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ABSTRACT This paper investigates the matrix factorization problem (e.g.,

Matrix factorization (MF) approximates unobserved ratings in a
rating matrix, whose rows correspond to users and columns corre-
spond to items to be rated, and has been serving as a fundamental
building block in recommendation systems. This paper compre-
hensively studies the problem of matrix factorization in different
federated learning (FL) settings, where a set of parties want to coop-
erate in training but refuse to share data directly. We first propose
a generic algorithmic framework for various settings of federated
matrix factorization (FMF) and provide a theoretical convergence
guarantee. We then systematically characterize privacy-leakage
risks in data collection, training, and publishing stages for three
different settings and introduce privacy notions to provide end-to-
end privacy protections. The first one is vertical federated learning
(VFL), where multiple parties have the ratings from the same set
of users but on disjoint sets of items. The second one is horizontal
federated learning (HFL), where parties have ratings from different
sets of users but on the same set of items. The third setting is local
federated learning (LFL), where the ratings of the users are only
stored on their local devices. We introduce adapted versions of FMF
with the privacy notions guaranteed in the three settings. In partic-
ular, a new private learning technique called embedding clipping is
introduced and used in all the three settings to ensure differential
privacy. For the LFL setting, we combine differential privacy with
secure aggregation to protect the communication between user de-
vices and the server with a strength similar to the local differential
privacy model, but much better accuracy. We perform experiments
to demonstrate the effectiveness of our approaches.
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1 INTRODUCTION

Federated learning (FL) has been applied as a paradigm for multiple
parties to collaboratively train a model without directly sharing
their data. FL can be categorized according to the data partition as
summarized in [26]. Based on whether the data are partitioned by
features or users, there are vertical FL (VFL) and horizontal FL (HFL),
respectively. Based on how much users’ data each party can access,
the HFL setting can be extended from the cross-silo setting to the
cross-device setting, which we call local FL (LFL) in this paper.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 4 ISSN 2150-8097.
doi:10.14778/3503585.3503598

[18, 30, 45, 51]) under the above three settings of federated learning.
Matrix factorization is an important building block in recommenda-
tion systems. In its simplest form, with a rating matrix as the input,
it learns to represent users (rows) and items (columns or features)
as low-dim vectors, called user embeddings and item embeddings,
respectively, so that the dot-product of a user embedding and an
item embedding measures how the user prefers the item. The em-
beddings, preferably learned in a privacy-preserving way, can be
used in downstream applications [4, 52].

1.1 Coordination and Trust Models

For federated matrix factorization, we assume that the coordination
pattern is the classic server-client model [26, 50]. There are three
types of entities: n users, totally s parties holding users’ data, and
a coordination server. We assume that users’ ratings for items are
fixed and stored on parties beforehand; each party does not trust
the server or other parties, and wants to protect its users’ privacy.

It is challenging in FL to prevent privacy leakage. As shown in
[39], users in the anonymized rating matrices can still be identified.
Without sharing the ratings directly, training samples can still
be recovered from shared gradients in FL [53]. Even if no local
data are shared explicitly and the secure multiparty computation
techniques [6, 49] are applied in communication between parties,
the final models are still vulnerable to inference attacks [12]. To
provide provable resistance to such attacks, efforts have been made
to protect federate learning with differential privacy (DP) [13].

In all following settings, we aim to ensure that all the information
sent out by one party satisfies DP relative to its user’s data. That
is, the privacy boundary for each party is directly surrounding that
party. In other words, each party does not need to trust any other
party in order to protect the data it has. We identify whether a
certain kind of information (e.g., user/item embeddings) cross such
privacy boundaries depending on the settings below.

We give an overview of the coordination and trust models pro-
posed in this paper for different FL settings in Figures 1(a)-1(c).
Vertical FL (VFL). The rating matrix is partitioned on columns
across different parties. All parties share the same set of users, but
each owns a different subset of items. A typical application scenario
for VFL is that two companies, e.g., an online content platform and
a local retailer, have the same set of users, but each has different
user-behavior information; they want to cooperate in training a
recommendation model, which learns from both users’ behavior
on online contents (items such as videos) and items in local stores.

During the learning procedure, different parties exchange user
embeddings with the coordination server; the shared user embed-
dings are aggregated at the coordination server and sent back to
each party to refine local user/item embeddings for the next itera-
tions. In the trust model of this setting, the communication between
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(a) VFL setting (b) HFL setting

Figure 1: Different FL settings (a)-(c) with sensitive information exchanged on privacy
boundaries (the dashed lines). Each u; is a user embeddings, v; is an item embedding.

parties and the coordination server (purple arrows) and the output
of final user/item embeddings (red/ arrows) cross the pri-
vacy boundary, and they need to be protected under DP. Note that
since one user’s data is split among multiple parties, the joint output
satisfies DP relative to a user if all parties follow the protocol.
Horizontal FL (HFL). In HFL, each party has a subset of users and
all their ratings, so the rating matrix is partitioned on rows across
different parties. Different from distributed learning, there is no
ii.d. assumption about the partitioning in HFL. A typical scenario
for HFL is that different hospitals have records for different groups
of patients (users) about the same set of diseases (items); hospitals
want to train a patient-disease prediction model cooperatively.
The coordination for HFL is symmetric to the one for VFL. As
different parties have different sets of users, a coordination server
synchronizes all updates on item embeddings periodically, and
sends them back to each party to refine user embeddings learned
for the users in this party. The final user embeddings do not have
to be published (within the privacy boundary, following the similar
assumptions as [24, 33]); thus, only the shared updates on item
embeddings (purple arrows), as well as the aggregated item em-
beddings if to be published, need to be protected with DP.
Local FL (LFL). LFL is a special case of HFL, where a user as one
party by her/himself has all her/his ratings. It is a common scenario
in mobile applications: each user holds the information about which
items s/he visits only on her/his own mobile device, and does not
want to share it directly with other parties; LFL enables the service
provider to train a recommender without collecting the sensitive
information about exact interactions between users and items.
Each user’s device exchanges updates on item embeddings with
the coordination server who aggregates them for the shared item
embeddings; afterwards, the shared item embeddings are broadcast
to each user’s device to refine user embedding which is kept only
locally. Note that under the trust model similar to [41], the user
embedding does not have to be published, as the ranking proce-
dure, e.g., calculating the dot-product of user embedding and item
embedding for a specific user, can be done locally in users device.
Only the shared updates on item embeddings (purple arrows) and
the aggregated item embeddings, need to be protected with DP.
Formal description about the coordination and trust models in
these three FL settings will be given in Sections 3-6.
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Figure 2: Communication cost

1.2 Our Contributions

This paper comprehensively studies the matrix factorization prob-
lem under the three FL settings (i.e., HFL, VFL and LFL). Our con-
tributions in this paper can be summarized as the following:

e We introduce an abstracted computation paradigm in Section 3
for solving the matrix factorization problem in FL settings. This
paradigm is applicable for the three settings. We prove the conver-
gence of our proposed paradigm with limited communication and
coordination between parties and no assumption on whether the
data are distributed uniformly across parties or not.

o Different FL settings confront different potential privacy-leakage
risks. In the context of matrix factorization, we systematically char-
acterize privacy-leakage risks setting by setting, and propose corre-
sponding notions of privacy in different settings to prevent such
risks. Based on DP and secure aggregation, these privacy notions
provide end-to-end privacy guarantees on the information across
the privacy boundary. Depending on the protection granularity and
strength needed, there are two versions for each privacy notion,
per-rating version (protecting each rating at one time) and per-user
version (protecting each user’s behavior as a whole). We design FL
algorithms based on these privacy notions for different settings.

