Robust Explainability: A Tutorial on Gradient-Based
Attribution Methods for Deep Neural Networks

Abstract

With the rise of deep neural networks, the challenge of explaining the predictions of
these networks has become increasingly recognized. While many methods for explain-
ing the decisions of deep neural networks exist, there is currently no consensus on how
to evaluate them. On the other hand, robustness is a popular topic for deep learning
research; however, it is hardly talked about in explainability until very recently. In this
tutorial paper, we start by presenting gradient-based interpretability methods. These
techniques use gradient signals to assign the burden of the decision on the input features.
Later, we discuss how gradient-based methods can be evaluated for their robustness and
the role that adversarial robustness plays in having meaningful explanations. We also
discuss the limitations of gradient-based methods. Finally, we present the best prac-
tices and attributes that should be examined before choosing an explainability method.
We conclude with the future directions for research in the area at the convergence of

robustness and explainability.

1 Introduction

Deep learning (DL) has transformed the field of machine learning (ML) with deep neu-
ral networks (DNNs) being deployed in various real-world applications, including medical
diagnosis, financial services, biometrics, intelligent transportation, social media, and smart
home devices. Despite tremendous progress, their acceptance in mission-critical application
areas is being hampered by two significant limitations. First, there is an inherent inability to
explain decisions in a manner understandable to humans [1]. Second, there is vulnerability
to adversarial attacks, i.e., malicious and imperceptible alterations to the input, that can
fool trained networks to alter their decisions drastically [2]. These seemingly two disparate
concepts are intrinsically linked to each other and may have their origins in the data-driven
nature of DNNs with a highly nonlinear input-output relationship and over-parameterized
design.

Explainability tackles the critical problem that human users cannot directly understand

the complex behavior of DNNs or explain their underlying decision-making process. The



explainability of ML models is the fundamental requirement for building trust with users
and holds the key to their safe, fair, and successful deployment in real-world applications.
The issue of explainability transcends the realm of scientific interest. The adoption of
the General Data Protection Regulation (GDPR) by the European Union in May 2018
gives any citizen the “right to explanation” of an algorithmic decision made about them [3].
Explainability is both a legal right and a responsibility that has extensive social implications.
The GDPR states that individuals “have the right not to be subject to a decision based
solely on automated processing”.

Explainability in ML is not a new topic and has been handled in many different ways,
including building interpretable models or generating post hoc explanations [1]. This tu-
torial will focus on the latter. Given a trained neural network, either the input features
are perturbed, and their effect on the network output is monitored, or a signal from the
network output is back-propagated to the input. Either way, the resulting information from
the perturbations or the gradient propagation provides an estimate of the contribution of
input features to the output and can be presented as heatmaps.

“How good is an explanation?” is a fundamental question in explainability research.
Generally, a visual analysis of the explanation is performed given the fact that these ex-
planations are generated for humans to see and understand the behavior of the model.
Recently, it has been shown that a visual analysis may not be a reliable method to ascer-
tain the “plausibility” of an explanation [4]. However, the lack of ground-truth explanation
makes it challenging to quantitatively assess, compare, and contrast various explanations.

A crucial property that all explainability methods should satisfy is insensitivity to mi-
nor input perturbations. That is, a small perturbation (possibly malicious) in the input,
which does not affect network decision, should not significantly change the attributions
[5, 6]. This notion of robustness is closely linked to reproducibility and replicability of
explanations. Concurrently, the explanation of a decision should change significantly when
the network is under an adversarial attack, that is, imperceptible malicious changes in the
input that force the network to alter its decision [2]. In an ideal world, the attribution maps
should be sensitive enough to detect adversarial attack and concurrently invariant to small

perturbations in the input.



This tutorial paper provides a thorough overview of gradient-based post hoc explainabil-
ity methods, their attributional robustness, and the link between explainability maps and
adversarial robustness. We restrict our focus on computer vision classification models, i.e.,
the networks are generally convolutional neural networks (CNNs) whose input data consist
of images (e.g., from ImageNet datasets) and whose outputs are class scores or soft-max
probabilities. We have created a website that provides links to all explainability methods
discussed in the following sections, figures, and the code for generating these figures !. This
tutorial is not meant to provide an exhaustive survey of all the explainability methods

proposed for DL models.

