

Oxidation of Réunion Island Lavas with MORB-like fO_2 by Crustal Assimilation

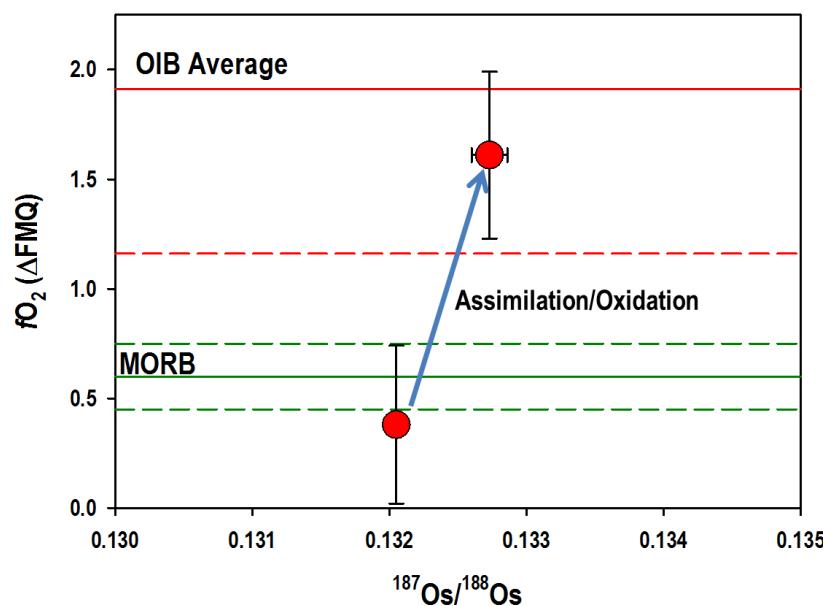
Robert W. Nicklas¹, Rachel K. M. Hahn¹, and James M.D. Day¹

¹Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA

Corresponding author:

R. Willie Nicklas: rnicklas@ucsd.edu

3280 Words (Abstract 178), 27 References, 4 Figures and Tables


Revised for *Geochemical Perspective Letters*

10/18/2021

1 **Abstract:**

2 Oxygen fugacity ($f\text{O}_2$) is poorly constrained in mantle reservoirs, especially those sampled by
3 ocean island basalts (OIB). This is partially due to complications from the effects of secondary
4 processes after partial melt generation on $f\text{O}_2$ in OIB parental magmas. To investigate these
5 issues new *in situ* trace element data of olivine in lavas from La Réunion are reported. Réunion is
6 a useful location to examine post-melting modification due to the limited range in radiogenic
7 isotope compositions of its lavas, indicating a homogenous source. Vanadium abundances in
8 olivine were used to constrain the lava $f\text{O}_2$ to between +0.4 and +1.6 ΔFMQ , intermediate
9 between that of ridge basalts and other OIB. The variable $f\text{O}_2$ of Réunion lavas likely results
10 from assimilation during transit through the crust, and not source heterogeneity, indicating that
11 their mantle source is similar in $f\text{O}_2$ to that of MORB. This reveals that a deep, early formed
12 mantle source has $f\text{O}_2$ similar to that of the depleted upper mantle. Assimilation can have a
13 pronounced effect on lava $f\text{O}_2$ and must be accounted for when constraining mantle redox.