o Gradient clipping is a standard technique in private optimization
under DP when solving problems with unbounded gradients, but
it also has drawbacks as introducing additional bias and requiring
complicated hyper-parameter tuning [3, 10]. Instead, we propose
using embedding clipping to bound the sensitivity of the embedding
updates: (intermediate) item/user embeddings are projected into a
subspace so that their norms and thus the sensitivity is bounded by
a threshold, which is dependent on the range of the ratings in the
task and does not need to be tuned. We introduce our embedding
clipping technique under the VFL setting in Section 4, and will
repeatedly use it in other settings as well. We show with experi-
ments that embedding clipping can have more accurate updates
than gradient clipping and other approaches.

e Based on our proposed FL paradigm and embedding clipping,
we design VFL-SGDMF algorithm for matrix factorization under the
VFL setting in Section 4, providing privacy protection for both user
embeddings and item embeddings in both intermediate and final
outputs. Compared with training only locally with no communi-
cation, our experiments show that our VFL-SGDMF algorithm can
provide high accuracy in predictions by absorbing heterogeneous
information owned by different parties.



o We propose HFL-SGDMF algorithm for matrix factorization under
the HFL setting in Section 5. In this setting, the communication
between different parties is protected by DP, but the parties can
fine-tune the final results to obtain more accurate models. Our
experiments show VFL-SGDMF outperforms the non-private local
training method and a strawman method based on DPSGD [1, 42]
synchronizing privatized gradient from all parties in every iteration.
o Extending from the cross-silo HFL setting to cross-device LFL
setting in Section 6, we combine secure aggregation with differential
privacy and propose LFL-SGDMF algorithm to ensure the server can
only obtain aggregated and privatized sum of gradients. A novel
two-round aggregation approach is introduced to ensure that our
algorithm tolerates user dropouts (disconnection of users’ devices)
during training without introducing too much excessive DP noise.
With similar strength of privacy protection, our algorithm provides
more accurate predictions on the testing set than the approach
purely based on local differential privacy.

1.3 Related Work

The majority of the work enforcing DP in FL is under the HFL
setting [26, 50], and they can be categorized into two classes. One
class of works, such as DP-FedSGD [36, 48], are extensions based
on the DPSGD [1, 42], in which a server aggregates the (privatized)
gradients from each party and updates models centrally. Another
class of techniques, like DP-FedAvg [35, 47], performs model aver-
age periodically, where local parties send their (privatized) updated
local models to the server, and the server updates the centralized
model by averaging those local models. DP-FedAvg has less com-
munication cost than DP-FedSGD, by avoiding sharing gradients
in every iteration. Our paper has the following differences in the
HFL setting compared with those existing works. 1) Different from
[35, 36], we assume that there is no fully trusted coordinator, and
all the information shared by the parties must be differentially pri-
vate. 2) Compared with [47, 48], MF is a non-convex optimization
problem with unbounded norm of gradient. 3) Different from the
DPSGD [1], we propose embedding clipping for this problem. Em-
bedding clipping can maintain the aggregated gradient information
better than the gradient clipping approaches, as shown in Section 4.
There are also results under non-private HFL setting [28, 29].

Existing work about other problems in the VFL setting includes
learning tree models with secure multiparty computation tech-
niques [32, 49] and training composed models [23]. A recent work
[22] studies the generalized linear model with distributed features
under the ADMM framework. Another paper [9] discussing asyn-
chronous supervised learning with VFL assumes the labels are pub-
lic accessible. According to our knowledge, this is the first paper to
discuss the MF problem in VFL setting with a privacy guarantee.

Existing work of privacy-preserving learning under the LFL
setting aligns with the local differential privacy (LDP), such as
[11, 15, 16, 19]. There are cryptographic methods in the LFL setting
called secure aggregation [5, 6] in parallel. The authors of [41]
proposed a algorithm to learn item embeddings with the local
differential privacy (LDP). However, we show that their algorithm
is not better than training only the user embeddings locally.

Some work about matrix factorization with DP in a centralized
setting includes [24, 25, 33, 40]. Also, the MF problem was studied
with homomorphic encryption [8]. Without privacy protection,

federated matrix factorization was studied as a multi-view learning
problem in [17]. Some other work focuses on the tensor factoriza-
tion in HFL, like [27] with non-private aggregation and [34] solving
the problem with EASGD and output perturbation for DP.

2 BACKGROUND

2.1 Matrix Factorization

The input to the matrix factorization (MF) [30] problem is a matrix
X € (RU {L})™™ consisting of ratings from n users on m items
(e.g., movies). An element X;; € R is the observed rating from user i
onitem j,and X;; =1 means that the rating is unobserved. Although
n and m can be very large, the matrix is sparse in the sense that only
a small fraction, e.g., 1%, of ratings, are observed. We denote the
set of indices of observed ratings as Q = {(i, j)|X;; #L1}. With the
assumption that the rating matrix can be approximated by the inner
product of two low rank matrices, U € R™® and V € R™*? where
p < n, m, the matrix factorization problem can be formalized as
minimizing the loss function £ (X, U, V):

ﬁ Z Lij (XU, V)= ﬁ Z (Xij = wi0j)®, ()

(i,j)eQ (i,j) eQ
where u; and v; are the row vectors of U and V, which are called
user embeddings and item embeddings, respectively. For a specific
user i, ratings on items j € [m] can be approximated by the inner
product of user embedding and item embeddings (u;, ;). We will
formalize the federated matrix factorization problem in Section 3.

2.2 Differential Privacy

In the federated learning settings, any non-trivial solution requires
parties (or user devices in the LFL setting) to share information
distilled from local datasets with others. Recent research results [38,
53] have shown that sharing gradients directly can leak user privacy.
In this paper, we employ DP [13] to protect user’s information
from privacy leakage because DP is more powerful in resisting
membership inference attacks, re-identification or reconstruction
attacks than other privacy notations, such as k-anonymity [14, 31].

DEFINITION 1 ((€, §)-DP). A randomized mechanismM is differ-
entially private iff given any pair of neighboring datasets X and
X', the following holds for all possible output o: Pr [M(X) = o] <
ePr[M(X’) = o] +6.

Sequential composition: moments accountant. The private
dataset may be accessed multiple times. Moments accountant [1]
can be used to provide tight analysis for the privacy loss of a se-
quence of adaptive mechanisms. In general, let M(X, aux) be a func-
tion that returns outputs from the dataset X and an auxiliary input
aux. The auxiliary input aux can include all intermediate results
from previous steps. The logarithm of the moment generating func-
tion (of privacy loss in M) evaluated at the value A is defined as

o (45X, X', aux) = log By y(x.aux) | exp(Alog % ,
which is upper bounded by am(4) = maxx x’,aux am(4; X, X', aux).
Suppose there is a sequence of such adaptive mechanisms My, . . ., Mr,
where each M; takes the dataset X € X’ and the outputs of all previ-
ous t — 1 mechanisms as input. The moment accountant technique
bounds the total privacy loss in My, ..., M7 via composing the loga-
rithms of the moment generating functions, av, (1)’s for t € [T].



THEOREM 1 (MOMENT ACCOUNTANTS (MA) [1]). Let a mechanism
M be a sequence of adaptive mechanisms My, ..., Mt defined as above.
Then we have 1) [composition] for any A, au(A) < Zle ay, (A); and
2) [tail bound] for any € > 0, the mechanismM is (e, §)-differentially
privacy for § = min) exp(am (1) — Ae).

This paper applies MA to analyze the privacy guarantee of our

solutions to federated MF. In the experiments, we calculate the
exact privacy loss using the package [44].
Parallel composition. Other than sequential composition, parallel
composition is another useful property of DP in FL. When the
parties have disjoint datasets, the total privacy loss in the FL process
is equal to the maximum privacy loss of an individual party.

