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Abstract— Hyperdimensional Computing (HDC) is an emerg-
ing lightweight machine learning method alternative to deep
learning. One of its key strengths is the ability to accelerate
it in hardware, as it offers massive parallelisms. Prior work
primarily focused on FPGA and ASIC, which do not provide
the seamless flexibility required for HDC applications. Few
studies that attempted GPU designs are inefficient, partly due
to the complexity of accelerating HDC on GPUs because of the
bit-level operations of HDC. Besides, HDC training exhibited
low hardware utilization due to sequential operations. In this
paper, we present XCelHD, a high-performance GPU-powered
framework for HDC. XCelHD uses a novel training method
to maximize the training speed of the HDC model while fully
utilizing hardware. We propose memory optimization strategies
specialized for GPU-based HDC, minimizing the access time
to different memory subsystems and redundant operations. We
show that the proposed training method reduces the required
number of training epochs by four-fold to achieve comparable
accuracy. Our evaluation results on NVIDIA Jetson TX2 show
that XCelHD is up to 35× faster than the state-of-the-art
TensorFlow-based HDC implementation.

I. INTRODUCTION

Machine learning on edge devices has become more preva-

lent as it enables real-time and in-place analysis. Techniques

based on deep learning (DL) are popular for processing

complex tasks by extracting high-level features. However,

running such algorithms on conventional systems results in

high energy consumption and slow processing speed. Brain-

inspired Hyperdimensional Computing (HDC) is an alternative

solution based on a long-term memory model, which emulates

human cognition with operations on high-dimensional vectors,

called hypervectors [1]. HDC first encodes data into hypervec-

tors to perform the rest of the training process in a lightweight

way. Many different learning applications have been shown

to provide high accuracy and efficiency when implemented

using HDC, e.g., language recognition [2], robotics [3], activ-

ity identification and voice recognition [4], recommendation

system [5] and multimodal sensor fusion [6]. Several compa-

nies are also using HDC to implement more generalizeable

learning, e.g., Google [7], IBM [8], and Numenta [9].

HDC has a number of advantages as compared to the

conventional DL: (1) it is suitable for on-device learning

based on hardware acceleration due to its highly parallel

nature [10], (2) hidden features of information can be well-

exposed, thereby empowering both training and inference

with the light-weight computation and a small number of

iterations, and (3) the hypervector representation inherently

exhibits strong robustness against the noise and corrupted

data [11]. A few hardware accelerators have been proposed for

HDC, such as ASIC [2], [12], [13], and in-memory computing

accelerator [14]. These works show nearly remarkable speedup

and energy efficiency improvements compared to the CPU-

based implementation, primarily due to their ability to leverage

high parallelism of operations on hypervectors. However,

ASIC and PIM have long design times and are expensive

to manufacture, so they are not commonly available. More

importantly, HDC applications require flexibility in terms of,

e.g., hypervector lengths, encoding algorithm, and precision

of operations that such platforms cannot readily offer. An

excellent commercial off-the-shelf platform is GPU. Recently

there has been a proliferation of GPU-enabled embedded

devices, such as NVIDIA Jetson.

Unfortunately, recent work that accelerated HDC on embed-

ded GPU [15] showed a comparable performance over CPU-

based HDC. Our recent experiments with TensorFlow XLA-

based HDC also gained a marginal performance improvement

(1.74×) over the CPU, showing the GPU utilization of 40%

and 10% for the encoding and the training, respectively.

There are several reasons why a library such as TensorFlow

is not suitable for running HDC on the GPU. First, HDC

training by default requires sequential data inputs to refine

the trained model iteratively for higher accuracy. It creates

a lot of HDC data transfer between CPU and GPU, which

causes a memory bottleneck and impedes full exploitation

of GPU parallelism. Furthermore, TensorFlow-based HDC

cannot carefully leverage the mapping data to the memory

hierarchy on the GPU since HDC data are large in size and

have specific memory access patterns. For the off-the-shelf

embedded GPUs, these characteristics lead to underutilized

hardware resources, impeding the high throughput and perfor-

978-1-6654-2135-5/22/$31.00 ©2022 IEEE

3C-2

220

20
22

 2
7t
h 
As
ia
 a
nd

 S
ou

th
 P
ac
ifi
c D

es
ig
n 
Au

to
m
at
io
n 
Co

nf
er
en

ce
 (A

SP
‐D
AC

) |
 9
78

‐1
‐6
65
4‐
21
35

‐5
/2
2/
$3
1.
00

 ©
20
22

 IE
EE
 |
 D
OI
: 1
0.
11
09
/A
SP
‐D
AC

52
40
3.
20
22
.9
71
25
49

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 27,2022 at 16:47:07 UTC from IEEE Xplore.  Restrictions apply.