2 Taxonomy and Definitions

Interpretability is defined as the ability to attach human-understandable meaning to
the prediction of a model. Interpretability is a passive characteristic of a model that may
refer to the level at which a given model makes sense to a human [7]. On the other hand,
explainability can be viewed as an active characteristic of an ML model. Explainability may
consist of actions or procedures, usually performed by using a set of mathematical operations
referred to as the explainability methods, to clarify or detail the internal functions of the ML
model for a human observer [7, 8]. The explainability method must be an accurate proxy
of the model’s decision-making process and be comprehensible to humans. Reproducibility
refers to obtaining consistent results using the same methods (experimental protocols, data,
and code) as the original study [9]. Replicability is concerned with obtaining consistent
results across studies aimed at answering the same scientific question using new data or
methods [9]. Along with reproducibility and replicability, interpretability falls under the
larger umbrella of explainability for ML models. However, the terms interpretability and
explainability are interchangeably used in the literature.

In Fig. 1, we provide an overview of explainability concepts that are discussed in this
tutorial paper. We outline various categories of explainability methods in ML (i.e., inherent
vs. post hoc, global vs. local, and perturbation vs. gradient), requirements from these

methods, various ways to evaluate these, i.e., metrics, and limitations of current methods
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Figure 1: Visual breakdown of various explainability concepts discussed in the tutorial.

used in the literature.
Inherently Interpretable Models vs. Post hoc Explainability Methods: Some ML
models are built to be inherently interpretable in the first place, e.g., linear models or deci-
sion trees [1]. Other models, referred to as black bozx, may require additional mathematical
frameworks to explain their behavior to an audience targeting various use cases, e.g., un-
derstanding the model, debugging, providing explanations for legal purposes, or helping in
decision making for downstream tasks. These mathematical frameworks, designed to ex-
plain black box models in post hoc settings, have their limitations and challenges over and
above those in building ML models.
Global vs. Local Explanations: Based on the scope and the purpose of explanation, a
user can employ a local or a global interpretability method. Global interpretability methods
attempt to explain the overall decision-making process of the model, i.e., how the inputs
are transformed into the output decisions at the model level. These may be more useful
to researchers and engineers trying to understand their models. In contrast, local inter-
pretability methods attempt to explain specific decisions, i.e., what features of the input
(e.g., pixels of an image) may have contributed (positively or negatively) to the model’s
output.

The local interpretability problem can be formulated as estimating a number for each

input feature that captures the effect of change in the feature value on the network output.



Explainability Method Input Output

Inherently interpretable Whole dataset Explanation of the model
models Single test sample and the prediction
Global methods Whole dataset Explanation of the model
Single test sample
Local' methods - Model information for Explanation of the prediction
Gradient-based . .
gradient back-propagation
Local Methods - Single test sample

Expl i f th icti
Perturbation-based Perturbation pattern xplanation of the prediction

Table 1: Explainability methods, their inputs and outputs.

The estimated numbers are presented as heatmaps and have the same dimension as the
input features. In the literature, the terms, attribution, relevance, importance, contribution,
sensitivity, and saliency scores are synonymously used.
Perturbation-based Methods vs. Gradient-based Methods: Various methods for
post hoc local interpretability have been proposed. Two broad categories exist, namely,
methods based on feature perturbation and others based on gradient information [10]. The
former class of methods perturb input features (or a set of features) by masking or altering
their values, and record the effect of these changes on the network performance. This
requires multiple passes through the network to determine the importance of each input
pixel, making perturbation-based attribution very computationally intensive. In the latter
case, the gradients of the output (logits or soft-max probabilities) with respect to the
extracted features or the input are calculated via backpropagation and are used to estimate
attribution scores. Generally, the gradients are noisy, leading to attribution maps that
may show contributions from irrelevant features. Various alterations to the gradient-based
approach have been proposed to handle the challenge of noise in attribution maps [11].
Gradient-based approaches do not directly measure the affect of perturbing input features,
and measuring the validity of methods is an ongoing challenge.

In Table 2, we provide a list of broader categories of explainability methods, the inputs
that are required to use these methods, and the outputs that they provide.
2.1 Requirements from Attribution Maps

Before we go into a detailed discussion about how to create local gradient-based post

hoc attribution maps, it is relevant to consider what we expect from these attribution maps.



Some of these requirements are defined axiomatically [12].