Graphical Abstract

14 **Introduction:**

15 Oxygen fugacity ($f\text{O}_2$) of primitive lavas is a proxy for the $f\text{O}_2$ of their mantle sources and is
16 useful for constraining redox variability within the mantle (Carmichael, 1991; Moussallam et al.
17 2019; Nicklas et al. 2021a). Redox constraints are important for testing models of recycling into
18 the deep Earth, as well as for tracking planetary differentiation and mixing processes
19 (Carmichael, 1991; Frost et al. 2008; Bounce et al. 2017). While $f\text{O}_2$ in primitive melts can
20 potentially be modified by processes such as fractional crystallization (Kelley and Cottrell,
21 2012), crustal contamination (Grocke et al. 2016) and degassing (Moussallam et al. 2019), the
22 $f\text{O}_2$ of erupted basalts is, to a first order, controlled by their mantle source $f\text{O}_2$ (Birner et al.
23 2018). Oxygen fugacity varies strongly in primitive melts according to tectonic environment
24 (Carmichael, 1991), with arc basalts ($\Delta\text{FMQ} \geq +2$) having elevated $f\text{O}_2$ relative to mid ocean
25 ridge basalts (MORB; $\Delta\text{FMQ} \sim 0$), possibly by metasomatism of the mantle wedge by oxidized
26 recycled materials (Kelley and Cottrell, 2012), or by distinct differentiation processes (Tang et
27 al. 2018). Global mass balance calculations show, however, that ~90% of oxidants are not
28 returned in arcs and are, instead, taken into the deep mantle (Evans, 2012). Ocean island basalts
29 (OIB) are the result of melting in deep-seated plumes that contain a variety of recycled crustal
30 lithologies (e.g., Hofmann, 1997), and so are expected to contain some of these recycled
31 oxidants, of which Fe^{+3} is the most important (Evans, 2012).

32

33 Compared to arc lavas and MORB, OIB $f\text{O}_2$ is not comprehensively documented. This is partly
34 due to the absence of sufficient quenched glassy materials for x-ray near-edge absorption
35 spectroscopy (XANES) measurements meaning that alternative methods for determining $f\text{O}_2$ are

36 required. It has recently been suggested that OIB could be as oxidized, or even more oxidized,
37 than arc lavas (Moussallam et al. 2019), possibly as the result of sampling oxidized altered
38 oceanic crust (AOC). It has also been shown that sulfur degassing of OIB melts can have a
39 variable and large (~2 log units) effect on the fO_2 measured in glasses and glassy melt inclusions
40 (Moussallam et al. 2019), making some OIB appear to be as reduced as MORB. In contrast with
41 XANES, the V-in-olivine oxybarometry method records fO_2 as a melt crystallizes olivine, which
42 in most systems occurs prior to significant degassing of sulfur and is relatively difficult to reset
43 (Nicklas et al. 2021a).

44

45 In this study, the OIB fO_2 database is extended to lavas from the Réunion hotspot. La Réunion is
46 an island in the south Indian Ocean composed of two major shield volcanos that have been active
47 within the past two million years including the currently active Piton de la Fournaise (Albarede
48 et al. 1997). Lavas from Réunion are remarkable for their uniform He, Nd, Os and Pb isotope
49 signatures, with elevated $^3\text{He}/^4\text{He}$ and primitive mantle like Pb isotopes that suggest an ancient
50 deep mantle source (Vlastelic et al. 2006; Furi et al. 2011; Peters et al. 2016; 2018). La Réunion
51 has one of the highest $^3\text{He}/^4\text{He}$ and is least influenced by crustal recycling, and therefore
52 represents a key locality to characterize for OIB fO_2 .

53

54 **Methods and Results**

55 The sample set includes seven olivine-rich lavas Réunion island, all of which have been
56 characterized for their bulk geochemical characteristics previously (Peters et al. 2016; 2018).
57 Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of cores of

58 olivine were performed for 24-36 grains for each sample. The details of these analyses are
59 described in the Online Supplement. Average olivine trace element concentrations are reported
60 in **Table S1**. The V content of a calculated parental melt coupled with the V content in olivine,
61 an assumed liquidus temperature of 1200 °C, and the empirical equation of Wang et al. (2019)
62 yielded fO_2 for each lava. Details on modeling parental magma compositions are in the Online
63 Supplement. Parental magma major element and V concentrations and oxygen fugacities are
64 listed in **Table 1**. Reported uncertainties of fO_2 values are based on the uncertainties of V
65 concentrations in olivine and parental lavas, as temperature and parental magma major element
66 composition have only a second-order effect on the reported fO_2 . Vanadium concentrations in
67 olivine vary between 6.0 ± 1.3 and 8.6 ± 2.1 ppm in the lavas. Also analyzed for comparison was
68 olivine from a highly depleted harzburgite dredged from the Tonga trench, showing olivine
69 containing 0.7 ± 0.2 ppm V. Réunion olivine show a broader range in V content than other OIB
70 olivine (**Figure 1**). The fO_2 of the lavas show wide variation, between $+0.38^{+0.36}_{-0.29}$ and
71 $+1.61^{+0.38}_{-0.31}$ ΔFMQ and show no correlation with parental magma composition. The fO_2 of the
72 lavas range between MORB values of $+0.60 \pm 0.15$ (Nicklas et al. 2019) and the global OIB
73 average of $+1.91 \pm 0.75$ ΔFMQ measured using the same oxybarometry method (Nicklas et al
74 2021a). The Réunion lavas also overlap with MORB fO_2 estimates by other oxybarometry
75 methods (Li and Lee, 2004; Berry et al. 2018; Zhang et al. 2018; Wang et al. 2019; Novella et al.
76 2020).