PROPOSITION 1 (PARALLEL COMPOSITION [37]). If mechanisms
Mi,...,Mr are (e(l), 5(1)), el (e<5), 5<S)) differentially private and
they are computed on disjoint datasets X1, . .., X, then the overall
privacy loss will be (maxk{e(k) |2 man{5(k) b

2.2.1 Differential Privacy in Federated Matrix Factorization. When
we enforce DP on the MF problem in FL settings, some details need
to be specified as the following.

Privacy definitions related to MF. Different definitions of “neigh-
boring datasets” imply different privacy guarantees. In this paper,
we consider two types of guarantees, per-rating privacy and per-user
privacy. We formally define them as follows.

e Per-rating privacy. To provide per-rating privacy, two rating ma-
trices X and X’ are neighboring datasets if there is an index (i, j),
such that either X;; =L is unobserved and X;A #1 is observed, or
the reverse; and for any other index (i’, j') # (i, j), Xy j» = le,j,.
Thus, per-rating privacy protects every single rating given by each
user. The protection provided by per-rating privacy on the overall
behavior of a user can be weak if a user contributes a large number
of ratings due to the sequential composition of differential privacy.
o Per-user privacy. To provide per-user privacy, two rating matrices
X and X’ are neighboring datasets if and only if there exists a
user i such that i) for any user i’ # i, Xy. = X/, , and ii) either
X;jj =1 for all items j € [m] or X}, =1 for all items j € [m].
The same definition has been used in [25]. This definition helps
prevent the adversary from distinguishing any individual user i’s
ratings from not rating anything. The “dummy row” is only used
to define neighboring rating matrix and sensitivity calculation, but
it is never added in the computation process. We use the above
per-user definition in this paper because it works with moment
accountants more naturally for composition. An alternative is to
define X and X’ as neighboring if they have the same number of
rows and differ in at most one row. This definition helps prevent
the adversary from distinguishing any individual user i’s ratings
from any other behavior. Satisfy (e, §)-DP using the former satisfies
(2€,26)-DP under the latter.

Bounding sensitivity. In DP, the effect of adding/removing one
record is called sensitivity. Gradient clipping and trimming are two
techniques to bound the sensitivities in MF.

o Gradient clipping. In differentially private optimization, when the
gradient-based method is applied (e.g., DPSGD) but the gradients
are unbounded, gradient clipping is the technique to bound the
sensitivity of gradients [1]. For example, for per-rating privacy, the
gradient for the user embedding from a rating of user i on item j,

Vu Lij (U,V),is not bounded if there are no additional constraints.
VuL;;j(U,V)
max{l,”VU,CI-J-(U,V)”Z/C} :
However, gradient clipping has several disadvantages in practice.
Firstly, gradient clipping limits the effect of each rating. So gradient
clipping limits the effects of gradients with large magnitudes in
aggregation, the useful updates may be canceled out. Secondly,
gradient clipping requires extract space to store the gradients from
each rating/user. In this paper, we propose to use embedding clipping
(in Section 4) to bound the sensitivity of the gradient.
o Trimming [33]. The bounded gradients from a single rating are
sufficient to derive the sensitivity of per-rating privacy. However, a
user can have many ratings, and the sensitivity of per-user privacy
is linear to the maximum number of ratings a user can have. An
excessive noise is required to provide per-user privacy because of
the high sensitivity. Thus, when per-user privacy is enforced, as
the first step, each user’s record keeps at most 6k ratings in the
local rating matrix of party k, and turns the rest of ratings to L.
o Privacy budget composition. Solving the federated MF problem
requires multiple accesses to the dataset. Based on different data
partitions and privacy settings, both parallel composition and se-
quential composition can be used in this paper. The privacy losses
are bounded for the three different settings in Section 4 to 6.

Thus, the gradient has to be clipped as

3 FEDERATED MATRIX FACTORIZATION

The goal of federated matrix factorization is to let the involved
parties learn some common components cooperatively. In the VFL
setting, the parties want to learn the user embeddings together;
in the HFL and LFL setting, the item embeddings are shared be-
tween the different parties. This section formalizes the problems in
VFL, HFL and LFL, then introduces a non-private federated matrix
factorization paradigm with convergence guarantees.

3.1 Problem Formulation

We assume there are s parties in the learning process. The party
is an abstraction that has different meanings in cross-silo FL and
cross-device FL [26] scenarios. When a party has more than one
user’s data, it represents an organization, and the scenario is cross-
silo FL; when each party has only one user’s data, it represents a
user device in practice, and the scenario becomes cross-device FL.
MF in vertical federated learning (VFL). As described in Fig-
ure 1(a), each party in the VFL setting has data from the same set of
n users U, corresponding to n rows in the rating matrix X, but owns
only a subset of items. Let {Fy, ..., Fs} be a partition of the set of all
items [m] with |Fy| = my, and each Fy. be the subset of items owned
by party k € [s]. Thus, the rating matrix is partitioned vertically
into X = [Xg,, ..., Xg,] with Xg, € (R U {L})™™* as the rating
information owned by party k. We assume that the users in local
rating matrices are aligned in the way that for all k € [s], the it"
rows (X, ); are corresponds to the same user i. The s parties want
to collaboratively learn user embeddings U = [u;];c[n] € R,
and item embeddings Vi, = [vj]jeF, € R™XP for the items owned
by each of them. In practice, the number of parties involved in the
vertical federated learning is limited in most scenarios, i.e. s < 10.
e Loss functions in VFL. For each party k, the local loss function is
L (X]Fk, U, V]Fk) = m Z(i,j)EQk (Xij - <u[, Uj))z . The global loss



function can be rewritten as: £ (X,U,V) = 31 %
2
o 2k S(ij)eey (Xij = (ui0))"
Our algorithms in this paper are based on stochastic gradient
descent (SGD). Based on the loss function, the gradients to the
user/item embeddings are the following:

[Q%|

L (Xpy, U, Vi) =

VULX U V)= Tap VUEXe U Ve, @
k
Q
Vi, LX.U,V) = %V‘,ﬁkﬁ(xﬂ, U, Va,). 3)

Equation (2) indicates that the updates on the global user embed-
dings need to be the weighted average of the updates of local user
embedding; Equation (3) suggests that the local updates on the item
embeddings, although no need to be aggregated, need to be scaled
by the a different ratio |Q|/|Q| for each party k.

When using the SGD, each party can sample a submatrix from
the local rating matrix consisting of n” rows and ml’< columns. The
observed ratings in this sampled submatrix is denoted as I. We
assume that all parties have about the same “density” of observed
ratings, 7 = |Q|/(nm). The normalized stochastic gradients on
party k to user embeddings and item embeddings are denoted as:

_ 1 k -
8U = i 2 Z Vuli; (XFk,U( ),VFk) ~ Vy L(XF,, U, VR, ),
k™ (ij)el;
(k_ _1 k -
gVFk_ n’m;cr Z VV]Fk ﬁi’j (X]Fk’ U( ), VFk) ~ VVPk[’(XFk’ U, V]Fk).
(i,j) €Iy

MF in horizontal federated learning (HFL). As in Figure 1(b),
instead of partitioned items, let {Uy, ..., Us} be a partition of the
set of all users [n], and Uy is the subset of users belongs to party k.
Compared with the vertical setting, data of a user are on a single
party. All parties potentially have ratings for all the items in F
with size m. The rating matrix X is thus partitioned horizontally as
X = [Xuy,;...;Xy,] where each party k has the rating information
as a submatrix Xy, € (R U {L})"™*™, in which we can observe a
subset of ratings Q.. The goal of the s parties in the HFL setting is to
learn item embeddings V' = [v]cF if size m X p cooperatively with
higher utility by exchanging privacy-preserved information, and
each party k € [s] learns a set of user embeddings U, = [u;licu,
of size ny X p for the users in their local dataset.