Implementation Invariance: As we know, ML models can be expressed and implemented
in many different ways, mathematically or programmatically; however, two functionally
equivalent models should produce similar output for the same input. The attribution meth-
ods must be implementation invariant, i.e., produce the same attribution scores for the
same inputs on functionally equivalent networks, regardless of how these networks are im-
plemented [12].

Input Invariance: Given the fact that neural networks are invariant to certain input
transformations (e.g., a constant shift in the input), an attribution method must also be
insensitive to such input transformations [13].

Fidelity: The fidelity or selectivity of an attribution method is linked with its ability to
identify feature relevance. An attribution method with high fidelity assigns high attribution
score to features that, when removed, greatly reduce network performance and vice versa
[14].

Saturation: In the forward pass, an input feature may saturate the network, owing to
the nonlinear activation function being used, e.g., the rectified linear unit (ReLU) function
[12]. Consider a neural network with one ReLU, f(z) = 1 — ReLU(1 — z). For all input
values x > 1, we have: f(x) =1 and %f(x) = 0. Despite the fact that the input feature
may change significantly, the function output stays the same and the gradient remains at
zero. An attribution method must tackle the saturation in the network while estimating
attributions. One possible method is to use a reference input or baseline, which can be zero
(black pixel), a random number, or an average value calculated over the input dataset.
Sensitivity: Considering a neutral baseline (e.g., zero or black image) for all features,
sensitivity requires that the output of the model for an input should be decomposable as
the sum of the individual contributions from the input features [10]. This property is also
referred to as completeness or summation to delta [12, 15]. For an attribution method to
be considered sensitive, it must assign a non-zero attribution score to the single distinctive
feature between two similar inputs. Furthermore, sensitivity requires that any feature,

which does not affect the output of the network, must be given a zero attribution score [12].



3 Gradient-Based Attribution Methods

This section introduces various methods that use gradient information in post hoc set-
tings and build attribution maps. These methods use the gradient of the network output
(logits or soft-max probabilities) with respect to the input features.

We consider a network with an N-dimensional input x = {z;}Y, € RY and a C-
dimensional output S(x) = {S.}¢_, € R, where C is the total number of classes and S.(x)
represents the network’s score function. Note that S. can be either a class score (logit)
or soft-max probability. We use the term “gradient” for %Sc(x). The goal of attribution
methods is to estimate the attribution map, A¢ = { A fil € RN. The attribution map A€
captures the importance of each input feature for a specific output class ¢. In computer
vision applications, we consider CNNs with image inputs, i.e., the pixels of the image are
considered input features. The resulting attribution map A€ has the same size N as the
input.

3.1 Gradients

We consider a linear model with N + 1 parameters 8 and an N feature input,

y=0p+01x1+...+0yzy +e=0"x+¢, (1)

where € is the modeling error and 6y is the bias. The partial derivative of the output y

with respect to the input x results in model parameters 8, which represent contributions of

input features. Thus, for the linear case, model parameters serve as feature attributions.

Recently, gradients have also been used as features for perceptual image quality assessment

and out-of-distribution classification [16].

Saliency Maps: Simonyan et al. used a similar formulation with an absolute value for

c __ | 9Se

constructing Saliency maps for DNNs, ASaliency = |5

x,» Where X is the input [17]. It is
important to highlight that S, is a nonlinear function of the input x and thus, in contrast to
the linear case, the model parameters no more represent feature attributions. It has been
shown that saliency maps represent the first-order approximation of the attributions [17].

The major challenge with saliency maps is that they are visually noisy and a great deal of

research has focused on removing noise and improving visualization [11].



Deconvolutional Networks (DeconvNets): Saliency maps are closely related to De-
convNets proposed by Zeiler and Fergus [18]. In saliency maps, the gradient signals are
zeroed during backpropagation at each ReLLU when the input to the same ReLU was nega-
tive during forward pass. In contrast, DeconvNet reduces the negative gradients to zero at
each ReLU, ignoring the fact whether the input to the same ReLLU was negative or positive
during the forward propagation.

Guided Backpropagation (GBP): GBP combines operations from both saliency maps
and DeconvNet [19]. That is, during backpropagation, the attribution signal is reduced to
zero at a ReLU when either the gradient signal itself is negative or the input to the ReLU
at the time of the forward pass was negative. Removing negatively contributing features
may reduce noise and improve visualization of attribution maps in some cases.
SmoothGrad (SG): SmoothGrad reduces noise and visual diffusion by averaging over
explanations generated for multiple noisy copies of the input x [11]. For a saliency map A€
calculated for the input x, SmoothGrad is given by Ag, = % Yo AC (x + N(0, 02)), where
n is the number of samples and N represents the Gaussian distribution.

