =⊗1
j=3 U(j), is equivalent to the following analytic condition:

Ti1i2i3j1j2j3T
2
111111 = T11i311j3T1i211j21Ti111j111. (5)

The condition in Proposition 1 can be viewed as “non-
correlation” between three indices of the tensor Wi1i2i3 . We
note from (5) that up to a normalization factor, the covariance
coefficient is the product of covariance coefficients for the
pairs i1j1, i2j2, i3j3 with other indices being fixed equal to
1. In other words, the factorization of the six-dimensional
covariance tensor can be interpreted as there is no correlation
between the height, width and depth of the 3D kernel. In this
case, an equivalent formulation of the TND is a multivariate
Gaussian distribution,

vec(W) ∼ N∏3
j=1 nj

(vec(M),
1⊗
j=3

U(j)), (6)

where vec(.) denotes the vectorization operation.

C. Variational Density Propagation

We propose a density propagation framework by propagat-
ing the moments of the variational distribution qφ(Ω) through
the network’s layers and non-linearities. In our settings, the
convolutional kernels, the output of activation functions, ex-
tracted features, logits, and the soft-max function output are all
random variables (as illustrated in Fig. 1). Therefore, instead
of performing algebraic operations on real numbers, we are
confronted with operations on random variables, including
(1) multiplication of a random variable with a constant, (2)
multiplication of two random variables, and (3) non-linear
transformations operating over random variables. As a result
of the multiplication of two Gaussian random variables or the
non-linear transformations, the resulting random variables may
not have Gaussian distribution [38]. By propagating the mean
and covariance of the variation distribution, we obtain the
mean and covariance of the predictive distribution, p(y|X,D).
The mean of p(y|X,D) represents the network’s prediction,
while the covariance matrix reflects the uncertainty associated
with the output decision.

D. Extended Variational Density Propagation (exVDP)

In this section, we build the mathematical foundation of
the variational density propagation framework by deriving the
propagation of the mean and covariance of the variational
distribution qφ(Ω) through a convolutional layer, activation
function, max-pooling, fully-connected layer, soft-max func-
tion, batch normalization and a skip connection mapping. We
use the first-order Taylor series for approximating the first two
moments (mean and covariance) after a non-linear activation
function and refer to this method as the extended variational
density propagation (exVDP).

1) First Convolutional Layer: The convolution operation
between a set of kernels and the input tensor is formulated
as a matrix-vector multiplication. We first form sub-tensors
Xi:i+r1−1,j:j+r2−1 from the input tensor X, having the same
size as the kernels W(kc) ∈ Rr1×r2×K . These sub-tensors are
subsequently vectorized and arranged as the rows of a matrix
X̃. Thus, convolving X with the kth

c kernel W(kc) is equivalent
to multiplication of X̃ with vec(W(kc)),

z(kc) = X ∗W(kc) = X̃× vec(W(kc)), (7)
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Fig. 1. A schematic layout of the proposed PremiUm-CNN. We show the propagation of the variational density through a convolutional layer, activation
function, max-pooling, fully-connected layer and a soft-max function. The convolutional kernels, extracted features, the output of activation functions, logits({

W(kc), z(kc),g(kc),p(kc)
}Kc
kc=1

)
, and the soft-max function output y are all random variables.

where ∗ denotes the convolution operation. We have defined
TNDs over kernels, which is equivalent to defining multi-
variate Gaussian distributions over the vectorized kernels, i.e.,
vec(W(kc)) ∼ N

(
m(kc),Σ(kc)

)
, where m(kc) = vec(M(kc))

and Σ(kc) = U(1,kc) ⊗U(2,kc) ⊗U(3,kc). It follows that, the
output of the convolution is derived by,

z(ks) ∼ N
(
µz(kc) = X̃m(kc), Σz(kc) = X̃Σ(kc)X̃T

)
. (8)

In the first convolution layer, we assume that the input tensor
X is deterministic for simplicity. Later, in Section III-D7, we
generalize the convolution for a random input tensor.

2) Non-linear Activation Function: We approximate the
mean and covariance after a non-linear activation function
ψ using the first-order Taylor series approximation [38]). Let
g(kc) = ψ[z(kc)], then the mean and covariance of g(kc) are
derived as follows:

µg(kc) ≈ ψ(µz(kc)),

Σg(kc) ≈ Σz(kc) �
(
∇ψ(µz(kc)) ∇ψ(µz(kc))

T
)
,

(9)

where ∇ is the gradient with respect to z(kc) and � is the
Hadamard product. The state-of-the-art activation functions in
DNNs, i.e., the Rectified Linear Unit (ReLU) and its variations
can be approximately considered piece-wise linear. Thus,
the first-order approximation may provide satisfactory results
when propagating the first two moments of the variational
distribution through these activation functions.

3) Max-Pooling Layer: For the max-pooling, µp(kc) =
pool(µg(kc)) and Σp(kc) = co-pool(Σg(kc)), where pool
represents the max-pooling operation on the mean and co-pool
represents down-sampling the covariance, i.e., keeping only
the rows and columns of Σg(kc) that correspond to the pooled
mean elements.

4) Flattening Operation: The output tensor P of the
max-pooling layer is vectorized to form the input vector
b of the fully-connected layer (Fig. 1) such that, b =

[
p(1)T , · · · ,p(Kc)T

]T
. The mean and covariance matrix of

b are given by:

µb =

 µp(1)

...
µp(Kc)

 ,Σb =

Σp(1) · · · 0
...

. . .
...

0 · · · Σp(Kc)

 . (10)

5) Fully-Connected Layer: Let wi ∼ N (mi,Σi) be the
ith weight vector of the fully-connected layer, where i =
1, · · · , H , and H is the number of output neurons (classes).
We note that fi is the product of two independent random
vectors b and wi. Let f be the output vector of the fully-
connected layer, then the elements of µf and Σf are derived
by the following proposition,

Proposition 2.