® Loss functions in HFL. Similar to the VFL, the local loss function is
£ (Xue U V) = o7 Ziyeey, (Xij = (wi,0)))%, and the global

loss function is £ (X, U, V) = > %ﬁ (X, Uy, V) . Similarly,
we denote the gradients and the normalized stochastic gradients
on party k to user embeddings and item embeddings and denote

k k
them as [’Umk (XUk, Uy, V), LV(XUk’ Uy, V), gbu)k and g‘(/ ).

MF in horizontal federated learning (LFL). When formalized
as an optimization problem, the LFL setting is an extreme case of
the HFL setting with s = n and U; = {i}. Thus, the loss functions,
the gradients and convergence can inherit naturally from HFL.

3.2 Common FL Paradigm for MF Problem

We introduce a paradigm for solving the MF problem in both VFL
and HFL settings. It consists of three stages: [Stage 1]: initializa-
tion and local pre-computation; [Stage 2] cooperative learn-
ing; [Stage 3] local fine-tuning. The paradigm is described as
vanilla FMF in Figure 3(a). In VFL settings, the shared embeddings

are the user embeddings, while the local embeddings are item em-
beddings. The roles switch in the HFL setting, where the shared
embeddings are the item embeddings and the local embeddings are
the user embeddings. The first and the last stages are done locally
by each party, while the second stage requires communication.
The [Stage 2] cooperative learning of FMF consists of Step (c2)
and (s2). The user embeddings and item embeddings are updated
locally with SGD. The updating step are shown as the following:

_ e )

k
VFL: vk —yth - Ytg{]),V]Fk — VR, TgVFk’

N (k k
HFL: Uy, « Uy, — ytngjU)k,V(k) — Vg — ytgi,(l)- (5)

Here we assume that all parties have about the same rating “density”,
% = % or % = "T" As mentioned in the previous subsection,
the global loss function is a weighted average of the local ones.
Thus, the weights are applied in (4) and (5) to match the global
loss. Besides, the global shared embeddings are updated as the
weighted average of the local ones in Step (s2) of FMF, which is
either U = 3, kU for VFLor vV = 35 _, %V(®) for HFL.
Coordination and communication cost of FMF. Communica-
tion only happens in the cooperative learning stage. The coor-
dination logic behind (c2) and (s2) is that for each iteration, the
coordination server first requests the locally updated embeddings
from each party; after receiving the request, each party uploads
their embeddings; the server aggregated the updated embeddings
from parties and broadcast the weighted average to all the parties.
The coordination server of FMF performs synchronization over all
involved parties T times. The total communication cost is O(Tnp)
for VFL or O(Tmp) for HFL. Notice that there are T’ local itera-
tions between each update. Compared with the gradient-aggregated
methods (e.g., [36, 48]), FMF saves a factor of T” synchronizations.
In practice, it suffices to have T and T’ no less than 100 and 10,
respectively, for FMF to converge.

Convergence of FMF. To analyze the theoretical convergence ratio
of FMF, the first condition is that the sampled gradients are unbiased
to the true gradients with bounded variance. We further assume that
1) the true local gradients are bounded, 2) the global loss function
is smooth and 3) the initial loss is bounded by a constant D. These
assumptions are practical given a dataset and a proper initialization

of the embeddings.

THEOREM 2. If the aforementioned assumptions hold, Algorithm

FMF converges in % Zzzl E[IVL (XU, V)|]=0 (,/%(1 + c)) with

2 2
fixed step sizey = O (%Dﬁ) ande=3%; | % inVFL,c=3%_| Z—’;

in HFL and ¢ = % for LFL.

4 PRIVATE VFL MATRIX FACTORIZATION

Although the parties in FMF algorithm do not share the local rating
matrices directly with others, the shared embeddings still carry
users’ recoverable private information. The VFL privacy leakage
risks and expected protections are formalized as the following.
VEFL privacy leakage and protection. In this setting, as shown
in Figure 1(a), we assume that users trust the party as long as their
data are handled properly later on, so there is no need to protect
the privacy of the information exchange between users and parties.



Input: {X<1>, L X® } owned by s different parties; the total iteration T and
local update iterations T’ .
Output: User embeddings and item embeddings
[Stage 1]: initialization and local pre-computation
(s1) Server: Initialize {shared embeddings}, share to all parties;
(c1) All parties k € [s]: Initialize {local embeddings};
[Stage 2]: cooperative learning
while t € [T] do
(c2) All parties k € [s]: Update local version of {shared embeddings} and
{local embeddings} for T’ local iterations; upload {shared embeddings};
(s2) Server: Aggregate and weighted average the {shared embeddings},
and share the average to all parties.
end while
[Stage 3] local fine-tuning
(c3) All parties k € [s]: Pass.
®
Input: {Xg,,...,Xp, } owned by s different parties; the total iteration T and
local update iterations T .
Output: Private user embeddings and private item embeddings
Define: shared embeddings = U; local embeddings = Vg, . .. Vi,
Replace (c2) in FMF: Update U%) and VE, for T’ local iterations with em-
bedding clipping and DP noise; upload U %) to server;
Replace (c3) in FMF: Fine-tune Vi, locally for x iterations with embedding
clipping and DP noise;
(b) | Changes FMF — VFL-SGDMF

Input: {Xy,, ..., Xy, } owned by s different parties; the total iteration T and
local update iterations T” .

Output: Each party has its own version user/item embeddings

Define: shared embeddings = V; local embeddings = Uy, , ... Uy

Replace (c1) in FMF: Initialize and pre-train Uy, ;

Replace (c2) in FMF: Update V(¥) for T’ local iterations with embedding
clipping and DP noise; upload V%) to server;

Replace (c3) in FMF: Fine-tune Uy, and V) Jocally;

s

(c) | Changes FMF — HFL-SGDMF

Input: {X;,...,X,} owned by n different users; the total iteration T.

Output: Shared item embeddings V'

Define: shared embeddings = V; local embeddings = Uy, ..., U,

Replace (c1) in FMF: All parties i € [n]: Initialize and pretrain Uj;

Replace (c2) in FMF: (Round 1) Calculate noise update gi,’”) and invoke SA,-
report(gg’t)); (Round 2) If receive [UD | from server, upload E(i’t) =
—g@t) 4 gr@t),

Replace (s2) in FMF: (Round 1) Invoke SA,,-agg to get gi,” = eyt gﬁ,’*”;
if [U®Y | < (1 — w)n then next iteration; Send user i € U*!) an integer

U |; (Round 2) Update V() = V(1) - o (1) 4 By &)

Replace (¢3) in FMF: Fine-tune local U;;

(d)| Changes FMF — LFL-SGDMF ‘

Figure 3: Federated matrix factorization algorithms

During the learning process of VFL, the exchanged intermediate
results, such as locally updated embeddings, may leak users’ private
information to other parties and the server. A naive privacy leakage
is that when a party never updates a user embedding, the coordina-
tion server can easily conclude that the user has no rating with that
party. Besides, the learned user/item embeddings are used in pub-
lic services (e.g., recommendation systems), so privacy protection
needs to be provided for both user/item embeddings. Thus, privacy
protect is expected for information exchange between parties and
coordination server, and user/item embeddings in VFL.

4.1 Private MF in VFL: VFL-SGDMF

Compared with the non-private FMF, a few additional steps are
required in [Stage 2] (s2) to change it into a differentially private
mechanism, called VFL-SGDMF.

4.1.1 Bounding sensitivity. In order to bound the sensitivity of the
loss function (1), [33] sets constraints on the inner product of u;
and v;. Gradient clipping method in [1] can be for MF problem and
[41] projects each element of the gradient to [—1, 1]. Unlike the
previous works, we propose embedding clipping, which imposes
hard constraints on the norms of user/item embeddings in order to
bound the gradients from a single rating. Extending for per-user
privacy, we also adapt the same strategy, random trimming, as [33]
in addition to bound the user level sensitivity.

