

1

2 **Mantle sources of ocean islands basalts revealed from noble**

3 **gas isotope systematics**

4

5

6

7

8 James M.D. Day*, Tim D. Jones, Robert W. Nicklas

9

10

11

12

13

14 Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-
15 0244

16 *Corresponding author: jmdday@ucsd.edu

17

18

19 Special Volume in honor of **David R. Hilton** for *Chemical Geology*, submitted: April 17 2021;
20 *revision submitted August 26 2021*

21

22

23

24

25

26 Abstract length: 403

27 Word Count: 9906

28 Figures: 16

29 Tables: 2

30

31

32

33

34 **Keywords:** Ocean island; basalt; helium; neon; argon; xenon; deep mantle; depletion; recycling

35 **Abstract:**

36 Noble gas isotope systematics, particular **those of** He, have been fundamental in showing that some
37 ocean island basalts (OIB) were sourced from deep mantle plumes. Relationships between He, W,
38 Os, Sr, Nd and Pb isotopes in Hawaiian, Samoan, Galapagos, and Icelandic lavas have been
39 suggested to reflect contributions from less degassed lower mantle sources, and perhaps even
40 materials advected from the core-mantle boundary. This study reviews the noble gas (He-Ne-Ar-
41 Xe) isotope systematics of major OIB suites. Important in this evaluation are considerations of
42 spatial and temporal variations, including the sample media (glass, minerals, hydrothermal gases
43 and fluids) used for analyzing noble gases, as well as the degree of partial melting experienced to
44 produce OIB. Limited availability of gas-rich samples means patchy coverage in definition of OIB
45 Ne, Ar, Xe isotope compositions. Additionally, low-degree partial melting will lead to preferential
46 sampling of more fusible, generally **more** enriched components which could affect noble gas
47 isotope systematics. OIB with low- ($<8R_A$) to MORB-like ${}^3\text{He}/{}^4\text{He}$ ($8\pm2R_A$) dominantly sample
48 convecting mantle domains and can also contain some relatively undegassed (solar) components.
49 Their range in Sr-Nd-Os-Pb isotope compositions reflect a strongly recycled crustal and/or
50 lithospheric heritage. Intermediate ($>10R_A$) to high- ${}^3\text{He}/{}^4\text{He}$ ($>25R_A$) OIB (Loihi, Hawaii; Iceland;
51 Fernandina, Galapagos; Ofu, Samoa) sample a reservoir that has been relatively isolated since ~ 4.5
52 billion years as shown by noble gases (He, Ne, Ar, Xe), and by W isotopes. However, this reservoir
53 is not pristine and these OIB show evidence for containing depleted and enriched recycled
54 components from Xe isotopes as well as lithophile-siderophile radiogenic isotope systematics.
55 Linking the highest- ${}^3\text{He}/{}^4\text{He}$ OIB to a putative Focus Zone (FOZO) reservoir is also problematic;
56 FOZO is not a reservoir least affected by recycling of crust, rather a mantle reservoir that contains
57 recycled components, including depleted lithosphere, and that has been oxidized. This distinction
58 in definition means that, while the FOZO reservoir is almost certainly sampled by the deepest,
59 hottest mantle plumes, its status as a primitive reservoir is unsubstantiated. Models of mantle
60 convection can satisfy seismic constraints on Earth's deep mantle and reveal extensive mixing
61 throughout with enriched and depleted lithologies formed by partial melting processes at Earth's
62 surface. Ancient deep isolated reservoirs are likely to be relatively minor present-day mantle
63 features. More remarkable is the predicted abundance of strongly refractory mantle material. Focus
64 on the noble gas, radiogenic and stable isotope attributes of such **refractory** reservoirs are required
65 for a fuller understanding of mantle processes.

66 **1. Introduction**

67 The noble gases are powerful geochemical tools in the study of Earth's accretion,
68 differentiation and structure. Several reasons exist for this utility, chief amongst them being the
69 chemical inertness of the noble gases at Earth's surface, having full orbital electron shells
70 surrounding their nucleus. The noble gases span a wide range of atomic mass, from He (3 amu) to
71 Xe (136 amu) (**Table 1**). These mass differences, together with the 'atmophile', highly volatile
72 nature of the noble gases make them useful tracers of a range of geological processes, from Earth's
73 atmospheric evolution to the preservation of deep mantle heterogeneity. Coupled with the range
74 of long-lived and extinct parent radionuclides that lead to noble gas daughter products, the noble
75 gases offer one of the most exceptional geochemical 'element suites' for understanding volatiles,
76 and the evolution of Earth's ocean and atmosphere (e.g., [Moreira, 2013](#); [Marty, 2020](#)).

77 In addition to volatile studies at Earth's surface, the noble gases have been instrumental in
78 providing geochemical insight to Earth's interior structure. Discovery of helium-3 emanating from
79 well gases ([Alvarez & Cornog, 1939](#); [Aldrich & Nier, 1946](#); [Mamyrin et al., 1969](#)), and as excesses
80 in seawater ([Clarke et al., 1969](#)), paved the way for the interpretation of this signal as representing
81 trapped primordial gases in Earth's mantle implanted into the planet during accretion. During the
82 late 1960s and early 1970s it was increasingly recognized that ocean island basalts (OIB) were
83 distinct in their **trace element** geochemistry and in their long-lived radiogenic isotope compositions
84 compared with mid-ocean ridge basalts (e.g., [Gast et al., 1964](#); [Engel et al., 1965](#)). Focus on helium
85 ([Kaneoka & Takaoka, 1980](#); [Kurz et al., 1982](#)), xenon ([Hennecke & Manuel, 1975](#); [Kaneoka &](#)
86 [Takaoka, 1980](#)), argon ([Fisher, 1983](#)), and finally neon isotopes ([Sarda et al., 1988](#); [Honda et al.,](#)
87 [1991](#)), led to observations of low $^4\text{He}/^3\text{He}$ and excesses of $^{20}\text{Ne}/^{22}\text{Ne}$, $^{40}\text{Ar}/^{36}\text{Ar}$ and xenon isotopes
88 relative to the atmosphere. The other noble gases, radon and krypton, have not been considered
89 much in OIB studies, due to the radiogenic nature of the former, and the difficulty in analyzing the
90 latter.

91 Since the initial pioneering studies on noble gases in OIB, there has been proliferation in
92 He isotope analyses as well as progressive improvements and an increase in available data for Ne,
93 Ar and Xe isotopes. In particular, helium isotopes in OIB, which are often expressed as $^3\text{He}/^4\text{He}$
94 ratios relative to the air value ($R/R_A = 1/(^4\text{He}/^3\text{He} \times \text{air} [0.000001384])$), have been highly
95 influential in scholarly discourse surrounding OIB petrogenesis, from geochemical studies (e.g.,
96 [Kurz et al., 1982](#)), to understanding mantle structure from seismic tomography (e.g., [Williams et](#)

97 al., 2019), to geodynamic modelling of mantle interior structure (e.g., Van Keken & Ballentine,
98 1998; Xie & Tackley, 2004), or to the perspective of hot, deep mantle plumes (e.g., Jackson et al.,
99 2017). The high-³He/⁴He component in OIB has attracted significant attention, being interpreted
100 as a signature of a deep mantle source and, most recently, as a relatively pristine mantle source.
101 Relatively pristine mantle sources with high-³He/⁴He have been variably described as the lower
102 mantle-derived focus or focal zone (FOZO), which is ancient and depleted (Hart et al., 1992;
103 Jackson et al., 2020), or the primitive He mantle (PHEM), interpreted to be primordial with near
104 bulk silicate earth Sr and Nd isotopic compositions (Farley et al., 1992). An alternative component
105 which can have high-³He/⁴He has also been proposed, called the common or C component, which
106 likely contains subducted oceanic crust, is not primordial or pristine and is located either in the
107 mantle transition zone or at the core mantle boundary (Hanan & Graham, 1996). The currently
108 most popular component discussed is FOZO, as the C component requires mixing and diffusion
109 of primordial noble gases to explain high-³He/⁴He in some locations. In many cases, studies
110 assume the maximum He isotope compositions are representative of OIB and use these to compare
111 with geophysical parameters (e.g., Jackson et al., 2017; Williams et al., 2019). Studies of the other
112 noble gases have revealed evidence for solar components in OIB, albeit attempts to link these
113 noble gases in combination have been relatively limited. The studies that have done this have
114 provided important insights into OIB petrogenesis (see for example, Moreira, 2013; Parai et al.,
115 2019 and Mukhopadhyay & Parai, 2019).

116 Following from studies of noble gases in combination, the goal of this work is to consider
117 and synthesize the currently available noble gas isotope data for OIB. Particular attention is given
118 to the type of samples used to obtain noble gas isotope data on OIB, potential processes that might
119 affect noble gas isotopes in these samples, and to investigate the fidelity of using maximum He
120 isotope ratios associated with a given OIB chain. Evidence from He-Ne-Ar-Xe isotope systematics
121 is paired with extinct and long-lived radiogenic isotopes (Sr-Nd-Os-W-Pb) to explore the likely
122 sources of OIB, and to consider the probable nature of the mantle in terms of both structure and
123 composition.

125 2. On the measurement of noble gases in OIB

126 The measurement of noble gas isotopes has continued to advance since initial discovery of
127 ³He in natural gas samples in the late 1930s and early 1940s (Alvarez & Cornog, 1939; Aldrich &

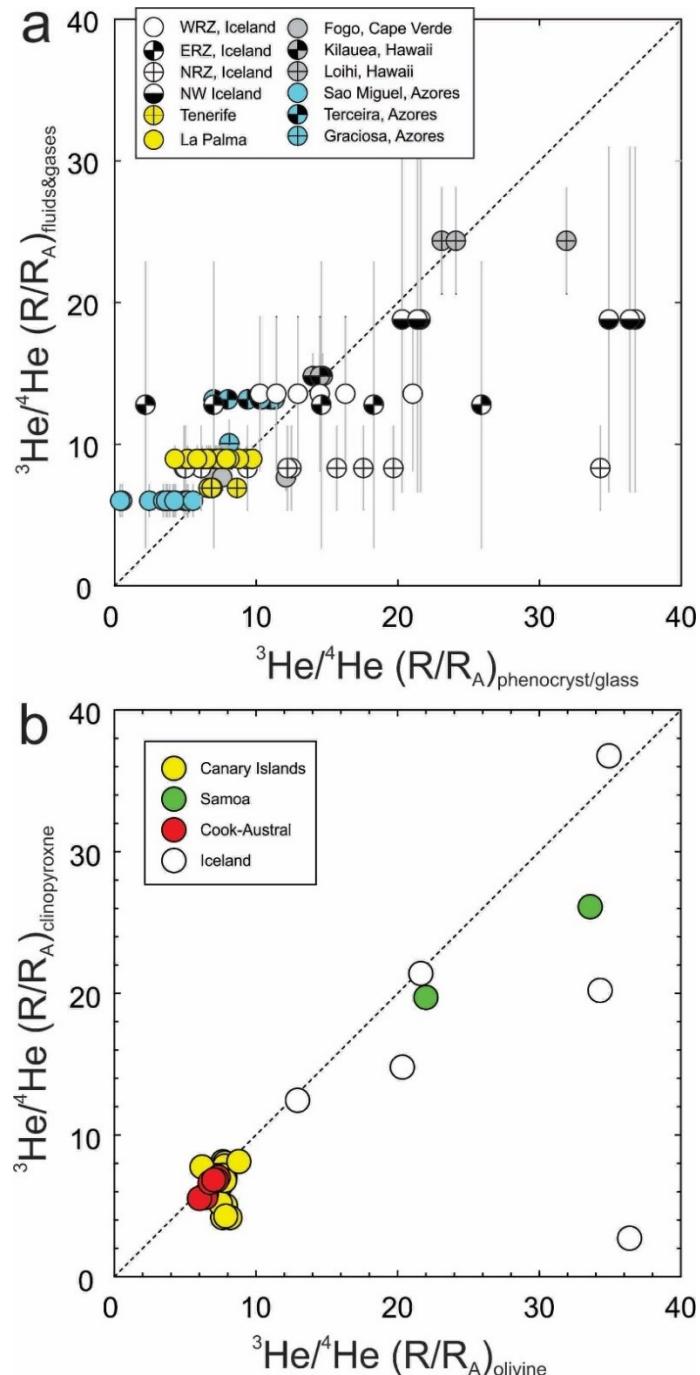
128 Nier, 1946) and, specifically, emanating from mantle samples in 1969 (Clarke et al., 1969;
129 Mamyrin et al., 1969) and from trapped inclusions within OIB mineral grains in 1980 (Kaneoka
130 & Takaoka, 1980). Despite the advantages of measuring noble gases in mantle samples due to their
131 generally inert chemical behaviors, the low abundances of He, Ne, Ar, Kr and Xe in terrestrial
132 volcanic rocks and their mineral components makes determination of their abundances and
133 isotopic compositions challenging. In particular, the abundances measured in even some of the
134 most gas-rich volcanic samples by crushing them (cf., the ‘popping rock’ 2ΠID43; He = ~2.9 ppmv;
135 Ne = ~0.008 ppbv; Ar = 1 ppmv; Xe = 0.0001 ppbv; Parai & Mukhopadhyay, 2021) are, in some
136 cases, far lower than their abundances within Earth’s atmosphere (He = 5.24 ppmv; Ne = 18 ppmv;
137 Ar = 9340 ppmv, Kr = 1.1 ppmv; Xe = 0.087 ppmv; Table 1). All noble gases are therefore
138 susceptible to air contamination prior to, or during sampling, or due to contamination during
139 laboratory analyses. As discussed later, the noble gas **most** minimally affected by recycling of
140 atmospheric noble gases into the deep Earth is He, which is lost from the atmosphere to space,
141 with a mean residence time of ~1 million years (Farley & Neroda, 1998; Marty, 2020). For these
142 reasons, studies of He isotopes in OIB are plentiful, whereas studies of Ne, Ar or Xe are more
143 limited, with studies of Kr isotopes being virtually absent.

144 When discussing noble gases in OIB, it is critical to assess the sample media from which
145 they were measured (e.g., glasses, minerals, geothermal gases or fluids), with this media being
146 important for four principal reasons. Firstly, due to their extreme incompatibilities and **similar**
147 **behavior** with respect to solubility, diffusivity, and crystal-melt partitioning, the noble gases
148 partition preferentially into silicate melts during partial melting, and then into fluid (H₂O) or gas
149 phases (CO₂-rich) during further magmatic exsolution. Secondly, solubilities of the noble gases
150 reverse between silicate liquids, where He is most soluble and Xe is least soluble, to water, where
151 Xe is most soluble and He is least (e.g., Ozima & Podosek, 2002; Mukhopadhyay & Parai, 2019).
152 Due to these properties, the potential to trap heavier noble gases within subducted seawater
153 components makes them useful for understanding recycling into the deep mantle (Holland &
154 Ballentine 2006, Kendrick et al. 2011; 2018). A third aspect of the sample media type is that the
155 noble gases can be trapped, accidentally, within fluid or melt inclusions in minerals, within fast-
156 quenched glasses, and can emanate from volcanic edifices trapped within fluids or in the gas phase.
157 Magmas or hydrothermal fluids and gases erupted under higher confining pressures, **for example**
158 beneath water or ice, will retain higher intrinsic noble gas contents than those erupted subaerially,

159 simply expressed by the Ideal Gas law ($PV = nRT$, where P is pressure in pascals, V is volume in
160 cubic meters, n is the amount of the gas in kg, R is the ideal gas constant of $8.3145 \text{ J K}^{-1} \text{ mol}^{-1}$
161 and T is temperature in kelvin). This means that ‘pristine’ mantle-derived noble gas samples are
162 exceptionally rare.

163 Fourth is the susceptibility of the media to secondary alteration processes. For example,
164 geothermal fluids and gases need to be trapped at the time of emanation from their source and so
165 represent ephemeral media for examining noble gas compositions. Glasses tend to slowly
166 crystallize after they have cooled and, although some ancient glasses can be preserved, the
167 relatively elevated K, U and Th contents within them can result in significant production of
168 radiogenic noble gas contents. In the case of mineral grains that form early within magmas (olivine
169 and clinopyroxene), they can preserve mantle He isotopic compositions for more than 100 million
170 years (e.g., [Basu et al., 1995](#); [Stronik et al., 2017](#)), but are also susceptible to ingrowth of
171 radiogenic noble gases, **and** the effectiveness of trapping noble gases within minerals is generally
172 poor ([Horton et al., 2019](#)).

173 The above-mentioned aspects of noble gas behavior make estimating their abundances in
174 both parental melts and their mantle sources difficult. Examination of noble gases in OIB is
175 therefore quite different from that for stable or radiogenic isotope systems, where elemental
176 concentrations are more readily quantified. As discussed later, combination of these systems can
177 be both powerful but may also be misleading. The behaviors of noble gases during partial melting,
178 eruption and post-emplacement means that mixing between atmospheric and mantle noble gas
179 components are likely to increase with decreasing confining pressures of magmas or exsolved
180 gases. The consequence of these behaviors is that a popular method is to extrapolate to mantle
181 compositions, free from recent atmospheric contamination, especially for Ne, Ar and Xe isotopes
182 (e.g., [Mukhopadhyay & Parai, 2019](#)).


183 Despite the different behaviors of geothermal fluids and gases versus glasses or minerals,
184 the comparison of their isotopic compositions is especially useful in modern OIB settings where
185 both media can be found. Helium is by far the best sampled of the noble gases, so the temporal
186 and spatial distributions of noble gases evident in OIB have to be extrapolated from the atomically
187 lightest amongst them. Nowhere are temporal and spatial variations in noble gases better expressed
188 than in Iceland, where the bedrock geology is, for the most part, relatively recently erupted basaltic
189 rock and where geothermal springs and fumaroles are plentiful. Taking advantage of over 800

190 measurements of noble gases in various Icelandic sample media, [Hardardottir et al. \(2018\)](#)
191 provided a comprehensive assessment of helium isotopic variations, demonstrating a wide range
192 in ${}^3\text{He}/{}^4\text{He}$ (5.1 to 47.5 R_A) and denoting systematic variations between individual rift segments
193 and off-rift regions. They showed that an average high- ${}^3\text{He}/{}^4\text{He}$ component decreases from the
194 Eastern (18-21 R_A) to the Western (12-17 R_A) to the Northern Rift Zone (8-11 R_A) placing the
195 center of the high- ${}^3\text{He}/{}^4\text{He}$ plateau towards southwest Iceland. The study of [Hardardottir et al.](#)
196 ([2018](#)) highlights both the spatial variability of noble gas compositions within active volcanic
197 regions, but also provides a temporal link, showing that Miocene-aged volcanic rocks of NW
198 Iceland have the highest- ${}^3\text{He}/{}^4\text{He}$ (e.g., [Hilton et al., 1999](#)).

199 To examine temporal and spatial variations in noble gases within OIB, [Day & Hilton](#)
200 ([2021](#)) undertook a wider survey of helium isotope compositions preserved in geothermal fluids
201 and gases [compared to](#) minerals or glasses. Using examples from the Canary Islands, Azores, Cape
202 Verde, Hawaii and Iceland they showed generally good correspondence between different sample
203 media from the same locations, even across >1 Ma of stratigraphy (**Figure 1a**). Nonetheless, they
204 also recognized examples of inter-island heterogeneity in He isotopes at Hawaii, the Azores, and
205 within Iceland preserved in both hydrothermal samples, minerals and glasses. [Day & Hilton \(2021\)](#)
206 pointed out that in northwest Iceland, olivine separates from older lavas preserve higher- ${}^3\text{He}/{}^4\text{He}$
207 than present-day geothermal samples from the same region reflecting a reduced mantle-derived
208 ${}^3\text{He}$ input to Icelandic magmatism since the Miocene, emphasizing changing distributions in noble
209 gases both temporally and spatially within OIB. Directly mapping the geothermal gases and fluids
210 emanating in NW Iceland, with minerals trapped within more ancient lavas poses a similar issue
211 to comparing seismic images of the deep mantle with ancient lava compositions, and such direct
212 comparisons are not warranted unless temporal variations are taken into consideration.

