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ABSTRACT

We study the problem of publishing a stream of real-valued data
satisfying differential privacy (DP). One major challenge is that the
maximal possible value in the stream can be quite large, leading to
enormous DP noise and bad utility. To reduce the maximal value
and noise, one way is to estimate a threshold so that values above it
can be truncated. The intuition is that, in many scenarios, only a few
values are large; thus truncation does not change the original data
much. We develop such a method that finds a suitable threshold with
DP. Given the threshold, we then propose an online hierarchical
method and several post-processing techniques.

Building on these ideas, we formalize the steps in a framework for
the private publishing of streaming data. Our framework consists
of three components: a threshold optimizer that privately estimates
the threshold, a perturber that adds calibrated noise to the stream,
and a smoother that improves the result using post-processing.
Within our framework, we also design an algorithm satisfying the
more stringent DP setting called local DP. Using four real-world
datasets, we demonstrate that our mechanism outperforms the
state-of-the-art by a factor of 6 — 10 orders of magnitude in terms of
utility (measured by the mean squared error of the typical scenario
of answering a random range query).
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1 INTRODUCTION

Continuous observation over data streams has been utilized in
several real-world applications. For example, security companies
continuously analyze network traffic to detect abnormal Internet be-
haviors [9]. However, analyzing and releasing streams raise privacy
concerns when these data contain sensitive individual information.
Directly publishing raw statistics may reveal individual users’ pri-
vate information. For instance, electricity usage data from smart
meters can reveal whether a user is at home or even what household
appliances are used at some specific time [34].

A promising technique for releasing private statistics is differen-
tial privacy (DP) [17], which has become the gold standard in the
privacy-research community. Informally, any algorithm satisfying
DP has the property that its output distribution on a given database
is close to the output distribution on a similar dataset where any
single record is replaced. The closeness is quantified by a parameter
€, where a smaller € offers a better privacy guarantee.

To publish streams with DP, a widely accepted approach is to
use the hierarchical structure [8, 18]. The idea is to partition the
time series into multiple granularities and then add noise to the
stream to satisfy DP. Because of the additive noise, it is impossible
to accurately publish any single value in the stream. Thus our goal
is to accurately estimate the sum of values over any range of time. One
challenge is that to satisfy DP, the magnitude of the noise should
be proportional to the upper bound of the data, which is typically
large. Perrier et al. [36] (termed PAK in this paper) observed that
data in the stream is often concentrated below a value much smaller
than the upper bound. To exploit this insight, a technique called
contribution limitation is commonly-used [13, 30, 32, 50, 54]. It
truncates the data using a specified threshold 6 (i.e., values larger
than 0 are replaced by 0). The rationale is to reduce the noise (now
the noise is proportional only to §) while preserving utility. To find
such a threshold while maintaining DP, PAK developed a method
based on smooth sensitivity [35]. The result can then be applied to
the hierarchical algorithm to publish streams with improved utility.

We find three key limitations in existing work of PAK’s. First, it
tries to privately find the 99.5-th percentile to serve as the threshold
0. Unfortunately, using the 99.5-th percentile (or any other fixed
percentile) is unlikely to work across all settings of € values and
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data distributions. Second, in order to get an analytical upper bound
of the error caused by truncation (this error is also called bias), the
authors further increase the estimated 99.5-th percentile by first
adding a positive term, and then multiplying a coefficient greater
than 1. As a result, the chosen 0 is often unnecessarily large. When
€ is small (e.g., € < 0.1), the value of 0 is usually larger than the
maximal possible value, running against the original purpose of
choosing the threshold. Third, the method directly utilizes a basic
hierarchical approach to output the stream, and does not fully take
advantage of post-processing optimizations. As a consequence, the
accuracy of the output is far from ideal, and the results are worse
when answering range queries with small selectivity.

In this paper, we propose a new approach by addressing the
above-mentioned three limitations. Instead of using a fixed per-
centile, we design a data-dependent method to find the threshold 6
that considers the overall data distribution. Our goal is to minimize
the overall error due to bias and DP noise simultaneously. Given
0, we then propose a new hierarchical algorithm to obtain accu-
rate results. One major contribution is a novel online algorithm
to enforce consistency over the noisy estimates (i.e., to make sure
the number on any node equal the sum of its children’s, which is
violated if independently sampled noise is added to the hierarchy)
on the hierarchy to provide better utility. While there exists consis-
tency methods that work on the noisy hierarchies, our observation
is that we can pre-compute all the noise, and then make the noise
consistent first. As the true values are naturally consistent, we can
then add the consistent noise to the true values in an online manner
and thus achieve an online consistency algorithm. We prove the
algorithm achieves minimum squared error and also satisfies DP.
Another contribution is that we further extend the algorithm to
prune the lower-level nodes based on an optimization criterion,
based on the observation that the estimates in the lower levels of
the hierarchy tend to be overwhelmed by the noise, leading to a
low signal-noise ratio. Our new hierarchical algorithm is also able
to handle infinite streams.

Next, we generalize the above-mentioned algorithms into a new
framework for streaming data publication. It consists of three com-
ponents: a Threshold optimizer, a Perturber, and a Smoother. The
threshold optimizer consumes a portion of the input stream, and
finds a threshold 6. It then truncates all incoming values by 6 and
sends them to the perturber. The perturber adds noise to each in-
coming element of the stream, and releases noisy counts to the
smoother. Finally, the smoother performs further post-processing
on the noisy counts and outputs the final stream. Together with
the new algorithms described above, we call our solution ToPS.

Finally, based on the framework of ToPS, we design an algo-
rithm to output streams while satisfying local DP (LDP), which
protects privacy under a stronger adversary model than DP. We
call the resulting method ToPL. Under LDP, only the users know
the true values and thus removes the dependence on the trusted
central server. In ToPL, we use state-of-the-art LDP mechanisms
for the Threshold optimizer and the Perturber. While the design
of ToPL relies on the findings in ToPS, we also adapt existing LDP
mechanisms to our setting to get better performance.

We implemented both ToPS and ToPL, and evaluated them using
four real-world datasets, including anonymized DNS queries, taxi
trip records, click streams, and merchant transactions. We use the

1238

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Mean Squared Error (MSE) over random range queries as the metric
of performance evaluation. The experimental results demonstrate
that our ToPS significantly outperforms the previous state-of-the-
art algorithms. More specifically, the most significant improvement
comes from our new technique to finding 6. It contributes an im-
provement of 4 — 8 orders of magnitude over PAK. Even given
the same reasonable 6, ToPS can answer range queries 100X more
accurately than PAK. Putting the two together, ToPS improves over
PAK by 6 — 10 orders of magnitude in terms of MSE.

Contributions. To summarize, the main contributions of this
paper are threefold:

e We design ToPS for releasing real-time data streams under differ-
ential privacy. Its contributions include an EM-based algorithm
to find the threshold, an online consistency algorithm, the use of
a smoother to reduce the noise, and the ability to handle infinite
streams.

o We extend ToPS to solve the problem in the more stringent setting
of LDP and propose a new algorithm called ToPL.

e We evaluate ToPS and ToPL using several real-world datasets.
The experimental results indicate that both can output streams

accurately in their settings. Moreover, ToPS outperforms the
previous state-of-the-art algorithms by a factor of 6 — 10 orders.
Our code is open sourced at https://github.com/dp-cont/dp-cont.

Roadmap. In Section 2, we present the problem definition and
the background of DP and LDP. We present the existing solutions
and our proposed method in Section 3 and 4. Experimental results
are presented in Section 5. Finally, we discuss related work in Sec-
tion Section 6 and provide concluding remarks in Section Section 7.

2 PROBLEM DEFINITION AND
PRELIMINARIES

We consider the setting of publishing a stream of real values un-
der differential privacy (DP). The length of the stream could be
unbounded. Due to the constraint of DP, it is unrealistic to make
sure every single reading of the stream is accurate, so the goal is to
ensure the aggregated estimates are accurate.

2.1 Formal Problem Definition

There is a sequence of readings V = (v1, vy, .. .), each being a real
number in the range of [0, B]. We publish a private sequence V of
the same size as V while satisfying DP, with the goal of accurately
answering range queries. Range query is an important tool for
understanding the overall trend of the stream. Specifically, a range
query V(i, ) is defined as the sum of the stream from index i to j,
ie, V(i,j) = Zi:i vr. We want a mechanism that achieves a low
expected squared error of any randomly sampled range queries,
ie,

~ 2
B [ (V.- V) ] M)
2.2 Differential Privacy

We follow the setting of PAK [36] and adopt the notion of event-level
DP [18], which protects the privacy of any value in the stream.
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Definition 2.1. (Event-level (e, §)-DP) An algorithm A(-) satisfies
(e, §)-differential privacy ((e, §)-DP), if and only if for any two
neighboring sequences V and V’ and for any possible output set O,

PrlA(V) € O] < e€ Pr[A(V') € O] + 4,

where two sequences V = (v1,v2,...) and V' = (v],v;,...) are
neighbors, denoted by V' =~ V', when v; = v] for all i except one

index.