µfi = mT
i µb,

Σf =

{
tr
(
ΣiΣb

)
+ mT

i Σbmj + µTbΣiµb, i = j

mT
i Σbmj , i 6= j

(11)

where i, j = 1, · · · , H .
6) Soft-max Function: Let the output of the neural network

be y = ϕ(f), where ϕ is the soft-max function. Using the first-
order Taylor series approximation, the mean and covariance of
the output vector, i.e., µy and Σy, are derived as follows [20],

µy ≈ ϕ(µf ); Σy ≈ JϕΣfJ
T
ϕ , (12)

where Jϕ is the Jacobian matrix of ϕ with respect to f
evaluated at µf [20].

7) Intermediate Convolutional Layers: We generalize the
variational density propagation through the convolutional layer
for a random input tensor. Consider an intermediate convolu-
tional layer, e.g., the second convolutional layer with a total
of K2 convolution kernels that convolve with the tensor G

(the output tensor of the previous layer, Fig. 2). Similar to
the first convolutional layer, we formulate the convolution
operation as a matrix-vector multiplication. We form sub-
tensors Gi:i+r1−1,j:j+r2−1 from the tensor G having the same
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size as any kernel W(k2) ∈ Rr1×r2×K1 . Every vectorized sub-
tensor, say g(l) = vec(Gi:i+r1−1,j:j+r2−1), is multiplied with
the vectorized kernel such as,

s
(k2)
l = Gi:i+r1−1,j:j+r2−1 ∗W

(kc) = (g(l))T × vec(W(k2)),
(13)

where l = 1, · · · , dim(s(k2)), k2 = 1, · · · ,K2 and dim(s(k2))
is the dimension of the kth

2 slice in the tensor S, (see Fig. 2).
Given that s(k2)l is the product of two independent random

vectors, g(l) and vec(W(k2)), the mean and covariance matrix
of s(k2)l can be computed using Proposition 2.

8) Batch Normalization Layer: Batch Normalization (BN)
is a differentiable transformation that standardizes the inputs to
a layer for each mini-batch [39]. The standardization operation
refers to re-scaling layer inputs to have a mean of zero and
a standard deviation of one, i.e., standard Gaussian. Consider
d-dimensional input vectors of a layer over a mini-batch of
size m, i.e., B = {x1,··· ,m}, where xi ∈ Rd. Then, the output
of a batch normalizing transform per ith data sample, yBNi ,
(assuming independent data samples), is given by,

yBNi = γ � x̂i + β, x̂i =
(
xi − µB

)
� 1√

σ2
B + ε

, (14)

where µB, σ2
B are the sample mean and sample variance

over the mini-batch, γ, β are hyper-parameters for scaling
and shifting the input and ε is a constant to ensure numerical
stability. Since µB, σ2

B, γ, β and ε are deterministic quantities,
then the propagation of the first two moments through the BN
layer is derived as,

µBNyi =
γ√

σ2
B + ε

� (µxi − µB) + β,

ΣBN
yi = Diag

( γ√
σ2
B + ε

)
ΣxiDiag

( γ√
σ2
B + ε

)
,

(15)

where Diag(x) is a diagonal matrix whose diagonal entries
are the entries of the column vector x.

9) Residual Skip Connection Mapping: The skip connec-
tion performs an identity mapping that skips two or three
layers in a network [40]. The residual block with identity
mapping can be mathematically formulated as follows,

xl+1 = xl + F(xl), (16)

where xl and xl+1 are the input and output of the lth block
in the network and F is a residual function. The residual
function is a non-linear function rendering the output of two
or three layers (every layer involves a convolution, BN and
a ReLU activation) [40]. Thus, the propagation of the mean
and covariance through the skip connection mapping is derived
using the first-order Taylor series approximation,

µxl+1
≈ µxl + F(µxl); Σxl+1

≈ J Σxl JT , (17)

where J is the Jacobian of xl+1 with respect to xl. The
derivation in Eq. 17 applies to any variation of the residual
connection as long as the transformation remains non-linear.

10) Objective Function: Assuming a diagonal covariance
matrix for the Initial variational distribution, N independently
and identically distributed (iid) data points and using M Monte
Carlo samples to approximate the expectation by a summation,
the expected log-likelihood in the ELBO objective function is
given in Eq. 18. The regularization term in Eq. 3 is the KL-
divergence between two multivariate Gaussian distributions
and is presented in the Appendix [41].

11) Back-propagation: During back-propagation,
we compute the gradient of the objective function,
∇φL(φ;D), with respect to the variational parameters φ ={{{

M(kc), σ2
r1,kc

, σ2
r2,kc

, σ2
Kc−1,kc

}Kc
kc=1

}C
c=1

,
{
mh, σ

2
h

}H
h=1

}
,

where (r1 × r2 × Kc−1) is the size of the kth
c kernel, Kc is

the number of kernels in the cth convolutional layer and H is
the number of output neurons. We use ∇φL(φ;D) to update
our parameters φ using the gradient descent update rule.

Eqφ(Ω){log p(y|X,Ω)} ≈ −NH
2

log(2π)− 1

M

M∑
m=1

[N
2
log(|Σy|) +

1

2

N∑
i=1

(y(i) − µ(m)
y )T (Σ(m)

y )−1(y(i) − µ(m)
y )

]
. (18)

E. Unscented Variational Density Propagation (unVDP)
In the exVDP, we have used the first-order Taylor series

approximation to estimate the mean and covariance after the
non-linear activation functions, which may result in an accu-
mulation of errors, especially in DNNs with a large number of
stacked non-linear activation functions. The unscented trans-
formation (UT) approximates the mean and covariance after a
non-linear transformation with one or two orders of magnitude
better than the first-order approximation in the exVDP model.
The UT assures that the estimated mean and covariance are
correct, at least up to the third-order for any non-linearity [20].
For non-Gaussian inputs, the UT approximations are accurate
at least up to the second-order [22], [23].

In the UT framework, the probability density function (pdf)
is specified using a set of carefully chosen samples, called

sigma points. In Fig. 3, we present an example of using the
UT for estimating the mean and covariance of 2D Gaussian
distribution passes through a non-linear transformation. Note
that the UT approximation differs substantially from general
sampling methods (e.g., Monte-Carlo methods), which require
orders of magnitude more sample points in an attempt to
propagate an accurate (possibly non- Gaussian) distribution
of the state. The UT relies on a computationally efficient
sampling approach using a finite number of sigma points,
exactly (2d), with d being the dimension of the random vector.
Perhaps, one of the most acclaimed implementations of the
UT is the Unscented Kalman Filter (UKF), which recursively
estimates the state in non-linear systems [42].