Gradient©Input: In Gradient®Input, the attribution scores are calculated by element-

05c(x)

c J—
Gradient®©Input — 9% ® x. The

wise multiplication of gradients with the input, i.e., A
element-wise multiplication can be considered as an application of a model-independent
filter (the input), which may reduce noise and smoothen the attribution maps [10].
Integrated Gradients (IG): IG can be considered a smoother version of Gradient®Input,
specifically designed to satisfy two axioms of explainability, i.e., sensitivity and implemen-
tation invariance [12]. IG along the i*" dimension for an input = and baseline # is given by
1Gi(z) = (z— 1) fol 8%2,50 (£ 4+ a(x — £)) da. 1G calculates the average of all gradients along
a straight line between the baseline and the input. In practice, we can only use a finite
number of samples to approximate the integral, which may introduce an approximation
error.
3.2 Attribution Propagation

Attribution propagation can be considered as an alternative to calculating gradients.
Recursively, attribution propagation methods decompose the decision made by the net-

work into contributions from previous layers, all the way to the input. These methods use



forward-pass activations (starting with the activation of the neuron in the last layer) to
move back layer-by-layer in the network and distribute the burden of the decision over the
input features. This class of methods includes various forms of Layer-wise Relevance Prop-
agation (LRP), Deep Taylor Decomposition [20], and Deep Learning Important FeaTures
(DeepLIFT) [15]. These methods do not strictly use gradients intrinsically; however, their
relationship to Gradient®Input has been mathematically established [10].

Layer-Wise Relevance Propagation (LRP): LRP propagates relevance scores from the
last layer of the network to the input using the “conservation property” [21]. That is, what
was received by a neuron in the forward pass (activations) must be redistributed to the
lower layer (a layer nearer to the input) by an equal amount. Going from the output to
the input, layer-by-layer, the relevance scores are scaled at each layer using the information
from the forward pass. LRP starts with the activation of the neuron in the last layer. Let j
and k be neurons at two consecutive layers [ and [ 4 1, with layer [ closer to the input. Let
[1+1]
k

61 be the learnable parameters that connect both layers. The neuronal activation a in

the forward pass is defined as a%H] = ReLU (ZJ ay]ﬁjk). Given that we have r,[jﬂ], ie.,

relevance score at layer [ + 1, we can calculate the relevance score U at layer [ using:

J
1)
d aj Ojk  fy1)
Ty = T (2)

Equation 2 is called LRP-¢, where € is added to absorb some relevance when the contribu-

1

tions to the activation of neuron k are weak or contradictory. When e > Zj a;

01, only
the most salient explanation factors survive the absorption, leading to noise reduction and
sparser explanations [21]. It has been shown that for CNNs with ReLU activation func-
tions, LRP-€ implements a slightly modified form of Gradient®Input, where the gradients
are normalized at each layer by the activations > j ay]ﬁjk [10]. Montavon et al. proposed
Deep Taylor Decomposition, which provided theoretical foundations for LRP using Taylor
series approximation [20].

Deep Learning Important FeaTures (DeepLIFT): DeepLIFT was designed to tackle
the saturation problem using “reference activations”, calculated in the forward pass with

the baseline input [15]. DeepLIFT compares the activation of each neuron to its reference

activation and assigns contribution scores according to the difference [15]. It has been shown



that DeepLIFT (Rescale rule) is equivalent to Gradient®Input [10].
3.3 Gradient-weighted Class Activation Mapping (Grad-CAM)

Grad-CAM uses the class-specific gradient information flowing into the final convolu-
tional layer of a CNN to produce a coarse localization map of the important features of
the input [22]. Grad-CAM analyzes which regions are activated in the feature maps of the
last convolutional layer. Grad-CAM can be combined with GBP, referred to as Guided
Grad-CAM, to improve pixel-level granularity of attribution maps. In Fig. 2, we present
attribution maps generated using various methods.

Recently, Grad-CAM have been extended for building contrastive explanations, thus
answering the question of why a prediction P was produced by the network rather than a
different prediction @ [23, 24].