For brevity, we use (€,5)-DP to denote Definition 2.1. When
é = 0, which is the case we consider in this paper, we omit the §
part and write e-DP instead of (e, 0)-DP.

Justification of Event-Level DP. Although event-level DP only
protects one value, it is a suitable guarantee in many cases. For
example, individuals might be happy to disclose their routine trip to
work while unwilling to share the occasional detour. Note that the
data model is general and V can also come from multiple users. For
example, V' consists of the customers’ expenditure from a grocery
store, and we want to protect some unusual transaction. Moreover,
our model is a generalization of the basic model where every value
is binary [8, 21], and can be used in building private algorithms
with trusted hardware [7].

Extension to Event-Level LDP. We also work in the local ver-
sion of DP [28]. Compared to the centralized setting, local DP offers
a stronger trust model, because each value is reported to the server
in a perturbed form. Privacy is protected even if the server is mali-
cious. For each value v in the stream of V, we have the following
guarantee:

Definition 2.2 (€, §)-LDP). An algorithm A(-) satisfies (€, §)-local
differential privacy ((e, §)-LDP), if and only if for any pair of input
values v, v’, and any set O of possible outputs of A, we have

Pr[A(v) € O] < e Pr[A(v)) € O] +34.

Typically, § = 0 in LDP [33, 41, 45, 49] (one reason is that many
LDP protocols are built on randomized response [49], which ensures
& = 0). Thus we simplify the notation and call it e-LDP. The notion
of LDP differs from DP in that each user perturbs the data before
sending it out and thus do not need to trust the server under LDP.

2.3 Mechanisms of Differential Privacy

We first review primitives proposed for satisfying DP. We defer the
descriptions of LDP primitives to Appendix E as our LDP method
mostly uses the LDP primitives as blackboxes.

Laplace Mechanism. The Laplace mechanism computes a func-
tion f on the input V in a differentially private way, by adding to
f(V) arandom noise. The magnitude of the noise depends on GSy,
the global sensitivity or the Ly sensitivity of f, defined as,

Sy = max [If(V) - FOV)Ih.

When f outputs a single element, such a mechanism A is given
below:

GS
Ap(V) = f(V)+Lap (Tf) .
In the definition above, Lap () denotes a random variable sampled

from the Laplace distribution with scale parameter f such that
Pr[Lap (B) = x] = ﬁe"x‘/ﬁ, and it has a variance of 22. When
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GS
f outputs a vector, A adds independent samples of Lap (Tf) to

each element of the vector.

Noisy Max Mechanism. The Noisy Max mechanism (NM) [20]
takes a collection of queries, computes a noisy answer to each query,
and returns the index of the query with the largest noisy answer.
More specifically, given a list of queries q1, g2, . . ., where each
qi takes the data V as input and outputs a real-numbered result,
the mechanism computes g;(V), samples a fresh Laplace noise

Lap (2G€sq

) and adds it to the query result, i.e.,

. 2GS,
Qi(V) = qi(V) + Lap [ —2 ) @
and returns the index j = arg max; §;(V). Here GSg is the global
sensitivity of queries and is defined as:

GSy = (V) = q: (V).
q mgx‘r/n:a‘;glqz() qi (V')

Dwork and Roth prove this satisfies e-DP [20] (recently Ding et
al. [14] proved using exponential noise also satisfy DP). Moreover,
if the queries satisfy the monotonic condition, meaning that when
the input dataset is changed from V to V’, the query results change
in the same direction, i.e., for any neighboring V and V’

(Fiqi(V)<qi(V")) = (Vi qr(V)<qr (V).

Then one can remove the factor of 2 in the Laplace noise. This
improves the accuracy of the result.

2.4 Composition Properties

The following composition properties hold for both DP and LDP
algorithms, each commonly used for building complex differentially
private algorithms from simpler subroutines.

Sequential Composition. Combining multiple subroutines that
satisfy DP for €1, - - - , € results in a mechanism that satisfies e-DP
fore =} ;€.

Parallel Composition. Given k algorithms working on disjoint
subsets of the dataset, each satisfying DP for €1, - - - , €, the result
satisfies e-DP for € = max; €;.

Post-processing. Given an e-DP algorithm A, releasing g(A(V))
for any g still satisfies e-DP. That is, post-processing an output of a
differentially private algorithm does not incur any additional loss
of privacy.

3 DIFFERENTIALLY PRIVATE STREAMS

For privately releasing streams and supporting range queries over
the private stream, the most straightforward way is to add indepen-
dent noise generated through the Laplace distribution. However,
this results in a cumulative error (following the tradition, we use
absolute error here, which measures the difference from the true
sum) of O(+/n) after n observations.

The Hierarchy Approach. To get rid of the dependency on +/n,
the hierarchical method was proposed [8, 18]. Given a stream of
length n, the algorithm first constructs a tree: the leaves are labeled
{1},{2}, ..., {n} and the label of each parent node is the union of
labels from its child nodes. Given h = log n layers, the method adds
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Laplace noise with €/h in each layer. To obtain the noisy count
V(i, ), we find at most log n nodes in the hierarchy, whose labels
are disjoint and their union equals [i, j]. Given that the noise added
to each node is O(log n), this method has an error of O(log!* n).

In the online setting, where the stream data come one-by-one,
we want to release every node in the hierarchy promptly. To do
so, at any time index ¢, we publish all nodes that contain t as the
largest number in their labels.

3.1 Existing Work: PAK

To satisfy DP in the hierarchy method, one needs to add noise pro-
portional to B, the maximal possible value in the stream, and B can
be quite large in many cases. Perrier et al. [36] (we call it by the
authors’ initials, PAK, for short) observed that in practice, most of
the values are concentrated below a threshold much smaller than B
(e.g., the largest possible purchase price of supermarket transactions
is much larger than what an ordinary customer usually spends),
and proposed a method to find such a threshold and truncate data
points below it to reduce the scale of the injected Laplace noises.
In particular, the first m values are used to estimate the threshold
0 with differential privacy. After obtaining 0, the following values
in the stream are truncated to be no larger than 6. Reducing the
upper bound from B to 0 reduces the DP noise (via reducing sensi-
tivity). The hierarchical method is used for estimating the stream
statistics with the remaining n — m values (PAK assumes there are
n observations).

Finding the Threshold. To obtain 6, PAK proposed a specially
designed algorithm based on Smooth Sensitivity (SS) [35] to get the
p-quantile (or p-percentile) as 6, i.e., p% of the values are smaller
than 6. SS was used to compute the median with DP in the original
work [35], and SS can also be easily extended to privately release
the p-quantile. PAK proved that the result of SS is unbiased, but
they further wanted to make sure the result is always larger than
the real p-quantile. This is because if the estimated percentile is
smaller than the real one, the truncation in the next phase will
introduce greater bias. Thus PAK modified the original SS method
to guarantee that the result is unlikely to be smaller than the real
p-quantile. As the details of the method are not directly used in the
rest of the paper, we defer the details of both SS and the algorithm
itself to Appendix A and B.

There are two drawbacks of this method. First, it requires a p
value to be available beforehand. But a good choice of p actually
depends on the dataset, €, and m. PAK simply uses p = 99.5. As
shown in our experiment in Section 5.4, p = 99.5 does not perform
well in every scenario. Second, to ensure that 6 is no smaller than
the real p-quantile, PAK introduces a positive bias to 6.

3.2 Overview of Our Approach

The design of PAK was guided by asymptotic analysis. Unfortu-
nately, for the parameters that are likely to occur in practice, the
methods and parameters chosen by asymptotic analysis can be far
from optimal, as such analysis ignores important constant factors.
Instead, we use concrete analysis to guide the choice of methods
and parameters.

In this section, we first deal with the threshold selection problem
using the Noisy Max mechanism (NM, introduced in Section 2.3),
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which satisfies DP with § = 0. Empirical experiments show its
superiority especially in small € scenarios (which means compared
to PAK, we can achieve the same performance with better privacy
guarantees). We then introduce multiple improvements for the
hierarchical methods including an online consistency method, and
amethod to reduce the noise in the lower levels of the hierarchy. We
integrate all the components in a general framework, ToPS, which
consists of a Threshold optimizer, a Perturber, and a Smoother:

o Threshold optimizer: The threshold optimizer uses a small portion
of the input stream to find a threshold 6 for optimizing the errors
due to noise and bias. It then truncates any incoming values by
0 and releases them to the perturber.

o Perturber: The perturber adds noise to the truncated stream, and
releases noisy counts to the smoother.

o Smoother: The smoother performs further post-processing on the
noisy counts and outputs the final stream.