Embedding clipping. We notice that the scores in rating matri-
ces are usually in a bounded range [0, R] where R is some finite
number (e.g., 5 or 10). This property motivates the non-negative
matrix factorization [2, 46], in which the user embeddings and item
embeddings are restricted to be non-negative. In this paper, we
enforce stronger constraints that the norm of the user embeddings

and item embeddings are also bounded. That is,

U:Vieln] |l <Ru; 20, V:Vje[m]llojll5 <R o =0. (6)
With constraints in (6) and Cauchy-Schwarz inequality, we have
(uj,v;) < R. The gradient with respect to u; from the j-th item is
V. Lij (U, V) = -20; (X,-j - (ui,vj)) if X;; is observed, otherwise
is 0. For per-rating privacy, a pair of neighbouring dataset X and
X’ differ at index (i¥, j*) with X;;» #1 and le*j* =1. With u;
and v; bounded as (6), then the sensitivity of the gradient to a
user embedding is Ay, = ”—ZZ)J'* (X jo = (up,0j0)) - 0||2 < 2R3/2,
Similarly, we can obtain sensitivity Az, = 2R3/2 for Vuj[,i, i (U, V).

We denote the embedding clipping on user embeddings IT;; (U),
a projection functions that first turns all negative entries of U into

0, then normalizes each row vector with ———*——— to satisfi
max {1 u; 1,/ V) Y

(6); T, (V) performs the same projection for V to satisfy (6). We
provide proof that this two-step operation indeed can project each
row vector to the closest point in ¢/ or V in our full version.
Although the additional restrictions may affect user embeddings
and item embeddings’ expressiveness, it can provide regularization
to prevent overfitting and provide a nice bounded-gradient property.
While gradient clipping method clips the gradient from different
records, then aggregates the gradient and updates the embeddings,
embedding clipping is equivalent to first aggregating the gradients
then clip. Both methods introduce bias in the update, but embedding
clipping has advantages over the gradient clipping in the MF as
shown in our experiments.
Random trimming. To bound the sensitivity in per-user privacy,
each party trims their local dataset so that there are at most 6(%)



ratings per user remaining in the local rating matrix of party k, and
turns the others to L.

4.1.2  Amplifying privacy with mini-batches. It has been proven
in other literature that sampling can amplify privacy. Notice that
per-user privacy has a stronger constraint on sampling to achieve
privacy amplification compared with per-rating privacy. Because
all ratings from the same user are considered as one record in
per-user privacy, the sampling needs to be applied on user-level
when per-user privacy is required; sampling on columns has no
privacy amplification. That is, n’ rows from the local (trimmed)
rating matrix are sampled , and the sampling rate is 5 = % To
be more consistent and easy to compare, we apply this user-level
sampling under both the per-rating and per-user privacy.

4.1.3  Private local updates. To protect both intermediate and final
results, both U and V need to be perturbed with random noise and
projected back to the feasible domain as defined as (6). The locally
updates on user embeddings and item embeddings becomes:

- (k mE ~(k
U™ =1my (U(k) - ngij)),Vle =1y (Vle - Lm gi@l), ™

(k,t,t")
U

(k,t.t') = (k) (k)

~(k k ket .
where g(U) = gﬁj) +E&y B, =By, +§§,}Fkt ) The noise &

and & (kL) 1ave the same shape as the gradients, and their ele-
Va,

ments are sampled independently from zero-mean Gaussian distri-
bution for each local update, with variance depending on privacy
definitions and privacy parameters. Details are discussed later.

4.1.4 VFL-SGDMF local fine-tuning. We notice that compared with
the convergence of the non-private and fully centralized matrix
factorization algorithm, the convergence of the VFL-SGDMF algo-
rithm mainly suffers from two aspects: the DP noise and the non-
convexity of the problem. In our experiments, the user embeddings
change little in the final iterations, and the loss decreases very slow
in the final iterations. Thus, we can add a local fine-tuning (c3) as
the following: for the last k iterations, user embeddings are fixed,
only item embeddings are updated locally on each party. So each
party accesses the local rating matrices TT’ + k times in training.

The benefit of fixing the users embedding and training item em-
beddings locally is that the problem becomes a convex optimization
problem, and the sensitivity of each local update is smaller as only
item embeddings change in the final iterations. Turning the prob-
lem into a convex problem and the smaller noise for each update,
we can obtain smaller and more stable losses in training.

4.2 Analysis of Privacy Guarantee

To analysis both per-rating and per-user privacy, quantifying pri-
vacy loss of a party is an intermediate step. So we use (e®), 5k
to characterize the privacy loss of party k after participating in the
VFL computation. Although these quantities are not our final goal,
(%), 5()) can be understood as the privacy loss of party k when
the other s — 1 parties collude or controlled by an adversary.

o Sensitivity of per-rating privacy. When each party updates local U
and Vg, together in VFL-SGDMF, the £, sensitivity of the gradient to
(U, Vg,) will be Arating = 2V2R3/2 if adding/removing one rating;
in the final x iterations where only local item embeddings are
updated, the sensitivity of each iteration is Argting = Az .y = 2R3/2,

o Sensitivity for per-user privacy after trimming. After trimming, for
any pair of neighboring database Xp, and Xg, , we have a user i
such that ratings (Xg, )ij =L for all items j € [Fx] in Xg, while at
most 6(K) ratings (XI’Fk )ij #L. Thus, the per-user f;-sensitivity is
Ayser = oK) Ayating on party k when updating U and V together,
and Ayser = G(k)Az,v if only updating item embeddings.

Composition of privacy across iterations. The standard devia-

tion of the Gaussian distribution, from which & [(}C ) and £ g//;,t,t )
Fie

are sampled from, is determined by the sensitivity and the privacy
budget. It can be written as B = zArating for per-rating privacy
or o® = zAyser for per-user privacy, where z is called noise multi-
plier. Based on moment accountants [1], the relation between noise
multiplier z and privacy budget is as the following:

PROPOSITION 2. Let the sampling rate be nj in each local iteration.
After running TT’ + k local iterations, VFL-SGDMF introduces at most
(e, 50k)) per-rating or per-user privacy loss for party k if the noise
n*(IT"+x) In1/5%)

(y? with some constant cy.
€

multiplier 2% = ¢;
End-to-end privacy guarantees. The per-rating and per-user pri-
vacy of VFL-SGDMF can be bounded as the following.

e Per-rating privacy composition in VFL. Notice that the parallel com-
position property holds in the context of moment accountants as
well. In per-rating setting, global privacy loss can be bounded with
the following theorem derived based on the parallel composition:

THEOREM 3 (GLOBAL PER-RATING PRIVACY). Ifthe noise multiplier
is set as above, then VFL-SGDMF is (maxj¢ ] e(k),maxkelsj 50y
per-rating differentially private globally.

® Per-user privacy composition in VFL. Users may have ratings dis-
tributed across multiple parties, so the parallel composition prop-
erty does not hold when composing per-user privacy loss. A naive
composition gives € = Zi:l ¢ However, composing with mo-
ment accountants can give a tighter loss:

THEOREM 4 (GLOBAL PER-USER PRIVACY). If for each party k has
per-user privacy loss at most (¢ 5y and 5 = 50V = . = 59,

. . 2
then overall per-user privacy loss of VFL-SGDMF is (/333 _, (e())7, 8).

Notice that we only consider one-time training in this paper.
The privacy budget and the hyper-parameters are predefined, so
that privacy budget will not run out during the training. However,
the real-world DP applications often provide a privacy guarantee
within a given time period (i.e. a day) [43]. Following the same
spirit, our algorithm can also be executed daily.

