2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC) | 978-1-6654-2135-5/22/$31.00 ©2022 IEEE | DOI: 10.1109/ASP-DAC52403.2022.9712549

3C-2

XCelHD: An Efficient GPU-Powered Hyperdimensional Computing
with Parallelized Training

Jaeyoung Kang
Department of Electrical and Computer Engineering
University of California San Diego
La Jolla, CA, USA
jSkang@ucsd.edu

Yeseong Kim

Department of Information and Communication Engineering

DGIST
Daegu, Republic of Korea
yeseongkim@dgist.ac.kr

Abstract— Hyperdimensional Computing (HDC) is an emerg-
ing lightweight machine learning method alternative to deep
learning. One of its key strengths is the ability to accelerate
it in hardware, as it offers massive parallelisms. Prior work
primarily focused on FPGA and ASIC, which do not provide
the seamless flexibility required for HDC applications. Few
studies that attempted GPU designs are inefficient, partly due
to the complexity of accelerating HDC on GPUs because of the
bit-level operations of HDC. Besides, HDC training exhibited
low hardware utilization due to sequential operations. In this
paper, we present XCelHD, a high-performance GPU-powered
framework for HDC. XCelHD uses a novel training method
to maximize the training speed of the HDC model while fully
utilizing hardware. We propose memory optimization strategies
specialized for GPU-based HDC, minimizing the access time
to different memory subsystems and redundant operations. We
show that the proposed training method reduces the required
number of training epochs by four-fold to achieve comparable
accuracy. Our evaluation results on NVIDIA Jetson TX2 show
that XCelHD is up to 35x faster than the state-of-the-art
TensorFlow-based HDC implementation.

I. INTRODUCTION

Machine learning on edge devices has become more preva-
lent as it enables real-time and in-place analysis. Techniques
based on deep learning (DL) are popular for processing
complex tasks by extracting high-level features. However,
running such algorithms on conventional systems results in
high energy consumption and slow processing speed. Brain-
inspired Hyperdimensional Computing (HDC) is an alternative
solution based on a long-term memory model, which emulates
human cognition with operations on high-dimensional vectors,
called hypervectors [1]. HDC first encodes data into hypervec-
tors to perform the rest of the training process in a lightweight
way. Many different learning applications have been shown
to provide high accuracy and efficiency when implemented
using HDC, e.g., language recognition [2], robotics [3], activ-
ity identification and voice recognition [4], recommendation
system [5] and multimodal sensor fusion [6]. Several compa-
nies are also using HDC to implement more generalizeable
learning, e.g., Google [7], IBM [8], and Numenta [9].

Behnam Khaleghi
Department of Computer Science and Engineering
University of California San Diego
La Jolla, CA, USA
bkhaleghi @ucsd.edu

Tajana Rosing
Department of Computer Science and Engineering
University of California San Diego
La Jolla, CA, USA
tajana@ucsd.edu

HDC has a number of advantages as compared to the
conventional DL: (1) it is suitable for on-device learning
based on hardware acceleration due to its highly parallel
nature [10], (2) hidden features of information can be well-
exposed, thereby empowering both training and inference
with the light-weight computation and a small number of
iterations, and (3) the hypervector representation inherently
exhibits strong robustness against the noise and corrupted
data [11]. A few hardware accelerators have been proposed for
HDC, such as ASIC [2], [12], [13], and in-memory computing
accelerator [14]. These works show nearly remarkable speedup
and energy efficiency improvements compared to the CPU-
based implementation, primarily due to their ability to leverage
high parallelism of operations on hypervectors. However,
ASIC and PIM have long design times and are expensive
to manufacture, so they are not commonly available. More
importantly, HDC applications require flexibility in terms of,
e.g., hypervector lengths, encoding algorithm, and precision
of operations that such platforms cannot readily offer. An
excellent commercial off-the-shelf platform is GPU. Recently
there has been a proliferation of GPU-enabled embedded
devices, such as NVIDIA Jetson.