�

��������	

���


�
��
��
��

	

��

�

��
��
�

��
����	
��
������

�

����	��	
��
������

� �������������	�
������

���������
�������������

���������

��������
��������������

���
�
��


��������	

���


������� 
����

���������	�
������

����������

��
�
	


��

�

��
��
�

!
�


��
�
	


��

�

��
��
�

"�

Fig. 1: Overview of HDC-based classification.

mance of HDC applications.

In this paper, we present a GPU-powered HDC framework

called XCelHD. XCelHD effectively mitigates the low paral-

lelization and memory access issues of the existing works. Fur-

thermore, we propose a highly parallel HDC training, called

PARTRAIN that elevates the GPU parallelism by redesigning

the HDC training algorithm. It converts the sequential HD

training process into multiple simultaneous subtasks; each task

learns partial models with different training samples while

updating the final model based on the partial models. Our

contributions are summarized as follows:

• We present XCelHD for GPUs, which supports various

classification tasks based on HDC. Unlike existing DL

framework-based implementations, XCelHD parallelizes the

HDC learning procedure in a GPU-friendly way while

intelligently optimizing memory allocation/access patterns.

To the best of our knowledge, this is the first work that

designs GPU-centric optimization strategies for HDC.

• We propose a novel HDC training method for high paral-

lelism. The proposed training method enables full utilization

of hardware resources and reduces the number of required

training epochs by 4× on top of the GPU-accelerated HDC.

• Our strategies specially designed for GPU maximize data

reuse and enhance cache utilization, additionally accelerat-

ing the prediction (up to 12×) and the encoding step (up to

48%) in HDC with simple parallelization, respectively.

We implemented and evaluated XCelHD with various datasets

using NVIDIA Jetson TX2, which aims to low-power edge

devices. Our experimental results show that the proposed

parallelized training method can save the number of training

iterations required to achieve the same accuracy by 4×.

Furthermore, our design is up to 35× faster than TensorFlow

2 XLA-based HDC classification implementation.

II. XCELHD OVERVIEW

Classification is a representative cognitive task that HDC

can be used [4], [16]. Figure 1 illustrates the XCelHD

learning procedure, which consists of the encoding, training,

and inference stages.

Encoding maps (encode) real-world data into the HD space.

There are various encoding methods. One of the most pop-

ular ones is the ID-level method [4], [14], [17]. First, the

encoding module randomly generates orthogonal unique ID
hypervectors,

−→
IDf ∈ {−1, 1}D assigned to an individual f th

index of feature. Next, to capture an arbitrary value m in f th

index of feature, we create level hypervectors,
−→
LV m for using
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Fig. 2: Overview of the proposed parallel training method

the method shown in [4]. Once ID hypervectors and level

hypervectors are generated, we can encode an input data to

an input hypervector
−→
I as follows:−→

I =
∑

f

−→
IDf �−→

LV m (1)

where � indicates an element-wise multiplication. The ID-

level method is more complex but includes all the steps

of other algorithms, such as random projection. Thus, any

implementation that can carry out ID-level can also implement

the random projection [4].

Initialization and training stage builds class hypervectors.

During the initialization, also known as single-pass training,

it combines all hypervectors
−→
Hk

i belonging each class k using

the element-wise addition, i.e.,
−→
C k =

∑
i

−→
Hk

i where
−→
C k

indicates class hypervector for class k.

Iterative training is used to achieve higher accuracy. HDC

calibrates class hypervectors (HDC model) based on the

prediction using the current state of class hypervectors. First,

it compares the ground truth label to the predicted class. We

select a class with a maximum similarity between input hyper-

vector and class hypervectors. For binarized hypervectors, we

use the Hamming distance, while cosine similarity is utilized

for another type of data. If the prediction is incorrect, the

training module updates the HDC model: the input hypervec-

tor is subtracted from the class hypervector of the incorrectly

predicted class and added to the class hypervector of the

correct answer. We can apply the learning rate (η ∈ (0, 1])
for scaling the input hypervector during the update [18]. We

define epoch as the number of training iterations.