Consider the random vector z(kc) of length d, which is
transformed by the non-linear activation function ψ, such
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Fig. 2. Propagation of the mean and covariance of the variational distribution
qφ(Ω) through the second convolutional layer in a CNN. All elements of
s(k2) are random variables result from the multiplication of two random
vectors, vec(Gi:i+r1−1,j:j+r2−1) and vec(W(k2)).

that g(kc) = ψ[z(kc)]. The mean vector and the covari-
ance matrix of z(kc), i.e., µz(kc) and Σz(kc) given in
Eq. (8), are used to generate 2d sigma points (Eq. 19),
where

√
d Σz(kc) represents the matrix square root such that(√

d Σz(kc)

)T (√
d Σz(kc)

)
= d Σz(kc) , and

(√
d Σz(kc)

)
i

is
the ith row of

(√
d Σz(kc)

)
.

z(kc, i) = µz(kc) + z̃(kc, i), i = 1, · · · , 2d

z̃(kc, i) =
(√

d Σz(kc)

)T
i
, i = 1, · · · , d (19)

z̃(kc, d+i) = −
(√

d Σz(kc)

)T
i
, i = 1, · · · , d.

Each individual sigma point is transformed using the non-
linear activation function ψ(.), i.e., g(kc, i) = ψ[z(kc, i)],
where i = 1, · · · , 2d. The approximate mean and covariance
of g(kc) are then computed as follows,

µg(kc) =
1

2d

2d∑
i=1

g(kc,i)

Σg(kc) =
1

2d

2d∑
i=1

(g(kc,i) − µg(kc))(g
(kc,i) − µg(kc))

T .

(20)

F. Computational Complexity

The computational complexity of the proposed PremiUm-
CNN models, i.e., exVDP and unVDP, is comparable to the
computational complexity of their deterministic homologs.
Since we have assumed a diagonal covariance matrix for the
initial variational distribution, the TND, defined in Eq. 6, adds
a single additional parameter (i.e., the variance) for each con-
volutional kernel, and a single additional parameter for each
weight vector wi in the fully-connected layer (Section III-D5).
The mean-covariance propagation through the non-linearities
is performed with NO additional parameters using the first-
order Taylor series (exVDP) or the unscented transformation
(unVDP). For instance, a CNN with C = 6 convolutional
layers (Kc = 32 kernels of size 5 × 5 in each layer) and
L = 1 fully-connected layer (H = 10 the size of the output
vector) has a total of 32*5*5*6 + 20,480 =25,280 parameters.

Thus, the proposed density propagation models result in an
increase of 32 parameters in each convolutional layer and 10
additional parameters in the fully connected layer. The total
increase in the number of parameters (i.e., 32∗6+10 = 202) is,
therefore, negligible. Moreover, the computational cost of the
UT is proportional to the number of sigma points, 2d, where d,
in our case, is the size of the feature map after a convolutional
layer. For example, in the MNIST dataset, the feature map after
a convolution layer with a single kernel is 24×24. Hence, the
number of sigma points is 2 ∗ 24 ∗ 24 = 1, 152 (assuming no
padding).

IV. EXPERIMENTS AND RESULTS

In this section, we assess the performance of the proposed
exVDP and unVDP approaches for classification and segmen-
tation tasks. For the classification task, we use two benchmark
datasets, i.e., MNIST and CIFAR-10 [43], [44]. We use
synthetic aperture radar (SAR) images and magnetic resonance
(MR) images of the brain tumor for the segmentation task
[45], [46]. We compare our results with the state-of-the-art,
including Bayes-by-Backprop (BBB), Bayes-CNN, Dropout
CNN, and a deterministic CNN (deterministic means without
uncertainty) [11], [17], [19]. The classification or segmentation
accuracy is used as a metric to evaluate the performance on
the test datasets. Adam algorithm is used as an optimizer in
all experiments [47].

We establish the robustness of the proposed models against
various levels of Gaussian noise and adversarial attacks. The
targeted adversarial examples were generated using the fast
gradient sign method (FGSM) and projected gradient descent
(PGD) [48], [49]. We used three noise levels, i.e., low, medium
and high, based on the amount of noise required to introduce
significant distortion in the input test dataset. For MNIST
classification task, the noise levels were σnoise = 0.1, 0.2, 0.3
for adversarial noise and σ2

noise = 0.1, 0.2, 0.3 for Gaussian
noise. For CIFAR-10 classification, the three noise levels
were measured by the highest conceivable value (HCV=
0.01, 0.05, 0.1) for both Gaussian and adversarial noise, where
HCV = 3 σnoise [50]. Similarly, in the Flevoland SAR
segmentation task, the noise levels were HCV= 0.1, 0.2, 0.3

Fig. 3. A schematic description of the unscented transformation (UT). We
approximate the mean and covariance of a 2D Gaussian distribution after a
non-linear function ψ using 4 sigma points (computed by Eqs. 19 and 20).
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for adversarial noise and σnoise = 0.1, 0.2, 0.3 for Gaussian
noise. In the Oberpfaffenhofen SAR segmentation, adversarial
noise is measured by HCV= 0.01, 0.05, 0.1. For the MRI
segmentation task, only a medium level of noise (HCV= 0.05)
was used for Gaussian and adversarial noise. All experiments
are done using two Lambda servers with 16 RTX-600 GPUs
available at Rowan University AI Lab1.

A. Image Classification - MNIST and CIFAR-10

The proposed model architecture for the MNIST dataset is
one convolutional layer (32 kernels each of size 5×5) followed
by a rectified linear unit (ReLU) activation, one max-pooling,
and one fully-connected layer. We set the learning rate to
0.0001, the batch size to 50 and the number of epochs to
4. In Table I, we present the test accuracy of the unVDP,
exVDP, BBB, and a CNN at three levels of FGSM adversarial
and Gaussian noise. The targeted adversarial examples are
generated to fool each network into predicting digit “3”. We
note the performance decline of all networks when Gaussian
or adversarial noise is added; however, unVDP and exVDP
models are significantly more robust (higher test accuracy).