213 Even within solid samples noble gas compositions can be radically different. Studies of
214 OIB noble gas isotopes can use both minerals and glass, and distinct He isotopic compositions
215 have been measured between olivine and glass in Icelandic lavas (e.g., ~ 9 R_A in glass and 6 R_A in
216 olivine from sample NAL 688; [Macpherson et al., 2005](#)). Significant differences between olivine
217 and clinopyroxene within the same lavas from a range of OIB localities [have also been found](#)
218 (**Figure 1b**). Helium isotope ratios measured in these minerals demonstrate that olivine will always
219 have the same or higher ${}^3\text{He}/{}^4\text{He}$ than the co-existing clinopyroxene, indicating that it is a more

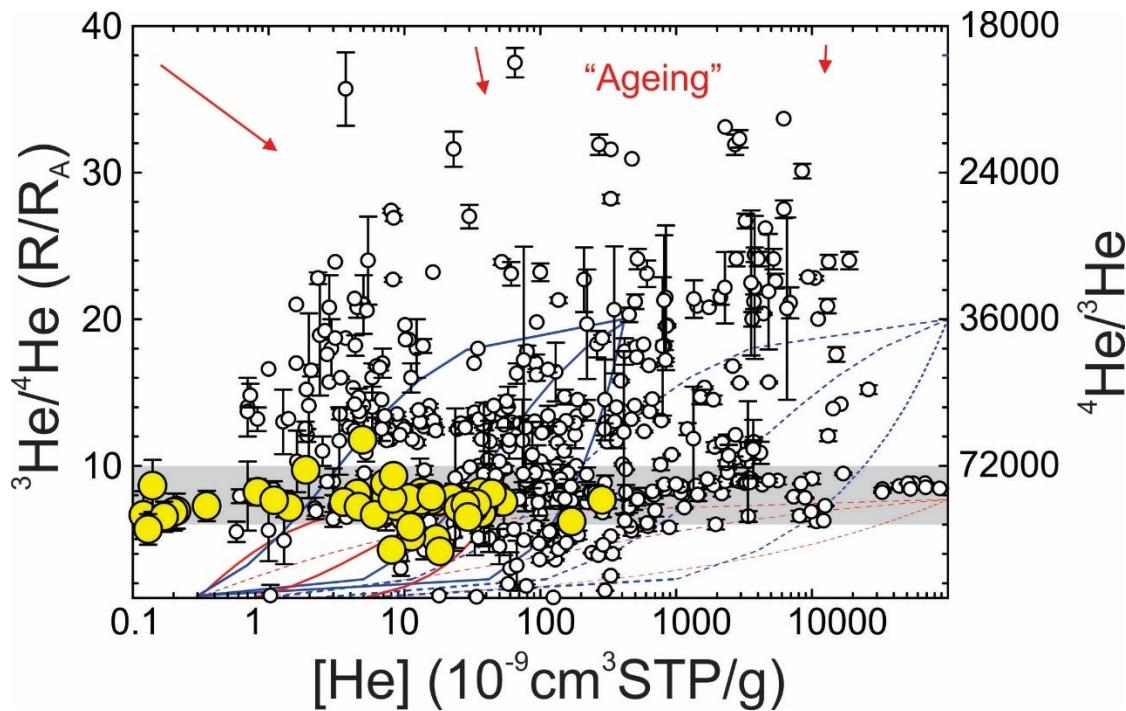
220 faithful recorder of He isotope composition, while absolute gas contents vary non-systematically
 221 by an order of magnitude between the two media (Day & Hilton, 2011).

222
 223 **Figure 1:** (a) Measured (a) ${}^3\text{He}/{}^4\text{He} (R/R_A)$ ratios for paired olivine and clinopyroxene separates
 224 from the Canary Islands (Day & Hilton, 2011), Samoa (Jackson et al., 2007), the Cook-Austral
 225 Islands (Hanyu et al., 2011) and for Iceland (Macpherson et al., 2005; Füri et al., 2010). (b)
 226 Helium isotope variations for phenocrysts (olivine, pyroxene) and glass versus hydrothermal
 227 samples from the same locations. Data for the Canary Islands are from Day & Hilton (2011; 2021)
 228 and Gurenko et al. (2006). Data for the Azores are from Moreira et al. (1999; 2012) and Jean-

229 [Baptiste et al. \(2009\)](#); Hawaii are from [Kurz et al. \(1982\)](#), [Sedwick et al. \(1994\)](#) and [Hilton et al. \(1997\)](#); Iceland are from [Macpherson et al. \(2005\)](#) and [Füri et al. \(2010\)](#).

231

232 A final complication when measuring noble gases in OIB relates to the release of
233 cosmogenically and radiogenically produced species during analyses. For example, both
234 cosmogenic thermal-neutron generation of ${}^3\text{He}$ and radiogenic ingrowth of ${}^4\text{He}$ by alpha decay of
235 U and Th can modify He isotope compositions in rocks over time. In a compilation of He isotope
236 results from both crushing and melting experiments performed on olivine and pyroxene grains,
237 [Day et al. \(2015\)](#) showed greater dispersion in ${}^3\text{He}/{}^4\text{He}$ for melting experiments through the
238 liberation of both ${}^3\text{He}$ generated by cosmogenic spallation and/or thermal neutron capture, and ${}^4\text{He}$
239 from radioactive decay of U and Th. These results support experiments that adopt a step-wise
240 crushing approach, where samples were repeatedly crushed for fixed but limited durations without
241 breaking vacuum, leading to consistency of ${}^3\text{He}/{}^4\text{He}$ and indicating restricted contributions from
242 matrix gas ([Hilton et al., 1993; 2011](#); [Scarsi, 2000](#); [Blard & Farley, 2008](#)). On the other hand,
243 crushing may not release all magmatic volatiles and the specific population of crystals measured
244 may lead to significant variations in noble gas content (e.g., [Horton et al., 2019](#)).

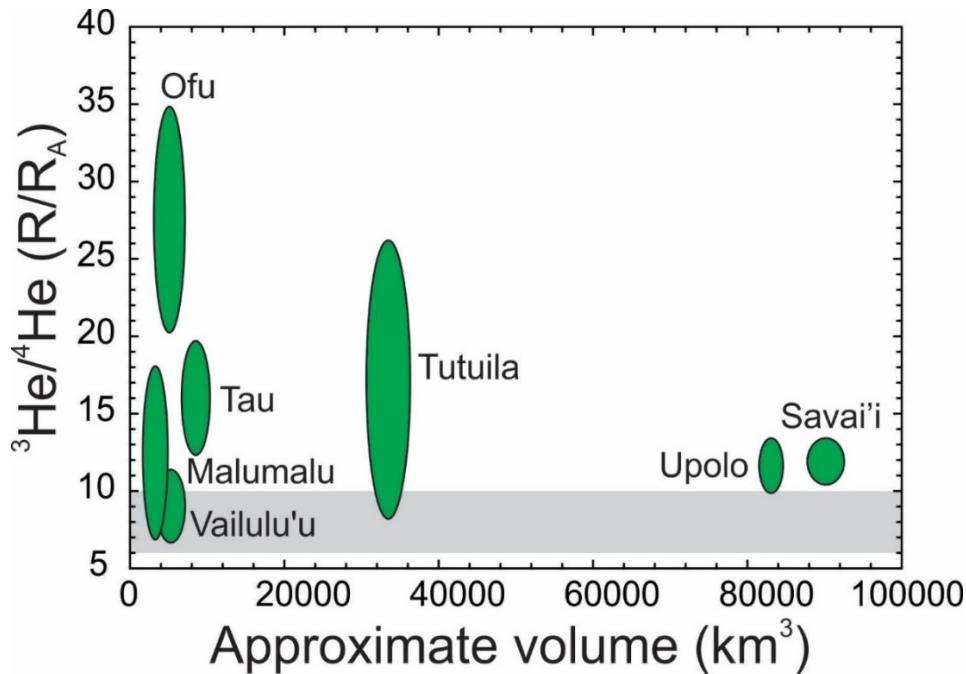

245 The examples described above relate to helium, rather than directly to Ne, Ar, Kr or Xe
246 which all have lower inherent gas contents making them harder to measure, particularly in
247 magmatic minerals, while mixing with atmosphere make it difficult to measure mantle isotopic
248 signatures of the heavier noble gases in hydrothermal gases or fluids. Instead, the majority of
249 measurements of Ar and Xe in particular have either been conducted by crushing or melting of
250 glasses erupted at high confining pressures, or using deeply derived cumulate mineral grains (e.g.,
251 [Trieloff et al., 2000](#)). These differences in noble gas behavior and abundance, both in space and
252 time, place restrictions on available noble gas isotope data for OIB, but also provide information
253 on magmatic process and noble gas preservation, as discussed below.

254

255 3. Complications of degassing and partial melting

256 Radiogenic isotope systems (e.g., Sr, Nd, Hf, Os, Pb, W) measured in OIB are largely
257 unaffected by crustal assimilation, except if they are in extremely low abundance. The reason for
258 this is that the edifice into which they are erupted is often similar in composition to the magmas
259 themselves and are young; no older than the oceanic plate on which they reside, less than 200
260 million years. This is not the case for noble gases. Due to variable gas contents, some OIB samples

261 can have noble gas isotope compositions that trend to that of the atmosphere due to concomitant
 262 degassing and assimilation processes (e.g., [Hilton et al., 1995](#)). Again, helium is the best studied
 263 of the noble gases in OIB, and a diagram of ${}^4\text{He}$ content [He] versus measured ${}^3\text{He}/{}^4\text{He}$, largely
 264 measured in olivine mineral separates illustrates this issue ([Figure 2](#)).
 265


266
 267 **Figure 2:** Helium concentrations versus ${}^3\text{He}/{}^4\text{He}$ for olivine and clinopyroxene separates from a
 268 global suite of OIB, with example of a single OIB chain (Canary Island lavas as yellow circles;
 269 [Day & Hilton, 2011](#)). The effect of variable degassing and contamination on helium within mineral
 270 separates is shown assuming mixing between a possible parental magma He composition (here
 271 inferred to be helium in parental melts of various abundances and with between 20 to 8 R_A , with
 272 a degassed and aged (0.1 Ma) edifice basalt composition with 1 ppm U and Th/U = 4 and initial
 273 ${}^3\text{He}/{}^4\text{He} = 8 R_A$ (present day ${}^3\text{He}/{}^4\text{He} = \sim 0.3 R_A$, $[\text{He}] = 0.25 \times 10^{-9} \text{ cm}^3 \text{ stp/g}$). The ratio of helium
 274 concentration in the melt relative to the assimilant is shown as no degassing of parental magma
 275 (ratio = 1), order of magnitude gas loss (0.1), and two orders of magnitude gas loss (0.01). Arrows
 276 denote the effect of 'ageing' of ${}^3\text{He}/(\text{U}+\text{Th})$ in phenocrysts. Ageing will affect low [He] content
 277 melts more than higher [He] content equivalents, illustrated by the size and orientation of vectors.
 278 Field of canonical mid-ocean ridge basalt (MORB; $8 \pm 2 R_A$; [Graham, 2002](#)) is shown as a gray
 279 bar, for comparison.
 280

281 Aside from the issues of efficient gas release during crushing, data in [figure 2](#) reveal over
 282 six orders of magnitude variation in He abundance, with OIB samples with MORB-like ${}^3\text{He}/{}^4\text{He}$
 283 spanning all of this variation and OIB with $>30 R_A$ showing at least three orders of magnitude
 284 variation. Previous efforts to model degassing with concomitant assimilation of radiogenic He

285 demonstrates that for addition of radiogenic He to have noticeable effects, there must be in excess
286 of an order of magnitude gas loss from presumed parental melt gas abundances, meaning that
287 accurate noble gas systematics depend upon severely limiting crustal assimilation contributions to
288 less than 1% (Day & Hilton, 2011). Similarly, work to establish variations of noble gas
289 compositions in OIB through ageing of magmas and the generation of ^4He through radiogenic
290 decay of U and Th have been proposed (e.g., Moreira & Allegre, 2004), but are generally
291 considered to play a limited role, both within minerals as well as in geothermal fluids and gases
292 unless total He abundances are exceptionally low (e.g., Day & Hilton, 2011; 2021; Truong et al.,
293 2018).

294 The near-perfectly incompatible behavior of noble gases during mantle partial melting
295 could lead to the assumption, in some instances, that the noble gas isotope compositions of lavas
296 are a faithful reflection of their bulk mantle source. This assumption differs from other isotopic
297 variations within OIB which are normally attributed to partial melting of distinct mantle
298 components (e.g., Zindler & Hart, 1986; Hofmann 1997; Brandon et al., 2007; Day et al., 2009).
299 The degree of partial melting, however, may have a profound effect on OIB noble gases. Melting
300 of more fusible components in the mantle source, over those that are more refractory, will affect
301 the noble gas composition of the erupted lavas during preferential gas-release. In turn, lower degree
302 partial melts will sample more diminutive noble gas components versus higher degree partial
303 melts, and the solubilities of noble gases in silicate melts will also affect this outcome. This issue
304 will be returned to in later sections, but one such example is offered by using simple estimates of
305 island volume versus the He isotope compositions measured on islands. It is possible to provide
306 crude volume estimates for volcanic islands, from the surrounding mean water depths and their
307 height. From these estimates and eruption ages, mean melt flux estimates can also be deduced. In
308 the case of the Samoan Islands, the broadly age progressive nature of the islands (Hart et al., 2004)
309 means that their estimated volumes can be used as a proxy of total melt volumes that reached the
310 surface. From detailed study, it has been recognized that He isotope compositions vary within the
311 islands, from nearly MORB-like $^3\text{He}/^4\text{He}$, to high- $^3\text{He}/^4\text{He}$ (e.g., Jackson et al., 2007; 2014). If the
312 measured He isotope composition in surface samples reflects the overall volcanic edifice, then
313 there is a relationship with the highest- $^3\text{He}/^4\text{He}$ being measured in volcanoes with small total island
314 volumes (Figure 3). Such an analysis is by no means perfect, since it has been established that He
315 isotope variations can occur temporally within a single island's lava stratigraphy (Kurz et al.,

316 1996), but it nonetheless illustrates that the degree of partial melting is likely to play a role in
 317 determining noble gas isotopic compositions.

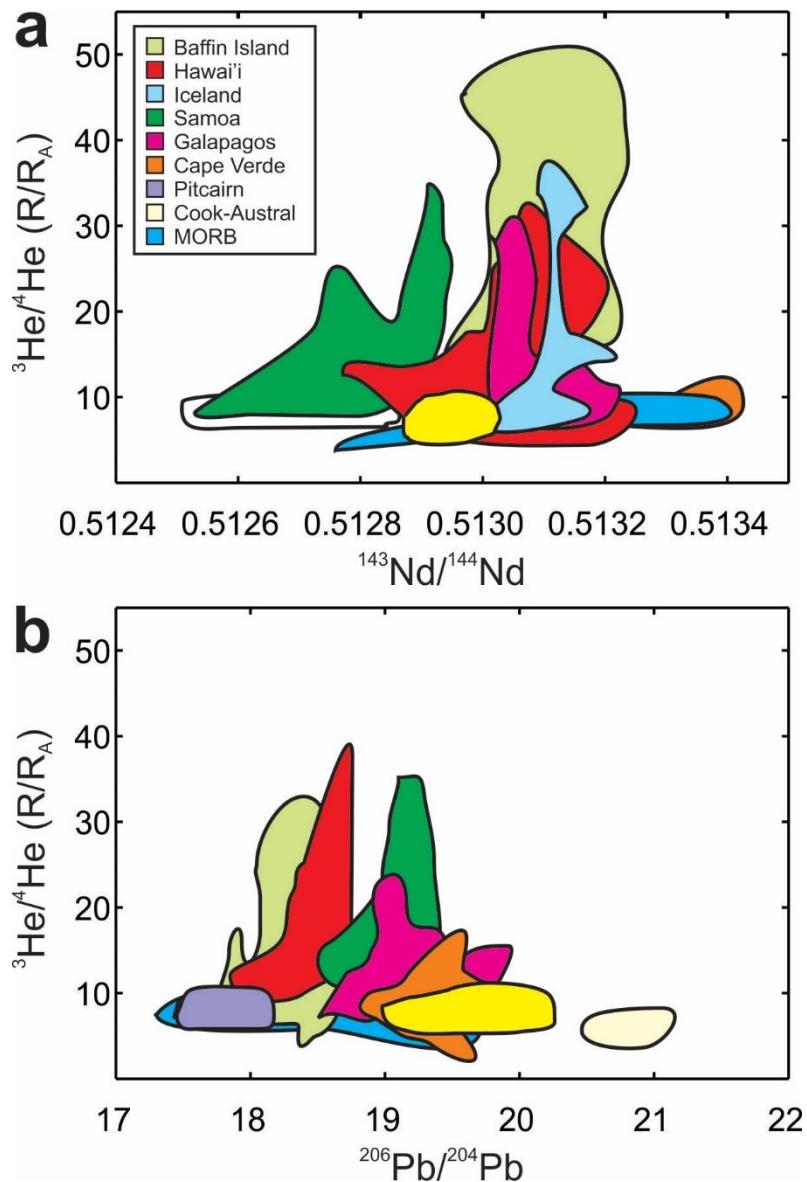
318
 319 **Figure 3:** Approximate edifice volume (in km³) versus range in helium isotope compositions for
 320 some of Samoan Islands and seamounts. Volume estimate taken from analysis of volcano depth,
 321 radius and height using maps of the islands, and He isotope compositions are from [Jackson et al.](#)
 322 ([2014](#)) and references therein. Shapes of ellipses denote approximate uncertainties in volume and
 323 He isotope composition.

324
 325 **4. Using helium isotopes to determine OIB mantle sources**
 326 It is seemingly no exaggeration that every major ocean island in the world with sub-aerially
 327 exposed volcanic rock has a helium isotope measurement of one type or another reported in the
 328 literature for it. For some islands, like Iceland, the range of He isotope compositions is significant
 329 (5.1 to 47.5 R_A), demonstrating that within individual islands, He isotope variations can be
 330 significant, as also has been observed in Samoa (e.g., **Figure 3**). Most studies have used mineral
 331 grains (olivine, clinopyroxene) to obtain these results, although glasses are sometimes also
 332 available, and these data are the main stay of OIB He isotope studies.

333 For various reasons, He isotope studies considering global OIB typically take the approach
 334 of taking the maximum He isotope compositions and grouping island chains under this value (e.g.,
 335 [Jackson et al., 2017](#); [Williams et al., 2019](#)). This approach has both strengths and weaknesses, as

336 the variability in He isotope compositions may reveal much about magmatic processes.
337 Nonetheless, taking this same approach, OIB can be broken into four basic categories (**Table 2**).
338 1. Low- $^3\text{He}/^4\text{He}$ OIB ($<7 \text{ R}_\text{A}$; $^4\text{He}/^3\text{He} = >110,000$): A restricted group of OIB with $^3\text{He}/^4\text{He}$ ratios
339 at or below the MORB range ($8 \pm 2 \text{ R}_\text{A}$; [Graham, 2002](#)), termed low- $^3\text{He}/^4\text{He}$ OIB include a
340 few individual islands, such as São Miguel in the Azores ([Moriera et al., 2012](#)), as well as Saint
341 Helena ([Hanyu et al., 2011](#)), Mangaia ([Parai et al., 2009](#)), Grande Comore Island ([Class et al., 2005](#)), and Guadalupe Island ([Eiler et al., 1997](#)).
342
343 2. MORB-like $^3\text{He}/^4\text{He}$ OIB ($8 \pm 2 \text{ R}_\text{A}$; $^4\text{He}/^3\text{He} = 110,000$ to $70,000$): A more common type with
344 MORB-like $^3\text{He}/^4\text{He}$, including Ascension Island ([Ammon et al., 2009](#)), Balleny Island
345 ([Williams et al., 2019](#)), the Canary Islands ([Hilton et al., 2000; Day & Hilton, 2011](#)), the Cobb
346 Islands ([Lupton et al., 1993](#)), the Comoros ([Class et al., 2005](#)), Mount Erebus ([Day et al., 2019](#)),
347 Gough and Tristan da Cuhna ([Class et al., 2005](#)), Madeira ([Vance et al., 1989](#)), Marion and
348 Prince Edward Islands ([Williams et al., 2019](#)), Rodrigues ([Furi et al., 2011](#)) and Socorro Island
349 ([Taran et al., 2002](#)).
350
351 3. An intermediate- $^3\text{He}/^4\text{He}$ OIB group ($10 \sim 20 \text{ R}_\text{A}$; $^4\text{He}/^3\text{He} = <70,000$ to $\sim 35,000$): Using the
352 simple approach of lumping islands under their highest $^3\text{He}/^4\text{He}$, this would be the largest
353 group, including the Azores (although see 1.; [Madureira et al., 2005](#)), Bouvet ([Kurz et al., 1998](#)),
354 Cape Verde ([Doucelance et al., 2003](#)), Caroline Islands ([Jackson et al., 2017b](#)),
355 Discovery seamounts ([Sarda et al., 2000](#)), Easter Island ([Poreda et al., 1993](#)), Heard Island
356 ([Hilton et al., 1995](#)), Juan Fernandez Islands ([Farley et al., 1993](#)), Louisville seamounts
357 ([Hanyu, 2014](#)), Macdonald and the Cook Australs and Macdonald Seamount Chain (although
358 see 1.; [Moreira and Allegre, 2004](#)), the Marquesas ([Castillo et al., 2007](#)), Mauritius ([Furi et al., 2011](#)),
359 the Meteor hotspot and Shona Island ([Moriera et al., 2005](#)), Pitcairn Island ([Garapic et al., 2015](#)),
360 Reunion Island ([Staudacher et al., 1990; Furi et al., 2011](#)), Tahiti and the Society
361 Islands ([Hanyu et al., 1999](#)), Crozet Island ([Breton et al., 2013](#)) and Amsterdam and St. Paul
362 ([Graham et al., 1999](#)).
363
364 4. High- $^3\text{He}/^4\text{He}$ OIB group ($>25 \text{ R}_\text{A}$; $^4\text{He}/^3\text{He} = <30,000$): Representing the *crème-de-la-crème*
365 of OIB for helium, these are Iceland ([Hilton et al., 1999](#)), Hawaii ([Valbracht et al., 1997](#)), the
366 Galapagos ([Kurz et al., 2009](#)) and Samoa ([Jackson et al., 2009](#)). Some studies include the
Palaeogene Baffin Island and West Greenland picrites, which can have high- $^3\text{He}/^4\text{He}$ (up to
50R_A; e.g., [Stuart et al., 2003](#)) within this OIB grouping. These picrites are continental flood

367 basalts, forming part of the North Atlantic Igneous Province, and are susceptible to crustal
368 contamination effects (Day, 2016), hence – so not to ‘muddy the water’ - we elect not to include
369 them in this assessment.