Another approach uses explainability maps along with logical prior knowledge during

the training process to produce more interpretable explanations [25].

Saliency Gradient®lnput GBP SmoothGrad Guided Grad-CAM Grad-CAM

Figure 2: Attribution maps generated using different methods are presented. The first col-
umn presents test images from ImageNet and rest of the columns present attribution maps
estimated using various methods. Abbreviations used: GBP - Guided Backpropagation, IG
- Integrated Gradients, and Grad-CAM - Gradient-weighted Class Activation Mapping.

4 Analysis of Gradient-Based Attribution Methods

Attribution maps are designed to explain the decisions made by ML models. However,

a large body of research has found that various approaches to create these attributions have

10



their own limitations [13, 4, 6]. In Table 4.1, we provide a list of various gradient-based
explainability methods and the requirements (as provided in Section 2.1) that they satisfy.
Starting with measures that can be used to evaluate explanations in DL models, we provide
a detailed analysis of the performance of these methods and their limitations.
4.1 Evaluation of Attribution Maps

“How good is an explanation?” is one of the fundamental questions in ML explainability
research. The lack of ground truth explanations makes validating attribution methods
challenging. Ideal evaluation of these methods will depend upon fully knowing the process
of how the ML model reached its decision - the very problem that we are trying to solve.
Furthermore, it is hard to disentangle the errors made by models from the errors made
by attribution methods [12]. Given that the notion of explanation is centered around
human visual perception, the predominant evaluations of attributions have been subjective.
However, objective evaluation is equally, or perhaps more, important to establish rigorous
theoretical foundations, compare and contrast various approaches, and improve upon these

methods [26].

i ts  Impl tati I t
Requirements — Implementation  Inpu Fidelity Saturation Sensitivity

Methods Invariance Invariance

Saliency Yes Yes No No Yes
GBP No Yes/No* Yes Yes No
SG Yes Yes Yes No Yes
Grad®Input Yes No Yes No Yes
1G Yes No Yes No Yes
DeepLIFT No No 7& Yes 7%
Grad-CAM Yes/No® Yes Yes Yes/No® Yes

Table 2: Various explainability methods and the requirements they satisfy. *depends on
the network architecture. ®depends on the layer chosen for attribution, ¥not tested.

Visual Evaluation: A visual analysis of the attribution maps may seem to be the most
plausible way of evaluation as these are created to explain the behavior of DL models to
human operators and designers. Visual analysis includes qualitative displays of explanation
examples, crowd-sourced evaluations of human satisfaction with the explanations, as well
as whether humans are able to understand the model output [26]. However, it may be

misleading to rely solely on visual analysis for determining whether an attribution method
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is able to capture the features that a network considers important [4]. A visual analysis
may bias the evaluation of how humans understand the phenomenon and make decisions,
rather than capturing how the network reached a particular decision. This may hold true
especially for the methods that multiply the input with the gradient, i.e., Gradient®Input
and IG.

Feature Perturbation-based Evaluation: Removing the most important features iden-
tified by an attribution method and recording its effect on the performance of the network
may provide an objective approach to evaluate various attribution methods [27]. A good
attribution method will identify the most important pixels, which when removed should
maximally degrade the network performance. The metric is referred to as the Most Rel-
evant First (MoRF). As the network input size is fixed, the removed pixels are replaced
with either the average value (calculated over the input dataset), zero (i.e., black pixel), or
random values [14]. It is obvious that replacing pixels with an average value or black pixels
can introduce high-frequency edges, which may degrade network performance - unrelated to
the removal of important pixels [28]. We may choose to remove the least important pixels
first - thus partially decoupling the effects of artifacts introduced by high-frequency edges
from those caused by removing important pixels. The metric is referred to as the Least
Relevant First (LeRF) [28].