77

78 **Oxygen Fugacity of Réunion Lavas**

79 The calculated fO_2 of Réunion lavas is highly variable compared to other OIB and overlaps with
80 them only for its most oxidized samples (**Figure 2**). The more reduced Réunion lavas overlap
81 with the MORB range, unlike any other OIB studied to date. The variability of the data is
82 unanticipated given the highly limited range of isotopic compositions and formation by partial
83 melting from a homogenous mantle source region (Albarede et al. 1997; Vlastelic et al. 2006;
84 Peters et al., 2016; 2018).

85

86 A possibility that can be precluded to explain the wide variation in fO_2 is that it results from
87 variable amounts of old altered oceanic crust (AOC) in the plume, due to the uniform and
88 unradiogenic Pb and Os isotopic signatures of lavas (Vlastelic et al. 2006; Peters et al. 2016).
89 Alternatively, the most oxidized Réunion lava (RU0719 at +1.6 ΔF_{MQ}) may be representative of
90 the plume with the other lavas being reduced by degassing of SO_2 . Sulfur degassing can lead to
91 marked reduction of a melt (Moussallam et al. 2019), with loss of ~4000 ppm S in the near
92 surface from Canary and Cape Verde OIB leading to a ~2.5 log unit fO_2 reduction. Primitive
93 Réunion lavas are tholeiitic and higher degree (~10%) melt fractions compared to more alkaline
94 (~3%) Canary lavas and so are unlikely to be as S-rich. La Réunion lavas may have degassed at
95 most 1510 ppm S, but likely only 100 ppm (Bureau et al. 1998; Collins et al. 2012). If S
96 degassing has a similar redox effect in Réunion lavas as it does in other OIB, even maximum
97 loss of 1510 ppm S would cause only a 1.05 log unit reduction in fO_2 , smaller than the range of
98 the data even in this most extreme case. For this reason, S-degassing can only explain part of the
99 fO_2 variations in Réunion lavas, assuming that such degassing took place during olivine
100 crystallization.

101

102 Assimilation of material from within the volcanic edifice is well-known in OIB. For Réunion, if
103 the lavas were to assimilate altered and oxidized basaltic material, then radiogenic isotope
104 modification from such assimilation would be minimal due to the young age of Réunion. The
105 whole rock dataset of Peters et al. (2016) includes concentrations of both ferrous and ferric iron,
106 with $\text{Fe}^{+3}/\Sigma\text{Fe}$ ratios varying between 0.03 and 0.90, ranging significantly higher than mantle
107 derived basalts at <0.3 (Moussallam et al. 2019), indicating that many of the basalts have
108 suffered oxidative alteration of glassy groundmass. Starting from the lowest $f\text{O}_2$ Réunion sample
109 ($+0.4 \Delta\text{FMQ}$) and crustal $\text{Fe}^{+3}/\Sigma\text{Fe}$ ratios of 0.14, 0.21, and 0.90, mixing calculations were
110 performed to determine the amount of assimilation needed to oxidize RU0702 to $+1.6 \Delta\text{FMQ}$
111 (**Figure 3**). This modeling shows that 8% to 55% crustal assimilation would be required to
112 explain the range in data if assimilated materials had $\text{Fe}^{+3}/\Sigma\text{Fe} = 0.21$ and 0.90, respectively.
113 Although 8% assimilation is reasonable for a picritic magma, 55% assimilation will spur
114 extensive fractional crystallization from cooling and could not plausibly produce primitive lavas
115 (~ 12.5 wt.% MgO), suggesting that assimilation of highly oxidized crustal materials would be
116 necessary. The presence of such materials in the volcanic edifice indicates that assimilation is a
117 plausible mechanism for explaining the range in measured $f\text{O}_2$. An issue is that it either requires
118 magmas to cross the olivine liquidus in crustal magma chambers or for altered material to be
119 present at depth. Better constraints on the depth of olivine crystallization beneath Réunion are
120 required.