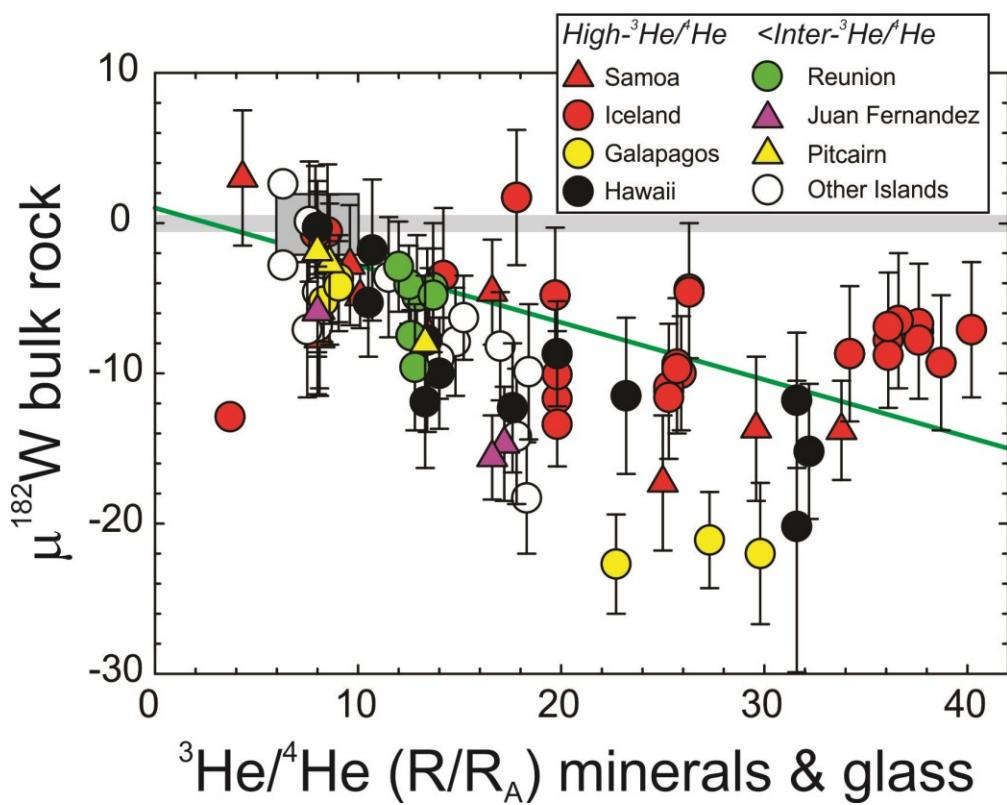

370 As noted above, the waters are far murkier than this simple evaluation might suggest. This is
371 illustrated by noting the range within the Samoan Island chain (**Figure 3**), and cross-island chain
372 studies illustrate significant helium isotope variability (e.g., Kurz et al., 1996; 2009; Class et al.,
373 2005; Macpherson et al., 2005; Madureira et al., 2005). Ignoring He isotope variability in OIB
374 may be important for assessing whether He is truly derived from the hottest mantle plumes (e.g.,
375 Jackson et al., 2017), or if it is sourced from seismically slow regions of the lower mantle (Williams
376 et al., 2019). Significantly, it avoids the question of chemical heterogeneity, a variable that is key
377 to understanding the mantle’s mixing history and the origin of primitive components; topics we
378 now return to.

379 A method that has provided important information on mantle isotopic variability has been
380 to compare helium isotope variations with radiogenic isotopes. An example of He isotope data
381 versus radiogenic isotopes is shown in **Figure 4**, where He isotope measurements dominantly from
382 olivine grains have been compared with bulk rock $^{143}\text{Nd}/^{144}\text{Nd}$ and $^{206}\text{Pb}/^{204}\text{Pb}$ data. Much has
383 been written about the relationships in **Figure 4** in the references cited relating to He isotope
384 compositions in OIB, listed above, and will not be repeated in detail here. The basic premise is
385 that low- $^3\text{He}/^4\text{He}$ and MORB-like $^3\text{He}/^4\text{He}$ OIB groups span a wide range of Sr-Nd-Pb isotope
386 compositions, spanning from HIMU-like (high $^{206}\text{Pb}/^{204}\text{Pb}$), to having depleted MORB mantle
387 (DMM, high $^{143}\text{Nd}/^{144}\text{Nd}$), to enriched mantle flavors (low $^{143}\text{Nd}/^{144}\text{Nd}$, high $^{87}\text{Sr}/^{86}\text{Sr}$).
388 Conversely intermediate- $^3\text{He}/^4\text{He}$ to high- $^3\text{He}/^4\text{He}$ OIB typically span more restricted ranges in Sr-
389 Nd-Pb isotopes, and possibly encapsulate two distinct high- $^3\text{He}/^4\text{He}$ reservoirs (Jackson et al.,
390 2007). The wide range in Sr-Nd-Pb isotopes for the low- and MORB-like $^3\text{He}/^4\text{He}$ OIB has
391 typically been explained through recycling of subducted crustal components and variable mixing
392 with DMM.

393 Conversely, the intermediate- and high- $^3\text{He}/^4\text{He}$ OIB have been considered to come from
394 a common reservoir, variably termed in the literature as the ‘C’ or common component (Hanen &
395 Graham, 1996), ‘PHEM’ of Primary Helium Mantle (Farley et al., 1992), and most commonly
396 ‘FOZO’, or the Focal Zone (Hart et al., 1992), now more commonly referred to as the Focus Zone.
397 As mentioned previously, these are slightly different flavors of the same theme, with the

398 interpretation that the elevated ${}^3\text{He}$ component comes from the deep mantle. Debate continues as
 399 to what the nature of the deep mantle component might be, from early mantle domain(s) that
 400 dominates the isotopic character of resultant lavas (e.g., [Class et al., 2005](#); [Jackson et al., 2010](#);
 401 [2020](#)) to mixed sources of subducted components and relatively less degassed lower mantle (e.g.,
 402 [Gonnerman & Mukhopadhyay, 2009](#)).

403



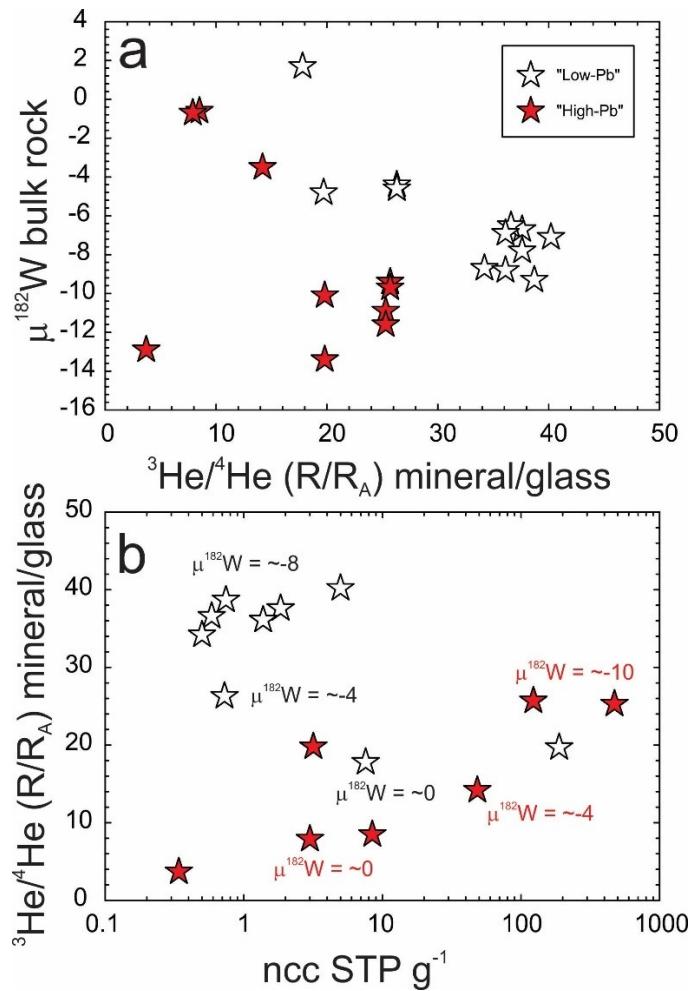
404

405 **Figure 4:** ${}^3\text{He}/{}^4\text{He}$ from olivine separates versus (a) ${}^{143}\text{Nd}/{}^{144}\text{Nd}$ and (b) ${}^{206}\text{Pb}/{}^{204}\text{Pb}$ shown as
 406 fields. Figure modified from [Day & Hilton \(2011\)](#). The yellow field is the Canary Islands shown
 407 in prior figures.

408

409 A new line of evidence is the relationship between high- ${}^3\text{He}/{}^4\text{He}$ and ${}^{182}\text{W}/{}^{184}\text{W}$. Tungsten-
 410 182 is the decay product of ${}^{182}\text{Hf}$, which had a half-life of 9 million years. Consequently, variations
 411 measured in ${}^{182}\text{W}/{}^{184}\text{W}$ for OIB reflect heterogeneities imparted within the first 60 million years
 412 or so of Earth's history, and such variations have recently been detected, with **notable** differences
 413 in ${}^{182}\text{W}/{}^{183}\text{W}$ between low- and MORB-like ${}^3\text{He}/{}^4\text{He}$ OIB and lavas with high- ${}^3\text{He}/{}^4\text{He}$ (Mundl et
 414 al., 2017). This original paper noted a correlation between He and W (**Figure 5**) interpreted to
 415 support a deep mantle plume origin (Mundl et al., 2017), possibly even from the core-mantle
 416 boundary (Mundl-Petermeier et al., 2020), and for ancient heterogeneities to be preserved, intact,
 417 within the lower mantle (Jackson et al., 2020).

418

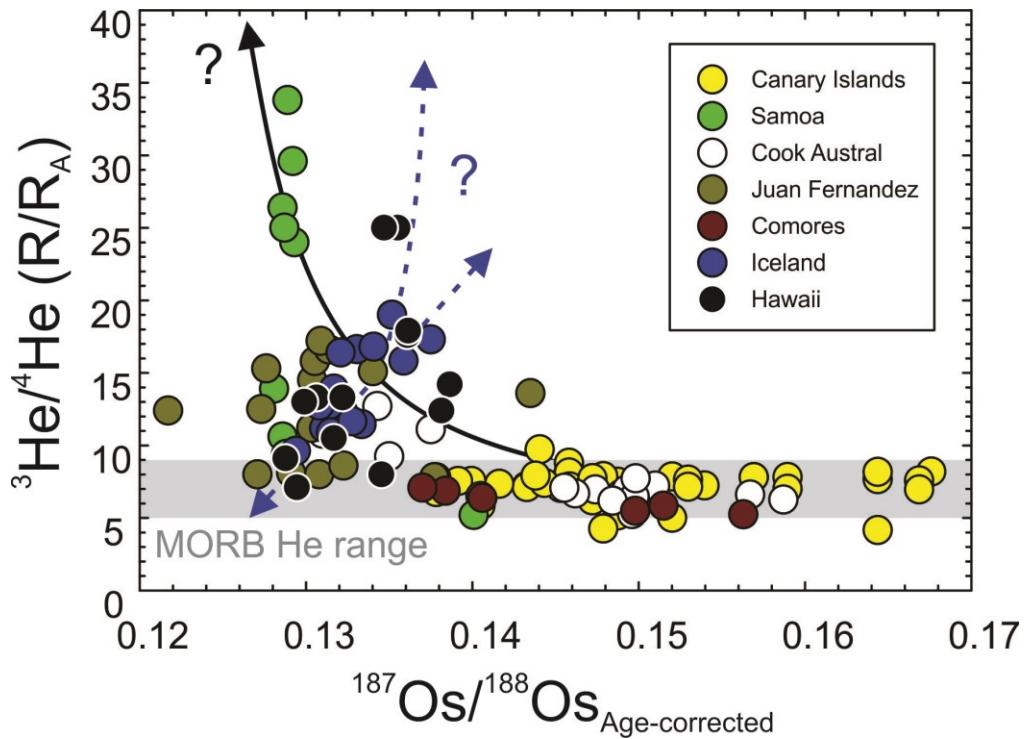

419 **Figure 5:** Helium versus tungsten isotopes in OIB. The original correlation line from Mundl et al.
 420 (2017) is shown in green, with the terrestrial standard shown as a grey line and the DMM value
 421 shown as a grey box, assumed using the average MORB ${}^3\text{He}/{}^4\text{He}$ ratio from Graham (2002).
 422 Tungsten isotope data are from Mundl et al. (2017), Mundl-Petermeier et al. (2019, 2020), and
 423 Peters et al. (2021), with He isotope data sources reported in those works.

424

425 Since 2017, the available high-precision $^{182}\text{W}/^{184}\text{W}$ data for OIB have increased
426 substantially and the correlation is not as strong (**Figure 5**). In general, high- $^3\text{He}/^4\text{He}$ OIB are
427 always lower than the terrestrial standard for W isotopic composition (reported in ppm deviations,
428 or $\mu^{182}\text{W}$), suggesting derivation from low-Hf/W reservoirs, such as the core, or from anomalous
429 regions of the lower mantle. Arguments have been made to explain individual correlations between
430 He and W (Mundl-Petermeier et al., 2019; Jackson et al., 2020), although these arguments rely on
431 an assumed reservoir concentration for both noble gases (He) and tungsten.

432 An example of contrasting interpretation of different trends comes from He-W isotope
433 correlations for Icelandic lavas. Mundl-Petermeier et al. (2019) reported two groups of lavas; a
434 ‘Low-Pb’ group, consisting mostly of basalts from NW Iceland with $^{206}\text{Pb}/^{204}\text{Pb}$ from ~ 18.4 to
435 18.5, $^3\text{He}/^4\text{He}$ from 17.8 to 40.2R_A, and $\mu^{182}\text{W}$ from +1.7 to -9.1 and; a ‘High-Pb’ group,
436 consisting mainly of recent basalts, with higher $^{206}\text{Pb}/^{204}\text{Pb}$ (~ 18.7 to 19.2), $^3\text{He}/^4\text{He}$ from 7.9 to
437 25.7R_A, and $\mu^{182}\text{W}$ from -0.6 to -11.7 (**Figure 6a**). These authors explained the variations as
438 mixing between ambient upper oceanic mantle and primordial reservoirs that underwent limited
439 de-gassing, one of which formed within the first 60 Ma of Solar System history and was a major
440 contributor to the youngest basalts.

441 In this interpretation, there remain some important research questions. For example, the
442 ‘low-Pb’ trend is dominated by Miocene samples from NW Iceland, yet one recent basalt (ICE-
443 14-32A) is in this grouping. Similarly, one Miocene sample (ICE-14-16) is excluded due to slightly
444 more radiogenic $^{206}\text{Pb}/^{204}\text{Pb}$. Also not well understood is the relationship of He-W isotope
445 compositions and [He] contents (**Figure 6b**). In the recent ‘high-Pb’ lavas, there is a trend of
446 decreasing $^3\text{He}/^4\text{He}$ with decreasing [He], that broadly correlates with W isotope anomaly. This
447 would be consistent with low- $^3\text{He}/^4\text{He}$ lavas having greater contributions from a crustal or upper
448 mantle source with concomitant degassing and assimilation. On the other hand, the ‘low- $^3\text{He}/^4\text{He}$ ’
449 NW Iceland samples show no trend, but the samples with the highest [He] contents also have the
450 lowest $^3\text{He}/^4\text{He}$ and $\mu^{182}\text{W}$. As noted from geothermal fluid and gas versus phenocryst and glass
451 comparisons (Hardardottir et al., 2018; Day & Hilton, 2021), the high- $^3\text{He}/^4\text{He}$ component in
452 earlier Icelandic lavas are not readily sampled in modern Icelandic rift lavas, and it is possible that
453 the He-W isotope compositions and [He] contents indicate temporal variations in isotopic
454 signatures flavored from pulsing of deep plumes.


455

456 **Figure 6: (a)** Helium-W isotope and (b) Helium isotope and abundance data for 'low-Pb' and
 457 'high-Pb' Icelandic lava data from [Mundl-Petermeier et al. \(2019\)](#), with W anomalies shown
 458 beside groupings. See text for details.

459 Trends between helium isotopes and radiogenic isotopes are not restricted to Sr-Nd-Hf-Pb
 460 or extinct radionuclides, but occur with highly siderophile elements, like Os. [Brandon et al. \(2007\)](#)
 461 in their study of Icelandic rift zone lavas noted positive correlations with ${}^{187}\text{Os}/{}^{188}\text{Os}$ and ${}^3\text{He}/{}^4\text{He}$,
 462 similar to correlations for Hawaiian volcanoes ([Brandon et al., 1999](#)). These have been interpreted
 463 to reflect mixing between high- ${}^3\text{He}/{}^4\text{He}$ deep mantle components, possibly including the core, and
 464 upper mantle products, or depleted components within the mantle plume beneath Iceland (**Figure**
 465 **7**). In these Icelandic lavas, there is a relationship between the lowest ${}^3\text{He}/{}^4\text{He}$ samples having the
 466 most depleted Nd, Hf and Pb isotope compositions and the more enriched lavas having high-
 467 ${}^3\text{He}/{}^4\text{He}$ ([Nicklas et al., 2021](#)). A broader comparison of He-Os isotope data for several OIB chains
 468 suggests a slightly different picture, where OIB with radiogenic ${}^{187}\text{Os}/{}^{188}\text{Os}$ generally have

469 ${}^3\text{He}/{}^4\text{He}$ within the MORB-range, whereas high- and intermediate- ${}^3\text{He}/{}^4\text{He}$ OIB have ${}^{187}\text{Os}/{}^{188}\text{Os}$
 470 close to primitive mantle estimates (~0.1296; [Meisel et al., 1996](#)). As with He-W and some He-
 471 Sr-Nd-Pb isotope systematics, this suggests different processes, including the extent of partial
 472 melting and the contribution from different mantle reservoirs, playing a role in the ultimate isotopic
 473 composition of lavas. Similar evidence lies in measurement of oxygen isotopes with He isotopes
 474 in the same olivine populations, suggesting distinct mantle lithologies being sampled in some OIB
 475 ([Day et al., 2009; 2010](#)).

476

477

478 **Figure 7:** Plot of ${}^3\text{He}/{}^4\text{He}$ from olivine separates versus ${}^{187}\text{Os}/{}^{188}\text{Os}$ in bulk rocks with >50 ppt Os
 479 for OIB. Denoted is the MORB range in He as well as possible mixing vectors between deep mantle
 480 radiogenic sources, like the core (blue lines) or mixing between radiogenic Os isotope reservoirs
 481 with MORB-like He, and high- ${}^3\text{He}/{}^4\text{He}$ mantle sources with primitive mantle-like Os isotopes
 482 (black line). Data are from [Brandon et al. \(1999; 2007\)](#), [Class et al. \(2009\)](#), [Parai et al. \(2009\)](#),
 483 [Day & Hilton \(2011\)](#), [Day et al. \(2010\)](#), [Jackson & Shirey \(2012\)](#) and [Paquet et al. \(2019\)](#), and
 484 references therein.

485

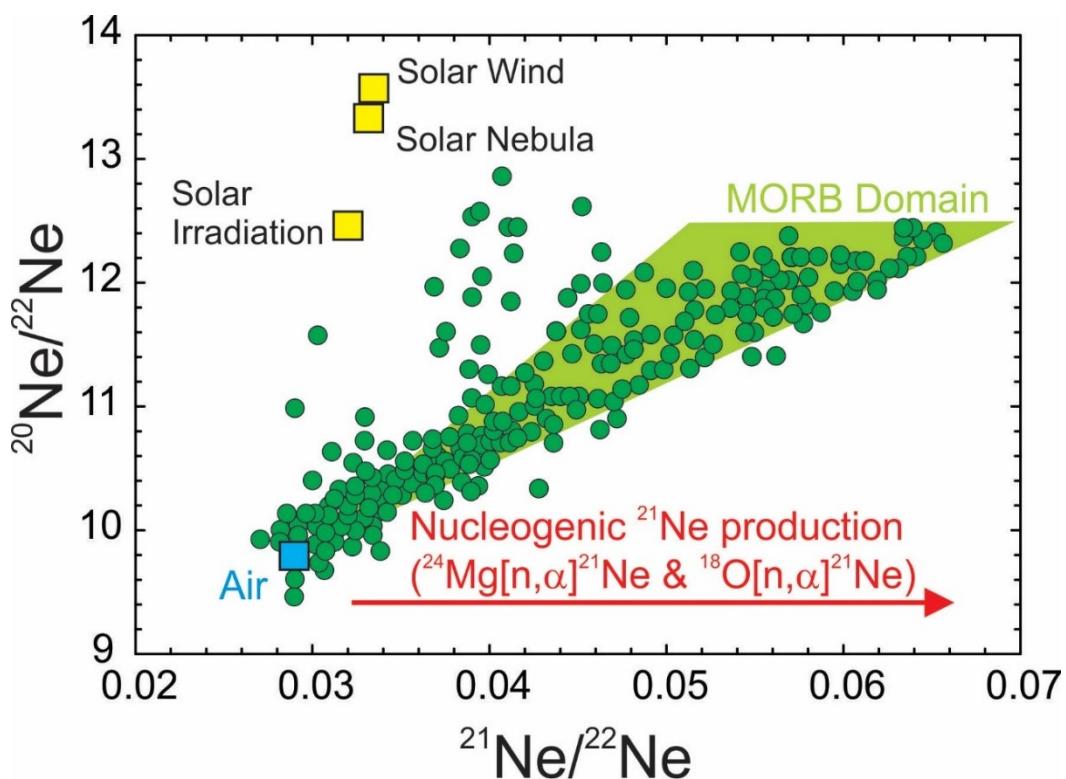
486

487 To summarize section 4, OIB span a range of helium isotope compositions. Those with
 488 low- to MORB-like ${}^3\text{He}/{}^4\text{He}$ often have extreme radiogenic isotope flavors (EM, HIMU), with
 489 variable and sometimes radiogenic ${}^{187}\text{Os}/{}^{188}\text{Os}$ and $\mu^{182}\text{W} \sim 0$, while OIB with intermediate- to
 490 high- ${}^3\text{He}/{}^4\text{He}$ converge to a more limited range of compositions, reflective of potentially early

491 differentiated and isolated sources with negative $\mu^{182}\text{W}$, and a limited range in Sr-Nd-Pb-Os
492 isotope compositions, possibly reflecting core contributions (e.g., [Brandon et al., 1999](#); [Mundl-](#)
493 [Petermeier et al., 2019](#)), or simply ancient isolated mantle sources (e.g., [Mundl et al., 2017](#)). In
494 certain cases, the relationships with He and other noble gases are not systematic within and
495 between OIB, suggesting that other processes can complicate simple mixing relationships between
496 sampled mantle reservoirs.