For the CIFAR-10 dataset, the CNN architecture is six con-
volutional layers, each followed by an exponential linear unit
(ELU) activation, three max-pooling, and one fully-connected
layer [51]. The numbers of convolutional kernels in layers
one to six are 32, 32, 64, 64, 128 and 128, respectively. We
use kernels of size (3 × 3) in all layers. We set the learning
rate set to 10−5, the batch size to 50 and the number of epochs
to 250.

In Table II, we present the test accuracy of the unVDP,
exVDP, Bayes-CNN, and Dropout CNN with varying levels
of FGSM adversarial and Gaussian noise. The targeted class
is selected as a “cat”. We note that all networks perform well
on noise-free test data; however, it is evident that unVDP
and exVDP maintain their classification performance under
adversarial attacks and Gaussian noise. In Tables I and II, we
present inference time per data sample (image) in the last row
to understand the trade-off for the robustness.

Our experiments also include the CNN architecture with 10
convolutional, 1 fully-connected and 5 max-poling layers. We
add batch normalization after every ELU activation function,
with hyperparameters set as γ = 1, β = 0 and ε = 10−4 (Eq.
14). The numbers of convolutional kernels in layers one to ten
are 32, 32, 32, 32, 64, 64, 64, 128, 128 and 128, respectively.
The size of the kernels is 3 × 3 in all layers except the first
one (which has 5× 5) and the last one, which has 1× 1. We
use a learning rate scheduler with polynomial decay and set
the initial learning rate to 10−3. We evaluate the performance
of the proposed variational density propagation framework
for a residual neural network (referred to as VDP-ResNet)
with 18 layers (Eq. 17) against targeted FGSM and PGD
adversarial attacks (white-box and black-box attacks). In the
implementation of the skip-connection, we approximate the
Jacobian matrix (Eq. 17) required for the propagation of the
variance-covariance matrix in the forward pass by an identity
matrix. We set the magnitude of the adversarial noise to

1Source code available at https://bit.ly/3ifCTgW

TABLE I
MNIST TEST ACCURACY AT VARYING LEVELS OF FGSM ADVERSARIAL

AND GAUSSIAN NOISE

Gaussian noise level unVDP exVDP BBB CNN

No noise 97.9% 97.8% 97.8% 97.7%

Low 95.1% 94.1% 86.4% 79.6%

Medium 86.7% 84.6% 76.7% 70.5%

High 74.8% 73.4% 63.8% 55.9%

Adversarial noise level

Low 97.5% 96.6% 91.5% 58.7%

Medium 84.9% 84.4% 45.9% 14.7%

High 66.1% 51.6% 16.5% 14.5%

Inference time per data
sample (sec ∗10−2) 2.6 1.2 .03 .02

HCV/3, the step size in the PGD attack to 1 and the maximum
number of iterations to 40. The subscript B in the models
unVDPB , exVDPB and VDP-ResNetB refers to the black-
box attack. The black-box attack is generated from the same
model architecture trained with the same training specifics but
without propagating variational distribution. Thus, the attack
does not have access to the model gradient. Table III shows
the test accuracy of the unVDP, exVDP, Dropout-CNN, VDP-
ResNet, and ResNet for the CIFAR-10 dataset. We note from
Table III that the VDP models retain high accuracy under
adversarial attacks, which demonstrates the robustness of the
proposed density propagation framework for deeper network
architectures. We also note that VDP models present higher
accuracy under the black-box attacks as compared to white-
box attacks.

B. Image Segmentation - SAR Image Datasets

Two publicly available SAR datasets are used to evaluate the
performance, (1) Airborne SAR (AIRSAR) data of agricultural
area over Flevoland in The Netherlands, and (2) the electroni-
cally steered array radar (ESAR) data collected over Oberpfaf-
fenhofen, Germany [45]. We set up the segmentation task as a

TABLE II
CIFAR-10 TEST ACCURACY AT VARYING LEVELS OF FGSM

ADVERSARIAL AND GAUSSIAN NOISE

Gaussian noise level unVDP exVDP Bayes- Dropout

CNN CNN

No noise 92.5% 91.8% 92.1% 91.5%

Low 92.3% 91.4% 87.0% 89.0%

Medium 91.9% 90.9% 86.8% 87.2%

High 90.1% 89.1% 85.2% 86.0%

Adversarial noise level

Low 88.2% 88.1% 76.2% 77.0%

Medium 85.4% 82.3% 69.1% 53.0%

High 76.5% 67.7% 42.2% 33.0%

Inference time per data
sample (sec ∗10−2) 11.5 5. 1. .8
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TABLE III
CIFAR-10 TEST ACCURACY USING DEEP CNN AND RESNET ARCHITECTURES AT VARYING LEVELS OF WHITE AND BLACK FGSM AND PGD

ADVERSARIAL ATTACKS

Noise level unVDP unVDPB exVDP exVDPB Dropout-CNN VDP-ResNet VDP-ResNetB ResNet

No noise 91.7% - 91.8% - 91.7% 90.0% - 91.1%

Low 91.2% 91.5% 91.2% 91.4% 86.8% 89.2% 89.4% 82.4%

FGSM Medium 83.4% 91.4% 83.8% 91.2% 65.9% 83.6% 86.2% 56.1%

High 71.1% 88.8% 70.6% 89.1% 56.9% 79.1% 79.0% 47.5%

Low 91.1% 91.4% 91.2% 91.4% 85.5% 88.6% 89.8% 75.1%

PGD Medium 82.8% 91.1% 82.2% 91.0% 54.7% 78.4% 85.5% 23.3%

High 70.5% 88.6% 69.7% 88.5% 42.9% 69.8% 79.3% 13.8%

region-based classification problem following the work of [52].
We start with randomly sampling patches of size 8 × 8 from
SAR images, which are used as inputs to the networks [53].
The label of each patch is set to the label of the center pixel
of the patch. We compare the proposed exVDP and unVDP
models with a CNN in [52]. The following architecture is used
for all three networks: two convolutional layers, two ReLU
layers, one max-pooling, one fully connected, and one soft-
max layer. The first convolutional layer has 64 kernels of size
3×3×6, and the second layer has 128 kernels of size 2×2×64.
We evaluate the performance of all three networks at various
levels of Gaussian noise and FGSM adversarial attacks. At
test time, the output covariance matrices (for all patches) are
used to generate uncertainty maps, which represent pixel-level
confidence in the segmentation output.