Inference or prediction finds the most similar class hyper-

vector to the test data. We first encode test queries (data) into

hypervectors, called query hypervectors using the same encod-

ing method used for training. For each query hypervector −→q ,

the inference module calculates its similarity against the class

hypervectors. Next, it selects a class with the highest similarity

using either Hamming distance (binary hypervectors) or cosine

similarity (non-binary data).

III. XCELHD OPTIMIZATION TECHNIQUES

A. PARTRAIN: Parallel Training for HDC Classification
The iterative training process is essential to achieve higher

accuracy than the single-pass (shot) training (see Fig. 5.)

However, the training stage processes data sequentially, thus it

hinders from data-parallel benefits of the GPU. It can lead to

the bottleneck of the GPU-based HDC. We propose a method

to refine the HDC model in parallel, called PARTRAIN. It

can unleash parallelism, maximize hardware utilization and

achieve the target accuracy with small iterations.
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Fig. 3: Overview of ENC-STREAMER-applied HDC encoding

Fig. 2 describes the overview of the proposed training. The

main principle of the proposed method uses multiple local
trainers to generate a local HDC model and creates the global

HDC model G, which is used for the inference. A local trainer

has two sets of hypervectors, each with C hypervectors, where

C is the number of classes. One set stores a local HDC

model, and the other accumulates the changes of the local

HDC model. We initialize the latter hypervector set, D with

zeros. The local HDC models and global HDC models are

initialized with the results of HDC single-pass training.

We shard the training data by identical numbers and feed

them to each local trainer. (Fig. 2-•1 ) It trains its local

HDC model following the conventional HDC training process

(Fig. 2-•2 ). It is updated when the predicted values differ

from the ground truth. Additionally, changes of the local HDC

model are aggregated to D (Fig. 2-•3 ). After training with

assigned datapoints, we update the global HDC model by

calculating G =
∑

i Di, where i indicates ith local trainer

(Fig. 2-•4 ). Finally, the global model replaces the local HDC

model (Fig. 2-•5 ). Note that every accumulating operation

is parallelized over the hypervector dimension. We define

this whole process as one epoch. The original HDC training

processes the same amount of data points in a single epoch.

Using multiple local trainers in a single GPU device can

enable a higher level of data parallelism. Also, the number of

local trainers can be dynamically adjusted based on available

hardware resources.

B. HDC-BASED MEMORY OPTIMIZATION
XCelHD encompasses two key optimization techniques to

reduce the memory access times due to frequent accesses to

large size hypervectors: ENC-STREAMER and L2-RECYCLE.

They are used during the encoding and the training of HDC.

1) ENC-Streamer: ENC-STREAMER is designed to allo-

cate data to the appropriate memory hierarchy to achieve high

efficiency during data-intensive encoding and inference stages.

These two stages map training and testing data to the HD

space, respectively. Encoding often takes as much as 70%

of the overall runtime of HDC on CPU [19], which is the

main bottleneck of HDC application. Here we focus on one of

the popular HDC encoding techniques, the ID-Level encoding.

Same strategy work for the simpler random projection method

as well. A naive way to implement the ID-Level encoding on

GPU is to parallelize over training data and each dimension

of input hypervectors. A thread accumulates
−→
IDi �−→

LV i over

features where i is the index of an element in a hypervector

that a thread is computing.

ENC-STREAMER enhances memory transactions on top of

the parallelization. Fig. 3 shows the design of the encoding

module with ENC-STREAMER. The GPGPU memory hierar-

chy includes several memories, e.g., global memory, shared

memory, and constant memory, each having different charac-

teristics such as size and latency. The execution time diverges

depending on a data allocation strategy of an algorithm. For

instance, global memory offers the largest capacity with long

latency. Constant memory has a small size and is read-only

but can be accessed with a few clock cycles.

We use two streams to hide the memory copy time between

the host and the GPU. The streamed data is encoded to the

hypervector using the aforementioned method and stored in

the global memory. On top of that, ENC-STREAMER applies

an additional caching strategy for ID hypervectors and level

hypervectors, which is a frequently used term as shown in

Eq. 1. We cache
−→
ID in the shared memory. This encoded data

is used for the rest of the runtime, thus completely eliminating
the data movement costs. At the same time, the same strategy

is applied to the other stream synchronously. It runs until all

datapoints are covered in an interleaved fashion. For the GPUs

with unified virtual addressing, we use a single stream and

managed memory. Raw data requires one read transaction and

does not have to be cached. This mechanism helps to alleviate

the memory capacity limitation that is especially critical in

embedded GPUs.