497

498 5. Unravelling solar and nucleogenic components in the deep mantle


499 Attempts to measure the neon isotope composition of oceanic basalts began in the mid-
500 1970s ([Craig & Lupton, 1975](#)), but high-precision data only became available in 1988 with the
501 publication of MORB data by [Sarda et al. \(1988\)](#). As mentioned previously, Ne is in low
502 abundance in igneous rocks and their component minerals, but analytical challenges, especially
503 related to $^{40}\text{Ar}^{++}$ and CO^{2+} interferences, make precise Ne isotope abundance measurements
504 particularly difficult (see [Moreira, 2013](#)). Despite this, gas-rich samples have made broad
505 characterization of MORB possible, as well as some OIB. Neon has three stable isotopes, ^{20}Ne and
506 ^{22}Ne , and ^{21}Ne , which can be produced by reactions $^{24}\text{Mg}[\text{n},\alpha]^{21}\text{Ne}$ and $^{18}\text{O}[\text{n},\alpha]^{21}\text{Ne}$, respectively
507 ([Wetherill, 1954](#)). Variations in $^{20}\text{Ne}/^{22}\text{Ne}$ have been interpreted to reflect contributions of a high
508 $^{20}\text{Ne}/^{22}\text{Ne}$ solar component and of atmosphere ($^{20}\text{Ne}/^{22}\text{Ne} = 9.8$; [Sarda et al., 1988](#)), whereas
509 $^{21}\text{Ne}/^{22}\text{Ne}$ ratios are reflective of mixing between air ($^{21}\text{Ne}/^{22}\text{Ne} = 0.029$), solar components, and
510 nucleogenic products. Neon isotope space can therefore be described between the solar
511 component, atmosphere (or air) and nucleogenic components which are all readily sampled in
512 MORB ([Figure 8](#)). In this regard, it is notable that the $^{20}\text{Ne}/^{22}\text{Ne}$ of the MORB source appears to
513 be lower than the OIB source value but what the exact $^{20}\text{Ne}/^{22}\text{Ne}$ value of the MORB source is and
514 how it originates is still an open question - solar irradiated material, or solar nebula neon mixed in
515 with chondritic neon during accretion, or solar nebula neon mixed in with atmospheric neon
516 recycled through plate tectonics are all possibilities, discussed below.

517

Typically, three components are recognized; a solar wind component, with the highest

518 $^{20}\text{Ne}/^{22}\text{Ne}$ (13.78; [Heber et al., 2009](#)), a solar nebula component derived by extrapolation (13.36;
519 [Heber et al., 2012](#)) and a solar irradiation component with the lowest $^{20}\text{Ne}/^{22}\text{Ne}$, previously referred
520 to as Ne-B (12.5; [Black & Pepin, 1969](#)) ([Figure 8](#)). The solar component is much debated due to
521 the importance of this component for constraining accretion scenarios for the Earth ([Marty, 2020](#)).

522

523


524 **Figure 8:** Three-neon isotope plot for mid-ocean ridge basalts (green circles) versus the air
 525 (atmosphere) composition, and compositions of solar components. The Solar Nebula (SN)
 526 component is a likely candidate for early Earth composition, but the Solar Wind (SW) composition
 527 is often used for extrapolation to air-free compositions of $^{21}\text{Ne}/^{22}\text{Ne}$. Samples of MORB show a
 528 range of nucleogenic $^{21}\text{Ne}/^{22}\text{Ne}$ components, with the average MORB domain taken from [Moreira](#)
 529 ([2013](#)). Data are from [Moreira \(2013\)](#) and references therein.

530

531 Distinguishing between the possible endmembers is potentially important for understanding the
 532 relative contributions by noble gas addition to the Earth from a primary atmosphere with solar
 533 nebula composition ([Harper & Jacobsen, 1996](#); [Yokochi & Marty, 2004](#)) and contributions of
 534 accreted materials with irradiated surfaces ([Moreira & Charnoz, 2016](#); [Peron et al., 2018](#)).
 535 Discovery of OIB samples with $^{20}\text{Ne}/^{22}\text{Ne}$ ratios higher than the Ne-B component suggests that
 536 the former model must be at least partly correct ([Williams & Mukhopadhyay, 2019](#)). Choosing
 537 between these components is important, since extrapolations to atmosphere-free compositions are
 538 also derived for other isotopes (e.g., $^{21}\text{Ne}/^{22}\text{Ne}$, $^{40}\text{Ar}/^{36}\text{Ar}$) using this approximation. Since the
 539 largest value for the Solar Wind component generates the greatest variability in extrapolated
 540 compositions, we use this value for extrapolations presented in later figures.


541 Samples of MORB have been shown to be isotopically heterogenous with respect to Ne,
542 but fall in a general MORB domain between air and a strongly nucleogenic component with
543 $^{20}\text{Ne}/^{22}\text{Ne}$ up to ~ 12.5 (Sarda et al., 1988). Samples lying above the MORB domain shown in
544 **Figure 8** are from the East Pacific Rise or Shona and Discovery rises in the South Atlantic and
545 have high- $^{3}\text{He}/^{4}\text{He}$, with some of them being associated with tomographic anomalies, suggestive
546 of ‘non-normal’ MORB (Moriera et al., 1995; Niedermann et al., 1997; Kurz et al., 2005). By
547 comparison with MORB, most OIB samples show a restricted range in Ne isotope compositions,
548 clustering close to the air value (**Figure 9**). As mentioned previously, this is due to the greater
549 susceptibility to atmospheric contamination in lower Ne content OIB sample media (mainly
550 olivine and pyroxene) compared with MORB glass. However, some studies have utilized glass
551 samples and gas-rich cumulates to precisely define the Ne isotope characteristics of some OIB
552 (e.g., Trieloff et al., 2000; Kurz et al., 2009; Jackson et al., 2009; Raqun & Moreira, 2009;
553 Mukhopadhyay, 2012; Peron et al., 2016; Williams & Mukhopadhyay, 2019). These studies have
554 revealed that high- $^{3}\text{He}/^{4}\text{He}$ OIB, including Iceland, Fernandina in the Galapagos, Loihi Seamount
555 in Hawaii, and Ofu in Samoa all have solar $^{20}\text{Ne}/^{22}\text{Ne}$ components, as do some intermediate-
556 $^{3}\text{He}/^{4}\text{He}$ OIB such as Reunion, Kerguelen, and Pitcairn. Critically, the high- $^{3}\text{He}/^{4}\text{He}$ OIB have the
557 steepest slopes in $^{20}\text{Ne}/^{22}\text{Ne}$ - $^{21}\text{Ne}/^{22}\text{Ne}$ space, suggesting more limited nucleogenic components
558 produced since the formation of their mantle reservoirs. A straightforward explanation for these
559 differences between high- $^{3}\text{He}/^{4}\text{He}$ OIB and MORB is that nucleogenic Ne is produced in both
560 reservoirs more or less equally, but that the concentration of noble gases in the high- $^{3}\text{He}/^{4}\text{He}$ OIB
561 reservoir is higher. Alternatives including lower absolute abundances of radiogenic U and Th in
562 high- $^{3}\text{He}/^{4}\text{He}$ mantle reservoirs do not seem tenable with Pb isotope systematics for these rocks.
563 Partial melting may also play a role, where the high- $^{3}\text{He}/^{4}\text{He}$ OIB are generally tholeiitic, whereas
564 OIB with lower- $^{3}\text{He}/^{4}\text{He}$ range from tholeiitic to strongly alkalic basalts.

565

Figure 9: Three-neon isotope plot for OIB with the same reservoirs shown in figure 8, but with abbreviations. Dashed lines are best fits through Fernandina (F), Loihi (L), Iceland (I), Reunion (R) and Kerguelen (K) data. SW, SN and SI stand for solar wind, solar nebula and solar irradiation components discussed in the text. Data are from Treiloff et al. (2000), Honda & Woodhead (2005), Parai et al. (2009), Jackson et al. (2009), Kurz et al. (2009), Hanyu et al. (2011), Lupton et al. (2012); Mukhopadhyay (2012), Moreira et al. (2012), Peto et al. (2013), Peron et al. (2017).

Neon isotopes are inherently mixtures between a primary solar or source component and air, so that calculations can be made using an assumed $^{20}\text{Ne}/^{22}\text{Ne}$ composition to extrapolate to a $^{21}\text{Ne}/^{22}\text{Ne}$ ratio (in this case, 13.8). Doing this for OIB with resolvable $^{20}\text{Ne}/^{22}\text{Ne}$ values above the air value yields a range of $^{21}\text{Ne}/^{22}\text{Ne}_{\text{ext}}$ spanning from the nucleogenic MORB endmember, to near solar nebula compositions (Figure 10). Similar diagrams to Figure 10 have been interpreted to reflect solar high- $^{3}\text{He}/^{4}\text{He}$ components in OIB (e.g., Jackson et al., 2009). In all the represented cases, $^{21}\text{Ne}/^{22}\text{Ne}_{\text{ext}}$ is lower than MORB, but the He isotope compositions can be variable and more radiogenic than in MORB, with Nd and Os isotope compositions often reaching compositions outside of the defined FOZO values for high- $^{3}\text{He}/^{4}\text{He}$ OIB. Nonetheless, the He-Ne correlation suggest a common, low $(\text{U}+\text{Th})/^{3}\text{He}$, $(\text{U}+\text{Th})/^{22}\text{Ne}$ source for OIB (Moriera, 2013), showing an early solar component in OIB sources, likely developed through nebula ingassing into the early Earth (e.g., Yokochi & Marty, 2004; Harper & Jacobsen, 1996; Mukhopadhyay 2012; Williams & Mukhopadhyay, 2019).

587

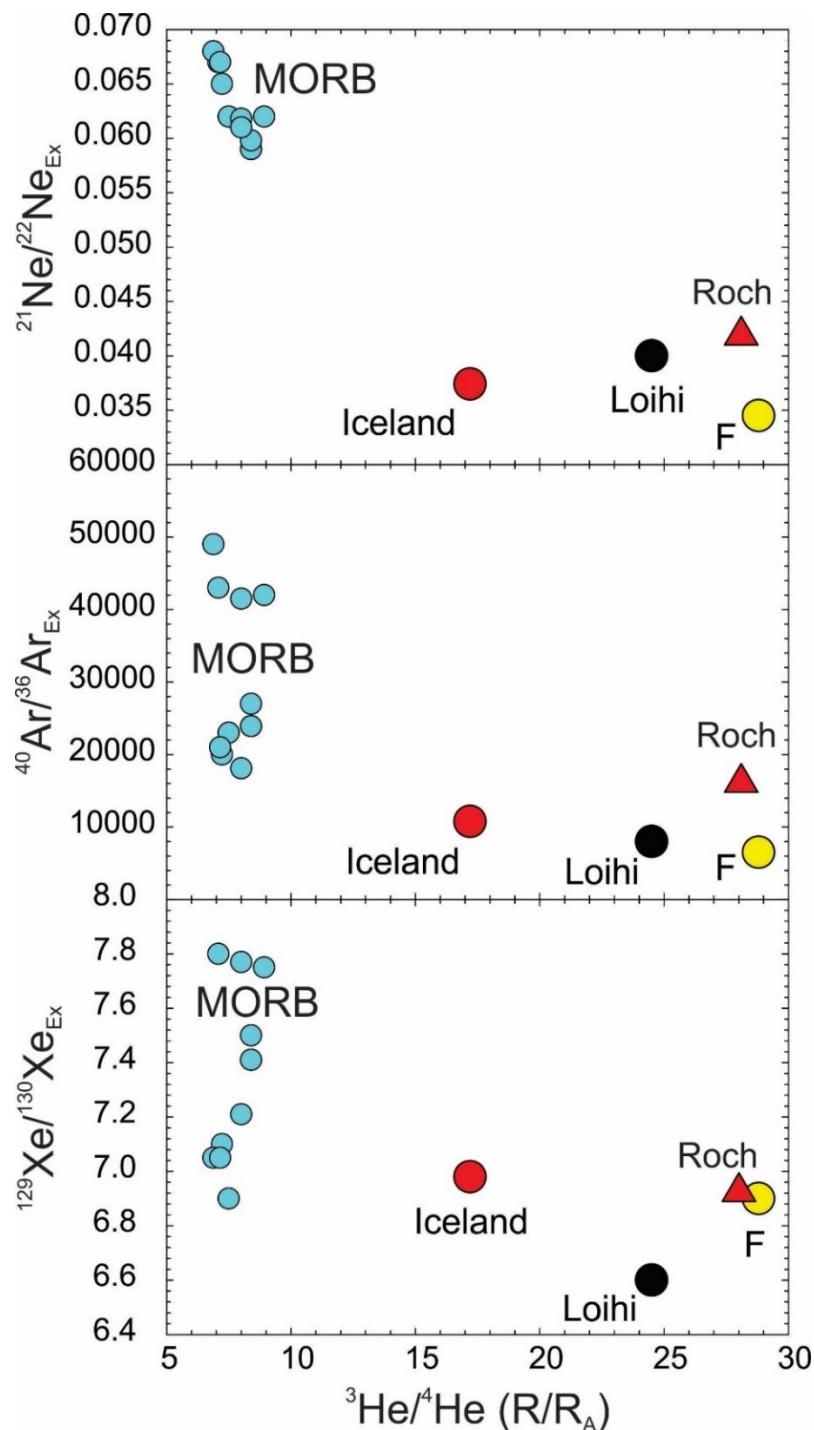
588 **Figure 10:** Extrapolated $^{21}\text{Ne}/^{22}\text{Ne}$ versus He, Nd and Os isotope compositions in OIB. Data
 589 sources are given in Table 1. Abbreviations are for individual islands: SM = Sao Miguel, Azores;
 590 Te = Teceira, Azores; O = Ofu, Samoa; S = Savaii, Hawaii.

591

592 This component has subsequently been degassed extensively from the mantle sampled during
593 upwelling beneath ridges and, prior to this, during the formation of the continents, whereas isolated
594 deep mantle sources have been less affected by these processes. Even so, Ne isotopes hint at less-
595 clear associations with Sr-Nd-Pb-Os isotopes. For example, low $^{143}\text{Nd}/^{144}\text{Nd}$ is associated with
596 low Sm/Nd crustal reservoirs. These relationships suggest that He and Ne isotope signatures in
597 OIB can be mixed with subducted components, and so noble gases might be decoupled in some -
598 perhaps even most – instances from their radiogenic isotope compositions. Heavier noble gases
599 allow consideration of this issue.

600

601 **6. Mantle outgassing and heavy noble gases**


602 Of the remaining noble gases, isotopic data for Ar are the most common in OIB samples,
603 with Kr isotope data being essentially absent. Remarkable analytical efforts, and the selection of
604 key samples, have also enabled high-precision analyses of Xe isotopes. Argon has three stable
605 isotopes, ^{36}Ar , ^{38}Ar , and ^{40}Ar . Argon-40 is produced by decay of ^{40}K and is now the most abundant
606 isotope of Ar in the Earth. The atmosphere is composed of 0.93% Ar, with a $^{40}\text{Ar}/^{36}\text{Ar}$ ratio of
607 295.6, so all samples measured for Ar represent mixtures between the atmospheric composition
608 and a solar component modified by ingrowth of ^{40}Ar . As with Ne, extrapolation of $^{40}\text{Ar}/^{36}\text{Ar}$ and
609 $^{38}\text{Ar}/^{36}\text{Ar}$ ratios to the solar component are done versus the $^{20}\text{Ne}/^{22}\text{Ne}$ measured for the same
610 samples (see, for example, [Mukhopadhyay & Parai, 2019](#)). These extrapolations for $^{38}\text{Ar}/^{36}\text{Ar}$
611 suggest a solar component to OIB (e.g., [Raquin & Moreira, 2009](#); [Peron et al., 2017](#)) and the lower
612 time-integrated $^{40}\text{K}/^{36}\text{Ar}$ ratio calculated for OIB are consistent with sampling of mantle sources
613 that have experienced less processing and degassing over Earth history than the depleted MORB
614 mantle.

615 A similar procedure can be done for Xe, which has nine stable isotopes, of which ^{129}Xe
616 was produced by decay of the extinct radionuclide ^{129}I ($T^{1/2} = 16$ Myr) in the first ~ 100 million
617 years of Solar System history, and several other isotopes (^{131}Xe , ^{132}Xe , ^{134}Xe , ^{136}Xe) were formed
618 by either spontaneous fission of ^{244}Pu ($T^{1/2} = 82$ Myr) in the first ~ 500 million years of the Solar
619 System or are presently being produced by spontaneous fission of ^{238}U ($T^{1/2} = 4.47$ Gyr) ([Marty,](#)
620 [2020](#)). While somewhat complicated, Xe isotopes have the power to unravel a range of processes,
621 pointing to Xe loss from the atmosphere by preferential ionization ([Zahnle et al., 2019](#); the 1st Xe
622 paradox of [Marty, 2020](#)), the existence of several distinct sources of Xe within the Earth ([Marty,](#)

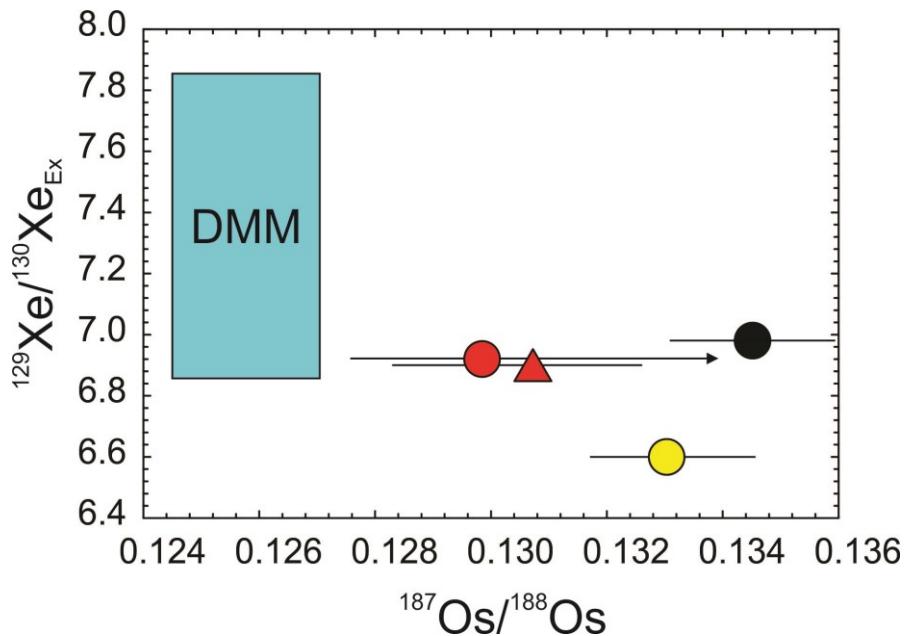
623 1989), or possible delivery of ^{129}Xe -rich material to the Earth after mantle degassing (2nd Xe
624 paradox of [Marty, 2020](#)), and the potential for variable differentiation or late stage heterogeneous
625 volatile accretion to the Earth from Pu/I ratios obtained from Xe ([Parai & Mukhopadhyay, 2015](#);
626 3rd Xe paradox of [Marty, 2020](#)). For simplification, only $^{129}\text{Xe}/^{130}\text{Xe}$ data for OIB are considered
627 here and for a fuller consideration of Xe isotopes in OIB, the reader is referred to [Mukhopadhyay](#)
628 & [Parai \(2019\)](#) and [Parai et al. \(2019\)](#).

629 As with Ne and Ar, $^{129}\text{Xe}/^{130}\text{Xe}_{\text{ext}}$ is corrected for atmospheric contamination using a
630 variety of extrapolation methods (see [Mukhopadhyay, 2012](#)). Here, we take data extrapolated in
631 studies of MORB and four OIB locations (**Figure 11**). The MORB data are for glass samples with
632 relatively high Xe, while the OIB data are from distinct glasses (e.g., the Iceland DICE sample;
633 [Mukhopadhyay, 2012](#)), or cumulate rocks with high Xe contents ([Treiloff et al., 2000](#)). An
634 important feature of the OIB data is that the $^{21}\text{Ne}/^{22}\text{Ne}_{\text{ext}}$, $^{40}\text{Ar}/^{36}\text{Ar}_{\text{ext}}$ and $^{129}\text{Xe}/^{130}\text{Xe}_{\text{ext}}$ are all
635 lower than the MORB values. These would suggest that the high- $^3\text{He}/^4\text{He}$ mantle reservoir has
636 distinct Ne, Ar and Xe isotope characteristics and is distinct from the mantle sampled by MORB.