Unfortunately, recent work that accelerated HDC on embed-
ded GPU [15] showed a comparable performance over CPU-
based HDC. Our recent experiments with TensorFlow XLA-
based HDC also gained a marginal performance improvement
(1.74 x) over the CPU, showing the GPU utilization of 40%
and 10% for the encoding and the training, respectively.
There are several reasons why a library such as TensorFlow
is not suitable for running HDC on the GPU. First, HDC
training by default requires sequential data inputs to refine
the trained model iteratively for higher accuracy. It creates
a lot of HDC data transfer between CPU and GPU, which
causes a memory bottleneck and impedes full exploitation
of GPU parallelism. Furthermore, TensorFlow-based HDC
cannot carefully leverage the mapping data to the memory
hierarchy on the GPU since HDC data are large in size and
have specific memory access patterns. For the off-the-shelf
embedded GPUs, these characteristics lead to underutilized
hardware resources, impeding the high throughput and perfor-

978-1-6654-2135-5/22/$31.00 ©2022 IEEE 220
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 16:47:07 UTC from IEEE Xplore. Restrictions apply.

Training
Stage

Max
Similarity —»
Search

Encoding| 3

|
|
|

Stage

i
i Training Data
»

5

Hypervectors Hypervector:

Level

Fig. 1: Overview of HDC-based classification.

mance of HDC applications.

In this paper, we present a GPU-powered HDC framework
called XCelHD. XCelHD effectively mitigates the low paral-
lelization and memory access issues of the existing works. Fur-
thermore, we propose a highly parallel HDC training, called
PARTRAIN that elevates the GPU parallelism by redesigning
the HDC training algorithm. It converts the sequential HD
training process into multiple simultaneous subtasks; each task
learns partial models with different training samples while
updating the final model based on the partial models. Our
contributions are summarized as follows:

o We present XCelHD for GPUs, which supports various
classification tasks based on HDC. Unlike existing DL
framework-based implementations, XCelHD parallelizes the
HDC learning procedure in a GPU-friendly way while
intelligently optimizing memory allocation/access patterns.
To the best of our knowledge, this is the first work that
designs GPU-centric optimization strategies for HDC.

o We propose a novel HDC training method for high paral-
lelism. The proposed training method enables full utilization
of hardware resources and reduces the number of required
training epochs by 4x on top of the GPU-accelerated HDC.

o Our strategies specially designed for GPU maximize data
reuse and enhance cache utilization, additionally accelerat-
ing the prediction (up to 12x) and the encoding step (up to
48%) in HDC with simple parallelization, respectively.

We implemented and evaluated XCelHD with various datasets

using NVIDIA Jetson TX2, which aims to low-power edge

devices. Our experimental results show that the proposed
parallelized training method can save the number of training
iterations required to achieve the same accuracy by 4x.

Furthermore, our design is up to 35x faster than TensorFlow

2 XLA-based HDC classification implementation.

II. XCELHD OVERVIEW

Classification is a representative cognitive task that HDC
can be used [4], [16]. Figure 1 illustrates the XCelHD
learning procedure, which consists of the encoding, training,
and inference stages.
Encoding maps (encode) real-world data into the HD space.
There are various encoding methods. One of the most pop-
ular ones is the ID-level method [4], [14], [17]. First, the
encoding module randomly generates orthogonal unique /D
hypervectors, ID; € {—1,1} assigned to an individual f™
index of feature. Next, to capture an arbitrary v_al)ue m in f
index of feature, we create level hypervectors, LV ,,, for using

3C-2

o4 Local Model Replacement

|

© Local Modd Retaining
T \'A

1 R : ——D——— 5
o R | |
C (&1 i =
o e I
T =111 on [ITTT-1TTT] o[IIT~TTT] %'
[T 1171 El S——D————
- S Local HDC Model D — = . jl.....
H @—» {ITT-TTT]
T =117 & : e :
T T =111 s / ELTT-TTT1]1
a £ Global HDC Model
i=3
Input Hypervectors =3
E.
]

Fig. 2: Overview of the proposed parallel training method

the method shown in [4]. Once ID hypervectors and level
hypervectors are generated, we can encode an input data to
an input hypervector 1 as follows:

—N 1D, 0LV, 1)

where © indicates an ele{nent-wise multiplication. The ID-
level method is more complex but includes all the steps
of other algorithms, such as random projection. Thus, any
implementation that can carry out ID-level can also implement
the random projection [4].

Initialization and training stage builds class hypervectors.
During the initialization, also known as single-pass training,
it combines all hypervectors H ¥ belonging each class k using
the element-wise addition, i.e., ('), = 27 ﬁ
indicates class hypervector for class k.