4.3 Empirical Evaluation for VFL

Datasets. We use three datasets in our experiments. The first one
is the MovieLens 10M (ML10M) dataset [21], the second one is
MovieLens 25M (ML25M) and the other one is the LibimSeTi [7]
dataset. MovieLens 10M is a dataset with 10 million ratings on
10, 681 movies by 71, 567 users from the MovieLens website. Movie-
Lens 25M dataset has 25 million ratings on 62,000 movies by 162,000
users. ML10M and ML25M are similar as their ratings are all be-
tween 0.5 to 5. LibimSeTi contains more than 17 million anonymous
ratings of 168, 791 profiles made by 135, 359 LibimSeTi users, and
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Figure 5: Compare VFL-SGDMF (s=1), DP-SGLD and ObjPertb.

the scores in LibimSeTi are between 0 to 10. We also pre-process
the LibimSeTi dataset with the same process as [41].

We split the datasets into s disjoint sub-datasets by movie/profiles,
such that the ratings of each movie/profile can appear in only one
dataset. Each of the sub-dataset simulates the local dataset for a
party. We keep 10% of the ratings for testing in each local dataset
and use the remaining for training. To measure the quality of the
embeddings, we use the mean squared error (MSE) to measure the
closeness between the inferences and the true ones in testing sets.

Because the existing DP MF methods are mainly in central set-
ting, so we first compare [1, 24, 33] with VFL-SGDMF and set s = 1.
To show the benefit of the communication in VFL-SGDMF, we also
use local-only as a baseline. In the local-only method, each party
trains locally with TT’ iterations DP-SGD [1] to get local private
user embeddings Uk and private item embeddings Vf, , but they
never communicate with each other during the training process.
Hyper-parameters. We fix p = 20 for the embeddings in all ex-
periments. Although there are possible trade-offs between T, T,
sampling rate and variance of Gaussian noise for a fixed €, we fix
TT’ = 1000 (each party access local dataset 1000 times), sampling
rate 0.01 and adjust the variance of Gaussian noise for different e
for the experiments in this paper. Also, the best trimming threshold
0% for per-user privacy may vary for different numbers of par-
ties, different datasets and different privacy budgets. For per-user
privacy, we fix the trimming threshold 6 = 10 when s = 1, 0K) = 5
when s € {2,5,10}, and set 9(®) = 2 when s = 18. Because a too
large 0tk requires large noise to protect privacy, a too-small ok
abandons too much information. We tune the learning rates for
different privacy budgets based on the training loss and pick the
one giving the lowest training loss. The learning rates decrease
linearly as [1] for the first 80% iterations and stay the same for the
final 20% iterations. While we only report the results with the fixed
setting mentioned above, there may be multiple optimal combi-
nations. One can also tune the hyper-parameters with part of the
privacy budget in a differentially private way as [1, 20].
Experiment results. We evaluate the VFL-SGDMF against gradient
clipping and other methods [24, 33] with s = 1. We also analyze the

effect of data partition and the effect of different parameters, i.e.,
synchronization frequencies and number of parties.
e Non-private central (s=1) results. For references, the embeddings
trained in the non-private central setting with SGD have MSE
of 0.83012, 0.8631, 4.23981 on testing sets of ML10M, ML25M and
LibimSeTi datasets, respectively.
o Comparing embedding clipping with gradient clipping. To exclude
the effect of trimming, we first show the per-rating setting and
compare gradient clipping with embedding clipping in the central
setting (s=1). We show in Figure 4(a) that if we only do the clipping
but do not add noise, we observe that the gradient clipping method
can easily overfit the training dataset so that the final results are bad,
especially when the grading clipping threshold C = 50. With per-
rating privacy, embedding clipping has MSEs slightly lower than the
gradient clipping method with the best threshold C = 10. Gradient
clipping has slightly worse performance because gradients have
similar magnitudes and cancel out with each other after clipping.
We can observe similar comparison result in Figure 4(b) for per-user
privacy with trimming € = 10. The best clipping threshold is again
C = 10, while embedding clipping still slightly outperforms it in
different privacy levels. A lesson from these experiments is that
embedding clipping is better than the gradient clipping approach
regardless of the additional effort needed to pick the optimal C.
o Comparing VFL-SGDMF with [24, 33]. In Figure 5, we compare our
embedding clipping method with DP-SGLD in [33] and the objective
perturbation (ObjPertb) approach in [24] with both per-rating and
per-user privacy. We show that VFL-SGDMF can do better in both
per-rating and per-user privacy. Compared with the DP-SGLD,
our privacy composition is based on moment accountants, which
shows a tighter composition of privacy loss so that smaller noise is
required for each iteration. Besides, the DP-SGLD approach bounds
the sensitivity by bounding the difference between predicted ratings
and true ratings, introducing huge computation and communication
overhead in the FL setting. The ObjPertb method performs poorly in
our experiments, especially for per-user privacy. The main reason
could be that the noise added in the objective function biases the
gradients and the algorithm never has a chance to correct the errors.
o Comparing different data partition. We split the dataset ML10M in
two different ways. 1) There are 18 categories of movies in ML10M,
so we assume each party owns only one of those categories. When
splitting by category, if a movie belongs to multiple categories, we
assign it to the category with fewest movies to prevent the case
that a category has too few movies. 2) We also randomly assign a
movie to one of the 18 parties in a random split setting.
Comparing Figure 6(a) with Figure 6(b) for per-rating privacy, or
comparing Figure 6(c) with Figure 6(d) for per-user privacy setting,
with our VFL-SGDMF method and set T = 100 and T’ = 10, there
is no significant difference for per-rating privacy between those
two split settings except for most cases; for per-user privacy, MSEs
with random-split are slightly smaller than the split-by-category
setting. The local-only method has no significant difference be-
tween the two splitting methods and per-rating privacy, but the
MSEs are significantly higher with split-by-category than the one
of random-split with per-user privacy. The results suggest that with
appropriate private synchronization frequencies, VFL-SGDMF can
learn the embeddings regardless of how items are distributed.
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Figure 7: Results of randomly split items into different number of parties s.

o Comparing different synchronization frequencies. In Figure 6, we

also compare the results of different T and T’ but fixing the total
local update iteration as TT’ = 1000. When T = 1000, T” = 1, the
algorithm becomes similar to the method aggregating private gradi-
ent in each iteration; when T = 1, T’ = 1000, the algorithm becomes
similar to model average as it only averages the local user embed-
ding of different parties finally. Comparing different settings of T
and T’, we find that the setting T = 100, 7’ = 10 and T = 20, T’ = 50
are usually the two with the best results. All settings of VFL-SGDMF
have smaller MSE than the local-only method. The results indicate
that frequent synchronization prevents the parties from learning
good embeddings. It is because each local update step is noisy, and
each party needs a few local steps to make meaningful progress;
aggregating the noisy updates improves the quality of embeddings
less than aggregating the one with meaningful progress.

o Comparing the number of parties and the value of cooperation. We
compare our VFL-SGDMF to the local-only method with different
numbers of parties (s = 2,5,10) and fix T = 100, T’ = 10 for the
experiments in Figure 7. In all levels of privacy guarantees and
different numbers of parties, our VFL-SGDMF has smaller MSEs than
the local-only methods. We observe that when the number of par-
ties increases, the MSEs of our VFL-SGDMF algorithm decrease as
the number of parties increases. In the per-rating privacy context,
as the number of parties increases, the total number of local updates
also increases, but the noise added to each update remains the same.
Although as the number of parties increases in the per-user privacy,
the noise in each local update increases, but the maximum number
of ratings from the same user after trimming also increases as we

fix 9) = 5, and the total number of local updates increase as well.
These benefits may outweigh the increase of noise in our algorithm
VFL-SGDMF. LibimSeTi MSEs are higher because the range of the
LibimSeTi (0 to 10) is larger than the one of MovieLens (0.5 to 5).

5 PRIVATE HFL MATRIX FACTORIZATION

This section considers solving the MF problem in HFL setting. The
use cases of HFL are different from the VFL setting, so we summarize
different privacy risks and expected protection as following.