121

122 Another process potentially operative in Réunion is the inheritance of olivine by lavas. This is
123 evident from the presence of ‘oceanite’ lavas containing up to 45 modal% olivine, which are not
124 realistic parental melt compositions. Accumulation of low-V olivine antecrysts would have a

125 profound effect on V-in-olivine oxybarometry if not properly accounted for. Antecrustic olivine
126 with low V would artificially drive the calculated $f\text{O}_2$ to higher values if included in the sampled
127 olivine data. For a lava at +0.4 ΔFMQ (RU0702), ~62% antecrustic olivine with a V content of
128 ~1 ppm, similar to the Tonga trench olivine, must be added to sufficiently lower the average
129 olivine content so that the calculated $f\text{O}_2$ is equal to that of RU0719. None of the ~30 vanadium
130 measurements for olivine cores in RU0702 reach 1 ppm, with a minimum of 4.9 ppm
131 (Supplemental Datasets). Even if antecrustic olivine were to re-equilibrate with the magma, 62%
132 is a high proportion of olivine to be xenocrystic.

133

134 **Implications for V-in-olivine Oxybarometry and $f\text{O}_2$ in OIB**

135 Vanadium-in-olivine oxybarometry measures the $f\text{O}_2$ of a melt early in its evolution and is
136 assumed to record $f\text{O}_2$ prior to secondary processes (Nicklas et al. 2019). La Réunion data
137 presented here suggest that this may not always be the case. In this setting, assimilation of AOC
138 (~1.2 log unit oxidation with 8% assimilation of highly oxidized material) as well as reduction
139 from SO_2 degassing likely both affected the measured $f\text{O}_2$. A possible complicating factor with
140 the oxybarometry method is xenocrystic/antecrustic olivine, yielding results without geological
141 meaning. Such xenocrysts and antecrusts appear to be relatively common in OIB lavas (Wieser
142 et al. 2019). Olivine populations should be examined for both high Ca concentrations (indicating
143 non-Mantle origin) as well as for showing a unimodal trace element concentration distribution.
144 None of the sampled lavas contain mantle xenocrysts, as mantle olivine has much lower V
145 contents (0.7 ± 0.2 ppm, **Figure 1**) than any olivine analyzed. This cautionary tale shows that
146 special attention to secondary processes is required during oxybarometry studies of olivines.

147

148 Other OIB have been measured using V-in-olivine oxybarometry (**Figure 2**) but these data are
149 unlikely to be compromised as all those samples show consistent fO_2 regardless of bulk
150 composition, isotopic signatures or location. Given that secondary processes affected the lavas,
151 the fO_2 of Réunion plume is likely to be within the range of contemporary MORB ($\Delta\text{FMQ} \sim 0$),
152 and the scatter is probably due to crustal assimilation. This is dissimilar to other OIB (**Figure 2**)
153 and may indicate that the Réunion plume entrains significant MORB-source mantle. Isotopic
154 work, however, has shown a minimal contribution from the MORB-source mantle and that
155 Réunion lavas instead come from a primitive source with elevated $^3\text{He}/^4\text{He}$, variable $^{142}\text{Nd}/^{144}\text{Nd}$,
156 low $^{182}\text{W}/^{184}\text{W}$ and low highly siderophile element abundances (Vlastelic et al. 2006; Furi et al.
157 2011; Peters et al. 2016; 2018; 2021; Rizo et al. 2019). This would infer that upwelling deep
158 mantle material has fO_2 similar to that of the depleted upper mantle source of MORB despite
159 being isolated from the MORB source mantle for much of Earth history.

160

161 **Acknowledgements:**

162 This study was funded by National Science Foundation EAR Grant #1918322 “A mixed-up
163 mantle beneath Ocean Islands?” (JMDD). This manuscript was greatly improved by the
164 constructive comments of Dr. David Neave and an anonymous reviewer. We are also grateful for
165 the editorial comments of Dr. Helen Williams.