Iterative training is used to achieve higher accuracy. HDC
calibrates class hypervectors (HDC model) based on the
prediction using the current state of class hypervectors. First,
it compares the ground truth label to the predicted class. We
select a class with a maximum similarity between input hyper-
vector and class hypervectors. For binarized hypervectors, we
use the Hamming distance, while cosine similarity is utilized
for another type of data. If the prediction is incorrect, the
training module updates the HDC model: the input hypervec-
tor is subtracted from the class hypervector of the incorrectly
predicted class and added to the class hypervector of the
correct answer. We can apply the learning rate (n € (0,1])
for scaling the input hypervector during the update [18]. We
define epoch as the number of training iterations.

Inference or prediction finds the most similar class hyper-
vector to the test data. We first encode test queries (data) into
hypervectors, called query hypervectors using the same encod-
ing method used for training. For each query hypervector 7,
the inference module calculates its similarity against the class
hypervectors. Next, it selects a class with the highest similarity
using either Hamming distance (binary hypervectors) or cosine
similarity (non-binary data).

ITII. XCELHD OPTIMIZATION TECHNIQUES

A. PARTRAIN: Parallel Training for HDC Classification
The iterative training process is essential to achieve higher

accuracy than the single-pass (shot) training (see Fig. 5.)
However, the training stage processes data sequentially, thus it
hinders from data-parallel benefits of the GPU. It can lead to
the bottleneck of the GPU-based HDC. We propose a method
to refine the HDC model in parallel, called PARTRAIN. It
can unleash parallelism, maximize hardware utilization and
achieve the target accuracy with small iterations.

k¥ where 8k

221

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 16:47:07 UTC from IEEE Xplore. Restrictions apply.

ENC-Streamer Dataset

Module

——
LVbase

D —»|

[TTT=TTE
=39
(1 =TT - R—P
1 [T =

o1 [=-T1TH R~
i [(T~17

7 Input Hypervector
Fig. 3: Overview of ENC-STREAMER-applied HDC encoding

IEEEDN;
“Tindex ~ Memory mapping g S S
X

Fig. 2 describes the overview of the proposed training. The
main principle of the proposed method uses multiple local
trainers to generate a local HDC model and creates the global
HDC model G, which is used for the inference. A local trainer
has two sets of hypervectors, each with C' hypervectors, where
C is the number of classes. One set stores a local HDC
model, and the other accumulates the changes of the local
HDC model. We initialize the latter hypervector set, D with
zeros. The local HDC models and global HDC models are
initialized with the results of HDC single-pass training.

We shard the training data by identical numbers and feed
them to each local trainer. (Fig. 2-@) It trains its local
HDC model following the conventional HDC training process
(Fig. 2-@). It is updated when the predicted values differ
from the ground truth. Additionally, changes of the local HDC
model are aggregated to D (Fig. 2-@). After training with
assigned datapoints, we update the global HDC model by
calculating G = ZZ D;, where ¢ indicates ith local trainer
(Fig. 2-@). Finally, the global model replaces the local HDC
model (Fig. 2-@). Note that every accumulating operation
is parallelized over the hypervector dimension. We define
this whole process as one epoch. The original HDC training
processes the same amount of data points in a single epoch.
Using multiple local trainers in a single GPU device can
enable a higher level of data parallelism. Also, the number of
local trainers can be dynamically adjusted based on available
hardware resources.

B. HDC-BASED MEMORY OPTIMIZATION
XCelHD encompasses two key optimization techniques to

reduce the memory access times due to frequent accesses to
large size hypervectors: ENC-STREAMER and L2-RECYCLE.
They are used during the encoding and the training of HDC.

1) ENC-Streamer: ENC-STREAMER is designed to allo-
cate data to the appropriate memory hierarchy to achieve high
efficiency during data-intensive encoding and inference stages.
These two stages map training and testing data to the HD
space, respectively. Encoding often takes as much as 70%
of the overall runtime of HDC on CPU [19], which is the
main bottleneck of HDC application. Here we focus on one of
the popular HDC encoding techniques, the ID-Level encoding.
Same strategy work for the simpler random projection method
as well. A naive way to implement the ID-Level encoding on
GPU is to parallelize over training data and each dimension

3C-2

of input hypervectors. A thread accumulates I@Z ® L_V> ¢ over
features where ¢ is the index of an element in a hypervector
that a thread is computing.