637 A complication in the study of heavier noble gases is subduction. Because heavier noble
638 gases, especially Xe, are more soluble in water [than He](#), subduction of these gases into the mantle
639 is all but assured. How efficiently these gases are returned to Earth's interior by subduction is not
640 well-constrained, but evidence for this process has been made evident by discovery of non-
641 radiogenic Xe signatures in the atmosphere and in CO₂ well gases ([Cafee et al., 1999](#); [Holland &](#)
642 [Ballentine, 2006](#)). For OIB, [Treiloff et al. \(2002\)](#) showed that non-radiogenic isotopes of Xe in
643 Iceland, Reunion and Loihi Seamount were close to atmospheric ratios, rather than having solar
644 compositions, consistent with significant subducted Xe in their sources. [Mukhopadhyay \(2012\)](#)
645 was able to show that the lower $^{129}\text{Xe}/^{130}\text{Xe}$ ratios result from a lower I/Xe ratio in the source of
646 Icelandic basalts and cannot be explained solely by mixing atmospheric Xe with MORB-type Xe.
647 This, in turn, suggests early isolation of the OIB source reservoir, which was then mixed in limited
648 quantities with the upper mantle. Despite these observations, substantial subduction of seawater-
649 derived noble gases into the convective mantle has occurred such that 80 to 90% of the Xe in both
650 OIB and MORB is recycled from the atmosphere ([Parai & Mukhopadhyay 2015](#), [Tucker et al.](#)
651 [2012](#)). Clear separation of this subduction signature in OIB from signatures from mixing with the
652 MORB source strongly implicates atmospheric Xe reaching the deep Earth with deeply subducted
653 slabs.

654

655 **Figure 11:** Helium isotope composition versus extrapolated Ne, Ar and Xe isotope compositions
 656 for the four high- ${}^3\text{He}/{}^4\text{He}$ OIB localities (Iceland, Loihi [Hawaii], Fernandina [Galapagos] and
 657 Rochambeau [Samoa]) versus MORB samples. Loihi and Fernandina data points are not as well
 658 determined as Iceland or Rochambeau (Samoa) because the mixing hyperbolas are weakly
 659 constrained. Data are from Moreira et al. (1998), Treiloff et al. (2000), Parai et al. (2012), Tucker
 660 et al. (2012), Mukhopadhyay (2012), Peto et al. (2013), Peron et al. (2017) and Parai &
 661 Mukhopadhyay (2021).


662 **7. Evidence for recycled components in FOZO**

663 The heavier noble gases and most critically, Xe, provide overwhelming evidence for
664 subducted noble gas components in mantle reservoirs (Cafee et al., 1999; Holland & Ballentine,
665 2006), and more specifically, in OIB (Treiloff et al., 2002; Mukhopadhyay, 2012; Mukhopadhyay
666 & Parai, 2019; Parai et al., 2019). These lines of evidence can be used to construct a mass balance
667 of Xe replenishment into the mantle (Moreira, 2013) and are powerful tools for understanding
668 early atmospheric degassing. For example, subduction of atmospheric Xe into the mantle source
669 of MORB implies very high $^{129}\text{Xe}/^{130}\text{Xe}$ (>25) in the mantle ~4.4 billion years ago (Staudacher &
670 Allegre, 1988; Parai et al., 2021). This is most easily explained by massive Xe loss, possibly
671 associated with an ocean's worth of water loss - **if Xe loss was a continuous process** - in the Early
672 Earth (Zahnle et al., 2019), resulting in a very high $^{129}\text{I}/^{130}\text{Xe}$ ratio in the mantle. Consequently,
673 pollution of the mantle by subducted gases from the atmosphere with low $^{129}\text{Xe}/^{130}\text{Xe}$ has taken
674 place, reducing the $^{129}\text{Xe}/^{130}\text{Xe}$ in both the MORB and OIB mantle sources (e.g., Moriera, 2013).
675 In addition to recycled atmospheric Xe, some OIB sources exhibit high ratios of Pu-fission Xe to
676 U-fission Xe independently supporting less degassing of OIB sources relative to MORB sources
677 (Parai et al., 2019).

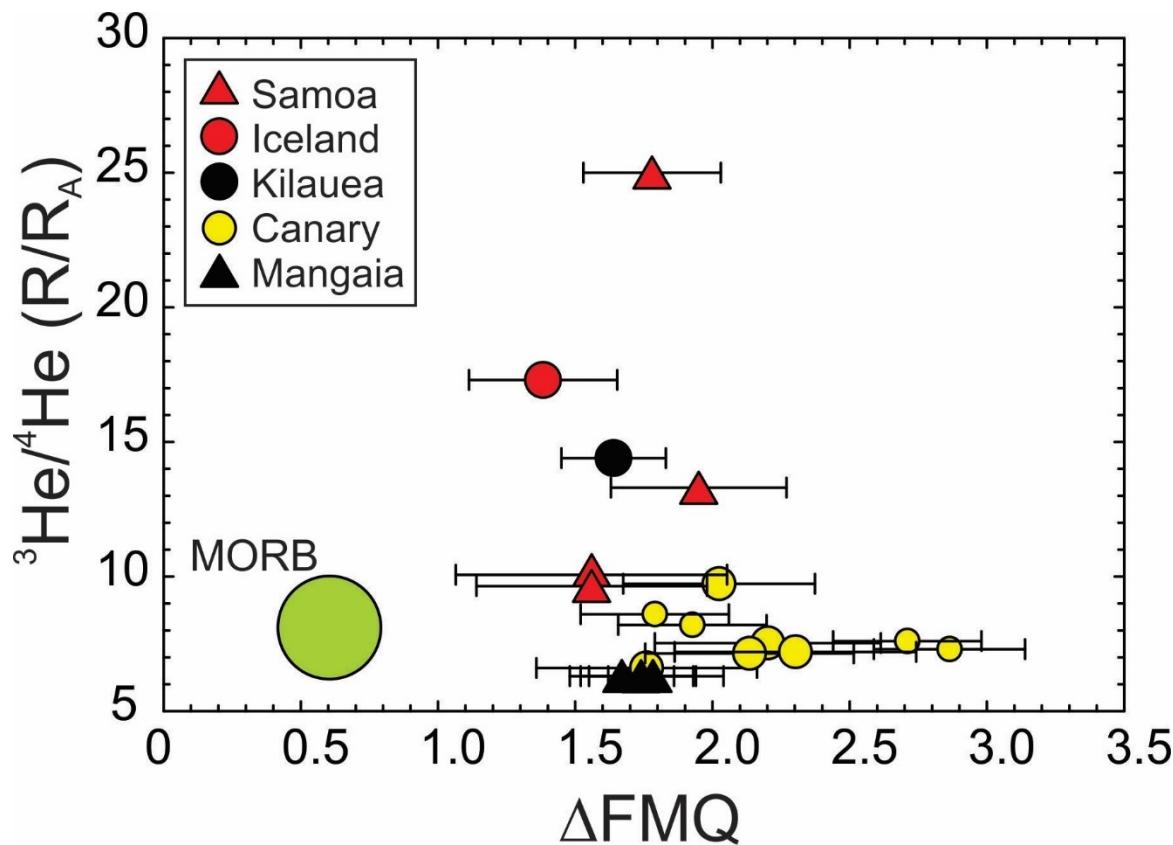
678 Evidence for recycled components from radiogenic isotopes in OIB sources has long been
679 known (e.g., Gast et al., 1964; White & Hofmann, 1982). This is particularly well accepted in low-
680 and MORB-like- $^3\text{He}/^4\text{He}$ OIB ($8 \pm 2 \text{ R}_\text{A}$) which can have extreme HIMU or EM signatures (e.g.,
681 Chauvel et al., 1992; Woodhead et al., 1996; Elliott et al., 2007; Day et al., 2010). However,
682 significant debate surrounds whether recycled components exist in the FOZO reservoir. Some have
683 argued, based on radiogenic isotopes, that FOZO is a primary early isolated and geochemical
684 depleted reservoir in the mantle (Hart et al., 1993). In a recent iteration, this reservoir has been
685 suggested to be the mantle region least affected by recycled crust (Jackson et al., 2020). On the
686 other hand, all known OIB, **including those with high- $^3\text{He}/^4\text{He}$** , define a slope in $^{207}\text{Pb}/^{204}\text{Pb}$ –
687 $^{206}\text{Pb}/^{204}\text{Pb}$ space that lies to the right of the geochron, representing mixing of the mantle from
688 Archaean to present-day (Hofmann, 2003). These observations support the notion that OIB are not
689 formed by simple mixing between depleted and enriched mantle components but may instead
690 sample a mantle that is ‘marble-caked’ (c.f., Allegre & Turcotte, 1986), and has experienced
691 multiple enrichment events from recycled ocean crust and lithosphere. Differences in isotopic
692 compositions between OIB and MORB could also partly reflect lower degrees of partial melting

693 for OIB, and preferential melting of enriched mantle components, versus large-degrees of
694 decompression melting of DMM and dilution of enriched signatures in the case of MORB (Day et
695 al., 2010). In this scenario, the three major enriched mantle components in OIB (HIMU, EM1,
696 EM2; Zindler and Hart, 1986) represent recycled materials which are relatively unmixed in the
697 mantle compared with older heterogeneities generated through subduction, which have been more
698 effectively mixed into the mantle (to form the ‘C’, ‘FOZO’, or ‘PHEM’ component(s)).

699 Heavy noble gas isotopes support the latter model. As pointed out by Parai et al. (2019)
700 and Mukhopadhyay & Parai (2019), OIB with high- $^3\text{He}/^4\text{He}$ and solar-like Ne isotopic
701 compositions should not be interpreted to reflect sampling of pristine, isolated mantle reservoirs
702 and so lithophile isotope compositions of such samples should not be taken to represent
703 undifferentiated mantle either. To illustrate this point, comparison is made between $^{129}\text{Xe}/^{130}\text{Xe}$
704 and $^{187}\text{Os}/^{188}\text{Os}$ (Figure 12). These data have not been measured on the same materials, so
705 extrapolation of Xe and estimation of the dominant $^{187}\text{Os}/^{188}\text{Os}$ signature is necessary. This is
706 performed using the estimates of Xe given in Mukhopadhyay & Parai (2019) and by taking age-
707 corrected $^{187}\text{Os}/^{188}\text{Os}$ in the most primitive basalts from the respective locations (given in Day,
708 2013; Gibson et al., 2016). For the depleted MORB mantle, estimates of Xe isotope composition
709 are taken from Parai et al. (2012), Tucker et al. (2012), and Parai & Mukhopadhyay (2021), and
710 for Os, estimates are taken from the range in abyssal peridotite compositions since MORB glasses
711 typically record radiogenic Os isotope compositions due to their low Os abundances and
712 susceptibility to seawater contamination. The four high- $^3\text{He}/^4\text{He}$ OIB have consistently more
713 radiogenic $^{187}\text{Os}/^{188}\text{Os}$ than DMM. The long-term Re/Os ratio of the bulk silicate Earth (0.1296;
714 Meisel et al., 1996) is higher than that of DMM (~0.126; Day et al., 2017), due to melting of the
715 MORB source and loss of Re over time. However, four OIB locations have different $^{187}\text{Os}/^{188}\text{Os}$
716 ratios, with Fernandina (Galapagos) and Loihi (Hawaii) in particular, having compositions above
717 this value. The heterogeneity in Os isotopes in these high- $^3\text{He}/^4\text{He}$ OIB can be readily explained
718 by addition of radiogenic Os from subducted components and mixing with isolated mantle
719 reservoirs. The consistently radiogenic $^{187}\text{Os}/^{188}\text{Os}$ in Icelandic, Loihi, Samoa and Galapagos lavas
720 are not well explained by their mantle reservoirs representing depleted components relatively
721 unaffected by recycled crust.

722

723 **Figure 12:** Osmium versus xenon isotope data for Iceland (red circle), Loihi (black circle), Samoa
 724 (red triangle) and Fernandina (yellow circle). The $^{129}\text{Xe}/^{130}\text{Xe}$ data are extrapolated values given
 725 in Treiloff *et al.* (2000), Mukhopadhyay (2012), Peto *et al.* (2013), and Peron *et al.* (2017), and
 726 $^{187}\text{Os}/^{188}\text{Os}$ data are the average of the most primitive (high-MgO) samples from each island, given
 727 in Brandon *et al.* (1999; 2007), Jackson & Shirey (2012) and Gibson *et al.* (2016). The DMM
 728 values are from Figure 11 for Xe and from the average DMM composition (Day *et al.* 2017). The
 729 greatest extrapolation between samples is for the Samoa source, using island data and the
 730 Rochambeau Xe. *Arrow on the error bar for Samoa represents the presence of radiogenic*
 731 $^{187}\text{Os}/^{188}\text{Os}$ *components possible in the plume.*


732

733 Further support for recycled components in FOZO sources comes from oxygen fugacity
 734 ($f\text{O}_2$) estimates of OIB. To date, all OIB measured for their $f\text{O}_2$ have been found to be more
 735 oxidized than MORB, using either XANES (Brounce *et al.* 2017; Helz *et al.* 2017; Moussallam *et*
 736 *al.*, 2014; 2016; 2019) or V-in-olivine oxybarometry (Nicklas *et al.*, 2019). Lack of correlations
 737 with Sr-Nd-Pb isotope signatures has been interpreted to represent volumetrically minor trace
 738 element enriched mantle lithologies dominating radiogenic isotopes, while $f\text{O}_2$ reflects the
 739 volumetrically dominant mantle component. In turn, high $f\text{O}_2$ in OIB relative to MORB implies a
 740 uniformly oxidizing plume source mantle that may be the result of either a common oxidized
 741 oceanic crust-rich reservoir parental to modern plume lavas, or preservation of un-degassed and
 742 oxidized mantle domains formed early in Earth history. Comparison of V-in-olivine oxybarometry
 743 for the same olivine populations measured for $^3\text{He}/^4\text{He}$ for a range of OIB, including from low- to
 744 high- $^3\text{He}/^4\text{He}$ examples show that all are oxidized (Figure 13). This demonstrates that even the
 745 FOZO reservoir is oxidized relative to MORB. Given the evidence for recycled signatures in Xe

746 and Os, therefore, the oxidized nature of FOZO OIB possibly relates to recycling. Evidence from
 747 ancient Xe signatures, combined with a Xe budget dominated by recycled components indicates
 748 that high- $^3\text{He}/^4\text{He}$ OIB cannot sample only unprocessed ancient (>4.45 Ga) regions of the mantle
 749 (e.g., [Mukhopadhyay & Parai, 2019](#)). Evidence from Xe, radiogenic Os isotope data and $f\text{O}_2$
 750 constraints, suggests that recycled material is mixed in with ancient mantle sources, such that OIB
 751 sources are not convectively isolated.

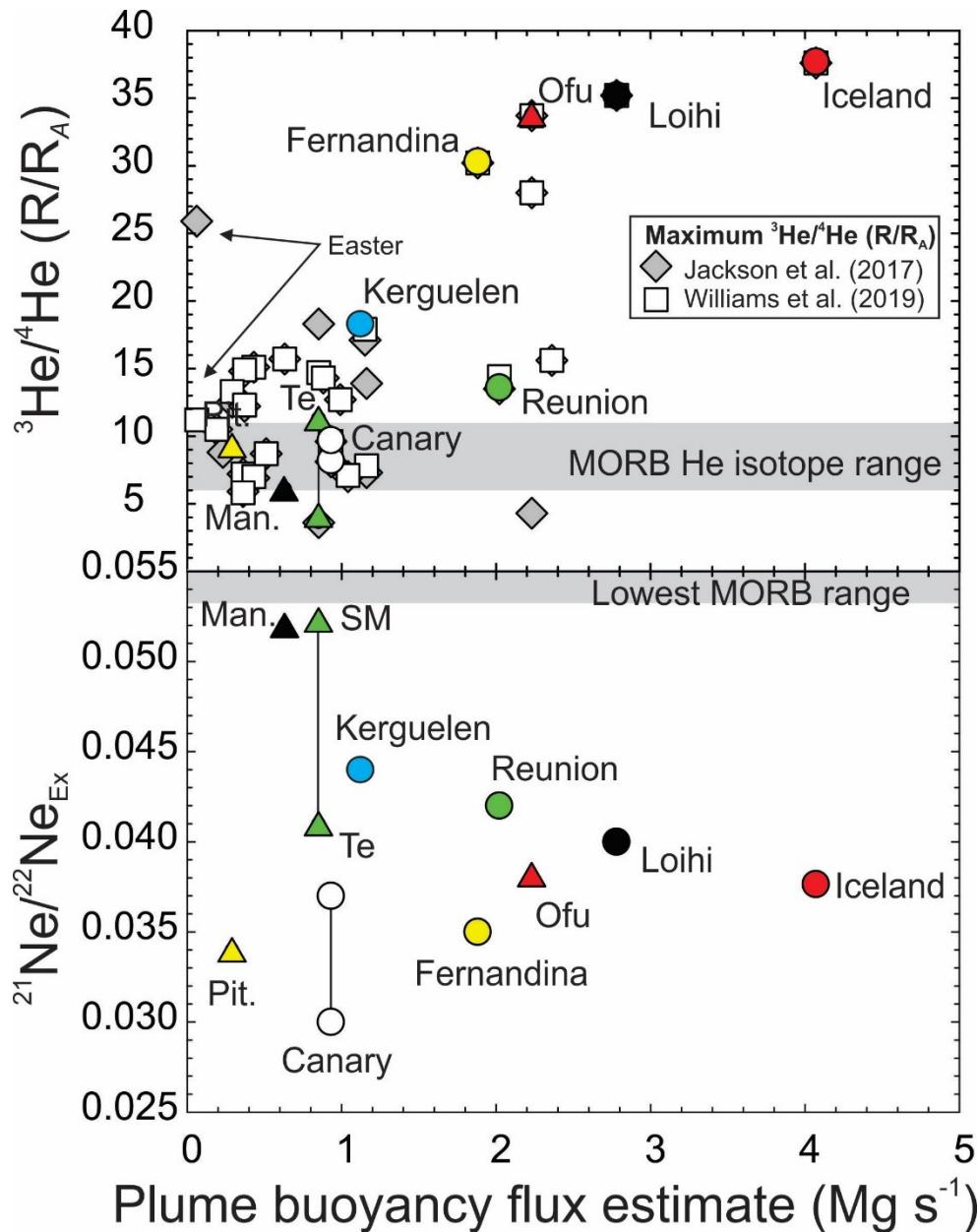
752 In this sense, FOZO is likely to be a heterogeneous mixture of different components and
 753 that partial melting is likely to bias isotope compositions of lavas away from that of their source.
 754 As such, FOZO may not be a physically distinct reservoir, but rather a combination of variable
 755 mixing and preferential sampling during partial melting. The prior divide of high- and low- $^3\text{He}/^4\text{He}$
 756 mantle sources may be merely an artifact of assessing OIB from their maximum He values, rather
 757 than examining their true He-isotope variation.

758

759

760 **Figure 13:** Oxygen fugacity estimates, relative to the fayalite-magnetite-quartz redox buffer, using
 761 the V -in-Olivine oxybarometer, versus ${}^3\text{He}/{}^4\text{He}$ in olivine for OIB versus MORB. Data for He
 762 isotopes are given in [Brandon et al. \(2007\)](#), [Day & Hilton \(2011\)](#), [Jackson et al. \(2007\)](#) and for
 763 MORB are from [Graham \(2002\)](#). Data for V -in-Olivine are from [Nicklas et al. \(2019; in review\)](#).

764


765 **8. Linking noble gases, mantle structure and mantle geodynamics**

766 In recent years, renewed efforts have been made to link He isotopes to mantle structure
767 (Jackson et al., 2017; Jones et al., 2019; Williams et al., 2019). Such studies have recognized links
768 with hotter plumes from seismically slow regions of the mantle and high-³He/⁴He. Hotter plumes
769 also imply differences in degrees of partial melting at Earth's surface, and this has long been
770 known from differences in basalt petrology between dominantly tholeiitic magmatism in Iceland
771 and Hawaii main shield volcanoes, versus dominantly alkali basaltic magmatism in many other
772 OIB. This relationship is captured to a lesser or greater extent in buoyancy fluxes beneath OIB,
773 most recently computed by Hoggard et al. (2020). A notable feature of buoyancy fluxes and
774 maximum ³He/⁴He ratios in OIB are that they broadly positively correlate (Figure 14).
775 Relationships between buoyancy flux and extrapolated ²¹Ne/²²Ne are not as systematic, with
776 several low-³He/⁴He plumes having low ²¹Ne/²²Ne_{ex}; possibly even lower than high-³He/⁴He OIB
777 (Figure 14). These relationships would support the hypothesis of the hottest plumes sourcing the
778 highest ³He/⁴He OIB (Jackson et al., 2017), which contain some early isolated components with
779 solar Ne compositions, but would also equally support some early isolated components being
780 present in low-³He/⁴He OIB with lower buoyancy fluxes.