While design of ToPS is inspired by PAK, we include unique
design choices to handle the problem. In particular, PAK has two
phases, the threshold finder and the hierarchical method. We im-
prove both phases. Note that as we use NM [20], our algorithm
satisfies e-DP while PAK satisfies (e, §)-DP. Moreover, we intro-
duce a smoother that further improves accuracy. The fundamental
reason that our method works better is that we design our method
focusing on a good empirical performance rather than theoretical
bounds.

3.3 Threshold Optimizer

Different from PAK [36] that focuses on bias when choosing the
threshold 6, our approach is to consider both bias and variance
(due to DP noise). As bias and variance go in opposite ways (i.e.,
when 0 is large, bias will be small, but variance will go large, vice
versa), there will be an optimal 0 that minimizes the overall error.
Note that the overall error depends on the whole distribution of the
data, which might be too much information to accurately estimate
with DP. To handle this issue, we choose to use the Noisy Max
mechanism (NM) [20], which looks into the data privately and
outputs only a succinct information of 6. In what follows, we first
examine the error.

A Basic NM Query Definition. We first consider the expected
squared error of estimating a single value v. Assuming that o is the
estimation of v, it is well known that the expected squared error is
the summation of variance and the squared bias of 0:

E| (@ - v)*] = Var[0] + Bias [9]°. 3)

Note that Bias [0] equals E [ © ] —v. Given a threshold 8 and privacy
budget €, Bias [0] = max(v — 6,0) and Var [7] = Zei; (because we
add Laplace noise with parameter 6/¢).

Since we are using the hierarchical method to publish streams
for answering range queries, we use the error estimations of the
hierarchical method to instantiate Equation 3. Qardaji et al. [37]
show that there are approximately (b — 1) log, (r) nodes to be esti-
mated given any random query of range smaller than r, where b
is the fan-out factor of th¢ hierarchical method; and the variance
of each node is logi (r)zei;. For bias, within range limitation r, a
random query will cover around % leaf nodes on average [37] (We
assume a random query can take any range in [1, r]. Thus there
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are r(r + 1)/2 possible range queries. Among them, for any range
of length j € [1,r], there are r — j + 1 such ranges. The expected

D1 J(r—j+1) +2
=emz =5 ~ 3)-Denote fi
as the frequency of value t, the combined error of the hierarchical

method for answering random range queries would be:

length of a random query is

2 2
<b—1>log2<r)26i2+(§ > ﬁ(t—e)) G

O<t<B

The Final NM Query Definition. For NM to be effective, the
queries should have low sensitivity, meaning that changing one
value perturbs the queries by a tiny amount. However, if we directly
use Equation 4 as the queries, the sensitivity is large: a change
of value from 0 to B will result in the increase of Equation 4 by
(B — 0)?/9. Thus we choose to approximate the mean squared error
by defining the queries in the following ways.

Denote m as the number of values to be used in NM, and my as
the number of values that are smaller than 6 from these m values:

®)

where [x] = {1,2,...,x} and |X| denotes the cardinality of set X.
The first approximation method we use is to replace the variance
and squared bias with their squared roots (standard deviation and
bias). Second, we use ¢ - mg/m (c is a constant to be discussed later)
to approximate Y g.;<p f:(t — 6). Third, we multiply both the
standard deviation and bias errors by —32 to ensure the sensitivity
is 1, and the query result of the target is the highest. Thus we have:

c-r
3 ) lee? 262
qo(V) =- : -1 Ogb(r)e_z —mg

3mo
=—2"2_/2(b - 1)1og3 (r) — mg.
2~ 1)logh (1)~ mg

mg = [{i |vi < 6,i€[ml]}],

(6)

The first term is a constant depending on 6 but independent of the
private data, while the second term has a sensitivity of 1.

Running NM. To run NM, the set of possible 8 values considered
in the queries gg(V) should be a discrete set that covers the range
[0, B]. The granularity of the set is important. If it is too coarse-
grained (e.g., 6 € {0, B/2, B}), the method is inaccurate, because the
desired value might be far from any possible output. On the other
hand, if it is too fine-grained, the NM algorithm will run slowly,
but it does not influence the accuracy. In the experiment, we use all
integers in the range of [B] = {1, 2, ..., B} as the possible set of 6.

One unexplained parameter in Equation 6 is c. There are two
factor that contributes to c¢: (1) Using mg/m to approximate the
bias term ),g;<p fi(t — 0) leads to underestimation. (2) As we
will describe later in Section 3.4 and 3.5, the actual squared error
will be further reduced by our newly proposed method. While ¢
intends to be a rough estimation of the underestimation, it does
not need to be chosen based on one particular dataset. One can run
experiments with a public dataset of similar nature under different
parameters, the best level of error that can be achieved is usually a
good indicator of c. When a public dataset is unavailable, one can
generate a synthetic dataset under some correlation assumption
and run experiments. In experiments conducted for this paper, we
choose ¢ = 60, and use it for all datasets and settings.
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Figure 1: Empirical comparison of approximated query re-
sults (Equation 6) and the true squared errors and their min-
imum points 6; and 0; on a real-world datasets (DNS). We
use € = 0.1,m = 21° r = 220, The x-axis is the possible value
of 0, and the y-axis is the query result or the measured error.

Verify the Approximation. Figure 1 illustrates the distribution
of Equation 6 and measured errors on a dataset that is used in
the experiments in Section 5. The dataset is a network streaming
dataset, called DNS. We use € = 0.1, m = 21°_r = 220 which are the
same as those parameters used in experiments. From Figure 1, we
can see that the distributions between the truly measured errors
(Equation 4) and the corresponding Equation 6 on two datasets
are very close. The figure also illustrates the bias and variance
factors of Equation 6. The two factors grow in opposite directions
which makes a global minimum where the target 6 lies. In addition,
we also show that the threshold 6, that minimizes our queries
Equation 6 is close to the target threshold §; which minimizes the
real measured errors (Equation 4). Therefore, the above empirical
evaluation results show the capability of the threshold optimizer in
finding accurate 0 values.

3.4 Perturber

The perturber inherits the hierarchical idea [8, 18] (also described
in Section 3.1). In this section, we start from the binary hierarchy
used in PAK and put together three improvements to it to obtain a
solution that is practical across a wide range of datasets.

1. Better Fan-out. According to Qardaji et al. [37], using a fan-
out b = 16 instead of 2 in the hierarchy can give better utility. The
result of optimal fan-out b = 16 is derived by analyzing the accuracy
(variance) of answering range queries. In particular, we assume the
range query is random and all layers in the hierarchy receive the
same amount of privacy budget. We then measure the expected
accuracy (measured by variance) of answering the range query.
The optimal value b = 16 is obtained by minimizing the variance.
It does not change on different datasets because the analysis is
data-independent. We thus use fan-out b = 16 by default.

2. Handling Infinite Streams. PAK requires a fixed length n a
priori in order to build the hierarchy. As a result, their algorithm
stops after n observations. In order to support infinite streams,
Chan et al. [8] proposed to have an infinitely high hierarchy, and
each layer receives a privacy budget inversely proportional to the
height of the layer. For example, the bottom layer receives 0.9,
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then its parent layer receives 0.9%¢, and so on. While this ensures
the overall privacy budget will never exceed e, the higher layers
are essentially receiving a tiny amount of privacy budget.

In this paper, we note that most of the queries focus on limited
ranges, and propose to have an upper bound on the query range
denoted by r and then split € equally to the h = [log, r] layers.
The value of r stands for a limit below which most queries’ ranges
fall, and is determined externally (e.g., if we receive one value per
minute, then it is unlikely that a query spans over a year). For each
chunk of r observations, we output a height-h hierarchy. We note
that each hierarchy handles a disjoint sub-stream of observations
and thus this extension does not consume additional privacy budget
because of the parallel composition property of differential privacy.
In the evaluation, we choose r = 220,

3. Online Consistency. Given a noisy hierarchy, Hay et al. [26]
proposed an efficient algorithm for enforcing consistency among
the values in it. By enforcing consistency, the accuracy of the hier-
archy can be improved. Note that this is a post-processing step and
does not consume any privacy budget. Unfortunately, the algorithm
is off-line and requires the whole hierarchy data to be available. Here
we propose an online version of the enforce-consistency algorithm,
so that we can output the noisy streams promptly.