ENC-STREAMER enhances memory transactions on top of
the parallelization. Fig. 3 shows the design of the encoding
module with ENC-STREAMER. The GPGPU memory hierar-
chy includes several memories, e.g., global memory, shared
memory, and constant memory, each having different charac-
teristics such as size and latency. The execution time diverges
depending on a data allocation strategy of an algorithm. For
instance, global memory offers the largest capacity with long
latency. Constant memory has a small size and is read-only
but can be accessed with a few clock cycles.

We use two streams to hide the memory copy time between
the host and the GPU. The streamed data is encoded to the
hypervector using the aforementioned method and stored in
the global memory. On top of that, ENC-STREAMER applies
an additional caching strategy for ID hypervectors and level
hypervectors, which is a frequently used term as shown in
Eq. 1. We cache ID in the shared memory. This encoded data
is used for the rest of the runtime, thus completely eliminating
the data movement costs. At the same time, the same strategy
is applied to the other stream synchronously. It runs until all
datapoints are covered in an interleaved fashion. For the GPUs
with unified virtual addressing, we use a single stream and
managed memory. Raw data requires one read transaction and
does not have to be cached. This mechanism helps to alleviate
the memory capacity limitation that is especially critical in
embedded GPUs.

Furthermore, ENC-STREAMER optimizes access to level
hypervectors. Since the feature values are random, the access
to their associated level hypervector is irregular. In other
words, it entails non-coalesced access to memory, leading to
increased latency. Based on the fact that the level hypervector
generation method uses flips according to quantized levels,
we generate only one level hypervector to use it as a base,
called base-level hypervector, LVy,s.. Then, according to the
value of each index, the corresponding level hypervector is
generated in-situ. Nevertheless, this approach can still cause
contention during memory access if it is placed on the global
memory. We bit-pack the base-level hypervector and store it
in constant memory. Since hypervectors require a large size
array, packing is essential to satisfy the constant memory
constraint. Empirically, packing eight bits showed the best
performance. Each thread encodes the eight components of
the input hypervector.

2) L2-Recycle: Pairwise similarity computation is the core
component of HDC training and inference. The cosine simi-
larity 6(z,y) between vector &' and ¥ is defined by

5(w:2) = g .
To accommodate higher parallelism, we compute the numera-
tor and the denominator separately. Then, operations, includ-
ing the L2 norm, can leverage the parallel reduction technique
because of the large dimensionality. For HDC vectors, decom-
posing product-and-sum computations into multiple threads
can lead to higher performance. However, this strategy showed
a marginal improvement compared to the CPU-based HDC in
our experiments due to a lack of data-parallel benefits.

222

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 16:47:07 UTC from IEEE Xplore. Restrictions apply.

Class Hypervectors

7
_}\ D —)
cr -
T oI T=TTT1
| : . X = H
1 . .
| H
7 T T=TTT] N
! : 171
| e 1x1 !
| V |
! Update! x A L2-Recycle 1
1 e . Module Yy v
1
| . Cosine
] C tor l—1 Max index < Similarit
Mispredicted | ~ T PArator [search Coinmplutllti}(l)n

fv
Label

Fig. 4: Design of L2-RECYCLE-applied training module in
HDC-based classification

Instead, we devise the L2-RECYCLE module, which op-
timizes the memory access time in HDC by identifying
invariant calculation results in the similarity computation. It
computes the two L2 norm components only when required.
Fig. 4 shows the design of L2-RECYCLE-applied training
module in HDC-based classification. Since the training pro-
cedure calculates the similarity (s[k]) between the k™ class
hypervector and input hypervectors, we pre-compute their L2
norms when updating them in the training loop. Also, L2-
RECYCLE separately manages the array of the ||Cy||. This
strategy significantly minimizes the memory access time to the
large size of hypervectors. In addition, it removes unnecessary
computation during the HDC application execution.