A recent study by Tomsett et al. evaluated the reliability of both MoRF and LeRF
using four different statistical tests from the psychometric literature [14]. These tests in-
cluded inter-rater reliability, inter-method reliability, internal consistency reliability, and
test-retest reliability, where each image corresponded to a different rater and methods in-
cluded different attribution map generation techniques. Both MoRF and LeRF showed:
(1) high variance across all tested images, (2) sensitivity to whether the removed pixels
were replaced with the mean of the dataset or random values, (3) low inter-rater reliabil-
ity, i.e., the rankings of different methods were highly inconsistent, and (4) low correlation
with each other. The results were reported for the classification task using the CIFAR-10
dataset. The absence of ground truth explainability and the limited testing (using one
dataset only) makes it hard to generalize these results to other metrics. However, the study

raised important questions about the validity of different metrics that are extensively used
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in the explainability literature.
Remove and Retrain (ROAR): In ROAR, the model is retrained and evaluated every
time after removing a set of most important pixels [29]. ROAR is computationally expensive
and does not address the question of validity of explanation for each input, rather evaluates
the method globally over the whole dataset. Furthermore, the retraining strategy may force
the network to learn from the features that were not present in the original dataset (e.g.,
high-frequency edges introduced due to pixel replacement).
(In)fidelity and Sensitivity: (In)fidelity quantifies the statistically expected difference
between (1) the dot product of the input perturbation to the attribution scores and (2)
the output perturbation (difference in the score function S.(x) values after significant per-
turbations introduced in the input x) [26]. (In)fidelity allows for a number of significant
perturbations, including random and non-random perturbations that lead the input towards
a predefined single or multiple baseline values. Random perturbations with a small amount
of additive Gaussian noise allows the measure to be robust to small mis-specifications or
noise in either the test input or the reference point [26]. On the other hand, the “sensitivity”
measures the degree to which the explanation is affected by insignificant perturbations in
the test point [26]. A good attribution method will exhibit low sensitivity, i.e., producing
same explanations for minor variations in the input.
Sanity Checks: Recently, Adebayo et al. introduced two sanity checks for evaluating the
sensitivity of attribution methods to the model parameters and the dataset [4]. The first
check consists of replacing all the learned parameters of the network with random numbers.
The resulting attribution maps are compared to the original maps using various correlation
metrics to ascertain whether the attribution maps were able to capture the changes in the
network parameters. The second check evaluates attribution methods on networks trained
using randomly permuted labels. The attribution maps which remain unchanged for either
of these checks are considered to have failed.
4.2 Limitations of Attribution Maps

The attribution methods explain the behaviour of a model for a single test point selected
from the evaluation dataset. The explanation provided by the attribution methods for the

selected single point may be too brittle and could lead to a false conclusion about the
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performance of the model [5]. Thus, understanding a complex model with a single or
even multiple pointwise explanations without theoretically grounded metrics is perhaps too
optimistic [5]. Explaining a model at a single point and then generalizing to the whole
dataset is an open question for the research community.

Class-Invariant Behaviour: In some cases, the attribution maps may remain the same
regardless of the class chosen by the user to compute the gradients. That is, for a given
input image, similar attribution maps are generated despite the fact that the class label is
changed, e.g, the network is forced to predict a certain class as in adversarial attacks [1].
In Fig. 3, we present attribution maps corresponding to 7 different methods generated for
different target classes using the same input image. It is evident that most of these methods,
except Grad-CAM, are not class sensitive. A similar behavior was observed when neural
networks were trained using a dataset with permuted class labels. Many state-of-the-art
attribution methods (except saliency maps and SmoothGrad) generated explanations that
were insensitive to the permuted class labels. In summary, these methods are not able to
capture the relationship between network input and output, and thus generate the same

explanations, even if the class labels are changed.

Saliency Gradient®Input GBP SmoothGrad Guided Grad-CAM Grad-CAM

Figure 3: The class-invariant behavior of attribution methods is presented. The first col-
umn present input image and other columns show attribution maps generated by different
methods. The target class and soft-max probability values are shown on the top of image in
the first column. The number on the top of attribution maps are Spearman rank correlation
values, calculated between the attribution maps of the true class (top row) and the target
class. High correlation values show that the method is not class discriminatory, i.e., the
attribution maps for any choice of class label are correlated.
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Insensitivity to Model Parameters: Attribution maps should be sensitive to the learned
optimal network parameters. That is, if the parameters of a trained network are replaced
by random numbers, attribution maps should capture the effect of this change. However,
Adebayo et al. found that GBP and Guided Grad-CAM were insensitive to the learned
parameters in the top layers (near to the output) [4].

Sensitivity to Input Transformations: The explanations may be sensitive to factors
that do not contribute to the model prediction, e.g., a constant shift in the input [13].
Gradient®Input and other methods (e.g., IG) that use input in the computation of attri-
butions are generally sensitive to such input transformations. For the case of IG, this may
further depend on the chosen input baseline [13]. Saliency maps, DeconvNet, and GBP
were found to be insensitive to such transformations as these methods rely solely on the
network parameters (no multiplication by the input) to generate attribution maps.