1) Flevoland Dataset: Flevoland image is a subset of an L-
band, full SAR image, acquired by the NASA/Jet Propulsion
Laboratory AIRSAR platform in 1989 during the MAESTRO-
1 Campaign [45]. The size of the SAR image is 750 ×
1024 pixels×6 channels and it contains 15 object classes [45].
We sample 30, 000 patches from the image and divide these
patches into training and validation bins (90% for training
and 10% for validation). The test accuracy is computed using
156, 741 patches sampled from the entire image [53]. We set
“lucerne” as the target class for the adversarial attacks. We set
the learning rate to 10−4 for exVDP and 10−5 for unVDP, the
batch size to 50 and the number of epochs to 120.

We presents the segmentation accuracy in Table IV for three
models, i.e., unVDP, exVDP and the deterministic CNN in
[52] for varying levels of Gaussian and adversarial noise. We
note that all three models perform well on the noise-free case;
however, exVDP and unVDP maintain significantly higher
accuracy in the case of Gaussian noise or adversarial attacks.

In Fig. 4, we present the Flevoland SAR image with
the ground truth segmentation annotations and the predicted
segmentation by unVDP model in four cases: the noise-free
case and three levels of adversarial noise. We also present
the uncertainty maps for the noisy cases, which represent the
model’s confidence in segmentation decisions. We observe
that the uncertainty in the segmentation results increases as
the noise level increases. The uncertainty maps show darker
regions indicated by arrows at higher noise levels.

TABLE IV
FLEVOLAND SAR IMAGE - SEGMENTATION ACCURACY FOR VARIOUS

GAUSSIAN AND FGSM ADVERSARIAL NOISE LEVELS

Gaussian noise level unVDP exVDP CNN

No noise 96.7% 96.5% 96.2%

Low 92.3% 90.8% 88.1 %

Medium 85.1% 83.9% 77.9%

High 78.1% 77.8% 69.9 %

Adversarial noise level

Low 86.5% 83.6% 73.6%

Medium 73.7% 68.8% 56.8%

High 61.8% 56.1% 47.4 %

Inference time per patch
sample (sec ∗10−2) 2.8 1.9 1.

2) Oberpfaffenhofen Dataset: The Oberpfaffenhofen SAR
image is of size 1300 × 1200 pixels with 6 channels and
has three object classes. We sample 100, 000 patches and
divide them into training and testing bins (95% for training
and 5% for validation). We use 1, 303, 960 patches sampled
from the entire SAR image for testing. The target class for the
adversarial attack is the “open areas”. We set the learning rate
to 10−4, the batch size to 100 and the number of epochs to 100.
In Fig. 5, we present Oberpfaffenhofen SAR image with (b)
the ground truth segmentation, (c) the predicted segmentation
by unVDP model in the noise-free case and (d-f) in three levels
of adversarial attack. The uncertainty maps are provided in
the third row of Fig. 5 for three levels of adversarial noise.
We notice that pixels’ magnitude is getting higher in the
uncertainty maps as the noise increases. Thus, the model is
less confident (provides higher uncertainty levels) when the
noise level becomes higher.

In Table V, we present the segmentation accuracy of the un-
VDP, exVDP and the CNN in [52] for the noise-free case and
three levels of FGSM adversarial noise. The proposed models
resist adversarial attacks and maintain a higher accuracy as
compared to their counterpart CNN. We notice that unVDP is
more robust than exVDP. The higher accuracy is linked to the
UT in the unVDP model that better approximates variational
density as compared to the first-order approximation in the
exVDP model. The predicted segmentation and uncertainty
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Fig. 4. Flevoland dataset. (a) The Flevoland SAR image. (b) The ground truth segmentation. (c - f) The predicted segmentation by unVDP model for different
levels of adversarial noise. (g - i ) The uncertainty maps of the unVDP model. The class label “lucerne” (cyan color) is the target of the attack. The arrows
refer to pixels that are misclassified as “lucerne” and to the uncertainty associated with those pixels in uncertainty maps.

maps of the exVDP model on Flevoland and Oberpfaffenhofen
SAR images for the different levels of adversarial noise are
provided in the supplementary materials.

C. Image Segmentation - Brain Tumor Scans

The segmentation of tumors in brain MR images is a
challenging problem since the shape, structure, and location of
brain tumors are highly variable, especially high grade-gliomas
(HGG) [54]. We evaluate the performance of the proposed
exVDP and unVDP models on HGG brain tumor segmentation
task using Brain Tumor Segmentation Challenge (BraTS) 2015
dataset. The dataset consists of 5 classes, i.e. class 0 - normal
tissue, class 1 - necrosis, class 2 - edema, class 3 - non-
enhancing, and class 4 - enhancing tumor [46]. The evaluation
of the segmentation is based on three regions, (1) complete
tumor (classes 1, 2, 3 and 4), (2) tumor core (classes 1, 3 and
4), and (3) enhancing tumor (class 4) [46]. We formulate brain
tumor segmentation as a multi-class classification problem by
randomly sampling patches from four MR modalities, i.e.,
FLAIR, T1, T2 and T1C [55]. We manually set the label of
each patch to the label of the center pixel. We sample a total of
100, 000 patches of size 33 × 33 from MR data of 20 patients
and divide these patches into training and validation bins

TABLE V
OBERPFAFFENHOFEN SAR IMAGE - SEGMENTATION ACCURACY FOR

VARIOUS LEVELS OF FGSM ADVERSARIAL NOISE

Adversarial noise level unVDP exVDP CNN

No noise 94.2% 94.2% 94.5%

Low 91.4% 89.7% 89.5%

Medium 79.2% 74.1% 64.2%

High 68.7% 67.7% 59.3 %

Inference time per patch
sample (sec ∗10−2)

2.5 1.8 .3

(95% for training and 5% for validation). Our test set includes
randomly sampled 372 images, i.e., 43, 264 patches, from each
of the four modalities. We compare the proposed exVDP and
unVDP models with a CNN as proposed in [55]. We use
a CNN architecture with six convolution layers (all kernels
have a size of 3×3, and we have 32, 32, 64, 64, 128, 128
kernels in layers one to six, respectively, followed by ReLU
activation), two max-pooling layers, and a fully-connected
layer. The evaluation metric in brain segmentation is Dice
Similarity Coefficient (DSC). We evaluate the models before
and after adding Gaussian noise or targeted FGSM adversarial
attack (targeted class is class 3, i.e., “non-enhancing tumor”).
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Fig. 5. Oberpfaffenhofen SAR dataset. (a) The original SAR image. (b) The ground truth segmentation. (c - f) The predicted segmentation of the proposed
unVDP for varying levels of adversarial noise. (g - i) The uncertainty maps of the unVDP model. The class label “open areas” (yellow color) is the target of
the attack. The arrows refer to the pixels that are misclassified as “open areas” and to the uncertainty associated with those pixels in the uncertainty maps.