781 In this sense, these relationships are consistent with earlier models by Gonnermann &
782 Mukhopadhyay (2009) who showed that mantle He-Nd isotope systematics could be explained by
783 differential incorporation of He-poor recycled slabs (e.g., Moriera & Kurz, 2001; Day et al., 2015)
784 with high Sm/Nd ratios into both the MORB and OIB sources over Earth history. The ³He-depleted
785 slabs with atmospheric Xe mix with ancient reservoirs, diluting concentrations of solar-like Ne
786 and Ar and high ¹²⁹Xe/¹³⁰Xe and, due to reduced total gas contents, decreasing the efficiency of
787 subsequent mantle degassing while imparting depleted lithophile compositions to the mantle
788 reservoir (Gonnermann & Mukhopadhyay 2009). Consequently, mixing of slabs and ancient
789 reservoirs would generate a continuum of compositions between relatively well-mixed
790 assemblages and incompletely mixed recycled slabs as suggested by OIB with a range of
791 maximum ³He/⁴He. Differences between OIB and MORB sources could relate to the greater
792 degree of processing and mixing in MORB source mantle, with limited direct mixing between the
793 two to preserve differences in radiogenic Xe produced by extinct radionuclides (Mukhopadhyay &
794 Parai, 2019). Combined with variable degrees of partial melting in the OIB source mantle, these

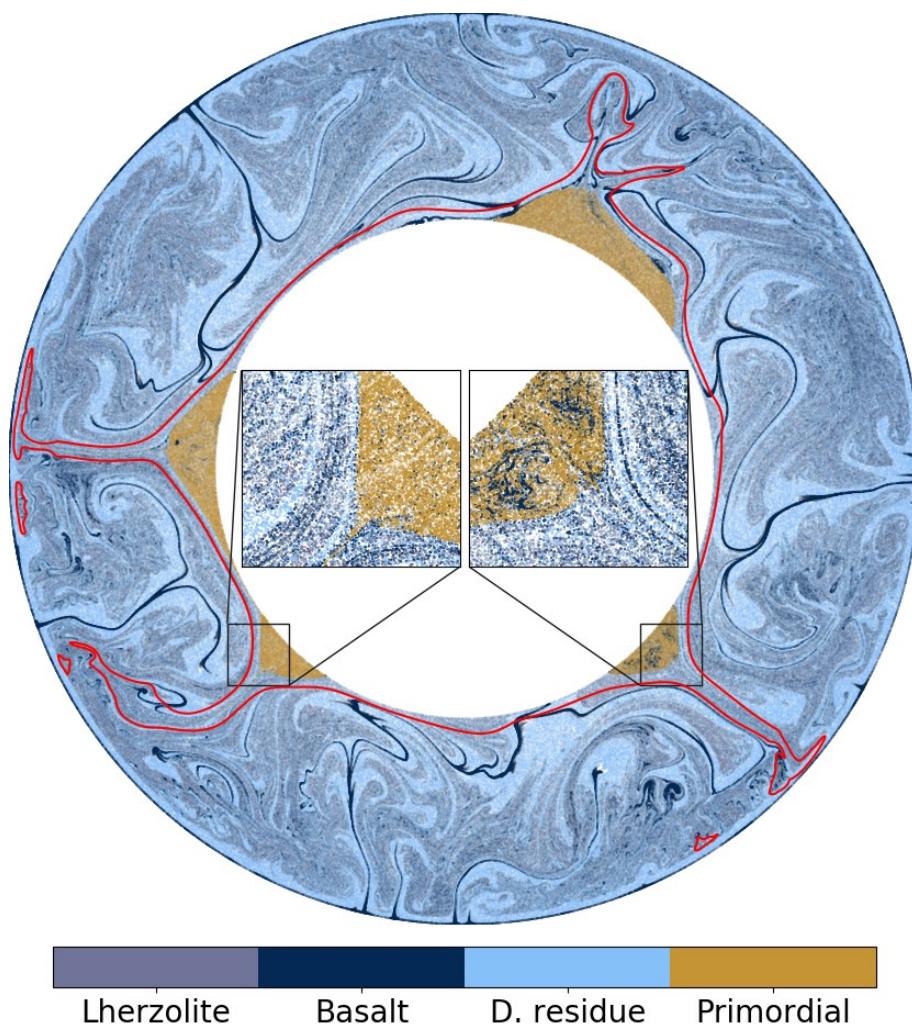
795 complex relationships can explain much if not all the noble gas and radiogenic isotope (Sr-Nd-Hf-
 796 W-Os-Pb) isotope systematics of OIB. While many models favor using the most extreme high-
 797 ${}^3\text{He}/{}^4\text{He}$ signatures of OIB, differential partial melting and heterogeneous mantle sources would
 798 also allow the incorporation of isotopic heterogeneities within island chains, explaining why He
 799 and Ne isotope compositions in locations like the Azores, Canary Islands, Hawaii, Iceland or
 800 Samoa can be so variable.

801

802

803 **Figure 14:** Plume buoyancy flux, taken from the recent estimates of [Hoggard et al. \(2020\)](#) for
 804 ocean island chains, versus maximum ${}^3\text{He}/{}^4\text{He}$ ratios in OIB and extrapolated ${}^{21}\text{Ne}/{}^{22}\text{Ne}$, given in

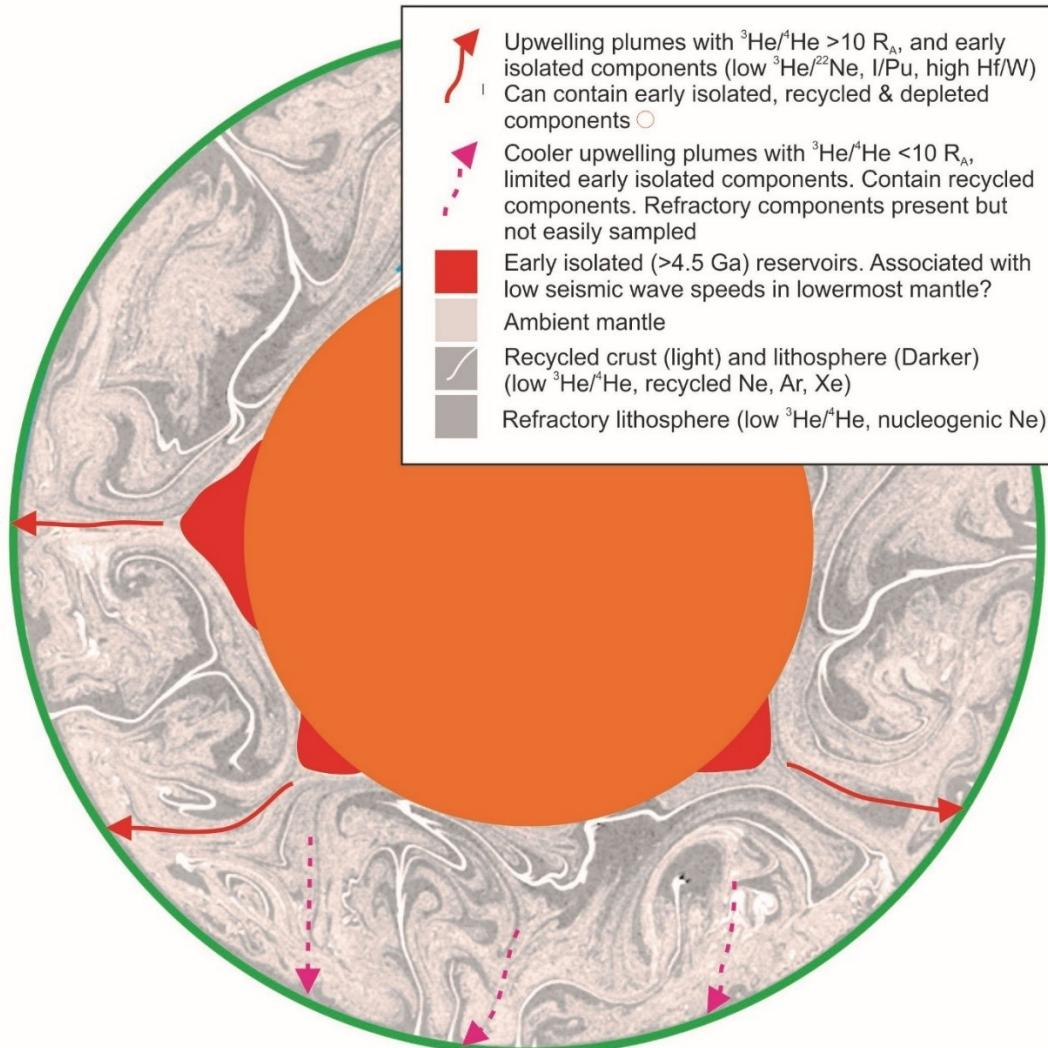
805 *Table 2. Since the highest $^3\text{He}/^4\text{He}$ ratios are normally restricted to individual locations, these are*
806 *shown, where possible, with abbreviations of Te and SM representing Terceira and Sao Miguel in*
807 *the Azores. The MORB He and NeEx ranges are from [Graham \(2002\)](#) and estimates given in*
808 *Figure 11. Note, different maximum $^3\text{He}/^4\text{He}$ ratios exist for different studies, for example Easter.*
809 *In this later case it is due to the addition of unpublished data in the compilation of [Jackson et al.](#)*
810 *(2017).*


811
812 So far, the discussion in this paper has considered what *can* melt during the formation of
813 OIB, rather than what *cannot* melt. Stracke and others have made compelling arguments that
814 refractory components more depleted than DMM exist, that *cannot* melt at typical mantle potential
815 temperatures for OIB (e.g., [Stracke et al., 2019](#)). Such refractory or depleted components are likely
816 to form through prior partial melting events in Earth and are readily returned to the convecting
817 mantle. The most likely mode for this in the modern Earth is through plate tectonics, as such
818 depleted components may be low- $^3\text{He}/^4\text{He}$ oceanic lithosphere, which can have radiogenic Nd and
819 Hf and unradiogenic Os (e.g., [Day et al., 2017](#)). Evidence for these components in OIB are rare
820 and have been reported as melt inclusions with highly depleted compositions ([Stracke et al., 2019](#)),
821 or as strongly depleted components in Icelandic basalts that are the products of unusually high-
822 degrees of partial melting ([Stracke et al., 2003](#)).

823 Models recreating mantle heterogeneity as a function of melting processes at Earth's
824 surface predict that refractory components in the mantle both increase over time and are significant
825 components in the mantle ([Jones & Day, 2021](#)). These models incorporate ancient, deep mantle
826 reservoirs and show the secular evolution of the mantle enables greater sampling of these features
827 over time (**Figure 15**). Such models recreate a 'marble-caked' mantle ([Turcotte & Allegre, 1986](#))
828 and, relevant to OIB, they predict both plumes that come from the deep mantle, possibly at the
829 apices of early isolated mantle reservoirs, as well as from surrounding mantle regions without the
830 strong input from such reservoirs. In most senses, these models appear to recreate snapshots of the
831 Earth preserved in seismic tomography images (e.g., [Jones et al., 2020](#)).

832 In addition to down-going recycled basaltic crust, models predict down-going depleted
833 peridotite lithosphere as well as significant mixing between refractory and enriched (basaltic slab)
834 components. This is, in essence, an identical picture to that currently painted by noble gas and
835 radiogenic isotopes in OIB. An example interpretation of a convection model is given in **Figure**
836 **16**. Simulations strongly suggest that even the high- $^3\text{He}/^4\text{He}$ OIB contain significant recycled
837 components, and that the depleted nature of the FOZO reservoir may equally be a consequence of

838 recycling and mixing processes within the deep Earth. The strongest lines of evidence supporting
839 early isolated reservoirs in the mantle remain high- $^3\text{He}/^4\text{He}$, solar Ne, Ar and Xe and negative
840 $\mu^{182}\text{W}$ anomalies in some OIB, but these signatures are likely to be heterogeneously mixed,
841 depending on temperature and viscosity contrasts of upwelling plumes. Due to higher
842 temperatures, larger viscosity contrasts in the early mantle relative to the modern mantle might
843 also suggest that these isolated components were not as easily accessed in the early Earth. Future
844 work is required to understand the true missing components in OIB – the refractory mantle
845 signatures that are absent or overlooked – and how these signatures bias current views of OIB
846 geochemistry, both for the noble gases as well as for radiogenic and stable isotope signatures.


847

848

849 **Figure 15:** 2-D model of mixing processes between fertile mantle (lherzolite) and primordial
850 reservoirs, refractory mantle components (D. residue or depleted residue) and subducted basalt
851 (basalt) at a snap shot in time. Interpretation of this computational model specifically for the noble

852 gases is given in Figure 16. Shown in the inset are mixing relations with the primordial, recycled
 853 basalts and depleted residue. These simulations predict mixing of these components into such
 854 reservoirs, consistent with noble gas evidence for recycled components with early-formed mantle
 855 heterogeneities. Temperature contour at 1673 K in red.

856
 857 **Figure 16:** Possible interpretation of figure 15 in the context of noble gas isotope systematics in
 858 OIB. Note the significant refractory components in OIB. This refractory lithosphere should have
 859 low- ${}^3\text{He}/{}^4\text{He}$ (e.g., [Moriera & Kurz, 2001](#)) as well as nucleogenic Ne, by virtue of low initial Ne
 860 gas contents and reactions on Mg and O in these ultramafic rocks.

861

862 Conclusions and Outlook

863 This examination of available noble gas systematics in OIB draws the following conclusions:

864 1. Consideration of sample media (glass, minerals, hydrothermal gases and fluids) is important
 865 both for recognizing primary mantle components, but also for understanding spatial and
 866 temporal variations in noble gases within OIB. **Taking these and other issues related to noble**

867 gas sampling into account will be especially important as machine learning techniques are
868 increasingly employed to investigate variations within large geochemical datasets, so as not to
869 obtain erroneous results.

870 2. The degree of partial melting producing OIB is critical. Low-degree partial melting will lead
871 to preferential sampling of more fusible and generally enriched components, while high-degree
872 melts will dilute these components with more melts of more refractory components.

873 3. Diffusion of the noble gases is likely to be faster in the mantle than for other commonly
874 measured isotopes (e.g., O, Sr, Nd, Hf, W, Os, Pb). Diffusion may be important for decoupling
875 of noble gases from other isotope systems. Determining the role of diffusional processes on
876 the distribution of noble gases within both OIB and MORB remains an important area of
877 research.

878 4. OIB with low- and MORB-like ${}^3\text{He}/{}^4\text{He}$ are dominantly sampling mantle domains from the
879 convecting mantle but can also contain some relatively undegassed (solar) components. Their
880 range in Sr-Nd-Os-Pb isotope compositions reflect a strong recycled heritage.

881 5. OIB with intermediate to high- ${}^3\text{He}/{}^4\text{He}$, especially Loihi (Hawaii), Iceland, Fernandina
882 (Galapagos) and Ofu (Samoa) preserve evidence for sampling a reservoir that has been
883 relatively isolated since \sim 4.5 billion years from noble gases (He, Ne, Ar, Xe) as well as from
884 W isotopes. However, this reservoir is not pristine and these OIB show strong evidence for
885 containing both depleted and enriched recycled components.

886 6. Linking the highest- ${}^3\text{He}/{}^4\text{He}$ OIB to FOZO: the FOZO reservoir is not a reservoir least affected
887 by recycling of crust, rather it is a mantle reservoir that contains recycled components including
888 depleted lithosphere. This difference in definition means that, while the FOZO reservoir is
889 almost certainly sampled by the deepest, hottest mantle plumes, its status as a primitive
890 reservoir is unsubstantiated.

891 7. Models of mantle convection support tomographic models but reveal a strongly mixed
892 convecting mantle with enriched and depleted lithologies formed by partial melting processes
893 at Earth's surface. Early deep isolated reservoirs are likely to exist but are relatively minor
894 features of the present-day mantle. A more remarkable feature is the presence of strongly
895 refractory material throughout the mantle, and focus on these noble gas, radiogenic and stable
896 isotope attributes of such a reservoir are required for a fuller understanding of mantle
897 processes.

898 8. Finally, determining the relationship of primordial compositions determined with noble gases,
899 with volatile elements including carbon, hydrogen, nitrogen and sulfur are important in OIB
900 studies. How the noble gases correlate the C-H-N-S is likely to provide details not only on the
901 the differentiation and evolution of mantle endmembers, but also on the accretion and volatile
902 history of the Earth.

903

904 Acknowledgements

905 David (Dave) R. Hilton was instrumental in the first author's journey in science. From hosting him
906 as a PhD student, to eventually welcoming him as a colleague, Dave never faltered in his support
907 and generosity. Dave, you are sorely missed. Support for this work came from the National Science
908 Foundation EAR Grant #1918322 "A mixed-up mantle beneath Ocean Islands?". We are grateful
909 to two reviewers, the guest editor, Justin Kulongoski and Don Porcelli for their constructive
910 comments.

911

912 References

913 Aldrich, L.T., Nier, A.O., 1946. The abundance of He 3 in atmospheric and well helium. Physical
914 Review, 70, 983.

915 Alvarez, L.W., Cornog, R., 1939. Helium and hydrogen of mass 3. Physical Review, 56, 613.

916 Allègre, C.J., Turcotte, D.L., 1986. Implications of a two-component marble-caked mantle. Nature
917 323, 123-127.

918 Allègre, C.J., Staudacher, T., Sarda, P., Kurz, M., 1983. Constraints on evolution of Earth's mantle
919 from rare gas systematics. Nature, 303, 762-766.

920 Ammon, K., Dunai, T.J., Stuart, F.M., Meriaux, A.S., Gayer, E., 2009. Cosmogenic ${}^3\text{He}$ exposure
921 ages and geochemistry of basalts from Ascension Island, Atlantic Ocean. Quaternary
922 Geochronology, 4, 525-532.

923 Basu, A.R., Poreda, R.J., Renne, P.R., Teichmann, F., Vasiliev, Y.R., Sobolev, N.V., Turrin, B.D.,
924 1995. High- ${}^3\text{He}$ plume origin and temporal-spatial evolution of the Siberian flood basalts.
925 Science, 269, 822-825.

926 Benkert, J.P., Baur, H., Signer, P., Wieler, R., 1993. He, Ne, and Ar from the solar wind and solar
927 energetic particles in lunar ilmenites and pyroxenes. Journal of Geophysical Research 98,
928 13147–13162.

929 Black, D.C., Pepin, R.O., 1969. Trapped neon in meteorites—II. Earth and Planetary Science
930 Letters, 6, 395-405.

931 Brandon, A.D., Norman, M.D., Walker, R.J., Morgan, J.W., 1999. ${}^{186}\text{Os}$ - ${}^{187}\text{Os}$ systematics of
932 Hawaiian picrites. Earth Planet. Sci. Lett. 174, 25-42.

933 Brandon, A.D., Graham, D.W., Waight, T., Gautason, B., 2007. ${}^{186}\text{Os}$ and ${}^{187}\text{Os}$ enrichments and
934 high- ${}^3\text{He}$ / ${}^4\text{He}$ sources in the Earth's mantle: Evidence from Icelandic picrites. Geochim.
935 Cosmochim. Acta 71, 4570-4591.

936 Breton, T., Nauret, F., Pichat, S., Moine, B., Moreira, M., Rose-Koga, E.F., Auclair, D., Bosq, C.
937 , Wavrant, L.M., 2013. Geochemical heterogeneities within the Crozet hotspot. *Earth and*
938 *Planetary Science Letters*, 376, 126-136.

939 Brounce, M., Stolper E., Eiler J., 2017. Redox variations in Mauna Kea lavas, the oxygen fugacity
940 of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation. *Proceedings of*
941 *the National Academy of Science*, 114, 8997-9002.

942 Caffee, M.W., Hudson, G.B., Velsko, C., Huss, G.R., Alexander, E.C., Chivas, A.R., 1999.
943 Primordial noble gases from Earth's mantle: identification of a primitive volatile component.
944 *Science*, 285, 2115-2118.

945 Castillo, P.R., Scarsi, P., Craig, H., 2007. He, Sr, Nd, and Pb isotopic constraints on the origin of
946 the Marquesas and other linear volcanic chains. *Chemical Geology*, 240, 205-221.

947 Chauvel, C., Hofmann, A., Vidal, P., 1992. HIMU-EM: The French Polynesian connection. *Earth*
948 *Planet. Sci. Lett.* 110, 99-119.

949 Clarke, W.B., Beg, M.A., Craig, H. 1969. Excess ^3He in the sea: evidence for terrestrial primordial
950 helium. *Earth and Planetary Science Letters*, 6, 213-220.

951 Class, C., Goldstein, S.L., 2005. Evolution of helium isotopes in the Earth's mantle. *Nature*, 436,
952 1101-1112.

953 Class, C., Goldstein, S.L., Stute, M., Kurz, M.D., Schlosser, P., 2005. Grand Comore Island: a
954 well-constrained "low $^3\text{He}/^4\text{He}$ " mantle plume. *Earth and Planetary Science Letters*, 233, 391-
955 409.

956 Class, C., Goldstein, S. L., Shirey, S. B., 2009. Osmium isotopes in Grande Comore lavas: a new
957 extreme among a spectrum of EM-type mantle endmembers. *Earth and Planetary Science*
958 *Letters*, 284, 219-227.

959 Day J.M.D., 2013. Hotspot volcanism and highly siderophile elements. *Chemical Geology*, 341,
960 50-74.

961 Day, J.M.D., 2016. Evidence against a non-chondritic mantle source for North Atlantic Igneous
962 Province lavas. *Chemical Geology*, 440, 91-100.

963 Day J.M.D., Hilton D.R., 2011. Origin of $^3\text{He}/^4\text{He}$ ratios in HIMU-type basalts constrained from
964 Canary Island lavas. *Earth and Planetary Science Letters*, 305, 226-234.

965 Day, J.M.D., Hilton, D.R., 2021. Heterogeneous mantle-derived $^3\text{He}/^4\text{He}$ in the Canary Islands
966 and other ocean islands. *Geology*, 49, 120-124.

967 Day, J.M.D., Jones, T.D., 2021. Depleted mantle plumes.
968 <https://2021.goldschmidt.info/goldschmidt/2021/meetingapp.cgi/Paper/7754>

969 Day, J.M.D., Pearson, D.G., Macpherson, C.G., Lowry, D., Carracedo, J.-C., 2009. Pyroxenite-
970 rich mantle formed by recycled oceanic lithosphere: oxygen-osmium isotope evidence from
971 Canary Island lavas. *Geology*, 37, 555-558.

972 Day J.M.D., Pearson D.G., Macpherson C.G., Lowry D., Carracedo J.-C., 2010. Evidence for
973 distinct proportions of subducted oceanic crust and lithosphere in HIMU-type mantle beneath
974 El Hierro and La Palma, Canary Islands. *Geochimica et Cosmochimica Acta*, 74, 6565-6589.

975 Day J.M.D., Barry P.H., Hilton D.R., Pearson D.G., Burgess, R., Taylor L.A., 2015. The helium
976 flux from the continents and ubiquity of low- $^3\text{He}/^4\text{He}$ recycled crust and lithosphere.
977 *Geochimica et Cosmochimica Acta*, 153, 116-133.