Figures Captions:

Figure 1: Average V concentrations in olivine cores in Réunion lavas, plotted against forsterite number (from Peters et al. 2016), along with olivine from a Tonga Trench forearc peridotite, MORB olivine (Nicklas et al. 2019), and olivine from other OIB (Nicklas et al. 2021a).

Figure 2 Oxygen fugacity plotted against the bulk rock $^{187}\text{Os}/^{188}\text{Os}$ ratio. Literature OIB data from (Nicklas et al. 2019; 2021a). Also plotted is the range of MORB oxygen fugacity estimates using other oxybarometry methods (Li and Lee 2004; Berry et al. 2018; Zhang et al. 2018; Wang et al. 2019; Novella et al. 2020).

Figure 3: Results of mixing calculations between a parental magma composition of RU0702 and an $\text{Fe}^{+3}/\Sigma\text{Fe}$ of 0.099 and an altered basalt with the same composition but an $\text{Fe}^{+3}/\Sigma\text{Fe}$ of 0.14, 0.21 and 0.90. Oxygen fugacity was calculated assuming bulk mixing, the calibration of Kress and Carmichael (1991), and a temperature of 1200°C. Horizontal dashed line represents the maximum measured Réunion lava $f\text{O}_2$.

Table 1 - Parental magma compositions, oxides are in weight %, V is in ppm (~10% uncertainty). Average V in olivine is also listed. NBO/T – non-bonding oxygens divided by tetrahedrally bonded oxygens in each parental melt. ΔFMQ – oxygen fugacity relative to FMQ buffer. Up – positive uncertainty, down – negative uncertainty. $^{187}\text{Os}/^{188}\text{Os}$ are bulk rock values for lavas (Peters et al. 2016). Ol add/subtract: the amount of olivine added or subtracted from the bulk rock composition to calculate the parental magma composition. Positive percentages are added olivine, and negative percentages are subtracted.

Sample Name	RU0702	RU0703	RU0705	RU0707	RU0709	RU0715	RU0719
SiO_2	46.3	48.6	46.3	49.1	47.2	48.3	46.4
TiO_2	2.35	2.46	2.42	2.35	2.48	2.13	2.40
Al_2O_3	12.4	12.9	12.3	12.8	12.5	12.4	12.4
FeO	13.1	11.4	13.1	11.2	11.9	12.0	12.8
MnO	0.19	0.17	0.20	0.17	0.18	0.19	0.18
MgO	12.7	11.1	13.2	11.0	11.6	11.7	12.5
CaO	10.0	10.0	9.7	10.1	10.8	10.0	10.2
Na_2O	2.03	2.39	2.10	2.37	2.23	2.37	2.15
K_2O	0.59	0.66	0.52	0.60	0.72	0.68	0.65
P_2O_5	0.27	0.29	0.28	0.28	0.29	0.29	0.28
V (ppm)	163	139	294	263	315	283	313
NBO/T	1.14	0.97	1.16	0.96	1.07	1.04	1.13
Olivine V (ppm)	6.49	5.96	6.94	6.83	8.55	6.66	6.00
2SD	1.06	1.32	1.00	1.07	2.06	0.79	1.05
ΔFMQ	0.38	0.40	1.24	1.26	1.09	1.35	1.61
Up	0.36	0.47	0.32	0.35	0.51	0.28	0.38
Down	0.29	0.37	0.27	0.29	0.39	0.24	0.31
$^{187}\text{Os}/^{188}\text{Os}$	0.13205	0.13110	0.13194	0.13179	0.13328		0.13273
2SE	0.00007	0.00024	0.00006	0.00028	0.00013		0.00013
Ol add/subtract	-37.7%	+10.7%	-50.4%	+11.3%	+1.4%	+2.0%	+28.1%

Works Cited:

Albarede, F., Luais, B., Fitton, G., Semet, M., Kaminski, E., Upton, B. G. J., Bachelery, P., Cheminee, J. L. (1997). The geochemical regimes of Piton de la Fournaise volcano (Réunion) during the last 530,000 years. *Journal of Petrology* **38**(2): 171-201.