We set the learning rate to 10−4, the batch size to 50 and the
number of epochs to 200.

In Table VI, we present DSC values for three test cases, i.e.,
noise-free, Gaussian, and adversarial noise. We note that the
DSC values of the proposed models are significantly higher
than that of the counterpart CNN for all cases in general
and adversarial noise in particular. In Fig. 6, we show the
predicted segmentation for the exVDP, unVDP and the classic
CNN in [55] for a representative HGG image (with and
without adversarial noise). The uncertainty maps associated
with each segmentation are also presented for both models.
The uncertainty maps show higher levels of uncertainty on the
tumor boundaries. This allows physicians to quickly review the
segmentation results and, if needed, make corrections of tumor
boundaries in the regions where the uncertainty is high.

V. SELF-AWARENESS AND ROBUSTNESS

At the output of the proposed PremiUm-CNN models,
i.e., exVDP and unVDP, the mean vector after the soft-max

TABLE VI
SEGMENTATION RESULTS MEASURED BY THE DICE SIMILARITY

COEFFICIENT (DSC) FOR THE BRATS TEST DATASET.

Method Tumor Regions Noise free Adversarial Gaussian

Complete .853 .817 .831

unVDP Core .819 .787 .807

Enhancing .837 .754 .817

Complete .808 .774 .806

exVDP Core .746 .726 .745

Enhancing .742 .698 .739

Complete .781 .434 .669

CNN Core .651 .471 .519

Enhancing .752 .439 .557

function provides the prediction and the covariance matrix
captures the uncertainty in the output decisions. The proposed



IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021 11

Fig. 6. The predicted Segmentation by the proposed exVDP, unVDP and deterministic CNN on one example of HGG tumor from the BraTS dataset with
and without adding adversarial noise. The uncertainty maps associated with each segmentation is also shown. The class label “non-enhancing tumor” (yellow
color) is the target of the attack. The green color refers to the edema, the red color refers to the enhancing tumor and the blue color refers to the necrosis.

models can use their confidence/uncertainty information as
a quantitative metric to assess their own performance, i.e.,
leading to models that are “self-aware”. This section provides
a detailed analysis of the output covariance matrix for both
the exVDP and unVDP models linked to the output decisions.
Later, we show that propagating uncertainty in the exVDP or
unVDP models naturally leads to increased robustness through
“logit squeezing”.

A. Analysis of the Output Covariance Matrix

We analyze the output covariance matrices of both the
exVDP and unVDP models at various levels of Gaussian and
adversarial noise for MNIST and CIFAR-10 test datasets. Our
analysis reveals that the output covariance matrix for any test
example consists of elements with a very small magnitude.
However, as we introduce noise, the variance values (diagonal
elements of the covariance matrix) and the corresponding
covariance elements (off-diagonal elements corresponding to
the predicted class) start increasing in magnitude.

1) Output Variance: We compute the average variance over
all test examples at various Gaussian and adversarial noise
levels, as demonstrated in Figs. 7 (a and b) for MNIST
dataset. The same noise levels are used for both Gaussian
and adversarial noise and plotted as the signal-to-noise ratio
(SNR) in Fig. 7. We also show the test accuracy corresponding
to each noise level for both the exVDP and unVDP models in
Fig. 7 (c and d).

We observe high average predictive variance (≥ 5) at
SNR ≤ 7.5 dB for adversarial noise (for both exVDP and
unVDP). At high SNR values (exVDP ∼12 dB for Gaussian
noise and ∼20 dB for the adversarial noise, unVDP ∼12
dB for both Gaussian and adversarial noise), the average
predictive variance settles around 2.4 for the exVDP and 1.8
for the unVDP. We also note that the rate of increase in the
average predictive variance is faster for the adversarial noise

as compared to Gaussian noise for decreasing SNR (from
right to left in Figs. 7 (a and b)). The average predictive
variance available at the output of the proposed exVDP and
unVDP models can be used at the prediction / inference time to
identify the increasing noise in the input or possible adversarial
attack. This is referred to as self-awareness for deep neural
networks. We provide a similar analysis for the CIFAR-10
dataset in the Appendix.

2) Output Covariance: We also investigate the off-diagonal
elements of the output covariance matrix, which represent the
covariance values between different output classes. We observe
that the magnitudes of the off-diagonal elements increase with
increasing noise (or decreasing SNR). In Fig. 8, we present
heat-maps of the normalized average of the output covariance
matrices of the exVDP and unVDP models on the MNIST
dataset for three cases, i.e., noise-free, Gaussian noise, and
adversarial noise. The average test accuracies of the unVDP
for the three cases are 97.9%, 86.7%, and 84.9%, respectively.
Each pixel of the heat-map is a normalized average of the
absolute value of the covariance for all 10,000 test examples.
The targeted adversarial examples are generated to fool the
model into predicting digit “3”. For the noise-free case, we
observe that the off-diagonal elements have small (close to
zero) magnitude (Fig. 8 (a)). For the Gaussian noise (Fig. 8
(b)), we notice that the covariance values are higher; however,
there is no pattern, and high and low values are randomly
distributed among various classes. Finally, for the targeted
adversarial attack (target was “3”, Fig. 8 (c)), we observe a
high covariance value between the targeted class and all other
classes. This pattern of increased covariance values clearly
indicates that the model is under a targeted adversarial attack.