Our method is built on the work of Hay et al. [26]. Due to space
limitation, we provide details of the algorithm in Appendix C. The
intuition is that, if we have two estimations of the same value, their
(weighted) average would be closer to the true value.

Knowing that the noisy estimates can be decomposed into true
values and pure noise, our method generates all required noise
in advance, followed by the consistency enforcement. In this way,
the consistent off-line noise can be directly added to the incoming
true values during online publishing. Because of the consistency
of both the true values and the noise, the noisy estimates will also
be consistent. Moreover, we prove that the result of our online
algorithm is equivalent to that of the off-line algorithm (the proof
is deferred Appendix C).

THEOREM 3.1. The online consistency algorithm gives identical
results as the off-line consistency algorithm.

This together with the fact that the off-line consistency algorithm
can be seen as post-processing and thus satisfies DP, we can argue
that our online algorithm also satisfies DP.

3.5 Smoother

In this section, we introduce a smoother to further improve the
utility of the algorithm. Assuming the hierarchy from perturber
has h layers, the smoother is designed to replace the values from
the first s lower-level layers with predictions, which are based on
previous estimations. The first question is how to choose s.

Optimizing s. Selecting s is important. A larger s results in smaller
noise errors: because there are now h — s layers in the hierarchy,
each layer will receive more privacy budget according to sequential
composition (given in Section 2.4). On the other hand, a larger s
probably leads to a larger bias (because we are only doing the actual
estimate once every b® values; other estimates are from predictions
based on previous values, thus are independent of the true values
and less accurate). Choosing a good value of s thus is a balance
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between noise errors and bias. Note that we already have noise error
term from Equation 4, but we need to calculate the bias introduced
by the smoother (the truncation bias in Equation 4 already exists
and does not change with s).

To estimate the smoothing bias, we assume that for each value,
the bias amount is approximately 6/3. We then assume there are
approximately b® /2 values in a query. Then the average squared
bias is approximated by bTZS %Z. Therefore, we use the following
equation to approximate the squared error:

3 262

(b-1) (log,(r) - s) = + ﬁ s

R (7)

Given € and r, s can be computed by minimizing the above error.

Smoothing Method. Given s, we now describe choices of imple-
menting the smoother. We consider a set of methods proposed in
the literature, and present their details in Appendix D. Among them,
the most straightforward one is “Recent” smoother, which predicts
the next values based on the most recent estimation. In evaluation,
we find it works the best, probably because the dataset we use is

spiky.

3.6 Summary and Discussions

In summary, our method takes the raw stream V = (v1,v2,...) as
input and outputs a private stream V = (91, 0p, . . .). Algorithm 1
gives the details of our method: We first cache the first m values and
obtain 6. Then for each of the following values, we first truncate it
and then use the hierarchical method together with the smoother
to output the noisy value.

In this paper, we focus on the setting used in PAK, where the
threshold optimizer does not publish the first m values, but uses
them to obtain 0. After the first m values, it sends 6 to the perturber
and truncates any incoming value by 8. The perturber then outputs
values using the hierarchical method, and there is a smoother that
further processes the result. Our method is also flexible and can
work in other settings. We will discuss more about the flexibility of
ToPS in Section 7.

We claim that ToPS satisfies e-DP. The perturber uses €/h to
add Laplace noise to each layer of the hierarchical structure. By
sequential composition, the overall data structure satisfies e-DP. To
find the threshold, ToPS uses a disjoint set of m observations and
runs an e-DP algorithm. Due to the parallel composition property of
DP, the threshold optimizer and the perturber together satisfy e-DP.
The online consistency algorithm and the smoother’s operations are
post-processing procedures and do not affect the privacy guarantee.

4 PUBLISHING STREAMS IN LDP SETTING

In this section, we introduce ToPL for publishing streaming data
under local DP (LDP). To the best of our knowledge, this is the first
algorithm that deals with this problem under LDP.

In LDP, users perturb their values locally before sending them
to the server, and thus do not need to trust the server. Applying to
the streaming values in our setting, each value should be perturbed
before being sent to the server. What the server does is only post-
processing of the perturbed reports.
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Algorithm 1: ToPS

Input: V = (vy, vy, . . .), €, m, upper bound on query range r
Output: V = (01, Dy, . . .)
1 Vi — (01, ... Om); // Cache the first m values

for 6 = 1 to B do
mg « {i|v; <6,i¢€[m]};
me

q0(Vin) — =302 J2(b = Dlog} (r) = myp ;

Go(V) = qo(Vim) + Lap (i) H // GS4 =1, q is monotonic
0 « argmaxy Go(V); // Find 6 via Noisy Max (Section 2.3)

@ N

// Equation 5

// Equation 6

-

o w

/* The previous part of the code finds 6. */
/* Now we are ready to release the stream. */
7 h«logr;
2 25 g2
8 s « argming [15 (logys(r) - s)° 26% +182 e, // Equation 7
s U 16;9 .

build < True;
foreach i > m do

v; < min(v;, 0) ;
if build then

Init an (h — s)-layer hierarchy with fan-out 16 ;

Assign 0 to all nodes ; // Build the virtual tree

Add Lap (%) to each node ;

// Indicator to build a tree

// Truncate

Make the tree consistent ;

cur_node « left-most noisy node on tree ;
build < False ;

if (i — m) mod r = 0 then
21 ‘ build < True;

if (i — m) mod 16° = 0 then
Output cur_node —u x(16° — 1) ;
u; « cur_node ;

cur_node < next noisy node on tree ;

// Appendix C

// Time to build another tree

else
Output u/16° ; // “‘Recent’’ smoother in Appendix D
cur_node « cur_node + v; ;

ToPL follows the design framework of ToPS. There is a threshold
optimizer to find the threshold based on the optimal estimated
error, and the threshold is used to truncate the users’ values in the
later stage. Different from the centralized DP setting, in the local
setting, the obtained threshold will be shared with the users so
that they can truncate their values locally. The perturber section
is also run within each user’s local side, because of the privacy
requirement that no other parties other than the users themselves
can see the true data. There is no smoother section. In what follows,
we describe the construction for the threshold optimizer and the
perturber.

4.1 Design of the Threshold Optimizer

In LDP, each user only has a local view (i.e., they only know their
own data; no one has a global view of the true distribution of all
data), thus there is no Noisy Max mechanism (NM) (described in
Section 2.3) that we can use as in the DP setting. Instead, most
existing LDP algorithms rely on frequency estimation, i.e., estima-
tion of how many users possess each value, as what the Laplace
mechanism does in DP. We also rely on the frequency estimation
to find the optimal threshold. Although the distribution estima-
tion is more informative, it is actually less accurate than the Noisy
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Max mechanism because (to publish more information) more noise

needs to be added.

Frequency Estimation in LDP. Li et al. [33] propose the Square
Wave mechanism (SW for short) for ordinal and numerical domains.
It extends the idea of Randomized Response [49] in that values near
the true value will be reported with high probability, and those
far from it have a low probability of being reported. The server,
after receiving the reports from users, runs a specially designed
Expectation Maximization algorithm to find an estimated density
distribution that maximizes the expectation of observing the output.
For completeness, we describe details about SW in Appendix E.1.

Optimized Threshold with Estimated Distribution. To find
the threshold, the baseline method is to find a specific percentile
as the threshold 6. This method is used for finding frequent item-
set [45]. Based on the lessons learned from the threshold optimizer
in the DP setting, we use the optimization equation given in Equa-
tion 3 to find 6.

Specifically, denote f as the estimated distribution where f[
is the estimated frequency of value t. Here the set of all possible
t to be considered can no longer be [B] = {1,2,...,B}. Instead,
we sample 1024 values uniformly from [B]. This is because SW
uses the Expectation Maximization algorithm, and a large domain
size makes it time- and space-consuming. Similar to Equation 4
considered in the DP setting, we use an error formula:

2
G e)) :

6<t<B

r Lor?

5-Var[v]+ﬂ( (8)
Here Var [0] denotes the variance of estimating v, which we will
describe later. It is multiplied by £ because in expectation, a random
range query will involve § values, and each of them is estimated
independently. For the second part of Equation 8, it can be calculated
directly with SW. The multiplicative coefficient g—i is the averaged
case over all possible range queries. That is, denote j as the range of
a query, there are r — j + 1 range-j queries within a limit r. In total,
there are Z;zl(r —j+1) possible queries. For each of them, we have
o (r=j+ 1))

2r(r+1)

a j? coefficient in the squared bias. Thus, we have

+1)(2r+1 2 ;
% — —5— =~ g7 as the average-case coefficient.