Furthermore, ENC-STREAMER optimizes access to level

hypervectors. Since the feature values are random, the access

to their associated level hypervector is irregular. In other

words, it entails non-coalesced access to memory, leading to

increased latency. Based on the fact that the level hypervector

generation method uses flips according to quantized levels,

we generate only one level hypervector to use it as a base,

called base-level hypervector,
−−−−→
LVbase. Then, according to the

value of each index, the corresponding level hypervector is

generated in-situ. Nevertheless, this approach can still cause

contention during memory access if it is placed on the global

memory. We bit-pack the base-level hypervector and store it

in constant memory. Since hypervectors require a large size

array, packing is essential to satisfy the constant memory

constraint. Empirically, packing eight bits showed the best

performance. Each thread encodes the eight components of

the input hypervector.

2) L2-Recycle: Pairwise similarity computation is the core

component of HDC training and inference. The cosine simi-

larity δ(x, y) between vector �x and �y is defined by

δ(x, y) =
�x · �y

‖�x‖‖�y‖ . (2)

To accommodate higher parallelism, we compute the numera-

tor and the denominator separately. Then, operations, includ-

ing the L2 norm, can leverage the parallel reduction technique

because of the large dimensionality. For HDC vectors, decom-

posing product-and-sum computations into multiple threads

can lead to higher performance. However, this strategy showed

a marginal improvement compared to the CPU-based HDC in

our experiments due to a lack of data-parallel benefits.

3C-2

222
Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 27,2022 at 16:47:07 UTC from IEEE Xplore.  Restrictions apply.



�

−→
I

−→
C1

−→
C2

−→
CN

���������
	��
��

�
���
��



�����

−→
I

−→
I

�

��	�
�������

���		�����
����

	

�

�

‖−→C1‖‖−→C2‖ ‖−→CN‖

‖−→I ‖

�

������

�
	���
������
���

�
�������
�

��������	�

��
	�

Fig. 4: Design of L2-RECYCLE-applied training module in

HDC-based classification

Instead, we devise the L2-RECYCLE module, which op-

timizes the memory access time in HDC by identifying

invariant calculation results in the similarity computation. It

computes the two L2 norm components only when required.

Fig. 4 shows the design of L2-RECYCLE-applied training

module in HDC-based classification. Since the training pro-

cedure calculates the similarity (s[k]) between the kth class

hypervector and input hypervectors, we pre-compute their L2

norms when updating them in the training loop. Also, L2-

RECYCLE separately manages the array of the ‖−→Ck‖. This

strategy significantly minimizes the memory access time to the

large size of hypervectors. In addition, it removes unnecessary

computation during the HDC application execution.

IV. EVALUATION

A. Experimental Setup
In this section, we test XCelHD on HDC-based classifica-

tion [4]. We evaluated the implementation on the CPU and

GPU in the NVIDIA Jetson TX2 device with Jetpack 4.4.1.

We set the dynamic voltage and frequency scaling governor.

We compare the performance of our XCelHD-based imple-

mentation with the state-of-the-art TensorFlow 2 XLA-based

HDC, which implements the design in [15]. Note that we did

not adopt TensorRT/TFLite-based inference implementation,

as end-to-end HDC execution includes the model training.

Next, to show the energy efficiency of XCelHD, we compare

the energy consumption with the state-of-the-art CPU-based

HDC classification [18] implementation, which uses Python

with a C++ backend to take full advantage of the parallel

capabilities of SIMD. We included the communication time,

e.g., memory copy time, between the GPU and the host.

For the power consumption measurement, tegrastats utility is

used. We set fixed quantization level Q to 100, and epochs to

20. The hypervector dimensionality, D, is set to 10, 000 and

4, 000. Also, PARTRAIN-powered XCelHD is configured with

10 local trainers.

Datasets To verify the actual use-case of HDC-based classi-

fication, we evaluated the implementation on a wide range of

following benchmark datasets [20], [21] including UCIHAR:

detecting human activity, FACE: classifying images with faces

and non-faces, each sampled from Caltech’s 10, 000 web faces

dataset, CIFAR-100, and Pascal VOS 2012 datasets, ISOLET:

recognizing audio of the English alphabet, and PAMAP2:

classifying human activities based on data from a heart rate

monitor and inertial measurement units.

UCIHAR FACE ISOLET PAMAP2

80

90

100

A
cc

ur
ac

y 
(%

)

Single Shot Retraining-20 ParTrain-1 ParTrain-5

Fig. 5: Accuracy comparison between PARTRAIN and the

conventional HDC training method.