IV. EVALUATION

A. Experimental Setup
In this section, we test XCelHD on HDC-based classifica-

tion [4]. We evaluated the implementation on the CPU and
GPU in the NVIDIA Jetson TX2 device with Jetpack 4.4.1.
We set the dynamic voltage and frequency scaling governor.
We compare the performance of our XCelHD-based imple-
mentation with the state-of-the-art TensorFlow 2 XL A-based
HDC, which implements the design in [15]. Note that we did
not adopt TensorRT/TFLite-based inference implementation,
as end-to-end HDC execution includes the model training.
Next, to show the energy efficiency of XCelHD, we compare
the energy consumption with the state-of-the-art CPU-based
HDC classification [18] implementation, which uses Python
with a C++ backend to take full advantage of the parallel
capabilities of SIMD. We included the communication time,
e.g., memory copy time, between the GPU and the host.
For the power consumption measurement, fegrastats utility is
used. We set fixed quantization level @) to 100, and epochs to
20. The hypervector dimensionality, D, is set to 10,000 and
4,000. Also, PARTRAIN-powered XCelHD is configured with
10 local trainers.
Datasets To verify the actual use-case of HDC-based classi-
fication, we evaluated the implementation on a wide range of
following benchmark datasets [20], [21] including UCIHAR:
detecting human activity, FACE: classifying images with faces
and non-faces, each sampled from Caltech’s 10, 000 web faces
dataset, CIFAR-100, and Pascal VOS 2012 datasets, ISOLET:
recognizing audio of the English alphabet, and PAMAP2:
classifying human activities based on data from a heart rate
monitor and inertial measurement units.

3C-2

I Single Shot [Retraining-20
100

[JParTrain-1 [ParTrain-5 |

90

80

Accuracy (%)

UCIHAR
Fig. 5: Accuracy comparison between PARTRAIN and the
conventional HDC training method.

FACE ISOLET PAMAP2

B. Accuracy of PARTRAIN
If XCelHD with PARTRAIN refines an HDC model effec-

tively, it should show comparable accuracies to the XCelHD
without PARTRAIN, i.e., conventional HDC training method.
As a baseline, we compared the HDC model, which trained
with a single epoch (Single Shot), 20 epochs of training
(Retraining-20). Also, we measure the accuracy of the first
(PARTRAIN-1) and the fifth epoch (PARTRAIN-5), for PAR-
TRAIN-powered XCelHD. As shown in Fig. 5, XCelHD shows
comparable accuracies compared to the baseline. The peak
performance of the baseline was challenging to obtain with
a single epoch of PARTRAIN. Nevertheless, after five itera-
tions, the PARTRAIN-powered HDC model offered a similar
accuracy compared to the original HDC. Considering that
the conventional training method requires 20 epochs to reach
the target accuracy, the proposed strategy can quickly reach
the target accuracy. It reduces required epochs by 4x while
enhancing the data-parallel benefits and hardware utilization
on GPU. Note that the overhead of gathering local trainer
information and distributing the global HDC model was less
than 5% of the total execution time.

C. Performance Improvements

Fig. 6 describes the performance improvement of the
XCelHD-powered HDC as compared to the TensorFlow GPU-
based implementation. We measured the execution time per
stage since the optimization technique that dominates each
stage is different.

The encoding module would be mainly optimizeil;y ENC-
STREAMER. Multiple accesses to the dataset, LV,,, IDy
occurs, so caching on constant memory improves the perfor-
mance. The ENC-STREAMER module flexibly maps the data
on the proper CUDA memory hierarchy. Also, accumulating
through for loop is used due to the reduction operation. In
the GPGPU architecture, the size of the register assigned to
each thread is limited. If the program exceeds the constraint,
it utilizes global memory. As shown in Fig. 6(a), the scenarios
with relatively small features are accelerated more compared
to the others. When data is fittable on the on-chip memory
constraint, ENC-STREAMER in XCelHD automatically uti-
lizes it. The result shows that XCelHD enables the encoding
module on average 20x faster, with a max speedup of 84x,
compared to the TensorFlow-based HDC.

Iterative training makes predictions based on the current
class hypervectors and updates class hypervectors as a result.
In particular, the prediction is primarily benefitted by L2-
RECYCLE. Fig. 6(b) illustrates the speedup of the training
stage. Although the training module does not offer substan-
tial data-level parallelism compared to the encoding module,
XCelHD improves the speed by reusing computation results.
Furthermore, since PARTRAIN can reduce the number of

223

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 16:47:07 UTC from IEEE Xplore. Restrictions apply.