B. Robustness through Logit Squeezing
Logit squeezing refers to the technique that penalizes the

norm of logits (where logits are class scores that are not
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Fig. 7. (a) and (b) Average variance values are plotted against the signal-to-noise ratio (SNR) for varying levels of Gaussian and adversarial noise for exVDP
and unVDP, respectively. The variance values are averaged over all 10,000 test examples of the MNIST dataset and the lightly filled areas represent the
standard deviation. (c) and (d) Average test accuracy correspond to different noise levels is presented for exVDP and unVDP, respectively.

Fig. 8. The heat-maps representing the average of the covariance matrices
at the output of the proposed exVDP and unVDP models. Each pixel of the
heat-map is a normalized average of the absolute value of the covariance for
all 10,000 MNIST test examples. (a) noise-free, (b) Gaussian noise, and (c)
adversarial noise. The adversarial examples were generated to fool the models
into predicting and image as digit “3”.

normalized and form the input to the soft-max function) [56].
In the literature, it was shown that adding a regularization term
to the training objective function can explicitly penalize large
logits [56], [57]. Shafahi et al. have shown that aggressive logit
squeezing, by highly weighting the logits regularization term,
results in a model that is more robust than a model trained
with adversarial examples [57].

We hypothesize that the increased robustness of the pro-
posed density propagation approaches, i.e., exVDP and unVDP
is linked to the logit squeezing technique. Therefore, we
investigate how the logits change for the exVDP and unVDP
compared with a deterministic CNN at varying levels of
adversarial noise. In Fig. 9, we present histograms of the logits
that correspond to the predicted classes in the MNIST test
set for three models, i.e., unVDP, exVDP and a deterministic
CNN tested under four adversarial noise conditions (no noise,
low noise, medium noise and high noise). We notice that with
an increasing level of adversarial noise, the distributions of
the logits for the exVDP and unVDP models are squeezed
toward lower values. We conjecture that the proposed exVDP
and unVDP inherently squeeze the logits without adding any
explicit penalty to the objective function (Eq. 2) for the
logit squeezing. We believe that the logit squeezing in the
exVDP and unVDP may be linked to the second-moment
propagation through layers of the DNN. We consider that
during training, the availability of additional information in the
form of the second moment (variance-covariance matrix) helps
the learning process, and results in the proposed models that
are more robust to noise and adversarial attacks. However, it
has been shown later in the literature that logit squeezing may
not always capture the true robustness of models against adver-
sarial attacks [58]. Logit squeezing and the related concept of
label smoothing may distort the loss surface in the data space
and lead a white-box attacker to exploit useless gradients, i.e.,
a phenomenon known as gradient masking. Gradient masking
leads to a false sense of adversarial robustness as black-box
attackers may never need the gradient information to generate
adversarial attacks [58], [59].

One sanity check method to verify the existence of gra-
dient masking is to ascertain the performance of the pro-
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posed models under black-box attacks in addition to white-
box attacks and compare these with each other. When the
model accuracy values for the black-box attacks are lower
than that of the white-box attacks, this indicates that the
proposed models may have the gradient masking problem.
In this setting, the black-box attackers are more successful
as they do not need true gradient information for generating
black-box adversarial attacks [59]. On the other hand, if the
models maintain comparatively high accuracy under black-
box attacks as compared to white-box attacks, this establishes
that the proposed models do not implement gradient masking.
We verify that the proposed density propagation framework
does not have the gradient masking problem by evaluating
our models under black-box attacks and comparing these with
white-box attacks. The results are presented in Table III. We
notice that the proposed models maintain higher accuracy
under the FGSM and PGD black-box attacks as compared to
the white-box attacks. Thus, the proposed density propagation
framework does not suffer from the gradient masking problem.

VI. CONCLUSION

In this paper, we propose a framework for Propagating Un-
certainty in Convolution Neural Networks, PremiUm-CNNs,
which enables the estimation of uncertainty at the output
decision. Given that the true density propagation is intractable
in DNNs, we propose two methods for approximating varia-

tional density, i.e., exVDP and unVDP. In the exVDP model,
we have used the first-order approximation for propagating
the first two moments of the variational distribution through
layers of a CNN. While in the unVDP model, we have used
unscented transformation to propagate a set of sigma points,
which approximate variational distribution at least up to the
second order. Our proposed models have naturally led to the
logit squeezing mechanism and have significantly enhanced
the robustness against noise and adversarial attacks. The exper-
imental results on MNIST, CIFAR-10, SAR images and BraTS
2015 datasets have established superior robustness to Gaussian
noise and adversarial attacks as compared to the deterministic
CNNs and state-of-the-art Bayesian networks. We have also
shown that density propagation in DNNs inherently results in
self-aware models that can assess their own performance and
detect targeted adversarial attacks.

APPENDIX

A. Regularization Term in ELBO Objective Function

If we have a CNN with one convolutional layer followed
by the activation function, one max-pooling and one fully-
connected layer, thus the regularization term in the ELBO
objective function is derived in Eq. 21, where (r1×r2×K) is
the size of the kernels, K1 is the number of kernels in the first
convolutional layer, H is the number of output neurons and n
is length of the weight vector wi in the fully-connected layer.

KL
[
qφ(Ω)‖p(Ω)

]
=

1

2

K1∑
k=1

(
‖M(k)‖2F − r1r2K

(
1− σ2

r1,k σ
2
r2,k σ

2
K,k + log σ2

r1,k + log σ2
r2,k + log σ2

K,k

))

+
1

2

H∑
i=1

(
‖mi‖2F − n

(
1− σ2

i + log σ2
i

))
,

(21)

B. Proof of Proposition 1

Consider a covariance tensor of order six, i.e. T defined as,

Ti1i2i3j1j2j3 = E
(
Wi1i2i3 Wj1j2j3

)
. (22)

The tensor T is called positive-definite if for any third-order
tensor Y, we have (notice that we consider only real-valued
tensors):∑

i1i2i3

∑
j1j2j3

Ti1i2i3j1j2j3 Yi1i2i3 Yj1j2j3 ≥ c‖Y‖2, c > 0.