Using SW as a White Box. To find a reasonable threshold using
SW, we make the following modifications. First, we eliminate the
smoothing step from SW, because we observe that in some cases,
smoothing will “push” the estimated probability density to the
two ends of the range. If some density is moved to the high end,
the chosen threshold € can be unnecessarily large.

Second, we add a post-processing step to prune the small densi-
ties outputted by SW. In particular, we find the first qualified value
w, whose next 5 consecutive estimates are all below 0.01%. This is
a signal that the density after w will converge to 0. We thus replace
the estimated density after w with 0. In the experiment, we observe
that the two steps help to find a more accurate 6.

4.2 Design of the (Local) Perturber

After obtaining the threshold 6, the server sends 6 to all users.
When a user reports a value, it will first be truncated. The user
then reports the truncated value using the Hybrid mechanism.
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Table 1: Dataset Characteristics

Dataset n max  pss Dos P99.5 P1oo avg
DNS 1141961 2000 63 85 135 617 37.9
Fare 8704495 30000 440 1036 2037 26770  279.9

Kosarak 990002 41270 10 28 133 2498 8.1
POS 515597 1657 13 21 39 165 7.5

The method is described in Appendix E.2. It can estimate v with
worst-case variance given in Equation 14, which can be plugged
into Equation 8 to find 6. Note that the reports are unbiased by
themselves. So to answer a range query, we just need to sum up
values from the corresponding range, and there is no need for a
smoother.

5 EXPERIMENTAL EVALUATION

The experiment includes four phases. First, we give a high-level
end-to-end evaluation of the whole process. Second, we evaluate
the performance of the hierarchical method with a fixed truncation
threshold. Third, we fix the hierarchical method and test differ-
ent algorithms that give the threshold. Fourth, we evaluate the
performance in the local setting.

5.1 Evaluation Setup

Datasets. A total of four real-world datasets are examined.

e DNS: This dataset is extracted from a set of DNS query logs
collected by a campus resolver with all user ids and source IP
addresses removed !. It includes 14 days of DNS queries. The
network administrator can use the number of queries to assess
Internet usage in a region. We take number of queries as the
stream in the evaluation.

o Fare [2]: New York City taxi travel fare. We use the Yellow Taxi

Trip Records for January 2019.

Kosarak [1]: A dataset of clickstreams on a Hungarian website

that contains around 10° users and 41270 categories. We take it

as streaming data and use the size of click categories as the value
of the stream.

e POS [56]: A dataset containing merchant transactions of half a
million users and 1657 categories. We use the size of the transac-
tion as the value of the stream.

Table 1 gives the distribution statistics of the datasets.

Metrics. To evaluate the performance of different methods, we
use the metric of Mean Squared Error (MSE) to answer randomly
generated queries. In particular, we measure

= [ - v

MSE(Q) = —
(i,))€Q

0] @

where Q is the set of the randomly generated queries. It reflects
the analytical utility measured by Equation 1 from Section 2.1 (to
demonstrate the actual accuracy, we also have results for mean
absolute error in Appendix F). We set r = 220 as the maximal range
of any query.

I The data collection process has been approved by the IRB of the campus.

1244

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Methodology. The prototype was implemented using Python 3.7.3
and NumPy 1.15.3 libraries. The experiments were conducted on
servers running Linux kernel version 5.0 with Intel Xeon E7-8867
v3 CPU @ 2.50GHz and 576GB memory. For each dataset and each
method, we randomly choose 200 range queries and calculate their
MSE. We repeat each experiment 100 times and report the result of
mean and standard deviation. Note that the standard deviation is
typically very small, and barely noticeable in the figures.

5.2 End-to-end Comparison

First, as a case study, we visualize the estimated stream of our
method ToPS on the DNS dataset (Figure 2). The top row shows
the performance of ToPS while the bottom row shows that of PAK.
We run algorithms once for each setting to demonstrate the real-
world usage. Similar to the setting of PAK, in ToPS, we use the
first m = 65, 536 observations to obtain the threshold 8 (we will
show later that ToPS does not need this large m observations to
be held). Figure 2 indicates that our method ToPS can give fairly
accurate predictions when € is very small. On the other hand, PAK,
though under a larger e, still performs worse than ToPS. Note that
to obtain the threshold 0, PAK satisfies (e, §)-DP while our ToPS
satisfies pure e-DP during the whole process.

We then compare the performance of ToPS and PAK with our
metric of MSE given in Equation 9, and show the results in Fig-
ure 3. Between ToPS and PAK, we also include two intermediate
methods that replace Phase 1 (finding 6) and Phase 2 (hierarchical
method) of PAK by our proposed method NM-E (used in threshold
optimizer) and ﬁfé (used for the perturber and smoother together),
respectively, to demonstrate the performance boost due to our new
design (we will evaluate the two phases in more details in later
subsections). From the figure, we can see that the performance of
all the algorithms gets better as € increases, which is as expected.
Second, our proposed ToPS can outperform PAK by 7 to 11 orders
of magnitude. Third, the effect (in terms of improving utility) using
NM-E is much more significant than using I:Ilcé. Interestingly, the
performance of ToPS and NM-E is similar in the Fare and Kosarak
datasets. This is because in these cases, the bias (due to truncation
by 0) is dominant.

5.3 Comparison of Stream Publication Phase

Several components contribute to the promising performance of
ToPS. To demonstrate the precise effect of each of them, we next
analyze them one by one in the reverse order. We first fix other
configurations and compare different smoothers and perturbers.
Subsequently, we analyze the methods of obtaining the threshold 0
in Section 5.4. To make the comparison clear, we set 0 to be the 95-
th percentile of the values. Moreover, we assume the true values are
no larger than 6 (the ground truth is truncated). We will compare
the performance of different methods in obtaining € in Section 5.4.

Comparison of Different Smoothers. Fixing a threshold 6 and
the hierarchical method optimized in Section 3.4, we now compare
the performance of five smoother algorithms listed in Section 3.5
(note that the smoothers will replace the 16° values where s is given
in Equation 7). Figure 4 shows the MSE of the smoothers given
€ from 0.01 to 0.1. As € increases, that is, privacy budget loosens,
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Figure 2: Visualizations of the DNS stream. The x-axes correspond to time (we partition the 14-day timeframe into 120 intervals,
so each point corresponds to the mean of roughly 9000 values or 1.4 hours), and y-axes denotes the moving average. Our ToPS
at € = 0.01 can output predictions that are pretty close to the ground truth. PAK gives noisier result even with larger € values.
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Figure 3: Comparison between PAK and ToPS when answering range queries. We also include two intermediate methods NM-E
(our proposed threshold optimizer) and H;, (our proposed the perturber and smoother) that replace the corresponding two
phases of PAK to demonstrate the performance boost due to our new design.
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Figure 4: Evaluation of different smoothing techniques. We vary € from 0.01 to 0.1 in the x-axis. The y-axis shows the query
accuracy (MSE).

three. This is because Mean and Median consider all the history
(all the previous u; values given from the hierarchy, as described in
Section 3.5), while the other methods consider more recent results.

the overall performance improves although the difference is very
small in Fare and Kosarak datasets. This is because there is no
clear pattern in these datasets. In the DNS dataset, Recent performs

better than others, as the data is stable in the short term. In POS,
the method of Mean and Median performs worse than the other

Methods that utilize the recent output (i.e., the more recent u;) will
perform better due to the stability property in the dataset (similar
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(b) DNS

(c) Kosarak

Figure 5: Evaluation of different methods of outputting the stream. We vary € from 0.01 to 0.1 in the x-axis and plot the query

accuracy (MSE) in the y-axis.

to the case of DNS). Since Recent performs the best in DNS, and is
among the best in other datasets, we use it as the default smoother
algorithm.

Note that large MSE does not always mean poor utility. Here
MSE is large because (1) the original values are large (e.g., >1000),
(2) the range query takes the sum, and (3) the square operation
further enlarges the values. We also have results for mean absolute
error (MAE) and mean query results to better demonstrate the
utility in Appendix F.

Comparison of Different Hierarchical Algorithms. To demon-
strate the precise effect of each design detail, we line up several
intermediate protocols for the hierarchy and threshold, respectively.
For the hierarchy component, we evaluate:

e Hj: Original binary tree used in PAK.

e Hjg: The optimal fan-out b = 16 is used in the hierarchy.

. HICG: Hj¢ with consistency method.

ﬁf6: We use the hat notation to denote the Recent smoother. It is
built on top of Hy.

Base: A baseline method that always outputs 0. It is used to
understand whether a method gives meaningful results.