B. Accuracy of PARTRAIN

If XCelHD with PARTRAIN refines an HDC model effec-

tively, it should show comparable accuracies to the XCelHD

without PARTRAIN, i.e., conventional HDC training method.

As a baseline, we compared the HDC model, which trained

with a single epoch (Single Shot), 20 epochs of training

(Retraining-20). Also, we measure the accuracy of the first

(PARTRAIN-1) and the fifth epoch (PARTRAIN-5), for PAR-

TRAIN-powered XCelHD. As shown in Fig. 5, XCelHD shows

comparable accuracies compared to the baseline. The peak

performance of the baseline was challenging to obtain with

a single epoch of PARTRAIN. Nevertheless, after five itera-

tions, the PARTRAIN-powered HDC model offered a similar

accuracy compared to the original HDC. Considering that

the conventional training method requires 20 epochs to reach

the target accuracy, the proposed strategy can quickly reach

the target accuracy. It reduces required epochs by 4× while

enhancing the data-parallel benefits and hardware utilization

on GPU. Note that the overhead of gathering local trainer

information and distributing the global HDC model was less

than 5% of the total execution time.

C. Performance Improvements
Fig. 6 describes the performance improvement of the

XCelHD-powered HDC as compared to the TensorFlow GPU-

based implementation. We measured the execution time per

stage since the optimization technique that dominates each

stage is different.

The encoding module would be mainly optimized by ENC-

STREAMER. Multiple accesses to the dataset,
−→
LV m,

−→
IDf

occurs, so caching on constant memory improves the perfor-

mance. The ENC-STREAMER module flexibly maps the data

on the proper CUDA memory hierarchy. Also, accumulating

through for loop is used due to the reduction operation. In

the GPGPU architecture, the size of the register assigned to

each thread is limited. If the program exceeds the constraint,

it utilizes global memory. As shown in Fig. 6(a), the scenarios

with relatively small features are accelerated more compared

to the others. When data is fittable on the on-chip memory

constraint, ENC-STREAMER in XCelHD automatically uti-

lizes it. The result shows that XCelHD enables the encoding

module on average 20× faster, with a max speedup of 84×,

compared to the TensorFlow-based HDC.

Iterative training makes predictions based on the current

class hypervectors and updates class hypervectors as a result.

In particular, the prediction is primarily benefitted by L2-

RECYCLE. Fig. 6(b) illustrates the speedup of the training

stage. Although the training module does not offer substan-

tial data-level parallelism compared to the encoding module,

XCelHD improves the speed by reusing computation results.

Furthermore, since PARTRAIN can reduce the number of
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Fig. 6: Speed comparison of XCelHD versus TensorFlow GPU-based HDC classification
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Fig. 7: Energy consumption comparison of XCelHD versus HDC running on the embedded CPU

required epochs to achieve the target accuracy, XCelHD can

lead to significant speedup in the actual deployment of GPU-

powered HDC applications. XCelHD provides up to 34×
speedup, with 24× speedup on average in the inference

module compared to the TensorFlow GPU-based HDC.

The inference stage improvement originates from the com-

bination of optimization for the encoding module and the

prediction, i.e., from ENC-STREAMER and L2-RECYCLE.

Unlike the training stage, which processes data sequentially

to update the class hypervectors, we can make a prediction on

multiple test data in parallel. The inference module benefits

from both simultaneous data processing and parallel reduction.

As shown in Fig. 6(c), XCelHD yields performance gain up

to 83×, and 20× on average.

Ultimately, XCelHD offers significant speedup in all

stages of the HDC classification compared to the existing

TensorFlow-based solution. XCelHD most efficiently handles

the encoding stage, which is the bottleneck of CPU-based

HDC. PARTRAIN helps to overcome limited parallelism and

underutilization during the training process in GPU-based

HDC. For the end-to-end execution of HDC process, XCelHD-

powered implementation gains up to 35×, with an average

speedup of 23× as illustrated in Fig. 6(d).

D. Energy Efficiency Improvements
Fig. 7 shows a comparison of the energy consumption

of XCelHD against the low-power CPU. Here, we disabled

PARTRAIN for a fair comparison. In terms of power consump-

tion, XCelHD showed different power consumption trends

for each stage. Since XCelHD maximizes parallelism in the

encoding module, it showed the highest power consumption.

Nevertheless, the execution time reduced significantly, leading

to 41× (25×) energy improvement at maximum (on average).