(23)
Tensor T is also assumed to be symmetric in the following

sense: Ti1i2i3j1j2j3 = Tj1j2j3i1i2i3 . Then, like for matrices,
there exists n3 positive eigenvalues λs and corresponding
eigen-third-order-tensor Y(s), such that the tensor T has the
form,

T =
n3∑
s=1

λsY
(s) ⊗ Y(s), i.e., (24)

Ti1i2i3j1j2j3 =
n3∑
s=1

λsY
(s)
i1i2i3

Y
(s)
j1j2j3

. (25)

Here n is the maximal value for indices i1, i2, i3, j1, j2, j3.
Now, we assume that the tensor T has a special factorized

form, i.e.,

Ti1i2i3j1j2j3 = U
(1)
i1j1

U
(2)
i2j2

U
(3)
i3j3

, (26)

with some positive-definite matrices U(1), U(2), U(3). We
will, without loss of generality, fix U

(1)
11 = U

(2)
11 = 1. Then

we can easily obtain,

U
(3)
i3j3

= T11i311j3 ; U
(2)
i2j2

=
T1i211j21

T111111
; U

(1)
i1j1

=
Ti111j111

T111111
.

(27)
Condition in Eq. 26 is equivalent to,

Ti1i2i3j1j2j3 T2
111111 = T11i311j3T1i211j21Ti111j111. (28)

It is a straightforward substitution to see that Eq. 26 implies
Eq. 28. Assume that Eq. 28 holds. Define U

(1)
i1j1

,U
(2)
i2j2

,U
(3)
i3j3

by Eq. 27. Then Eq. 28 will read as,

Ti1i2i3j1j2j3 = T11i311j3

T1i211j21

T111111

Ti111j111

T111111

= U
(1)
i1j1

U
(2)
i2j2

U
(3)
i3j3

,

(29)
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Fig. 9. Histograms of logits at various adversarial noise levels for the unVDP, exVDP and a deterministic CNN trained on the MNIST dataset. The logit
values correspond to the correct class. (a) Noise free case. (b) adversarial attack - low noise (c) adversarial attack - medium noise level (d) adversarial attack
- high noise level.

Remark 1.
1) Factor T2

111111, as well as fixation U
(1)
11 = U

(2)
11 = 1

are just normalization parameters.
2) Condition in Eq. 28 can be considered in same sense

as independence (or rather non-correlation) between
three indices of the tensor Wi1i2i3 . Indeed, as we notice
from Eq. 28, up to normalization factor, the covariance
coefficient is the product of covariance coefficients for
pairs i1j1, i2j2, i3j3 with other indices being fixed equal
to 1.

3) The condition in Eq. 28 can be reformulated with respect
to any given triple of indices. More precisely, let indices
abc be fixed, then Eq. 28 is equivalent to Eq. 30. The
proof is a straightforward substitution.

Ti1i2i3j1j2j3 T2
abcabc = Tabi3abj3Tai2caj2cTi1bcj1bc. (30)

C. Proof of Proposition 2
Let b and wi be the two independent random vectors

defined in Section III-D. For every ith vector, we multiply
b and wi. The resulting vector f has the mean and covariance
whose entries are derived as follows:

µfi = E[wT
i b] = E[tr(wT

i b)] = tr(E[wT
i b]) = mT

i µb, (31)

σ2
fi = V ar[wT

i b] = E[tr(wT
i bbTwi)]− E[wT

i b]E[wT
i b]

= E[tr(wiw
T
i bbT )]− E[wT

i b]E[wT
i b]

= tr(E[wiw
T
i ]E[bbT ])− E[wT

i ]E[b]E[wT
i ]E[b]

= tr

(
(Σi + mim

T
i )(Σb + µbµ

T
b )

)
−mT

i µbmT
i µb

= tr
(
ΣiΣb

)
+ tr(mim

T
i Σb) + tr(Σiµbµ

T
b )

+ tr(mim
T
i µbµ

T
b )−mT

i µbmT
i µb

= tr
(
ΣiΣb

)
+ mT

i Σbmi + µTbΣiµb,
(32)

σfifj = Cov[wT
i b,wT

j b]

= E[tr(wT
i bbTwj)]− E[wT

i b]E[wT
j b]

= E[tr(wiw
T
j bbT )]− E[wT

i b]E[wT
j b]

= tr(E[wiw
T
j ]E[bbT ])− E[wT

i ]E[b]E[wT
j ]E[b]

= tr

(
(Σij + mim

T
j )(Σb + µbµ

T
b )

)
−mT

i µbmT
j µb

= tr
(
ΣijΣb

)
+ tr(mim

T
j Σb) + tr(Σijµbµ

T
b )

+ tr(mim
T
j µbµ

T
b )−mT

i µbmT
j µb

= tr
(
ΣijΣb

)
+ mT

i Σbmj + µTbΣijµb,
(33)

where i 6= j. Since we assume that weight vectors wi, i =
1, · · · , H , in the fully-connected layer are independent, then
the cross-covariance matrix Σij between any pairwise vectors
wi and wj , where i, j = 1, · · · , H , is the zero matrix. Then,
the covariance between pairwise elements of the vector f turns
out to be,

σfifj = mT
i Σbmj , i 6= j. (34)

D. Covariance Analysis on MNIST and CIFAR-10 Datasets

In Figs. 10 (a and b), we compute the average predictive
variance over all test examples at various Gaussian and ad-
versarial noise levels for the CIFAR-10 dataset. The noise
level is plotted as the signal-to-noise ratio (SNR) for both
Gaussian and adversarial noise in Fig. 10. We also show the
test accuracy corresponding to each noise level for both the
exVDP and unVDP models in Fig. 10 (c and d). We notice that
the average predictive variance increases with decreasing SNR
(≤ 25 dB), and the rate of increase in the predictive variance
is faster for the adversarial noise as compared to Gaussian
noise (from right to left in Figs. 10 (a and b)). The proposed
models are self-aware of the noisy conditions, especially when
an adversarial attack is expected.

In Fig. 11, we plot the average predictive variance of both
the exVDP and unVDP versus SNR for higher levels of
Gaussian noise (SNR from 35 dB to -1 dB) than the levels
used in Fig. 7 on the MNIST dataset. We note that for SNR
< 5, the slope of increase in the predictive variance is steeper,
and for SNR ≤ 0, the predictive variance is ≥ 7 for both the
exVDP and unVDP models.
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