Figure 5 gives the result varying € from 0.01 to 0.1. First of all, all
methods (except the baseline) yield better accuracy as € increases,
which is as expected. Moreover, the performance of all methods
(except H 1) increases by a factor of 100X when € increases from 0.01
to 0.1. This observation is consistent with the analysis that variance
is proportional to 1/€%. Comparing each method, using the optimal
branching factor (Hj¢ versus Hy) can improve the performance by
5X. Moreover, we have approximately another 2x (Hj, versus Hie)
of accuracy boost by adopting the consistency algorithm. For H Te
constant 10X improvement can be observed over Hf except in the

DNS dataset, where ché

€ > 0.08. The reason is that the error of ch6 is composed of two
parts. One is the noise error from the constraint of DP, the other
the bias error of outputting the predicted values. When € is large,
the bias dominates the noise in the DNS dataset.

performs roughly the same as Hf, when

5.4 Comparison of Threshold Phase

After examining the performance of different methods of outputting
the stream, we now switch gear to look at the algorithms for finding
the threshold.

Setup. Following PAK’s method [36], we use the first m values
to obtain the threshold. To eliminate the unexpected influence of
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Figure 6: MSE of answering range queries using ﬁfé on DNS

dataset. The true p-th percentile for different p values are
evaluated. We also include NM-E, which uses ¢ = 0.05.

distribution change, we use the same m values for now to build
the hierarchy using H7, (with the best smoothing strategy called
Recent smoother).

No Single Quantile Works Perfectly for All Scenarios. To
show that no single p-quantile can work perfectly for all scenarios,
we choose the true p-quantile for p € {85,90,95,99.5,99.9} and
test in different scenarios (with different € and m values). We also
include our threshold optimizer (NM-E) which is introduced to
find a threshold only based on the estimated error and set €
0.05 for it. Figure 6 shows the results of answering range queries
given these true percentiles and it reveals several findings. First,
the performance improves as € increases for all p values. Second,
in some cases, the performance improvement is negligible with
respect to € (e.g., p = 80 and 85 in Figure 6(b) and p = 85, 90 and
95 in Figure 6(d)). This is because p is too small in these scenarios,
which makes the bias dominate the noise error. Third, our threshold
optimizer with e = 0.05 can achieve similar performance with the
optimal p-quantile.

Varying e. We then compare three methods that output 6:

o NM-E: The threshold optimizer in ToPS. It does not require a
percentile.
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Figure 7: Evaluation of different methods to find the threshold 6. We vary € from 0.01 to 0.1 in the x-axis. The y-axis shows the
MSE of answering range queries using H;, (to make comparison clear, we use a fixed € = 0.05 for it). Base is a baseline method
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Figure 8: LDP evaluation of different methods of outputting the threshold. We vary € from 0.2 to 2 in the x-axis. The y-axis

shows the query accuracy (MSE).
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Figure 9: Visualizations of the DNS stream. The x-axes corre-
spond to the time, and the y-axes denote the moving average.
Our ToPL at € = 1 can output predictions that are pretty close
to the ground truth.

o S-PAK: The smooth sensitivity method used by PAK. We use
p =99.5, as used by PAK.

e S-P: The original smooth sensitivity method. Similar to S-PAK,
we also use p = 99.5.

In Figure 7, we compare with existing differentially private methods
on finding the threshold 6. We vary the value of € for obtaining
0, and use fIch to answer range queries. Note that to make the
comparison clearer, we fix € = 0.05 in flfé. In all the datasets, our
proposed NM-E performs much better than existing methods in
terms of MSE. Moreover, the performance does not change much
when € increases. The reason is that the output of NM-E is stable
even with small e. Finally, both S-PAK and S-P perform worse than
the baseline method, which always give 0 regardless of input values,
indicating the 6 given by them is too large.
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5.5 Performance of ToPL

In this section, we evaluate the LDP algorithm ToPL. We first check
the methods to find 6. Following the setting of ToPS, we use the first
m = 65, 536 observations to obtain the threshold 0. The difference
from the DP setting is that we vary € in a larger range (from 0.2 to
2) due to the larger amount of noise of LDP. Our method finds 6 by
using the Square Wave (SW) mechanism to estimate the distribution,
and then minimizing Equation 8. Moreover, our approach (the final
part of Section 4.1) modifies SW to exploit the prior knowledge that
the distribution is skewed. We use SW-W to denote this method. In
addition, we include another method for comparison, which uses
SW as a black box (and we use SW to denote it).

Figure 8 shows the performance of finding 6 in ToPL. We vary
the € used to find 6 from 0.2 to 2 while fixing € used to output
the stream to 1. The performance of SW improves with ¢ in all
four datasets. The performance of our method is less stable and not
improving with €, but SW-W can still outperform SW as well as
the baseline in all the four datasets. In the Fare and DNS datasets,
the advantage of SW-W is not significant when ¢ > 1.6. But in
the Kosarak and POS datasets, the performance of SW-W can be
as large as 3 orders of magnitude (measured by MSE of answering
random range queries) compared to SW.

In Figure 9, we visualize the estimated stream of our method
ToPL on the DNS dataset using € = 1. We run algorithms only once
to demonstrate real-world usage. Clearly, ToPL and ground truth
are on similar trajectories in the figure which means our method
ToPL can give pretty accurate predictions.
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6 RELATED WORK
6.1 Dealing with Streaming Data in DP

A number of solutions have been proposed for solving the problem
of releasing real-time aggregated statistics under differential privacy
(DP). Here, besides the PAK’s approach [36], we briefly describe
several other related works.

Event-level DP. The first line of work is the hierarchical method
for handling binary streams, proposed concurrently by Dwork
et al. [18] and Chan et al. [8]. Event-level DP is satisfied in this
case. Both works assumed each value in the stream is either 0 or
1 and proposed a differentially private continual counter release
algorithm over a fixed-length binary stream with a bounded error

@) ((log1'5 n) /e) at each time step, where n is the stream length. In

addition, Chan et al. [8] extend the binary tree method to handle
unlimited streams. There is also an online consistency method: for
each time slot, if its estimation is no bigger than the previous one,
output the previous one; otherwise, increment the previous one by
1. We note that this method handles the binary setting, and thus
focuses on ensuring each value is an integer, while our method
works on the more general non-binary setting and minimizes the
overall noise error.

In a follow-up work by Dwork et al. [19], the authors further
assumed the number of 1’s in the stream is small, and proposed
an online partition algorithm to improve over the previous bound.
Chen et al. [10] used the similar idea but worked in a different set-
ting (i.e., each value can be any number instead of a binary number).
The method partitions the stream into a series of intervals so that
values inside each interval are “stable”, and publishes the median
of each interval. While Chen et al. [10] works in the non-binary
setting, similar to our paper and PAK’s , it makes two assumptions
that lead to a quite different design. First, as mentioned above,
Chen et al. [10] made the stability assumption so that partition-
ing the stream gives better utility; second, it works in a different
scenario (i.e., each value is composed of multiple users, and each
user contribute at most 1) and the sensitivity is 1, and therefore,
the threshold for truncation is not needed.

User-level DP. Compared to Event-level DP which protects against
the change of one single event, the user-level definition models
the change of the whole data possessed by the user. Because the
user-level DP is more challenging, proposals under this setting rely
more on the auxiliary information. In particular, Fan et al. [24]
proposed to release perturbed statistics at sampled timestamps and
uses the Kalman filter to predict the non-sampled values and cor-
rect the noisy sampled values. It takes advantage of the seasonal
patterns of the underlying data. Another direction is the offline
setting, where the server has the global view of all the values first,
and then releases a streaming model satisfying DP. In this setting,
Acs and Castelluccia [3] propose an algorithm based on Discrete
Fourier Transform (DFT). Rastogi and Nath [39] further incorporate
sampling, clustering, and smoothing into the process.

w-event-level DP. To balance the privacy loss and utility loss
between user-level and event-level privacy models, relaxed privacy
notions are proposed. Bolot et al. [6] extended the binary tree
mechanism on releasing perturbed answers on sliding window
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sum queries over infinite binary streams with a fixed window size
and using a more relaxed privacy concept called decayed privacy.
Kellaris et al. [29] propose w-event DP and two new privacy budget
allocation schemes (i.e., split € into individual events) to achieve it.
More recently, Wang et al. [42] work explicitly for spatiotemporal
traces, and improve the schemes of Kellaris et al. by adaptively
allocating privacy budget based on the similarity of the data sources;
Fioretto and Hentenryck [25] improve the schemes by using a
similar approach of Fan et al. [24]: sampling representative data
points to add noise, and smoothing to reconstruct the other points.

In our work, we follow the event-level privacy model and dealing
with a more extended setting where data points are from a bounded
range instead of the binary domain, and publish the stream in an
online manner. Moreover, we do not rely on any pattern to exist in
the data; and we propose methods for both DP and LDP.