978 Day, J.M.D., Walker, R.J., Warren, J.M., 2017. ^{186}Os - ^{187}Os and highly siderophile element
979 abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys.
980 *Geochimica et Cosmochimica Acta*, 200, 232-254.

981 Day, J.M.D., Harvey, R.P., Hilton, D.R., 2019. Melt-modified lithosphere beneath Ross Island and
982 its role in the tectono-magmatic evolution of the West Antarctic Rift System. *Chemical
983 Geology*, 518, 45-54.

984 Doucet, S., Moreira, M., Weis, D., Scoates, J.S., Giret, A. and Allegre, C., 2006. Primitive neon
985 and helium isotopic compositions of high-MgO basalts from the Kerguelen Archipelago, Indian
986 Ocean. *Earth and Planetary Science Letters*, 241, 65-79.

987 Doucelance, R., Escrig, S., Moreira, M., Gariépy, C., Kurz, M.D., 2003. Pb-Sr-He isotope and
988 trace element geochemistry of the Cape Verde Archipelago. *Geochimica et Cosmochimica
989 Acta*, 67, 3717-3733.

990 Eiler, J.M., Farley, K.A., Valley, J.W., Hauri, E.H., Craig, H., Hart, S.R., Stolper, E.M., 1997.
991 Oxygen isotope variations in ocean island basalt phenocrysts. *Geochimica et Cosmochimica
992 Acta*, 61, 2281-2293.

993 Elliott, T., Blichert-Toft, J., Heumann, A., Koetsier, G. & Forjaz, V., 2007. The origin of enriched
994 mantle beneath São Miguel, Azores. *Geochimica et Cosmochimica Acta*, 71, 219-240.

995 Engel, A.J., Engel, C.G., Havens, R.G., 1965. Chemical characteristics of oceanic basalts and the
996 upper mantle. *Geological Society of America Bulletin*, 76, 719-734.

997 Farley, K.A., Poreda, R.J., 1993. Mantle neon and atmospheric contamination. *Earth and Planetary
998 Science Letters*, 114, 325-339.

999 Farley, K.A., Neroda, E., 1998. Noble gases in the Earth's mantle. *Annual Reviews in Earth and
1000 Planetary Sciences*, 26, 189-218.

1001 Farley, K.A., Natland, J.H. & Craig, H., 1992. Binary mixing of enriched and undegassed
1002 (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. *Earth and Planetary Science
1003 Letters*, 111, 183-199.

1004 Fisher, D.E., 1983. Rare gases from the undepleted mantle?. *Nature*, 305, 298-300.

1005 French, S.W., Romanowicz, B., 2015. Broad plumes rooted at the base of the Earth's mantle
1006 beneath major hotspots. *Nature*, 525, 95-99.

1007 Füri E., Hilton D.R., Murton B.J., Hemond C., Dyment J., Day J.M.D., 2011. Helium isotope
1008 variations between Réunion Island and the Central Indian Ridge (17°-21°S): new evidence for
1009 ridge-hotspot interaction. *Journal of Geophysical Research – Solid Earth*,
1010 doi:10.1029/2010JB007609 (17 pages).

1011 Füri, E., Hilton, D.R., Halldórsson, S.A., Barry, P.H., Hahm, D., Fischer T.P., Grönvold, K., 2010.
1012 Apparent decoupling of the He and Ne isotope systematics of the Icelandic mantle: The role of
1013 He depletion, melt mixing, degassing fractionation and air interaction. *Geochimica
1014 Cosmochimica Acta*, 74, 11.

1015 Garapić, G., Mallik, A., Dasgupta, R., Jackson, M.G., 2015. Oceanic lavas sampling the high-
1016 $^3\text{He}/^4\text{He}$ mantle reservoir: Primitive, depleted, or re-enriched?. *American Mineralogist*, 100,
1017 2066-2081.

1018 Gast, P.W., Tilton, G.R., Hedge, C., 1964. Isotopic composition of lead and strontium from
1019 Ascension and Gough Islands. *Science*, 145, 1181-1185.

1020 Gibson, S.A., Dale, C.W., Geist, D.J., Day, J.A., Brügmann, G., Harpp, K.S., 2016. The influence
1021 of melt flux and crustal processing on Re-Os isotope systematics of ocean island basalts:
1022 Constraints from Galápagos. *Earth and Planetary Science Letters*, 449, 345-359.

1023 Gonnermann, H.M., Mukhopadhyay, S., 2009. Preserving noble gases in a convecting mantle.
1024 *Nature*, 459, 560-563.

1025 Graham, D.W., 2002. Noble gases in MORB and OIB: observational constraints for the
1026 characterization of mantle source reservoirs. *Reviews in Mineralogy and Geochemistry* 46,
1027 247-318.

1028 Graham, D.W., Lupton, F., Albarède, F., Condomines, M., 1990. Extreme temporal homogeneity
1029 of helium isotopes at Piton de la Fournaise, Réunion. *Nature*, 347, 545-548.

1030 Graham, D.W., Johnson, K.T.M., Priebe, L.D., Lupton, J.E., 1999. Hotspot-ridge interaction along
1031 the Southeast Indian Ridge near Amsterdam and St. Paul islands: helium isotope evidence.
1032 *Earth and Planetary Science Letters*, 167, 297-310.

1033 Gurenko, A.A., Hoernle, K.A., Hauff, F., Schmincke, H.-U., Han, D., Miura, Y.N., Kaneoka, I.,
1034 2006. Major, trace element and Nd-Sr-Pb-O-He-Ar isotope signatures of shield stage lavas
1035 from the central and western Canary Islands: insights into mantle and crustal processes.
1036 *Chemical Geology* 233, 75-112.

1037 Hanan, B.B., Graham, D.W., 1996. Lead and helium isotope evidence from oceanic basalts for a
1038 common deep source of mantle plumes. *Science*, 272, 991-995.

1039 Hanyu, T., 2014. Deep plume origin of the Louisville hotspot: Noble gas evidence. *Geochemistry,*
1040 *Geophysics, Geosystems*, 15, 565-576.

1041 Hanyu, T., Kaneoka, I., 1997. The uniform and low $^3\text{He}/^4\text{He}$ ratios of HIMU basalts as evidence
1042 for their origin as recycled materials. *Nature*, 390, 273-276.

1043 Hanyu, T., Kaneoka, I., Nagao, K., 1999. Noble gas study of HIMU and EM ocean island basalts
1044 in the Polynesian region. *Geochimica et Cosmochimica Acta*, 63, 1181-1201.

1045 Hanyu, T., Dunai, T.J., Davies, G.R., Kaneoka, I., Nohda, S., Uto, K., 2001. Noble gas study of
1046 the Reunion hotspot: evidence for distinct less-degassed mantle sources. *Earth and Planetary
1047 Science Letters*, 193, 83-98.

1048 Hanyu, T., Tatsumi, Y., Kimura, J.I., 2011. Constraints on the origin of the HIMU reservoir from
1049 He-Ne-Ar isotope systematics. *Earth and Planetary Science Letters*, 307, 377-386.

1050 Harðardóttir, S., Halldórsson, S.A., Hilton, D.R., 2018. Spatial distribution of helium isotopes in
1051 Icelandic geothermal fluids and volcanic materials with implications for location, upwelling
1052 and evolution of the Icelandic mantle plume. *Chemical Geology*, 480, 12-27.

1053 **Harper Jr, C.L., Jacobsen, S.B., 1996. Noble gases and Earth's accretion. *Science*, 1814-1818.**

1054 Hart, S. R., Hauri, E. H., Oschmann, L. A., Whitehead, J. A., 1992. Mantle plumes and
1055 entrainment: isotopic evidence. *Science*, 256 517-520.

1056 Hart, S.R., Coetzee, M., Workman, R.K., Blusztajn, J., Johnson, K.T.M., Sinton, J.M., Steinberger,
1057 B., Hawkins, J.W., 2004. Genesis of the Western Samoa seamount province: age, geochemical
1058 fingerprint and tectonics. *Earth and Planetary Science Letters*, 227, 37-56.

1059 Heber, V.S., Wieler, R., Baur, H., Olinger, C., Friedmann, T.A., Burnett, D.S., 2009. Noble gas
1060 composition of the solar wind as collected by the Genesis mission. *Geochimica et
1061 Cosmochimica Acta*, 73, 7414-7432.

1062 Heber, V.S., Baur, H., Bochsler, P., McKeegan, K.D., Neugebauer, M., Reisenfeld, D.B., Wieler,
1063 R., Wiens, R.C., 2012. Isotopic mass fractionation of solar wind: Evidence from fast and slow
1064 solar wind collected by the Genesis mission. *The Astrophysical Journal*, 759, 121.

1065 Helz, R. T., Cottrell, E., Brounce, M. N., Kelley, K. A. 2017. Olivine-melt relationships and
1066 syneruptive redox variations in the 1959 eruption of Kilauea Volcano as revealed by XANES.
1067 *Journal of Volcanology and Geothermal Research*.

1068 Hennecke, E.W. and Manuel, O.K., 1975. Noble gases in an Hawaiian xenolith. *Nature*, 257, 778-
1069 780.

1070 Hilton, D.R., Hammerschmidt, K., Teufel, S., Freidrichsen, H., 1993. Helium isotope
1071 characteristics of Andean geothermal fluids and lavas, *Earth and Planetary Science Letters* 120,
1072 265-282.

1073 Hilton, D.R., McMurtry, G.M. & Kreulen, R., 1997. Large variations in vent fluid $\text{CO}_2/{}^3\text{He}$ ratios
1074 signal rapid changes in magma chemistry at Loihi seamount, Hawaii. *Nature*, 396, 359-362.

1075 Hilton, D.R., Barling, J., Wheller, G.E., 1995. Effect of shallow-level contamination on the helium
1076 isotope systematics of ocean-island lavas. *Nature*, 373, 330-333.

1077 Hilton, D. R., Grönvold, K., Macpherson, C. G., Castillo, P. R., 1999. Extreme ${}^3\text{He}/{}^4\text{He}$ ratios in
1078 northwest Iceland: constraining the common component in mantle plumes. *Earth and Planetary
1079 Science Letters*, 173, 53-60.

1080 Hilton, D.R., Macpherson C.G., Elliott, T.R., 2000. Helium isotope ratios in mafic phenocrysts
1081 and geothermal fluids from La Palma, the Canary Islands (Spain): Implications for HIMU
1082 mantle sources. *Geochimica et Cosmochimica Acta* 64, 2119-2132.

1083 Hilton, D.R., Halldórsson, S.A., Barry, P.H., Fischer, T.P., de Moor, J.M., Ramirez, C.J.,
1084 Mangasini, F., Scarsi, P., 2011. Helium isotopes at Rungwe Volcanic Province, Tanzania, and
1085 the origin of East African plateaux. *Geophysical Research Letters*, 38(21).

1086 Hoernle, K., Tilton, G., Schmincke, H.U., 1991. Sr-Nd-Pb isotopic evolution of Gran Canaria:
1087 Evidence for shallow enriched mantle beneath the Canary Islands. *Earth and Planetary Science
1088 Letters*, 106, 44-63.

1089 Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. *Nature*, 385,
1090 219-229.

1091 Hofmann, A.W., White, W.M., 1982. Mantle plumes from ancient oceanic crust. *Earth and
1092 Planetary Science Letters* 57, 421-436.

1093 Hoggard, M.J., Parnell-Turner, R., White, N., 2020. Hotspots and mantle plumes revisited:
1094 Towards reconciling the mantle heat transfer discrepancy. *Earth and Planetary Science Letters*,
1095 542, 116317.

1096 Holland, G., Ballentine, C.J., 2006. Seawater subduction controls the heavy noble gas composition
1097 of the mantle. *Nature*, 441, 186-191.

1098 Honda, M., Woodhead, J.D., 2005. A primordial solar-neon enriched component in the source of
1099 EM-I-type ocean island basalts from the Pitcairn Seamounts, Polynesia. *Earth and Planetary
1100 Science Letters*, 236, 597-612.

1101 Honda, M., McDougall, I., Patterson, D.B., Doulgeris, A., Clague, D.A., 1991. Possible solar
1102 noble-gas component in Hawaiian basalts. *Nature*, 349, 149-151.

1103 Horton, F., Farley, K., Jackson, M., 2019. Helium distributions in ocean island basalt olivines
1104 revealed by X-ray computed tomography and single-grain crushing experiments. *Geochimica
1105 et Cosmochimica Acta*, 244, 467-477.

1106 Honda, M., McDougall, I., Patterson, D., 1993. Solar noble gases in the Earth: the systematics of
1107 helium-neon isotopes in mantle derived samples. *Lithos*, 30, 257-265.

1108 Jackson M. G., Kurz M. D., Hart S. R., Workman R. K., 2007. New Samoan lavas from Ofu Island
1109 reveal a hemispherically heterogeneous high ${}^3\text{He}/{}^4\text{He}$ mantle. *Earth and Planetary Science
1110 Letters*, 264, 360-374.

1111 Jackson, M.G., Kurz, M.D., Hart, S.R., 2009. Helium and neon isotopes in phenocrysts from
1112 Samoan lavas: Evidence for heterogeneity in the terrestrial high ${}^3\text{He}/{}^4\text{He}$ mantle. *Earth and
1113 Planetary Science Letters*, 287, 519-528.

1114 Jackson, M.G., Carlson, R.W., Kurz, M.D., Kempton, P.D., Francis, D., Blusztajn, J., 2010.
1115 Evidence for the survival of the oldest terrestrial mantle reservoir. *Nature*, 466, 853-856.

1116 Jackson, M. G., Shirey, S. B., 2011. Re–Os isotope systematics in Samoan shield lavas and the use
1117 of Os-isotopes in olivine phenocrysts to determine primary magmatic compositions. *Earth and*
1118 *Planetary Science Letters*, 312, 91-101.

1119 Jackson, M.G., Hart, S.R., Konter, J.G., Kurz, M.D., Blusztajn, J., Farley, K.A., 2014. Helium and
1120 lead isotopes reveal the geochemical geometry of the Samoan plume. *Nature*, 514, 355-358.

1121 Jackson M. G., Konter, J. G., Becker, T. W., 2017. Primordial helium entrained by the hottest
1122 mantle plumes. *Nature* 542: 340-343.

1123 Jackson, M.G., Price, A.A., Blichert-Toft, J., Kurz, M.D., Reinhard, A.A., 2017. Geochemistry of
1124 lavas from the Caroline hotspot, Micronesia: Evidence for primitive and recycled components
1125 in the mantle sources of lavas with moderately elevated $^3\text{He}/^4\text{He}$. *Chemical Geology*, 455, 385-
1126 400.

1127 Jackson, M.G., Blichert-Toft, J., Halldórsson, S.A., Mundl-Petermeier, A., Bizimis, M., Kurz,
1128 M.D., Price, A.A., Harðardóttir, S., Willhite, L.N., Breddam, K. and Becker, T.W., 2020.
1129 Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by
1130 crustal recycling. *Proceedings of the National Academy of Sciences*, 117, 30993-31001.

1131 Jean-Baptiste, P., Allard, P., Coutinho, R., Ferreira, T., Fourré, E., Queiroz, G., Gaspar, J.L., 2009.
1132 Helium isotopes in hydrothermal volcanic fluids of the Azores archipelago. *Earth and Planetary*
1133 *Science Letters*, 281, 70-80.

1134 Jones, T. D., Davies, D. R., Sossi, P. A., 2019. Tungsten Isotopes in Mantle Plumes: Heads it's
1135 Positive Tails it's Negative *Earth and Planetary Science Letters*, 506, 255-267.

1136 Jones, T. D., Maguire, R. R., van Keken, P. E., Ritsema, J., Koelemeijer, P., 2020. Subducted
1137 oceanic crust as the origin of seismically slow lower-mantle structures. *Progress in Earth and*
1138 *Planetary Science*, 7, 17. <https://doi.org/10.31223/osf.io/k98p7>

1139 Kaneoka, I., 1983. Noble gas constraints on the layered structure of the mantle. *Nature*, 302, 698-
1140 700.

1141 Kaneoka, I. and Takaoka, N., 1978. Excess ^{129}Xe and high $^3\text{He}/^4\text{He}$ ratios in olivine phenocrysts
1142 of Kapuho lava and xenolithic dunites from Hawaii. *Earth and Planetary Science Letters*, 39,
1143 382-386.

1144 Kendrick, M.A., Scambelluri, M., Honda, M., Phillips, D., 2011. High abundances of noble gas
1145 and chlorine delivered to the mantle by serpentinite subduction. *Nature Geoscience*, 4, 807-812.

1146 Kendrick, M.A., Scambelluri, M., Hermann, J., Padrón-Navarta, J.A., 2018. Halogens and noble
1147 gases in serpentinites and secondary peridotites: Implications for seawater subduction and the
1148 origin of mantle neon. *Geochimica et cosmochimica acta*, 235, 285-304.

1149 Kurz, M.D., Jenkins, W.J., Hart, S.R., 1982. Helium isotopic systematics of oceanic islands and
1150 mantle heterogeneity. *Nature*, 297, 43-47.

1151 Kurz, M.D., Kenna, T.C., Lassiter, J.C., DePaolo, D.J., 1996. Helium isotopic evolution of Mauna
1152 Kea volcano: First results from the 1-km drill core. *Journal of Geophysical Research: Solid*
1153 *Earth*, 101(B5), 11781-11791.

1154 Kurz, M.D., le Roex, A.P., Dick, H.J., 1998. Isotope geochemistry of the oceanic mantle near the
1155 Bouvet triple junction. *Geochimica et Cosmochimica Acta*, 62, 841-852.

1156 Kurz, M.D., Moreira, M., Curtice, J., Lott III, D.E., Mahoney, J.J., Sinton, J.M., 2005. Correlated
1157 helium, neon, and melt production on the super-fast spreading East Pacific Rise near 17 S. *Earth*
1158 *and Planetary Science Letters*, 232, 125-142.

1159 Kurz, M.D., Curtice, J., Fornari, D., Geist, D., Moreira, M., 2009. Primitive neon from the center
1160 of the Galápagos hotspot. *Earth and Planetary Science Letters*, 286, 23-34.

1161 Lupton, J.E., Craig, H., 1975. Excess ^3He in oceanic basalts: evidence for terrestrial primordial
1162 helium. *Earth and Planetary Science Letters*, 26, 133-139.

1163 Lupton, J.E., Graham, D.W., Delaney, J.R., Johnson, H.P., 1993. Helium isotope variations in Juan
1164 de Fuca Ridge basalts. *Geophysical Research Letters*, 20, 1851-1854.

1165 Lupton, J.E., Arculus, R.J., Evans, L.J., Graham, D.W., 2012. Mantle hotspot neon in basalts from
1166 the Northwest Lau Back-arc Basin. *Geophysical research letters*, 39(8).

1167 Macpherson C.G., Hilton D.R., Day J.M.D., Lowry D., Grönvold K., 2005. High- ^3He / ^4He depleted
1168 mantle and low- $\delta^{18}\text{O}$ recycled oceanic lithosphere in the source of central Icelandic lavas. *Earth*
1169 and *Planetary Science Letters*, 233, 411-427.

1170 Madureira, P., Moreira, M., Mata, J., Allègre, C.J., 2005. Primitive neon isotopes in Terceira Island
1171 (Azores archipelago). *Earth and Planetary Science Letters*, 233, 429-440.

1172 Mamyrin, B.A., 1969. Anomalous isotopic composition of helium in volcanic gases. In *Dokl.*
1173 *Akad. Nauk SSSR* (Vol. 184, pp. 1197-1199).

1174 Marty, B., 2020. Origins and early evolution of the atmosphere and oceans. *Geochemical*
1175 *Perspectives*, 9, 1-313.

1176 Mata, J., Moreira, M., Doucelance, R., Ader, M., Silva, L.C., 2010. Noble gas and carbon isotopic
1177 signatures of Cape Verde oceanic carbonatites: implications for carbon provenance. *Earth and*
1178 *Planetary Science Letters*, 291, 70-83.

1179 Meisel, T., Walker, R.J., Morgan, J.W., 1996. The osmium isotopic composition of the Earth's
1180 primitive upper mantle. *Nature*, 383, 517-520.

1181 Moreira, M., 2013. Noble gas constraints in the origin and evolution of Earth's volatiles.
1182 *Geochemical Perspectives*, 2, 1-403.

1183 Moreira, M., Kurz, M.D., 2001. Subducted oceanic lithosphere and the origin of the 'high μ ' basalt
1184 helium isotopic signature. *Earth and Planetary Science Letters*, 189, 49-57.

1185 Moreira, M., Allègre, C., 2004. Helium isotopes on the Macdonald seamount (Austral chain):
1186 constraints on the origin of the superswell. *Comptes Rendus Géoscience*, 336, 983-990.

1187 Moreira, M., Madureira, P., 2005. Cosmogenic helium and neon in 11 Myr old ultramafic
1188 xenoliths: consequences for mantle signatures in old samples. *Geochemistry, Geophysics,*
1189 *Geosystems*, 6(8).

1190 Moreira, M., Charnoz, S., 2016. The origin of the neon isotopes in chondrites and on Earth. *Earth*
1191 and *Planetary Science Letters*, 433, 249-256.

1192 Moreira, M., Kunz, J., Allegre, C., 1998. Rare gas systematics in popping rock: isotopic and
1193 elemental compositions in the upper mantle. *Science*, 279, 1178-1181.

1194 Moreira, M., Breddam, K., Curtice, J., Kurz, M.D., 2001. Solar neon in the Icelandic mantle: new
1195 evidence for an undegassed lower mantle. *Earth and Planetary Science Letters*, 185, 15-23.