Input Dominance: Gradient®Input, DeepLIFT, and IG multiply the input with gradients
to leverage the information present in the input features. This may help reduce noise in the
attribution maps and produce more human interpretable explanations. However, in some
cases, the attribution maps generated by these methods may be dominated by the input.
The input does not depend on the network and cannot capture how the network processed
data to make a decision [4].

Partial Input Recovery: GBP and DeconvlNet can be considered as variants of saliency
maps with different rules governing negative gradients at ReLLUs. These methods are able
to generate relatively more human-interpretable visualizations due to the backward ReLLU
(used by both GBP and DeconvNet) and the local connections in CNNs. Nie et al. showed
that both GBP and DeconvNet performed (partial) input image recovery, a phenomenon
that is unrelated to the network decisions [30].

Input Baseline: DeepLIFT and IG use an input baseline to improve attributions. A rea-
sonable choice of baseline depends upon the domain and task at hand. An uninformed and
inappropriate choice of baseline may invalidate the explainability provided by the attribu-
tion method [13].

Sensitivity to Hyperparameters: The explanations generated by some methods, e.g.,

SmoothGrad or IG may depend on the chosen hyperparameters, e.g., the number of samples

15



used [31].

5 Explainability and Robustness

Until recently, the explainability of DL models and their robustness were being studied in
isolation [32]. However, recent work has provided a strong link between these two apparently
disparate aspects of DL models. Before we explore these ideas any further, it is important
to highlight two types of robustness in explainability, i.e., (1) the robustness of attribution
maps, and (2) the robustness of DL models to adversarial attacks, which is intrinsically
linked to their explainability.
5.1 Attributional Robustness

Attributional robustness is related to the stability of an attribution map in the face of
a small perturbation in the input caused by natural reasons (e.g., data distribution shift)
or introduced by an adversary [6, 33, 34]. It was shown that the input can be adversarially
manipulated to change the attribution maps without affecting network performance, i.e., the
prediction of the network does not change [6, 33, 34]. Recent research attributes the origin
of these false and manipulated explanations to the vulnerabilities of the neural network,
e.g, non-smooth decision boundaries, and not the attribution generation methods [33, 34].

Saliency Gradientelnput GBP IG SmoothGrad
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Figure 4: Input image and saliency maps generated for two different network are pre-
sented. (Left) Input image. (Top row) ResNet50 trained on natural dataset. (Bottom row)
ResNet50 robustly trained using Projected Gradient Descent (PGD) attacks [32]. It is ev-
ident that attribution maps generated for adversarially trained network are more visually
appealing.

5.2 Adversarial Robustness
Neural networks are known to be vulnerable to “smart noise” or adversarial attacks.

These attacks are quasi-imperceptible perturbations in the input, measured using L, norms,
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that force a network to change its output [2]. Currently, adversarial training is the most
common strategy that may provide limited defence against known attacks. In adversarial
training, a modified objective function is optimized which helps in adversarial robustness
by increasing the level of perturbation required to successfully change the network decision
[2]. With @ denoting the learnable parameters of the model, training data (z,y) ~ D,
and perturbation § € A, adversarial training can be formulated as the following min-max

optimization problem:

meln Ew,wa IgleaAX E(.ﬁlf +9,y; 0) ’ (3)

where £ denotes the model’s loss function.

The adversarial training can be considered as a method for the model to learn certain
({,-bounded) invariances to the dataset. Some recent studies have established that learning
certain types of invariances qualitatively (visually) and quantitatively may improve attri-
bution maps, i.e., maps look more relevant to the object as viewed by a human operator
[32, 35]. In a way, adversarial training helps the network learn more like the human vi-
sual system learns. Figure 4 shows the difference between attribution maps generated for
adversarially and naturally trained network. It is evident that the attribution maps pro-
duced by adversarially trained models seem more visually aligned with human perception
[36, 32, 37, 35]. Tsipras et al. described this relationship between adversarial robustness and
enhanced visual alignment of attribution maps as an “unexpected benefit” of adversarial
training [32]. Later, a number of studies verified and made an effort to explain the natural
connection between adversarial robustness and explainability [35, 37, 38].