6.2 Dealing with Streams in Local DP

In the local DP setting, most existing work focus on estimating
frequencies of values in the categorical domain [5, 23, 43, 47, 53].
These techniques can be applied to other applications such as heavy
hitter identification [4, 40, 46] frequent itemset mining [38, 45],
multi-dimension data estimation [11, 12, 44, 51, 52, 55]. In the nu-
merical/ordinal setting, previous work [15, 41] mostly focused on
estimating mean. Recently, Li et al. [33] proposed the square wave
mechanism for the more general task of estimating the density.

There are two methods [22, 27] that deal with streaming data in
the user-level LDP, and their data models are different from ours.
In particular, Erlingsson et al. [22] assume the users’ values are
integers. Each user’s value can change at most a few times, and each
change can be either +1 or —1. The authors proposed a hierarchical
method (similar to Phase II of PAK) to estimate the average change
over time and thus get the average value by accumulating the
changes. Joseph et al. [27] assume at each time, the users’ values
are a sequence of bits drawn from several Bernoulli distributions,
and the goal is to estimate the average of all the bits held by all
users (or the average of the Bernoulli parameters). The authors
proposed a method to efficiently control each user’s contribution
when the server’s guess (previous estimation) is accurate, and thus
save privacy budget. The authors extend the method to a categorical
setting and use it to find the most frequent value held by the users.

There is also a parallel work [48] that works on w-event, metric-
based LDP. The proposed protocol assumes there is a pattern in
each user’s streaming data, and lets each user sample the turning
point to report.

7 CONCLUSION AND DISCUSSION

We have presented a privacy-preserving algorithm ToPS to contin-
ually output a stream of observations. ToPS first finds a threshold
to truncate the stream using the exponential mechanism, consid-
ering both noise and bias. Then ToPS runs an online hierarchical
structure and adds noise to the stream to satisfy differential privacy
(DP). Finally, the noisy data are smoothed to improve utility. We
also design a mechanism ToPL that satisfies the local version of DP.
Our mechanisms can be applied to real-world applications where
continuous monitoring and reporting of statistics, e.g., smart meter
data and taxi fares, are required. The design of ToPS and ToPL are
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flexible and have the potential to be extended to incorporate more
properties of the data. We list some as follows.

Shorten the Holdout of the Stream. We follow the setting of
PAK [36] and use the first m values to output the threshold 6. If
we want to start outputting the stream sooner, we can use our
Threshold optimizer with only fewer observations to find a rough
threshold. During the process of outputting the stream, we can use
sequential composition (in Section 2.4) to fine-tune the threshold.

Update 6. We follow the setting of PAK and assume the distri-
bution stays the same. If the distribution changes, we can have
the Threshold optimizer run multiple times (using either sequen-
tial composition to update 6 while simultaneously outputting the
stream, or the parallel composition theorem to block some values
to update 0).

Utilizing Patterns of the Data. If there is further information,
such that the data changes slowly (e.g., the current value and the
next one differ in only a small amount), or the data changes regularly
(e.g., if the values show some Diurnal patterns), are given, we can
potentially utilize that to improve the performance of our method
as well.
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A SUPPLEMENTARY MECHANISMS OF DP

We review the method of smooth sensitivity that PAK [36] use for
estimating the percentile.

Smooth Sensitivity. Rather than the global sensitivity that con-
siders any pair of neighboring sequences, the local sensitivity fixes
one dataset V and only considers all possible neighboring sequence
V’ around V.

LSv(f) = max IIf(V) = FOV)ll.

The advantage of using local sensitivity is that we only need
to consider neighbors of V which could result in lower sensitivity
of the function f, and consequently lower noise added to the true
answer f. Unfortunately, replacing the global sensitivity with local
sensitivity directly (e.g., in the Laplace mechanism) violates DP.
This is handled by using smooth sensitivity [35] instead.

For b > 0, the b-smooth sensitivity of f at V € V, denoted by
SSy p(f), is defined as

SSV,b(f) = n%/a’x {LSV/(f) . e—b~d(V,V’)} ,

where d(V,V’) denotes the hamming distance between V and V’.
The method of smooth sensitivity is given below:

AWV) = f(V) + SST” . Z,

where Z is a random variable from some specified distribution. To
obtain (€, 0)-DP, Z is drawn from the Cauchy distribution with
density o m for y > 1. But to use an exponentially decaying
distribution (which gives good accuracy), such as standard Laplace
or Gaussian distribution, one can only obtain (e, §)-DP. For both,

we set b < #g(a) as the smoothing parameter. If we use the

Laplace distribution with scale 1, a = §. When the noise is standard
Gaussian, then a = == [35].

V-Iné
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B MORE DETAILS ABOUT PAK
PAK computes the smooth sensitivity of the empirical p-quantile,
ie., J%P, as

max
=0,1,...,m+1

SS Xp) =
V,b( p) k

{e—bk.

Here, V¥ is the sorted string of the first m values of V in ascending
order, where V5(i) = 0if i < 1 and B if i > m. And P is the rank of
Xp. After computing the smooth sensitivity, Nissim et al.[35] sets
the threshold 0 as

max

[VSP+t) -V (P+t—k- 1)]} .
t=0,1,...,k+1

SS X
0 =%, 2vt)
a
where Z is a random variable from some specified distribution in
order to satisfy DP.
PAK [36] propose to bound Pr [0 < x| to be arbitrarily small

(by an arbitrary f) and thus uses

kSS X
N v,b(Xp)
a

Xp (Z +Gpg (1= P)).

(=165 a-pw)
+“ and Gpg

where « is a positive real number (l -
denotes the CDF of the distribution of Z.

The threshold 0 released via the above mechanism is differen-
tially private since kSSy ;(%p) is a smooth upper bound of %, and
k only depends on public parameters.

In their evaluation, the authors aim to get the 99.5-percentile

and set p = 99.575, f = 0.3-0.02, and § = 1/n?.

C CONSISTENCY ALGORITHM

Off-line Consistency [26]. We use x to denote a node on the
hierarchy H, and let £(x) to be the height of x (the height of a leaf
is 1; and root is of height h). We also denote prt(x), chd(x), and
sbl(x) to denote the children, parent, and siblings of x, respectively.
We use H(x) to denote the value corresponding to node x in the
hierarchy. The first step updates the values in H from bottom to
top. The leaf nodes remain the same; and for each height-£ node x,
where ¢ iterates from 2 up to h, we update it

1 _pl-1 pl-1_1
bl - bl -1

H(x) « b H(x) +

>, H().

yechd(x)

(10)

We then update the values again from top to bottom. This time
the value on root remains the same, and for each height-£ node x,
where ¢ iterates from h — 1 down to 1, we update it

H(x) b;—lH(x)-k% Hprt() - > H@)|. (1)

yesbl(x)

An Online Algorithm. We decompose the noisy values in H
into two parts: the true values and the pure noises, denoted as T
and N, respectively. N is the independent noise from the Laplace
mechanism (described in Section 2.3). T is defined by induction: for
a leaf x, T(x) corresponds to one true value v, and for a node x in
a higher level, T(x) = 3, yechd(x) T(y). The true values from T are
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consistent naturally. Thus if N is consistent, H is also consistent.
To see it, consider any internal node x,

H(x) = T(x) + N(x)

D, T+ Y, N@)

yechd(x) yechd(x)
= ), TW+Nw)= ). Hy).
yechd(x) yechd(x)

In the online consistency algorithm, we internally generate the
noise hierarchy N and run the steps given in Equation 10 and Equa-
tion 11 to make N consistent. After this pre-processing step, we
can ignore the higher-layers of the hierarchy, and use only the leaf
nodes which add consistent noise to each individual value. This is
because the results from the higher-layers are already consistent
with those from the leaves, thus it suffices to only output the most
fine-grained result.

The online consistency algorithm satisfies DP as long as it gives
identical output distribution as the offline algorithm [26]. Now we
prove this fact. We first restate the theorem (Theorem 3.1):

THEOREM C.1. The online consistency algorithm gives identical
results as the off-line consistency algorithm.