1196 Moreira, M., Doucelance, R., Kurz, M.D., Dupré, B., Allègre, C.J., 1999. Helium and lead isotope
1197 geochemistry of the Azores Archipelago. *Earth and Planetary Science Letters*, 169, 189-205.

1198 Moriera, M., Kanzari, A., Madureira, P., 2012. Helium and neon isotopes in São Miguel island
1199 basalts, Azores Archipelago: new constraints on the "low ^3He " hotspot origin. *Chemical*
1200 *Geology*, 322-323, 91-98.

1201 Moussallam, Y., Oppenheimer, C., Scaillet, B., Gaillard, F., Kyle, P., Peters, N., Hartley, M.,
1202 Berlo, K., Donovan, A., 2014. Tracking the changing oxidation state of Erebus magmas, from
1203 mantle to surface, driven magma ascent and degassing. *Earth and Planetary Science Letters* 393:
1204 200-209.

1205 Moussallam, Y., Edmonds, M., Scaillet, B., Peters, N., Gennaro, E., Sides, I., Oppenheimer, C.
1206 2016. The impact of degassing on the oxidation state of basaltic magmas: A case study of
1207 Kilauea volcano. *Earth and Planetary Science Letters* 450: 317-325.

1208 Moussallam, Y., Longpré, M.A., McCammon, C., Gomez-Ulla, A., Rose-Koga, E.F., Scaillet, B.,
1209 Peters, N., Gennaro, E., Paris, R., Oppenheimer, C., 2019. Mantle plumes are oxidised. *Earth*
1210 and Planetary Science Letters, 527, 115798.

1211 Mukhopadhyay, S., Parai, R., 2019. Noble gases: a record of Earth's evolution and mantle
1212 dynamics. *Annual Review of Earth and Planetary Sciences*, 47, 389-419.

1213 Mundl, A., Touboul, M., Jackson, M.G., Day, J.M.D., Kurz, M.D., Lekic, V., Helz, R.T., Walker,
1214 R.J., 2017. 182-W isotope heterogeneity in modern ocean island basalts. *Science*, 356, 66-69.

1215 Mundl-Petermeier, A., Walker, R.J., Jackson, M.G., Blichert-Toft, J., Kurz, M.D., Halldórsson,
1216 S.A., 2019. Temporal evolution of primordial tungsten-182 and $^3\text{He}/^4\text{He}$ signatures in the
1217 Iceland mantle plume. *Chemical Geology*, 525, 245-259.

1218 Mundl-Petermeier A., Walker, R. J., Fischer, R. A., Lekic, V., Jackson, M. G., Kurz, M. D., 2020.
1219 Anomalous ^{182}W in high $^3\text{He}/^4\text{He}$ ocean island basalts: Fingerprints of Earth's core?
1220 *Geochimica et Cosmochimica Acta* 271: 194-211.

1221 Nicklas R. W., Puchtel I. S., Ash R. D., Piccoli P. M., Hanski E., Nisbet E. G., Waterton P. M.,
1222 Pearson D. G., Anbar A. D., 2019. Secular Mantle Oxidation across the Archean-Proterozoic
1223 Boundary: Evidence from V Partitioning in Komatiites and Picrites. *Geochimica et*
1224 *Cosmochimica Acta* 250: 49-75.

1225 **Nicklas, R. W., Brandon, A.D., Waight, T.E., Puchtel, I.S., Day, J.M.D., 2021. High-precision Pb
1226 and Hf isotope and highly siderophile element abundance systematics of high-MgO Icelandic
1227 lavas. *Chemical Geology*, 582, 120436.**

1228 Niedermann, S., Graf, T., Marti, K., 1993. Mass spectrometric identification of cosmic-ray
1229 produced neon in terrestrial rocks with multiple neon components. *Earth Planetary Science
1230 Letters* 118, 65-73.

1231 Niedermann, S., Bach, W., Erzinger, J., 1997. Noble gas evidence for a lower mantle component
1232 in MORBs from the southern East Pacific Rise: Decoupling of helium and neon isotope
1233 systematics. *Geochimica et Cosmochimica Acta*, 61, 2697-2715.

1234 **Ozima, M., Podosek, F.A., 2002. Noble gas geochemistry. Cambridge University Press.**

1235 Parai, R., Mukhopadhyay, S., 2015. The evolution of MORB and plume mantle volatile budgets:
1236 Constraints from fission Xe isotopes in Southwest Indian Ridge basalts. *Geochemistry,
1237 Geophysics, Geosystems*, 16, 719-735.

1238 Parai, R., Mukhopadhyay, S., 2021. Heavy noble gas signatures of the North Atlantic Popping
1239 Rock 2IID43: Implications for mantle noble gas heterogeneity. *Geochimica et Cosmochimica
1240 Acta*. 294, 89-105.

1241 Parai, R., Mukhopadhyay, S., Lassiter, J.C., 2009. New constraints on the HIMU mantle from neon
1242 and helium isotopic compositions of basalts from the Cook-Austral Islands. *Earth and Planetary
1243 Science Letters*, 277, 253-261.

1244 Parai, R., Mukhopadhyay, S., Standish, J.J., 2012. Heterogeneous upper mantle Ne, Ar and Xe
1245 isotopic compositions and a possible Dupal noble gas signature recorded in basalts from the
1246 Southwest Indian Ridge. *Earth and Planetary Science Letters*, 227-239.

1247 Parai, R., Mukhopadhyay, S., Tucker, J.M., Pető, M.K., 2019. The emerging portrait of an ancient,
1248 heterogeneous and continuously evolving mantle plume source. *Lithos*, 346, 105153.

1249 Paquet, M., Day, J.M.D., Castillo, P., 2019. Osmium isotope evidence for a heterogeneous ${}^3\text{He}/{}^4\text{He}$
1250 mantle plume beneath the Juan Fernandez Islands. *Geochimica et Cosmochimica Acta*. 261, 1-
1251 19.

1252 Péron, S., Moreira, M., Colin, A., Arbaret, L., Peltier, B., Kurz, M.D., 2016. Neon isotopic
1253 composition of the mantle constrained by single vesicle analyses. *Earth and Planetary Science
1254 Letters*, 449, 145-154.

1255 Péron, S., Moreira, M., Peltier, B., Kurz, M.D., 2017. Solar wind implantation supplied light
1256 volatiles during the first stage of Earth accretion. *Geochemical Perspectives Letters*, 3, 151-
1257 159.

1258 Péron, S., Moreira, M., Agranier, A., 2018. Origin of light noble gases (He, Ne, and Ar) on Earth:
1259 *A review. Geochemistry, Geophysics, Geosystems*, 19(4), 979-996.

1260 Peters, B.J., Mundl-Petermeier, A., Carlson, R.W., Walker, R.J., Day, J.M.D., 2021. Combined
1261 lithophile-siderophile isotopic constraints on Hadean processes preserved in ocean island basalt
1262 sources. *Geochemistry, Geophysics, Geosystems*, 22, e2020GC009479.

1263 Pető, M.K., Mukhopadhyay, S., Kelley, K.A., 2013. Heterogeneities from the first 100 million
1264 years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin. *Earth and
1265 Planetary Science Letters*, 369, 13-23.

1266 Poreda, R.J., Schilling, J.G., Craig, H., 1993. Helium isotope ratios in Easter microplate basalts.
1267 *Earth and Planetary Science Letters*, 119, 319-329.

1268 Raquin, A., Moreira, M., 2009. Atmospheric ${}^{38}\text{Ar}/{}^{36}\text{Ar}$ in the mantle: implications for the nature
1269 of the terrestrial parent bodies. *Earth and Planetary Science Letters*, 287, 551-558.

1270 Sarda, P., Staudacher, T., Allègre, C.J., 1988. Neon isotopes in submarine basalts. *Earth and
1271 Planetary Science Letters*, 91, 73-88.

1272 Sarda, P., Moreira, M., Staudacher, T., Schilling, J.G., Allègre, C.J., 2000. Rare gas systematics
1273 on the southernmost Mid-Atlantic Ridge: Constraints on the lower mantle and the Dupal source.
1274 *Journal of Geophysical Research: Solid Earth*, 105(B3), 5973-5996.

1275 Scarsi, P., 2000. Fractional extraction of helium by crushing of olivine and clinopyroxene
1276 phenocrysts: Effects on the ${}^3\text{He}/{}^4\text{He}$ measured ratio. *Geochimica et Cosmochimica Acta*. 64,
1277 3751-3762.

1278 Sedwick, P.N., McMurtry, G.M., Hilton, D.R., Goff, F., 1994. Carbon dioxide and helium in
1279 hydrothermal fluids from Loihi Seamount, Hawaii, USA: temporal variability and implications
1280 for the release of mantle volatiles. *Geochimica et Cosmochimica Acta*, 58, 1219-1227.

1281 Shaw, A.M., Hilton, D.R., Macpherson, C.G., Sinton, J.M., 2001. Nucleogenic neon in high
1282 ${}^3\text{He}/{}^4\text{He}$ lavas from the Manus back-arc basin: a new perspective on He-Ne decoupling. *Earth
1283 and Planetary Science Letters*, 194, 53-66.

1284 Staudacher, T., Allègre, C.J., 1988. Recycling of oceanic crust and sediments: the noble gas
1285 subduction barrier. *Earth and Planetary Science Letters*, 89, 173-183.

1286 Staudacher, T., Sarda, P., Allègre, C.J., 1990. Noble gas systematics of Réunion island, Indian
1287 Ocean. *Chemical Geology*, 89, 1-17.

1288 Stracke, A., Zindler, A., Salters, V.J., McKenzie, D., Blichert-Toft, J., Albarède, F., Grönvold, K.,
1289 2003. Theistareykir revisited. *Geochemistry, Geophysics, Geosystems*, 4(2).

1290 Stracke, A., Genske, F., Berndt, J., Koornneef, J.M., 2019. Ubiquitous ultra-depleted domains in
1291 Earth's mantle. *Nature Geoscience*, 12, 851-855.

1292 Stronik, N.A., Krienitz, M-S., Niedermann, S., Romer, R.L., Harris, C., Trumbull, R.B., Day,
1293 J.M.D., 2017. Helium isotope evidence for a deep-seated mantle plume involved in South
1294 Atlantic break-up. *Geology*, 45, 827-830.

1295 Taran, Y.A., Inguaggiato, S., Varley, N., Capasso, G., Favara, R., 2002. Helium and carbon
1296 isotopes in thermal waters of the Jalisco block, Mexico. *Geofisica Internacional*.
1297 Trieloff, M., Kunz, J., Clague, D.A., Harrison, D., Allègre, C.J., 2000. The nature of pristine noble
1298 gases in mantle plume. *Science*, 288, 1036-1038.
1299 Trieloff, M., Kunz, J., Allègre, C.J., 2002. Noble gas systematics of the Réunion mantle plume
1300 source and the origin of primordial noble gases in Earth's mantle. *Earth and Planetary Science
1301 Letters*, 200, 297-313.
1302 Troung, T., Castillo, P.R., Hilton, D.R., Day, J.M.D., 2018. The trace element and Sr-Nd-Pb
1303 isotope geochemistry of Juan Fernandez lavas as probe of variable contributions from a high-
1304 $^3\text{He}/^4\text{He}$ mantle plume. *Chemical Geology*, 476, 280-291.
1305 Trull, T.W., Kurz, M.D., 1993. Experimental measurements of 3He and 4He mobility in olivine
1306 and clinopyroxene at magmatic temperatures. *Geochimica et Cosmochimica Acta* 57, 1313-
1307 1324.
1308 Tucker, J.M., Mukhopadhyay, S., Schilling, J.G., 2012. The heavy noble gas composition of the
1309 depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in
1310 the mantle. *Earth and Planetary Science Letters*, 355, 244-254.
1311 Wetherill, G.W., 1954. Variations in the isotopic abundances of neon and argon extracted from
1312 radioactive minerals. *Physical Review*, 96, 679.
1313 Williams, C.D., Mukhopadhyay, S., 2019. Capture of nebular gases during Earth's accretion is
1314 preserved in deep-mantle neon. *Nature*, 565, 78-81.
1315 Williams, C.D., Mukhopadhyay, S., Rudolph, M.L., Romanowicz, B., 2019. Primitive helium is
1316 sourced from seismically slow regions in the lowermost mantle. *Geochemistry, Geophysics,
1317 Geosystems*, 20, 4130-4145.
1318 Woodhead, J.D., 1996. Extreme HIMU in an oceanic setting: the geochemistry of Mangaia island
1319 (Polynesia), and temporal evolution of the Cook-Austral hotspot. *Journal of Volcanology and
1320 Geothermal Research*, 72, 1-19.
1321 **Xie, S., Tackley, P.J., 2004. Evolution of helium and argon isotopes in a convecting mantle.
1322 Physics of the Earth and Planetary Interiors, 146, 417-439.**
1323 Valbracht, P.J., Staudacher, T., Malahoff, A., Allegre, C.J., 1997. Noble gas systematics of deep
1324 rift zone glasses from Loihi Seamount, Hawaii. *Earth and Planetary Science Letters*, 150, 399-
1325 411.
1326 Valbracht, P.J., Honda, M., Matsumoto, T., Mattielli, N., McDougall, I., Ragettli, R., Weis, D.,
1327 1996. Helium, neon and argon isotope systematics in Kerguelen ultramafic xenoliths:
1328 implications for mantle source signatures. *Earth and Planetary Science Letters*, 138, 29-38.
1329 Vance, D., Stone, J.O.H., O'Nions, R.K., 1989. He, Sr and Nd isotopes in xenoliths from Hawaii
1330 and other oceanic islands. *Earth and Planetary Science Letters*, 96, 147-160.
1331 **Van Keken, P.E., Ballentine, C.J., 1998. Whole-mantle versus layered mantle convection and the
1332 role of a high-viscosity lower mantle in terrestrial volatile evolution. Earth and Planetary
1333 Science Letters, 156, 19-32.**
1334 Yatsevich, I., Honda, M., 1997. Production of nucleogenic neon in the Earth from natural
1335 radioactive decay. *Journal of Geophysics*, 102, 10291-10298.
1336 Yokochi, R., Marty, B., 2004. A determination of the neon isotopic composition of the deep
1337 mantle. *Earth and Planetary Science Letters*, 225, 77-88.
1338 Zahnle, K.J., Gacesa, M., Catling, D.C., 2019. Strange messenger: a new history of hydrogen on
1339 Earth, as told by xenon. *Geochimica et Cosmochimica Acta*, 244, 56-85.

1340 Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annual Reviews in Earth and Planetary
1341 Science, 14, 493-571.

1342
1343
1344**Table 1**

Element	Stable isotopes	Radiogenic Production	Natural Abundance Atm. (Mole fraction)	Atmospheric Abundance ppmv	Popping rock (mantle?)	Ratio in Atmosphere		Ratio in Solar Wind
						ppmv	Ratio in Atmosphere	
Helium	³ He		1.3359E-06					
	⁴ He		1.0000	5.24	~2.9	⁴ He/ ³ He	7485/70	~2500
Neon	²⁰ Ne		0.9048	18.2	0.008	³ He/ ⁴ He (R/R _A)	1	~290
	²¹ Ne	¹⁸ O or ²⁴ Mg (n,α) ²¹ Ne	0.0027			²⁰ Ne/ ²² Ne	9.8	13.8
	²² Ne		0.0925			²¹ Ne/ ²² Ne	0.029	0.034
Argon	³⁶ Ar		0.0003			³⁸ Ar/ ³⁶ Ar	0.1818	
	³⁸ Ar		0.0001			⁴⁰ Ar/ ³⁶ Ar		
	⁴⁰ Ar	Electron capture ⁴⁰ K	0.9960	9340	1	⁴⁰ Ar/ ³⁶ Ar	296	
Xenon	¹²⁴ Xe		0.0010			¹²⁴ Xe/ ¹³⁰ Xe	0.0234	0.0294
	¹²⁶ Xe		0.0009			¹²⁶ Xe/ ¹³⁰ Xe	0.0218	0.0255
	¹²⁸ Xe		0.0191			¹²⁸ Xe/ ¹³⁰ Xe		
	¹²⁹ Xe	β -decay ¹²⁹ I (15.7 Ma)	0.2640			¹²⁹ Xe/ ¹³⁰ Xe	0.471	0.51
	¹³⁰ Xe		0.0407		0.087	¹³⁰ Xe/ ¹³⁰ Xe	6.5	6.27
	¹³¹ Xe	SF ²⁴⁴ Pu (80 Ma) + ²³⁸ U	0.2123		0.0001	¹³¹ Xe/ ¹³⁰ Xe	5.21	4.98
	¹³² Xe	SF ²⁴⁴ Pu (80 Ma) + ²³⁸ U	0.2690			¹³² Xe/ ¹³⁰ Xe	6.61	6.02
	¹³⁴ Xe	SF ²⁴⁴ Pu (80 Ma) + ²³⁸ U	0.1043			¹³⁴ Xe/ ¹³⁰ Xe	2.56	2.21
	¹³⁶ Xe	SF ²⁴⁴ Pu (80 Ma) + ²³⁸ U	0.0885			¹³⁶ Xe/ ¹³⁰ Xe	2.18	1.8

SF = Spontaneous fission. Ratio and abundance data are from Heber et al. (2009), Moreira (2013), Parai & Mukhopadhyay (2021), and references therein.

1346 Table 2

Source	${}^3\text{He}/{}^4\text{He}$ (R/R _λ)	${}^3\text{He}/{}^4\text{He}$ (R/R _λ)	${}^3\text{He}/{}^4\text{He}$ (R/R _λ)	${}^{21}\text{Ne}/{}^{22}\text{Ne}_{\text{Ext}}$	${}^{40}\text{Ar}/{}^{36}\text{Ar}_{\text{Ext}}$	${}^{139}\text{Xe}/{}^{138}\text{Xe}_{\text{Ext}}$	Plume Buoyancy (Mg s ⁻¹)	Plume Buoyancy (Mg s ⁻¹)	Plume Buoyancy (Mg s ⁻¹)
Iceland (NW Iceland/DICE)	37.7	37.7	37.7	0.0374	10750	7.0	4.07	4.07	4.07
Hawaii (Loihi)	35.3	35.3	35.3	0.040	8000	6.6	2.78	2.78	4.9
Samoa (Ofu)	33.8	33.8	33.8	0.038		6.9	2.23	2.23	1.2
Samoe (Rochambeau)	28.1	28.1	28.1	0.0423	16763	6.9	2.23	2.23	1.2
Samoa (Savaii)	4.4	4.4	4.4			6.9	1.88	1.88	0.33
Galapagos (Fernandina)	30.3	30.3	30.3	0.035	6500	6.9			
Easter	26	26	11.3			6.9	0.06	0.06	0.7
Azores (Terceira)	18.4	18.4	14.8	0.052		6.9	0.9	0.9	0.38
Azores (Sao Miguel)	3.7	3.7	3.7	0.041		6.9	0.9	0.9	0.38
Heard/Kerguelen	18.3	18.3	18.3	0.044		6.9	0.73	0.73	
Juan Fernandez	17.2	17.2	18			6.9	1.15	1.15	
Socorro	17.0	17.0	17.0			6.9	0.2	0.2	
Macdonald	15.8	15.8	15.8	0.052		6.9	1.86	1.86	
Cape Verde	15.7	15.7	15.7			6.9	0.63	0.63	1.18
Discovery	15.2	15.2	15.2			6.9	2.36	2.36	0.32
Bouvet	14.9	14.9	15			6.9	0.43	0.43	0.04
Marquesas	14.4	14.4	14.4			6.9	0.37	0.37	0.04
Amsterdam and St. Paul Islands	14.1	14.1	14.1			6.9	0.06	0.06	0.06
Crozet	14.0	14.0	14.0			6.9	0.88	0.88	0.55
Reunion	13.6	13.6	14.5	0.042		6.9	1.2	1.2	0.25
Caroline	12.8	12.8	12.8			6.9	2.02	2.02	0.07
Pitcairn	12.6	12.6	13.4	0.034		6.9	0.99	0.99	0.05
Meteor/Shona	12.3	12.3	12.4			6.9	0.55	0.55	0.45
Louisville	10.6	10.6	10.6			6.9	0.37	0.37	0.03
Canary Islands (La Palma)	9.7	9.7	9.7	0.037		6.9	0.19	0.19	
Canary Islands (El Hierro)	8.2	8.2	8.2	0.030		6.9	0.93	0.93	
Hoggar	8.9	8.9	8.8			6.9	0.29	0.29	
Cobb (Axial Smt./Juan de Fuca)	8.8	8.8	8.8			6.9	0.23	0.23	0.25
Ian Mayen	8.1	8.1	8.1			6.9	0.51	0.51	0.12
Marion/Prince Edward	7.4	7.4	7.4			6.9	0.21	0.21	
Ascension	7.3	7.3	7.3			6.9	1.16	1.16	0.01
Comores	7.1	7.1	7.2			6.9	0.36	0.36	0.11
Tristan/Gough/Walvis Ridge ^a	7.0	7.0	7.1			6.9	1.04	1.04	0.07
St. Helena	6.0	6.0	5.9			6.9	0.27	0.27	
Baja/Guadalupe	5.8	5.8	5.8			6.9	0.03	0.03	
MORB	~6-10	~6-10	~6-10	0.059-0.068	18100-49000	6.9-7.8	-	-	

Sources of data for maximum He isotope values from (a) Jackson et al. (2017) and (b) Williams et al. (2019). Plume buoyancy fluxes are from (a) and (c) Hoggard et al. (2020). Extrapolated Ne, Ar, Xe data are calculated or used from Treloff et al. (2000), Jackson et al. (2009), Mukhopadhyay (2012), Peto et al. (2013), Peron et al. (2017) and Parai et al. (2019).