HFL privacy leakage and protection. The exchange of informa-
tion under the HFL setting is described in Figure 1(b). Each party
manages the ratings of a subset of users. The privacy risks are differ-
ent for user/item embeddings in the HFL setting. Because each user
has all his/her data stored on only one party and the embeddings
are only used internally, the users have higher trust levels on the
parties in our specification. Therefore, we assume that the users
allow the parties to learn non-private embeddings locally as long as
they are unpublished and only for internal usage. The main privacy
leakage risk is in the communication between the coordinate server
and the parties. Thus, our algorithm is designed to protect privacy
for the communication between parties and the coordinate server,
and limit the sensitive information learned by others.

5.1 Private MF in HFL: HFL-SGDMF

In order to provide the expected protection, we propose HFL-SGDMF
with privacy guarantee. We denote gﬁ," ) as the noisy gradients with
DP noise. We observed that when updating both user/item embed-
dings together and the updates of item embeddings are protected
by DP noise, the user embeddings make limited progress in our
experiments. It is because when the user embeddings are optimized
together with noisy item embeddings, item embeddings updated
noisily transmit the noise to user embeddings. We show how to
convert FMF into HFL-SGDMF in Figure 3(c), and summarize as below.
o [Stage 1]: initialization and local pre-computation. Besides ran-
domly initializing the embeddings in (1c), each party pre-trains
their user embeddings locally with embedding clipping but without
trimming and noise, and not updating item embeddings.
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o [Stage 2]: cooperative learning. Same as the VFL-SGDMF, embedding
clipping and random trimming are used to bound the privacy in the
privacy context in (2c). Each party updates the local item embed-
ding with differential privacy protection: V(¥) =TIy, (V(k) - Ytgg‘)) ,

(k)

where g’ is the privatized gradients of item embeddings from
mini-batch with sampling rate 5 = n/’< /nj and fixed Uy, . The parties
in this HFL process synchronize and averaging the item embeddings
after every T’ local iterations in Step (2s).

o [Stage 3]: local fine-tuning. After Stage 2, each party further fine-
tunes their local version of user/item embeddings to get more accu-
rate local inference results with untrimmed local data.

5.2 Analysis of Privacy Guarantee

In HFL-SGDMF, only the communication in the second stage and
{V(k) |k € [s]} are protected by differential privacy. The final local
user/item embeddings after fine-tuned are unpublished.

DP sensitivity and necessary noise. Notice that since we only
need to protect privacy on the exchange of item embeddings in the
HFL stage, the sensitivity is Arqting = Ag,p for per-rating privacy
or Ayser = gk Az for per-user privacy for each local update.
Per-rating privacy and per-user privacy. The required stan-
dard deviation for per-rating or per-user privacy can be written
in the same way as ok = zArating for per-rating privacy or
o) = zA e for per-user privacy with noise multiplier z. The par-
allel composition can be applied to both the per-rating and per-user
privacy. So similar to the privacy analysis in Section 4.2, the follow-
ing proposition can conclude the privacy loss in the HFL-SGDMF.

PROPOSITION 3 (HFL-SGDMF PRIVACY). HFL-SGDMF ensures that
the shared information from party k satisfies (e, 50k)) per-rating/
per-user privacy , if the noise in each local update is sampled from
Gaussian distribution with zero mean and noise multiplier 2> =

BTT In1/5%

e with some constant ca. The overall HFL-SGDMF is
€

(maxge[s) {e(k)},maxke[s] {(5(")}) per-rating/per-user private.

5.3 Empirical Evaluation for HFL

We use the same two datasets as in the VFL setting, MovieLens
10M and LibimSeTi. We horizontally partition these datasets into s
subsets randomly to simulate the HFL setting in our experiments.
o HFL Baselines. For the HFL setting, we compare HFL-SGDMF with
two baselines: one is non-private local training with SGD; the other
one is the adaptation of DPSGD in HFL setting, called HFL-synSGD,

where the noisy gradients gi,") are aggregated every iteration.

e Hyper-parameters. For HFL-SGDMF, we set T = 100 and T’ = 10
as the previous section, which means each party queries the lo-
cal dataset 1000 times during the HFL on item embeddings stage.
To make it a fair comparison, we set the number synchronization
iteration in HFL-synSGD to be 1000, and we let HFL-SGDMF and
HFL-synSGD have the same number of iteration in the fine-tuning
stage as well. For per-user privacy, we set 0¢) = 10 for all experi-
ments with both HFL-synSGD and HFL-SGDMF and for all datasets.
We set 0(F) larger than the one in the VFL setting because all ratings
of a user are stored on one party in the HFL setting. The learning
rates in the experiments are tuned in the same way as in Section 4.3.
Empirical results. We show the experiments how the pretrain-U
approach outperform the train-both approach, and compare our
HFL-SGDMF with the HFL-synSGD for s = 10 and 40.

o Improvement with pre-train U. In Figure 8, we provide experi-

ments comparing the pre-train-U approach and the vanilla train-
both (user/item embeddings together) approach with numbers of
parties from 2 to 40, with or without fine-tuning. The results show
that pre-train U can significantly improve the prediction quality
compared to the vanilla approach training user and item embedding
in the same iteration. The main intuition is that if we update the
user embedding and the item embedding in the same iteration, the
user embeddings are largely affected by the noisy item embedding.
The user embedding updates do not make much progress because
the item embeddings oscillate with the DP noise, and the progress
made on the user embeddings may be canceled out in the next
iteration. However, when the user embeddings are pre-trained, the
item embeddings are fixed so that every update in the pre-train
phase can very likely improve the quality of user embeddings. In
the cooperative learning stage, fixing the user embedding can con-
vert the problem into a convex problem, so that item embeddings’
privacy preserved learning process is easier.

o Comparing with gradient-average. The horizontal dotted lines in
Figure 9 are the MSE of training locally and non-privately with
SGD. We show that after fine-tuning, the final embeddings given
by HFL-SGDMF have lower MSEs than local non-private training in
most cases. It means that each party can benefit from the privacy-
preserving HFL process with our HFL-SGDMF. When the number of
parties becomes 40, the MSEs of HFL-SGDMF before the fine-tuning
stage are already lower than the non-private local training ones in
both ML10M and LibimSeTi datasets, which means the differentially
private item embeddings have better utility than the ones trained
non-privately only from local data when s = 40. Figure 9 also
compares the results of HFL-synSGD. It shows that the HFL-synSGD
gives higher MSE in all settings, no matter before or after fine-
tuning. Thus, the experiments show that our HFL-SGDMF, in which
user embeddings and item embedding are updated separately in
the first two stages, can provide better utility compared to the
HFL-synSGD, while has smaller communication cost.

6 TO CROSS-DEVICE LEARNING: LFL-SGDMF

In the previous section, we focused on the HFL setting, which can
be categorized as the cross-silo setting in FL. The HFL setting can
be naturally extended from to cross-device setting with the number
of parties the same as number of users, s = n. That is, each party in
the LFL setting is just a proxy of a user holding one user’s ratings.
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Figure 9: Horizontal random split with different number of parties (per-rating: left two columns; per-user: right two columns).