Proor. We first examine the bottom-up update step. According
to Equation 10, the updated N(x) equals to

bl _ bl—l -1 _
TN > N@.
yechd(x)
Adding T(x) to it, we have the updated H(x) equals to
bl _ bl—l bl—l -1
ﬁN(X)-F bl_l Z N(y)+T(x)
yechd(x)
bl _ bl—l bl—l -1
=———(N(x) + T(x)) + — D N +T()
bt -1 b -1
yechd(x)
bl _ b171 bl—l -1
=———(N() + T(x) + — D, N@+Tw) (12)
bt -1 bt -
yechd(x)
bl — pl-1 I-1_
= H@ ), H).

yechd(x)
Equation 12 is because of the consistency of T so that T(x) =
2Zyechd(x) T(y). This gives the same result as if we run the off-line
consistency algorithm. Similarly, during the top-down update step
(in Equation 11), we have the updated N(x) equals to

b-1 1
5 N@+ 3 [Nert@) - Y7 NE)|.
yesbl(x)

Adding T(x) to it, we have the updated H(x) equals to

b—
TN+ [N - > N+ T
yesbl(x)
2L NG) + TG+ 3 [ NGrG) = Y Ny + T
yesbl(x)
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S H 1 [HEre) - Y Hw)|.

yesbl(x)

(13)

which is the same result as if we run the off-line consistency algo-
rithm. Equation 13 also holds because of the consistency of T so

that T(x) = T(prt(x)) — Zyesbl(x) T(y). O

D SMOOTHING METHODS

Denote uy, ug, . . . as the noisy estimates given by the leaves of the
perturber (or the (s + 1)-th levels of the original hierarchy). Each u;
is the noisy sum of b* values. Let up = %bse (initially there are no
estimations from the hierarchy; we thus use half of the threshold
as mean). The smoother will take the sequence of u and output
the final result 0; for each input value. Let ¢ = [i/b°], we consider
several functions:

(1) Recent smoother: 0; = u;/b®. It takes the mean of the most
recent output from the perturber.

(2) Mean smoother: 0; = b+t Z;:o u;. It takes the mean of the
output from the perturber up until the moment.

(3) Median smoother: 0; = median(uy, . . ., uy). Similar to the mean
smoother, the median smoother takes the median of the output
from the perturber up until the moment.

(4) Moving average smoother: 0; = ﬁ th.: t41—my Yj- Similar to
the mean smoother, it takes the mean over the most recent w
outputs from the perturber. When ¢ + 1 < w, we use the average
of the first ¢ + 1 values of u divided by b* as v;.

(5) Exponential smoother: 9; = Z—S ift =0,and 0; = a% +(1-
a)0;_ps if t > 0, where 0 < o < 1is the smoothing parameter.
The exponential smoother put more weight on the more recent
values from the hierarchy.

E MECHANISMS OF LOCAL DIFFERENTIAL
PRIVACY

In this subsection, we review the primitives proposed for LDP. We
use v to denote the user’s private value, and y as the user’s report
that satisfies LDP. In this section, following the notations in the
LDP literature, we use p and g to denote probabilities.

E.1 Square Wave Mechanism for Density
Estimation

Li et al. [33] propose an LDP method that can give the full density
estimation. The intuition behind this approach is to try to increase
the probability that a noisy reported value carries meaningful infor-
mation about the input. Intuitively, if the reported value is the true
value, then the report is a “useful signal”, as it conveys the extract
correct information about the true input. If the reported value is
not the true value, the report is in some sense noise that needs to
be removed. Exploiting the ordinal nature of the domain, a report
that is different from but close to the true value v also carries useful
information about the distribution. Therefore, given input v, we
can report values closer to v with a higher probability than values
that are farther away from v. The reporting probability looks like a
squared wave, so the authors call the method Square Wave method
(SW for short).
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Without loss of generality, we assume values are in the domain of

[0, 1]. To handle an arbitrary range [¢, r], each user first transforms
o—

v into 2=£ (mapping [, r] to [0,1]); and the estimated result is

r—t
transformed back. Define the “closeness” measure b = %,
the Square Wave mechanism SW is defined as:
_ _ _ p, if |U - yl <b 5
vy €[=b. 1+ 5] PriSW) =y] _{ 9, otherwise .

By maximizing the difference between p and g while satisfying

the total probability adds up to 1, we can derive p = and

9= geeri-

After receiving perturbed reports from all users, the server runs
the Expectation Maximization algorithm to find an estimated den-
sity distribution that maximizes the expectation of observing the
output. Additionally, the server applies a special smoothing re-
quirement to the Expectation Maximization algorithm to avoid

overfitting.

—&
2be€+1

E.2 Candidate Methods for the Perturber

As we are essentially interested in estimating the sum over time,
the following methods that estimate the mean within a population
are useful. We first describe two basic methods. Then we describe
a method that adaptively uses these two to get better accuracy in
all cases. Our perturber will use the final method.

Stochastic Rounding. This method uses stochastic rounding to
estimates the mean of a continuous/ordinal domain [16]. We call it
Stochastic Rounding (SR for short). Assume the private input value
v is in the range of [-1, 1] (otherwise, we can first projected the
domain into [—1, 1]), the main idea is to round v to v’ so that v’ = 1
with probability p; =  + % and v’ = =1 w/p 1—py. This stochastic
rounding step is unbiased in that E[v” | = v. Then given a value
v’ € {-1, 1}, the method runs binary random response to perturb

1 7
e Y=v

2
P oo

Piecewise Mechanism. Wang et al. [41] proposed piecewise
mechanism. It is also used for mean estimation, but can get more
accurate mean estimation than SR when € > 1.29. In this method,
the input domain is [—1, 1], and the output domain is [—s, s], where

v’ into y. In particular, let p = eﬁ—il andg=1-p=

ec+1
ec—1

w/p p, and y # v’ w/p q. The method has variance (

/2 . .
s = %. For each v € [-1,1], there is an associated range
2 2
[£(v), r(v)] where £(v) = eo1 4nq r(v) = M, such that

e€/2_1 e€/2_1
with input v, a value in the range [€(v), r(v)] will be reported

with higher probability than a value outside the range. The high-
probability range looks like a “piece” above the true value, so the
authors call the method Piecewise Mechanism (PM for short). The
perturbation function is defined as

=l
Vyel-s.s] PIIPM@) =yl =1 P~ 277 if y € [{(v). r(v)]
’ 4= 5eerz% otherwise.

€/2_
where z = £ =1

. Compared to SR, this method has a variance of

e€/2+1
v? e€/243
e€/2—1 © 3(e€/2-1) [41].

Hybrid Mechanism. Both SR and PM incurs a variance that de-
pends on the true value, but in the opposite direction. In particular,
when v = +1, the variance of SR is lowest, but the variance of PM
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is highest. Wang et al. [41] thus propose a method called Hybrid
Mechanism (HM for short) to achieve good accuracy for any v. In
particular, define a = 1 - e’e/z, when € > 0.61, users use PM w/p
a and SR w/p 1 — a. When € < 0.61, only SR will be called. It is
proved by Wang et al. [41] HM gives better accuracy than SR and
PM. In particular, the worst-case variance is

ec+1 2
eE_l 9
ec+1

. 2
pIE (ef—l) +

F MORE RESULTS

Denote Q as the set of the 200 randomly generated queries, we
show the results of Mean Absolute Error (MAE):

o > [ -ves)
(i,))eQ

Moreover, we also show results for the normalized results, or the
mean of range queries, namely,

when € < 0.61
Var [9] = ,

e€/243
—3(65/2_1)] ,  when e > 0.61.

(14)

MAE(Q) =

1 Vi) vyl
MMSE(Q) = — ' [,_. - ._.]

Qe izt It

_ 1 VGQj) V(i)
MMAE(Q) = D e

(i.j)eQ

Figure 10 gives results on these metrics. Let us first look at the
first row, which gives MAE results. The overall trend is similar to
that of MSE (Figure 3). One notable difference is that the better hi-
erarchical method does not give a better overall result (ToPS versus
NM-E and ﬁfé versus PAK). This is because the better hierarchical
method (especially the consistency step) is optimizing the squared
error. We note that Lee et al. [31] proposed methods for optimizing
absolute error (L1 error), and they can be used in our setting if the
target is to minimize absolute errors.

For the second and third row of Figure 10, which corresponds
to MMAE and MMSE, respectively, we can see the overall trend
and the relative performance of different methods are similar to
the case of MAE and MSE. The results are less stable though: this
is because the range of the query here introduces another factor of
randomness. That is, due to the usage of the hierarchy, the larger
the range, the smaller the error will be. For the MMAE metric,
the results of our proposed ToPS can be as small as 1, while the
existing work of PAK [36] gives errors of 10> to 104, depending
on the dataset. Comparing with the flat method, where a Laplace
noise on the order of B/e (where B is the upper bound of the data)
or 0/e (if some technique of finding 0 is applied) is added to each
count, ToPS significantly improves over it. Finally, the results of
MMSE show similar trends as that of MSE. These evaluation results
further confirm the superiority of ToPS regardless of the evaluation
metrics.
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Figure 10: Comparison of different methods on MAE (first row), MMAE (second row) and MMSE (third row).
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