The training stage without PARTRAIN involves the serialized

data feed, causing limited thread utilization. Even if this

can impede energy efficiency improvement, we successfully

reduced the computation and the execution time using L2-

RECYCLE, leading to a significant energy efficiency improve-
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Fig. 8: Execution time with and without proposed optimization

techniques

ment: up to 400× and 163× on average. Enabling PARTRAIN

increases power consumption up to 7× due to higher hardware

utilization. Nevertheless, the proposed framework offers a sig-

nificant amount of energy improvement in the case of XCelHD

without PARTRAIN. Therefore, increased power consumption

can also be compensated by reduced epochs.

Overall, XCelHD results in up to 172× improved energy

efficiency over CPU. The energy efficiency improvements of

XCelHD versus TensorFlow GPU are directly proportional to

the performance improvements shown in Fig. 6, as both run

on the same hardware platform.

E. Effectiveness of ENC-STREAMER and L2-RECYCLE

To show the effectiveness of our memory access opti-

mization strategies, ENC-STREAMER and L2-RECYCLE, we

compare XCelHD with and without these modules. The ef-

fectiveness of our optimization strategies varies according to

the dataset characteristics. The performance of the encoding

module is affected by the dimension size D and the feature

size F . The speed (per epoch) of the training stage is affected

by D and the number of classes C. While fixing the dataset

size to 10, 000, we set representative scenario combinations.

For ENC-STREAMER, we evaluated on four scenarios, (F ,

D): Case A) (500, 10000), case B) (500, 4000), case C)

(250, 10000) and case D) (250, 4000), with fixed C = 10. As

shown in Fig. 8(a), ENC-STREAMER improves the speed by

48%, 14%, 25% and 22% in case A, case B, case C, and case

D, respectively. As the dimensionality increases, the benefit of
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ENC-STREAMER increases. Also, we observed that the power

consumption between the two variants is similar, leading to

energy efficiency improvement.

When evaluating L2-RECYCLE, we fixed F = 500 and

changed the C. We experimented on four scenarios, (C, D):

Case A) (10, 10000), case B) (10, 4000), case C) (20, 10000)
and case D) (20, 4000). In the case of D = 10000, it leads

to around 12× performance improvement, while case B and

case D (D=4000) shows 8× and 5× speedup, respectively.

As shown in Fig. 8(b), the training without L2-RECYCLE

is heavily affected by the dimensionality. In contrast, our

optimization strategy guarantees almost consistent execution

time regardless of the D and C, with only a minimal amount

of additional memory usage (e.g., 80 Byte in case C). Re-

ducing the redundant computation plays a significant role in

accelerating the training with minimal overhead.

V. RELATED WORK

HDC consists of many bit-level arithmetic operations that

can be effectively parallelized. The ASIC designs are pro-

posed, e.g., similarity computation circuits [11] and text

classification ASIC design [22] based on advanced memory

technology. The work in [14] also shows how to accelerate

the HD encoding scheme using PIM techniques. In [23],

the authors present a hybrid ASIC architecture that runs

both DL and HDC. In [17], the authors propose the HDC-

based classification running on the FPGA. Although FPGA,

ASIC, and PIM implementations can offer superior efficiency,

their design and synthesis time impede rapid development.

The work in [15] shows TensorFlow for HDC classification

acceleration on GPU. Hypervectors can be treated as a tensor

data type. Hence, HDC operations can be implemented and ac-

celerated with the GPU with tensor operations in TensorFlow.

The results show that TensorFlow-based HDC running on the

NVIDIA Jetson Nano consumes more energy and runs just as

slow as HDC on CPU, thus illustrating the need for a tool such

as XCelHD that can automatically create an efficient mapping

of HDC applications to GPUs. XCelHD maximizes parallelism

specific to HDC applications while effectively leveraging the

memory hierarchy and minimizing the memory accesses.

VI. CONCLUSION

In this paper, we presented a GPU-based HDC acceleration

framework called XCelHD. We address the memory access

challenges in the current HDC application running on the

GPU, with efficient cache utilization and data reuse. The

proposed optimization module benefits the encoding and the

prediction of the HDC, which affects the end-to-end pipeline

of HDC applications. Furthermore, we propose a parallelized

training method, called PARTRAIN, to enhance hardware uti-

lization and data-parallel benefits on the GPU. The proposed

PARTRAIN reduces the required epochs to obtain comparable

accuracy by 4×. Also, our evaluation results with the low-

powered embedded GPU show that XCelHD is 23× faster

execution time on average as compared to the existing Ten-

sorFlow GPU-based HDC classification implementation.
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