Berry A. J., Stewart G. A., O'Neill H. St.C., Mallmann G., Mosselmans J. F. W. (2018). A reassessment of the oxidation state of iron in MORB glasses. *Earth and Planetary Science Letters* **483**: 144-123.

Birner, S. K., Cottrell, E., Warren, J. E., Kelley, K. A., Davis, F. A. (2018). Peridotites and basalts reveal broad congruence between two independent records of mantle fO_2 despite local redox heterogeneity. *Earth and Planetary Science Letters* **494**: 172-189.

Brounce M. N., Stolper E., Eiler, J. (2017) Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation. *Proc. Natl. Acad. Sci.* **114**, 8997–9002.

Bureau H., Metrich N., Pineau F., Semet M. P. (1998). Magma-conduit interaction at Piton de la Fournaise volcano (Réunion Island): a melt and fluid inclusion study. *Journal of Volcanology and Geothermal Research* **84**: 39-60.

Carmichael I. S. (1991) The redox states of basic and silicic magmas: A reflection of their source regions? *Contrib. Mineral. Petrol.* **106**, 129–141.

Collins, S. J., MacLennan, J., Pyle, D. M., Barnes, S. J., Upton, B. G. J. (2012) Two phases of sulfide saturation in Réunion magmas: Evidence from cumulates. *Earth and Planetary Science Letters* **337-338**: 104-113.

Evans K. A. (2012) The redox budget of subduction zones. *Earth-Sci. Rev.* **113**, 11–32.

Frost D. J., Mann U., Asahara Y., Rubie D. C. (2008) The redox state of the mantle during and after core formation. *Phil. Trans. R. Soc. A* **366**: 4315-4337.

Furi E., Hilton D. R., Murton B. J., Hemond C., Dyment J., Day J. M. D. (2011). Helium isotope variations between Réunion Island and the Central Indian Ridge (17°–21°S): New evidence for ridge-hot spot interaction. *Journal of Geophysical Research* **106**: B02207.

Grocke S. B., Cottrell E., Silva S. D. and Kelley K. A. (2016) The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas. *Earth Planet. Sci. Lett.* **440**, 92–104.

Hofmann A. W. (1997). Mantle geochemistry: the message from oceanic volcanism. *Nature* **385**: 219-229.

Kelley K. A. and Cottrell E. (2012) The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. *Earth Planet. Sci. Lett.* **329-330**, 109–121.

Kress V. C. and Carmichael I. S. E. (1991) The compressibility of silicate liquidus containing Fe_2O_3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. *Contrib. Mineral. Petrol.* **103**, 82–92.

Li Z.-X. A., C.-T. A. Lee (2004) The constancy of upper mantle fO_2 through time inferred from V/Sc ratios in basalts. *Earth and Planetary Science Letters* **228**: 483–493. Moussallam Y., Longpre M.-A., McCammon C., Gomez-Ulla A., Rose-Koga E. F., Scaillet B., Peters N., Gennnero E., Paris R., Oppenheimer C. (2019) Mantle Plumes are oxidized. *Earth and Planetary Science Letters* **527**, 115798.

Nicklas, R. W., Hahn, R. K. M., Willhite, L. N., Jackson, M. G., Zanon, V., Arevalo Jr., A., Day, J. M. D. (2021a). Oxidized Mantle Sources of HIMU and EM-type Ocean Island Basalts. *Earth Arxiv* (pre-print).

Nicklas, R. W., Puchtel, I. S., Ash, R. D., Piccoli, P. M., Hanski, E., Nisbet, E. G., Waterton, P., Pearson, D. G., Anbar, A. D. (2019) Secular Mantle Oxidation across the Archean-Proterozoic Boundary: Evidence from V Partitioning in Komatiites and Picrites. *Geochimica et Cosmochimica Acta* **250**: 49–75.

Novella D., MacLennan J., Shorttle O., Prytulak J., Murton B. J. (2020). A multi-proxy investigation of mantle oxygen fugacity along the Reykjanes Ridge. *Earth and Planetary Science Letters* **531**: 115973.