3C-2

| I D=10000

I D=4000

100

80

60

40

Speedup (x)
Speedup (x)

20

0
UCIHAR FACE
Dataset

0 E
UCIHAR FACE ISOLET PAMAP2
Dataset

(a) Encoding (b) Training (per epoch)

Speedup (x)

ISOLET PAMAP2

100

80

60

40

Speedup (x)

20

0
UCIHAR FACE ISOLET PAMAP2
Dataset

(d) End-to-end

0 E
UCIHAR FACE ISOLET PAMAP2
Dataset

(c) Inference

7
=]

500

&
=

w
=]

Energy Eff. Improv. (x)
[
=3
=]

Energy Eff. Improv. (x)
[
=

e

UCIHAR FACE
Dataset

ISOLET PAMAP2
Dataset

(a) Encoding (b) Training (per epoch)

Energy Eff. Improv. (x)

0
UCIHAR FACE ISOLET PAMAP2

Fig. 6: Speed comparison of XCelHD versus TensorFlow GPU-based HDC classification

80 200

N
—
@
S

IS
=
—
=
S

)
S
w
=]

Energy Eff. Improv. (x)

0 ,
UCIHAR FACE ISOLET PAMAP2
Dataset

(d) End-to-end

UCIHAR FACE
Dataset

ISOLET PAMAP2

(c) Inference

Fig. 7: Energy consumption comparison of XCelHD versus HDC running on the embedded CPU

required epochs to achieve the target accuracy, XCelHD can
lead to significant speedup in the actual deployment of GPU-
powered HDC applications. XCelHD provides up to 34x
speedup, with 24x speedup on average in the inference
module compared to the TensorFlow GPU-based HDC.

The inference stage improvement originates from the com-
bination of optimization for the encoding module and the
prediction, i.e., from ENC-STREAMER and L2-RECYCLE.
Unlike the training stage, which processes data sequentially
to update the class hypervectors, we can make a prediction on
multiple test data in parallel. The inference module benefits
from both simultaneous data processing and parallel reduction.
As shown in Fig. 6(c), XCelHD yields performance gain up
to 83, and 20x on average.

Ultimately, XCelHD offers significant speedup in all
stages of the HDC classification compared to the existing
TensorFlow-based solution. XCelHD most efficiently handles
the encoding stage, which is the bottleneck of CPU-based
HDC. PARTRAIN helps to overcome limited parallelism and
underutilization during the training process in GPU-based
HDC. For the end-to-end execution of HDC process, XCelHD-
powered implementation gains up to 35X, with an average
speedup of 23x as illustrated in Fig. 6(d).

D. Energy Efficiency Improvements
Fig. 7 shows a comparison of the energy consumption

of XCelHD against the low-power CPU. Here, we disabled
PARTRAIN for a fair comparison. In terms of power consump-
tion, XCelHD showed different power consumption trends
for each stage. Since XCelHD maximizes parallelism in the
encoding module, it showed the highest power consumption.
Nevertheless, the execution time reduced significantly, leading
to 41x (25x) energy improvement at maximum (on average).
The training stage without PARTRAIN involves the serialized
data feed, causing limited thread utilization. Even if this
can impede energy efficiency improvement, we successfully
reduced the computation and the execution time using L2-
RECYCLE, leading to a significant energy efficiency improve-

0.8

10

B w/ ENC-Streamer | B w/ 1.2-Recycle

overhead w/o . overhead w/o
BN CStreamer - 8 =

L2-Recycle

14
2N

S
=

Execution Time (s)
S

Execution Time (s)
IS

e

Case A CaseB Case C CaseD Case A CaseB Case C CaseD

(a) ENC-STREAMER (b) L2-RECYCLE
Fig. 8: Execution time with and without proposed optimization
techniques

ment: up to 400x and 163x on average. Enabling PARTRAIN
increases power consumption up to 7x due to higher hardware
utilization. Nevertheless, the proposed framework offers a sig-
nificant amount of energy improvement in the case of XCelHD
without PARTRAIN. Therefore, increased power consumption
can also be compensated by reduced epochs.

Overall, XCelHD results in up to 172x improved energy
efficiency over CPU. The energy efficiency improvements of
XCelHD versus TensorFlow GPU are directly proportional to
the performance improvements shown in Fig. 6, as both run
on the same hardware platform.

E. Effectiveness of ENC-STREAMER and L2-RECYCLE

To show the effectiveness of our memory access opti-
mization strategies, ENC-STREAMER and L2-RECYCLE, we
compare XCelHD with and without these modules. The ef-
fectiveness of our optimization strategies varies according to
the dataset characteristics. The performance of the encoding
module is affected by the dimension size D and the feature
size F'. The speed (per epoch) of the training stage is affected
by D and the number of classes C. While fixing the dataset
size to 10,000, we set representative scenario combinations.