Etmann et al. showed that the improved interpretability of the saliency maps of a ro-
bustified neural network was not a side-effect of adversarial training, but a general property
enjoyed by networks that are robust to adversarial perturbations [35]. The authors showed
that robustness could be defined as the distance of a test point to its closest decision
boundary, and that increasing the distance (robustness) resulted in an increased alignment
between the input and its attribution map.

Recently, Kim et al. showed that the gradients from adversarially trained networks were

better aligned with the human visual system as the adversarial training caused the gradients
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to lie closer to the image manifold [37]. They also reported differences in the attribution
maps generated with robust networks trained using lo and [, adversarial images. The
neural networks trained with lo were more effective at emphasizing important features while
attributions from [l.-trained networks were better at identifying less important features.
Ignatiev et al. performed a theoretical analysis using a generalized form of hitting set
duality to relate explanations and adversarial examples [38]. The authors proposed the
dual concept of counterexamples (and adversarial examples) and the notion of breaking an
explanation. They established that each explanation must break every counterexample and
vice versa. Thus, concluding that the more counterexamples (adversarial examples) the

model explains, the better the interpretability of the model.

6 Best Practices for the Community

Explainability of black box machine learning models is important for multiple reasons,
including understanding the internal workings of these models. Attribution methods are
in themselves a set of mathematical operations with certain assumptions and may add
another layer of abstraction over the goal of understating data and making predictions.
While analysing explanations, it is also not clear how to disentangle errors in the expla-
nation method from errors in the DL model. Currently, there is no consensus on which
methods are better than others at explaining network predictions. However, there are some
considerations that should be made when choosing attribution methods.
Gradient-based vs. Perturbation Methods: Gradient-based methods are computa-
tionally less expensive as in some cases these may require only one forward and one back-
propagation step for estimating attributions. Perturbation-based methods generally solve
an optimization problem and thus may require multiple forward passes through the network.
Furthermore, gradient-based methods are more robust to input perturbations as compared
to perturbation-based methods and should be preferred when robustness is a priority for
the user [5].
Efficiency: The efficiency of an attribution method can be related to the number of passes
(forward and backward) through the network. Saliency maps, Input®Gradient, GBP, and

Grad-CAM require one forward and one backpropagation step. IG and SmoothGrad may
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require 50 to 200 steps depending upon the problem domain, dataset, and the scope of
explanation.

Input Baseline: Some attribution methods require an input baseline, which acts as the
absence of the feature from the input. The baseline can be zero (a black image), an av-
erage value calculated from the dataset, a blurred version of the input image, or random
values generated with Gaussian, uniform or other distributions. The choice of baseline can
significantly alter the explanation [39, 13]. Since there is no current consensus on which
baseline is optimal, it is difficult to recommend the use of these methods as an accurate
way to explain model predictions.

Human Interpretability: Relying solely on visual analysis for understanding and com-
paring attribution maps can be unreliable [4]. Some attribution maps may seem visually
appealing, but they may not actually help us interpret model predictions. On the other
hand, there is still no consensus in the community on the reliability of the various metrics to
use for comparing attribution maps. Finally, a typical attribution method tends to consider
each pixel as the fundamental unit explanation, which is not the basic unit used in human
perception. Some recent studies have pointed out a limited usefulness of the current model
explanation methods (e.g., heatmaps) and highlighted the need for a deeper investigation

into the methods for presenting interpretations of models to human operators [40].

7 Conclusion and Future Research Directions

We have presented an overview of post hoc gradient-based attribution methods to ex-
plain the decisions made by DNNs. These techniques are a small but very significant part
of a large body of methods that focus on explaining black box ML models. These methods
are fast and can provide explanations that are robust as compared to other approaches. In
some cases, these explanations may seem convincing. However, they should be approached
with caution due to the inherent limitations of these methods as discussed above. Applica-
tion of these methods in real-world settings, without comprehending their limitations, can
create a false sense of confidence in ML decision-making. We consider that the robustness
of interpretability methods is tightly coupled with the robustness of the models being ex-

plained. This area needs research efforts on both fronts, empirical as well as theoretical.
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There is a need to bring research communities from explainability and robustness together

to explore these questions. Finally, given the state-of-the-art in post hoc explainability

methods and their vulnerabilities and limitations, there is a need in the ML community to

focus on building models that are inherently explainable, but as versatile, efficient, accurate

and scalable as deep neural networks.
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