LFL privacy leakage and protection. As analyzed in Section
1.1, the user embeddings are trained and used only locally, so there
is no risk of privacy leakage. LFL privacy leakage happens in the
information exchange with the coordination server about the item
embeddings training. A coordination server controls the item em-
beddings, so all the users share the same item embeddings. Although
the coordination server has no access to the user data directly, the
updates of item embeddings can reveal users’ sensitive information.
Thus, we need to ensure the shared updates of item embeddings
are protected by privacy in our LFL setting.

o MF with LDP and its limitation. Compared with the centralized
privacy setting, LDP considers a strictly stronger privacy-preserved
model such that any output shared by a user device should be about
as likely regardless of the actual user data. With LDP protocols,
user data are randomized on local devices before being sent to the
data aggregator. However, given the large number of items and the
sparsity of the ratings, hiding which items are rated and protecting
the exact ratings require large noise. An LDP method for the MF
problem was proposed in [41], Private-GD-DR, which uses an LDP
mean-estimation protocol and a dimension reduction technique.
However, their algorithm can provide limited improvement on
embeddings as shown in Section 6.3.

o Secure aggregation and its limitation. Secure aggregation [5, 6]
was proposed to aggregate numerical data and reveals only the
aggregated sum of the user updates to the server. Because user
dropout is unavoidable in the LFL setting, the SA protocols in [5, 6]
are designed to tolerate at most w fraction of dropout users during
the execution. An individual user’s input is protected by compo-
sition of masks, but after summing up all reports, the symmetric
masks are canceled out if less than wn users drop out, and only the
true sum remains. We denote the user reporting process as SA,,-
report, and the server aggregation process as SA,,-agg. However,
secure aggregation protocols are vulnerable to membership attacks
or re-identification attacks.

6.1 DP with Secure Aggregation

Different from the HFL setting, user devices in LFL may become
unavailable and/or the communication between user devices and

the central party may be disconnected from time to time — a user
is said to drop out if either of the two cases happens. For example,
if a user device is in an area where the internet connection is not
stable, its update may be lost; or a user device can be busy with
local tasks and refuses to be involved in the computation. So we
need to ensure that the privacy guarantees of algorithms in the LFL
setting hold even when a significant amount of users drop out in
one or multiple iterations during the federated training process.

To overcome the limitations of both LDP and secure aggrega-
tion, we propose a new algorithm with the central DP guaran-
tee, LFL-SGDMF, which is adapted from the FMF as shown in Fig-
ure 3(d). The changes from FMF in [Stage 1] initialization and lo-
cal pre-computation and [Stage 3] local fine-tuning are similar to
HFL-SGDMF, where the user embeddings are pre-trained after initial-
ization, and the item embeddings are fixed. Somewhat surprisingly,
only pre-training U can already outperform the reported results in
[41] with LDP as shown in our experiments in Section 6.3.

The main changes are in the steps of [Stage 2] cooperative learn-
ing. The basic idea here is to aggregate the update of item embed-
dings through SA but ensure the aggregated gradients satisfy DP,
while introducing noise as small as possible. If we consider SA as
an oracle, there are two rounds of communication in each iteration.
® Round 1 coordination pattern. In the first round of communi-
cation, the coordination server initiates the SA,, and request up-
date from each party. After receiving the requests from the server,
each party i samples one rating, X;; and reports noisy update is
gi,"’” =VvLlij (ui,V(‘)) + £ The elements of noise §(i’t) are
sampled from Gaussian distribution (0, {;62). Then the party in-
vokes the oracle SA,- report(gg}’t)). The server aggregates the
reported updates by invoking SA,-agg. We denote the set of sur-
vivors in the first round as U1, SA,, is designed with a toler-
able dropout rate w. If less than (1 — w)n users survive in this
iteration, the SA,, protocol halts, and the server learns nothing
in this iteration and execute next iteration. Otherwise, the aggre-

gated gradients decoded from SA,, can be decomposed as gg) =

Zieuten) VvELLj (ui,V(”) + 2 ey EBD.
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Figure 10: Results under LFL setting with different dropout rates.

® Round 2 coordination pattern. The coordination server first broad-
casts [U(tD)| to the survivors and requests replacing noise from
them. After notified by the coordination server, the survive party i
sends E(i’t) = —§(i’t) + §’(i’t) to the server, where the elements of
£'(b1) are sampled from Gaussian distribution (0, {z62). Dropout
can also happen in Round 2, so we denote the set of survivors as
U2 The server aggregates the replacing noise and the aggregated
noisy gradients after this two-round exchange are decomposed as:

~(t) Z VVL:U (llz, vt )) Z g(i:l‘) + Z g’(i,t)

ieUz ieu(t1) _y(4.2) ieu(t2)
With such information, the coordination server updates the item
embeddings and broadcasts the updated embedding to all parties.
e Communication cost. The first round aggregation in every itera-
tion depends on the SA oracle, which requires O(log n + mp) for
each user, and it dominate the cost for each iteration. So the total
communication cost of LFL-SGDMF is O(T (logn + mp)) per user.

6.2 Analysis of Privacy Guarantee

There are three parameters directly affecting the privacy privacy
guarantee, og, {1 and {,. 05 is the nob for (€, §)-DP guarantee
when there is no dropout. When SA,, finishes successfully, the sum
is composed of at least |U<t’l)| > (1 — w)n users and {1 makes
sure that the aggregated sum obtained by the server through SA,,
should be at least (¢, §)-DP. Another parameter {3 is used to reduce
“unnecessary” noise added in the SA,, round. By setting o2, {1 and
{o properly, LFL-SGDMF has the following privacy guarantee.

valnl/é

THEOREM 5. Ifaz, = ¢3(A2,0) LG = a lw)n and {o =
IU(“)I and a constant c3, the LFL- SGDMF can satisfy (e, §)-DP and

tolerate at most w fraction of user dropping out in each iteration.

Whenever the serve can decode the aggregated sum with SA,,,
UV 2o 2
(1-w)n -0 2 0y
If there is a set U"2) users survived in the second round, the final

[ga| b |-juts) o2
T =T 0'0 Notice that o]

the aggregated sum contains noise with variance

noise variance is ( +

D |- U2
(1-w)n

provide (€, §)-DP on the aggregated sum.

> 1, which means the noise is still sufficient to

6.3 Empirical Evaluation for LFL

Our experiments in the LFL setting still use the two datasets: Movie-
Lens 10M and LibimSeTi. We faithfully implement the GD-DR
method in [41] for comparison. To make it a fair comparison, we
amplify the privacy budget of LDP to the central DP with the

best-known result [16]. We also use the stage 1 of LFL-SGDMF as a
baseline to show the MSEs without learning item embeddings. Be-
cause communication between user devices and the central server
is expensive in the LFL setting in LFL, we set T = 10 for both
LFL-SGDMF and GD-DR, which is the same as [41].

o Comparing with LDP methods. In Figure 10, we first compare our
LFL-SGDMF with the LDP algorithm, GD-DR, from [41]. The main
observation is that LFL-SGDMF can outperform the GD-DR method
even with the local training part (Stage 1) only. It means pre-training
the local user embeddings can significantly improve the quality
of predictions. We also conduct experiments applying the LDP
level noise with LFL-SGDMF. The figures show that with such large
noise, cooperation can not help improve the result. Although our
proposed method, LFL-SGDMF, has a higher communication cost
than the GD-DR, it shows significant improvement over the GD-DR
because of the adaptive noise with central DP guarantee.

o Comparing different dropout rates. Figure 10 also shows the em-
pirical evaluation of the two datasets. We set the tolerable dropout
rate o to be either 0.3 or 0.6. We vary the actual dropout rate from 0
to 0.2 when w = 0.3 and we also show additional results of dropout
rate 0.3, 0.4,0.5 when w = 0.6. From the result, as the dropout rate
increases, the MSE also increases a little.

When comparing the results with different », our method with
different w gives almost the same MSEs for different epsilons when
there is no dropout. When there are dropout users, the MSEs of
® = 0.6 are higher than those of w = 0.3. This is because with the
same dropout rate, a similar number of users drop out in the second
rounds, the higher w means larger noise remains.

7 CONCLUSION

This paper comprehensively investigates and provides solutions
for the MF problem under three different FL settings, namely, VFL,
HFL, and LFL, with provable privacy guarantees, based on the
common algorithmic framework FMF. We demonstrate the utility
of our proposed methods with extensive experiments. Challenging
future tasks can be generalizing the algorithms to solve the problem
with continuous updating ratings with privacy guarantees, and
providing solutions to handle the new coming users and items.
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