For ENC-STREAMER, we evaluated on four scenarios, (F,
D): Case A) (500,10000), case B) (500,4000), case C)
(250, 10000) and case D) (250,4000), with fixed C' = 10. As
shown in Fig. 8(a), ENC-STREAMER improves the speed by
48%, 14%, 25% and 22% in case A, case B, case C, and case
D, respectively. As the dimensionality increases, the benefit of

224

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 16:47:07 UTC from IEEE Xplore. Restrictions apply.

ENC-STREAMER increases. Also, we observed that the power
consumption between the two variants is similar, leading to
energy efficiency improvement.

When evaluating L2-RECYCLE, we fixed F' = 500 and
changed the C. We experimented on four scenarios, (C, D):
Case A) (10, 10000), case B) (10,4000), case C) (20, 10000)
and case D) (20,4000). In the case of D = 10000, it leads
to around 12x performance improvement, while case B and
case D (D=4000) shows 8x and 5x speedup, respectively.
As shown in Fig. 8(b), the training without L2-RECYCLE
is heavily affected by the dimensionality. In contrast, our
optimization strategy guarantees almost consistent execution
time regardless of the D and C, with only a minimal amount
of additional memory usage (e.g., 80 Byte in case C). Re-
ducing the redundant computation plays a significant role in
accelerating the training with minimal overhead.

V. RELATED WORK

HDC consists of many bit-level arithmetic operations that
can be effectively parallelized. The ASIC designs are pro-
posed, e.g., similarity computation circuits [11] and text
classification ASIC design [22] based on advanced memory
technology. The work in [14] also shows how to accelerate
the HD encoding scheme using PIM techniques. In [23],
the authors present a hybrid ASIC architecture that runs
both DL and HDC. In [17], the authors propose the HDC-
based classification running on the FPGA. Although FPGA,
ASIC, and PIM implementations can offer superior efficiency,
their design and synthesis time impede rapid development.
The work in [15] shows TensorFlow for HDC classification
acceleration on GPU. Hypervectors can be treated as a tensor
data type. Hence, HDC operations can be implemented and ac-
celerated with the GPU with tensor operations in TensorFlow.
The results show that TensorFlow-based HDC running on the
NVIDIA Jetson Nano consumes more energy and runs just as
slow as HDC on CPU, thus illustrating the need for a tool such
as XCelHD that can automatically create an efficient mapping
of HDC applications to GPUs. XCelHD maximizes parallelism
specific to HDC applications while effectively leveraging the
memory hierarchy and minimizing the memory accesses.

VI. CONCLUSION

In this paper, we presented a GPU-based HDC acceleration
framework called XCelHD. We address the memory access
challenges in the current HDC application running on the
GPU, with efficient cache utilization and data reuse. The
proposed optimization module benefits the encoding and the
prediction of the HDC, which affects the end-to-end pipeline
of HDC applications. Furthermore, we propose a parallelized
training method, called PARTRAIN, to enhance hardware uti-
lization and data-parallel benefits on the GPU. The proposed
PARTRAIN reduces the required epochs to obtain comparable
accuracy by 4x. Also, our evaluation results with the low-
powered embedded GPU show that XCelHD is 23x faster
execution time on average as compared to the existing Ten-
sorFlow GPU-based HDC classification implementation.

ACKNOWLEDGMENTS
This work was supported in part by CRISP, one of six
centers in JUMP, an SRC program sponsored by DARPA, in
part by SRC-Global Research Collaboration grants, and also

3C-2
NSF grants # 2100237, #1730158, #1826967, and #1911095.

REFERENCES

[1]1 P. Kanerva, Sparse distributed memory. MIT press, 1988.

[2] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-
efficient classifier using brain-inspired hyperdimensional computing,”
in International Symposium on Low Power Electronics and Design.
Association for Computing Machinery, 2016, p. 64—69.

[3] A. Mitrokhin, P. Sutor, C. Fermiiller, and Y. Aloimonos, “Learning sen-
sorimotor control with neuromorphic sensors: Toward hyperdimensional
active perception,” Science Robotics, vol. 4, no. 30, May 2019.

[4] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdi-
mensional computing for efficient speech recognition,” in International
Conference on Rebooting Computing (ICRC). 1EEE, 2017, pp. 1-8.

[51 Y. Guo, M. Imani, J. Kang, S. Salamat, J. Morris, B. Aksanli,
Y. Kim, and T. Rosing, “Hyperrec: Efficient recommender systems
with hyperdimensional computing,” in Proceedings of the 26th Asia
and South Pacific Design Automation Conference, ser. ASPDAC 21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
384-389. [Online]. Available: https://doi.org/10.1145/3394885.3431553

[6] O. Risidnen and S. Kakouros, “Modeling dependencies in multiple
parallel data streams with hyperdimensional computing,” IEEE Signal
Processing Letters, vol. 21, no. 7, pp. 899-903, 2014.

[71 Y. Wu, G. Wayne, A. Graves, and T. Lillicrap, “The kanerva machine: A
generative distributed memory,” arXiv preprint arXiv:1804.01756, 2018.

[8] G. Karunaratne, M. L. Gallo, G. Cherubini, L. Benini, A. Rahimi, and
A. Sebastian, “In-memory hyperdimensional computing,” arXiv preprint
arXiv:1906.01548, 2019.

[9] S. Ahmad and J. Hawkins, “Properties of sparse distributed represen-
tations and their application to hierarchical temporal memory,” arXiv
preprint arXiv:1503.07469, 2015.

[10] S. Datta, R. Antonio et al., “A programmable hyper-dimensional pro-
cessor architecture for human-centric iot,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 9, no. 3, pp. 439-452,
2019.

[11] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Ex-
ploring hyperdimensional associative memory,” in IEEE International
Symposium on High Performance Computer Architecture (HPCA), Feb.
2017.

[12] T. F. Wu, H. Li, P.-C. Huang, A. Rahimi, J. M. Rabaey et al., “Brain-
inspired computing exploiting carbon nanotube fets and resistive ram:
Hyperdimensional computing case study,” in IEEE International Solid-
State Circuits Conference-(ISSCC). 1EEE, 2018, pp. 492-494.

[13] M. Imani, C. Huang, D. Kong, and T. Rosing, “Hierarchical hyperdi-
mensional computing for energy efficient classification,” in Proceedings
of the 55th Annual Design Automation Conference, 2018.

[14] S. Gupta, M. Imani, and T. Rosing, “Felix: Fast and energy-efficient
logic in memory,” in Proceedings of the International Conference on
Computer-Aided Design, 2018.

[15] S. Datta, R. A. G. Antonio, A. R. S. Ison, and J. M. Rabaey, “A
programmable hyper-dimensional processor architecture for human-
centric 1oT,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 9, no. 3, pp. 439452, Sep. 2019.

[16] A. Joshi, J. Halseth, and P. Kanerva, “Language recognition using
random indexing,” 2014.

[17] S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, “F5-hd: Fast flexible
fpga-based framework for refreshing hyperdimensional computing,” in
International Symposium on FPGAs. ACM, 2019, pp. 53-62.

[18] M. Imani, J. Morris, S. Bosch, H. Shu, G. De Micheli, and T. Rosing,
“Adapthd: Adaptive efficient training for brain-inspired hyperdimen-
sional computing,” in IEEE BioCAS, 2019, pp. 1-4.

[19] M. Imani, J. Morris et al., “Bric: Locality-based encoding for energy-
efficient brain-inspired hyperdimensional computing,” in 56th Annual
Design Automation Conference, 2019, pp. 1-6.

[20] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[21] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for
activity monitoring,” in 2012 16th International Symposium on Wearable
Computers, 2012, pp. 108-109.

[22] H. Li, T. F. Wu, A. Rahimi et al., “Hyperdimensional computing
with 3d vrram in-memory kernels: Device-architecture co-design for
energy-efficient, error-resilient language recognition,” in /EEE IEDM,
pp. 16.1.1-16.1.4.

[23] M. Nazemi, A. Esmaili, A. Fayyazi, and M. Pedram, “Synergiclearning:
neural network-based feature extraction for highly-accurate hyperdi-
mensional learning,” in 2020 IEEE/ACM International Conference On
Computer Aided Design (ICCAD). 1EEE, 2020, pp. 1-9.

225

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 16:47:07 UTC from IEEE Xplore. Restrictions apply.