Peters, B. J., Mundl-Petermeier, A., Carlson, R. W., Walker, R. J., Day, J. M. D. (2021). Combined Lithophile-Siderophile Isotopic Constraints on Hadean Processes Preserved in Ocean Island Basalt Sources. *Geochemistry Geophysics Geosystems* e2020GC009479.

Peters, B. J., Carlson R. W., Day J. M. D., Horan M. F. (2018). Hadean silicate differentiation preserved by anomalous $^{142}\text{Nd}/^{144}\text{Nd}$ ratios in the Réunion hotspot source. *Nature* **555**: 89–93.

Peters, B. J., Day, J. M. D., Taylor, L. A. (2016) Early mantle heterogeneities in the Réunion hotspot source inferred from highly siderophile elements in cumulate xenoliths. *Earth and Planetary Science Letters* **448**: 150–160.

Rizo H., Andrault D., Bennett N. R., Humayun M., Brandon A., Vlastelic I., Moine B., Poirier A., Bouhifd M. A., Murphy D. T. (2019). ^{182}W evidence for core-mantle interaction in the source of mantle plumes. *Geochemical Perspectives Letters* **11**: 6–11.

Tang M., Erdman, M., Eldridge G., Lee C.-T. A. (2018). The redox “filter” beneath magmatic orogens and the formation of continental crust. *Science Advances* **4**: eaar4444.

Vlastelic, I., Lewin, E., Staudacher, T. (2006) Th/U and other geochemical evidence for the Réunion plume sampling a less differentiated mantle domain. *Earth and Planetary Science Letters* **248**: 379–393.

Wang J., Xiong X., Takahashi E., Zhang L., Li L., Liu X. (2019). Oxidation State of Arc Mantle Revealed by Partitioning of V, Sc and Ti Between Mantle Minerals and Basaltic Melts. *Journal of Geophysical Research: Solid Earth* **124**: 4617-4638.

Wieser P. E., Edmonds M., MacLennan J., Jenner F. E., Kunz B. E. (2019). Crystal scavenging from mush piles recorded by melt inclusions. *Nature Communications* **10**: 5797.

Zhang H. L., Cottrell E., Solheid P. A., Kelley K. A., Hirschmann M. M. (2018). Determination of $\text{Fe}^{+3}/\Sigma\text{Fe}$ of XANES basaltic glass standards by Mossbauer spectroscopy and its application to the oxidation state of iron in MORB. *Chemical Geology* **479**: 166-175.

Figure 1:

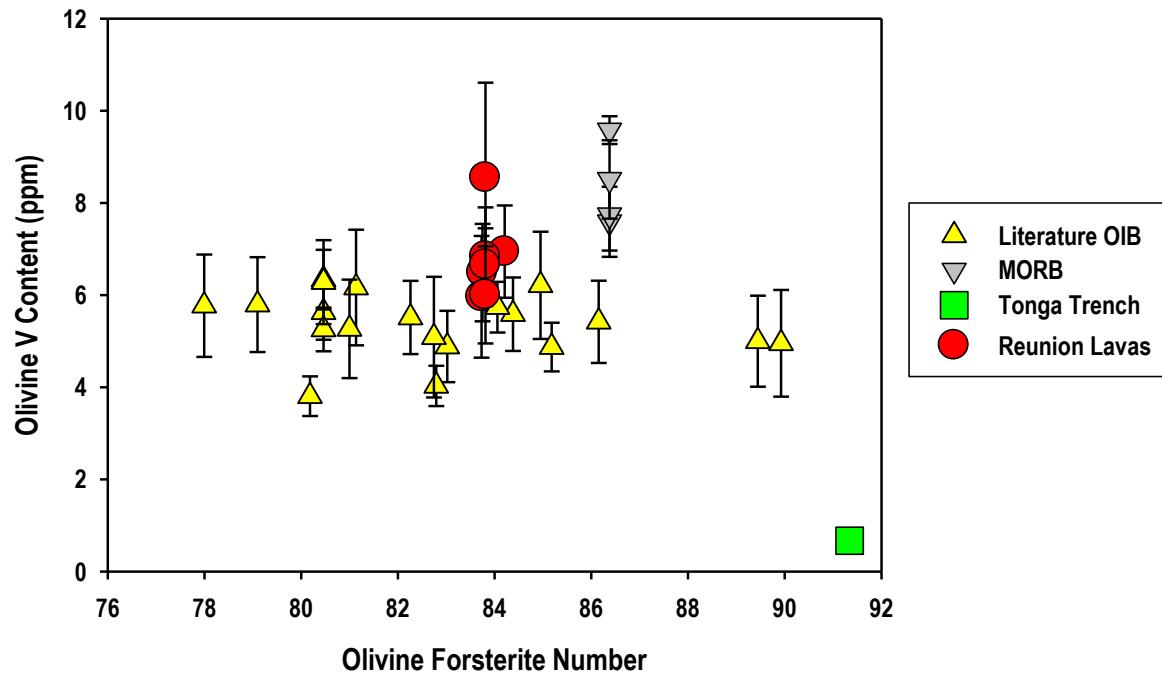
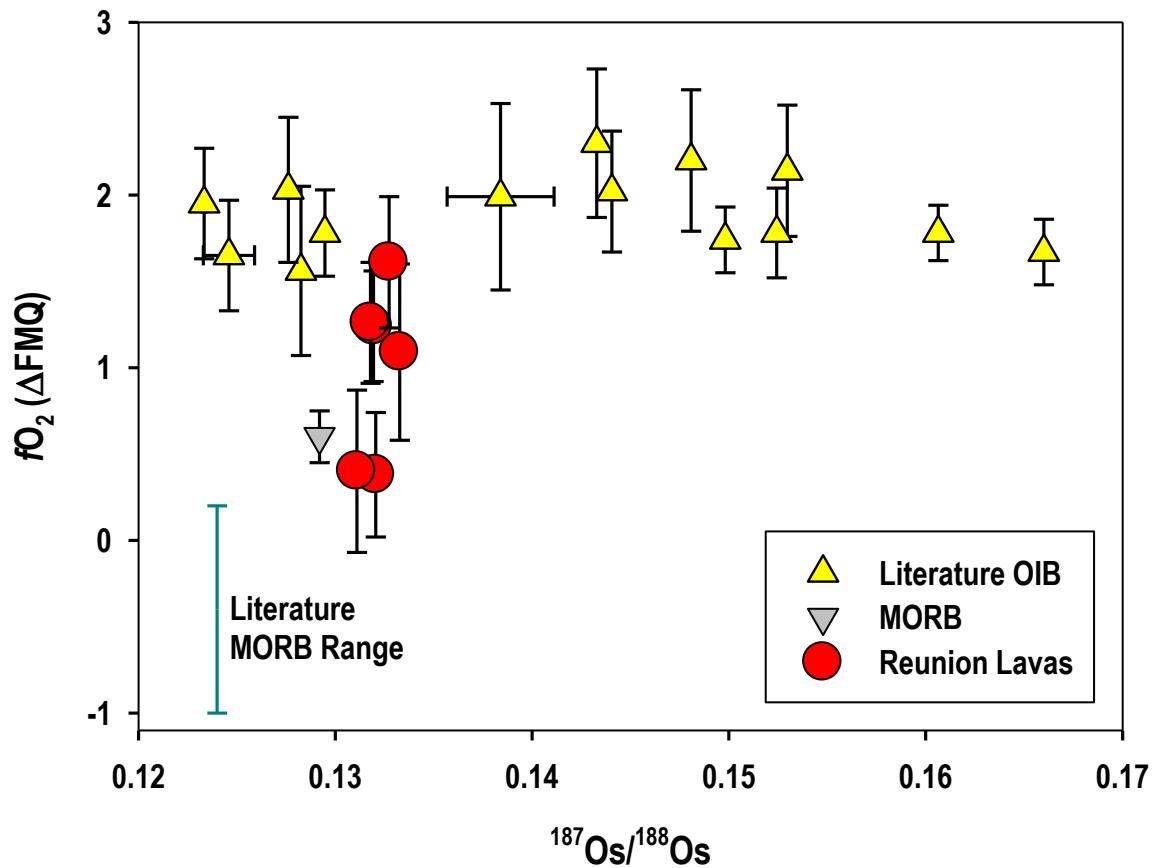




Figure 2:

Figure 3:

