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Forensic laboratories are required to have analytical tools to confidently differentiate illegal 
substances such as marijuana from legal products (i.e., industrial hemp). The Achilles heel 
of industrial hemp is its association with marijuana. Industrial hemp from the Cannabis 
sativa L. plant is reported to be one of the strongest natural multipurpose fibers on earth. 
The Cannabis plant is a vigorous annual crop broadly separated into two classes: industrial 
hemp and marijuana. Up until the eighteenth century, hemp was one of the major fibers 
in the United States. The decline of its cultivation and applications is largely due to 
burgeoning manufacture of synthetic fibers. Traditional composite materials such as 
concrete, fiberglass insulation, and lumber are environmentally unfavorable. Industrial 
hemp exhibits environmental sustainability, low maintenance, and high local and national 
economic impacts. The 2018 Farm Bill made way for the legalization of hemp by 
categorizing it as an ordinary agricultural commodity. Unlike marijuana, hemp contains 
less than 0.3% of the cannabinoid, Δ9-tetrahydrocannabinol, the psychoactive compound 
which gives users psychotropic effects and confers illegality in some locations. On the 
other hand, industrial hemp contains cannabidiol found in the resinous flower of Cannabis 
and is purported to have multiple advantageous uses. There is a paucity of investigations 
of the identity, microbial diversity, and biochemical characterizations of industrial hemp. 
This review provides background on important topics regarding hemp and the quantification 
of total tetrahydrocannabinol in hemp products. It will also serve as an overview of 
emergent microbiological studies regarding hemp inflorescences. Further, we examine 
challenges in using forensic analytical methodologies tasked to distinguish legal fiber-type 
material from illegal drug-types.

Keywords: industrial hemp (Cannabis sativa L.), hemp microbiome, microbial diversity, tetrahydrocannabinol, 
cannabidiol, forensic analyses

INTRODUCTION

Forensic science laboratories work police departments to help authorities distinguish between 
industrial hemp and marijuana plants, which appear identical but confer very different legal 
statuses. Industrial hemp, a variety of Cannabis sativa L., is reported to be  one of the stiffest 
and strongest natural fibers on earth (Pickering et  al., 2007; Salentijn et  al., 2019). It is also 
purported to be one of the earliest plants cultivated by man for medicinal purposes (Zuardi, 2006). 
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Cannabis from the Cannabaceae family is the genus name for 
plants that are broadly separated into two classes: industrial 
hemp and marijuana. These multifunctional, herbaceous products 
have been farmed by mankind for millennia. Up until the 
eighteenth century, hemp was one of the major fibers in the 
United  States. Cannabis spp. are the only plants that produce 
a unique class of molecules known as cannabinoids, specifically 
Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD; Hillig 
and Mahlberg, 2004; Zuardi, 2006; Battistella et al., 2014; Shover 
and Humphreys, 2019; Quaicoe et  al., 2020; Schumacher et  al., 
2020; Adhikary et  al., 2021). The Agricultural Improvement 
Act of 2018 (the 2018 Farm Bill) effectively exempted hemp 
from the list of federal Schedule I substances under the Controlled 
Substances Act (Shover and Humphreys, 2019). The incipient 
bill allowed for universities to research industrial hemp and 
for companies to commercially grow it in states with regulatory 
oversight that permits it to be  produced. It also made way to 
produce hemp derivatives that contain less than 0.3% THC, 
the psychotropic cannabinoid found in marijuana. However, 
any hemp derivative that exceeds the 0.3% threshold is defined 
as marijuana and confers illegality as a Schedule I  narcotic. 
The potential illegality of hemp material makes industrial hemp 
of particular importance in the field of forensic science.

Currently, industrial hemp is grown legally in more than 30 
countries as a sustainable, eco-friendly, and multifunctional plant. 
It has high nutrient and water use efficiency and a superior 
biomass quality for textile and construction resources (Crini 
et  al., 2020). Traditional building materials such as concrete, 
fiberglass insulation, and lumber pose valid considerations regarding 
their environmental impact and toxicity; however, industrial hemp 
exhibits ecological sustainability, low maintenance, and high impact 
for local and national economies. For example, hemp fiber 
production presents a low ecological footprint of 1.46–2.01 global 
hectares (gha; Schumacher et  al., 2020). Industrial hemp has 
recently garnered an increased interest in the United  States, and 
in 2022 it is expected to attain an annual revenue growth rate 
of 18.4% (Quaicoe et  al., 2020). Currently, as this review will 
show, the topics of hemp-associated microbiome and fungi intended 
for beneficial cultivation are emerging as one of great interests.

This work aims to provide the findings in research focusing 
on the industrial hemp microbiome and the implications of 
these finding on hemp applications. This review also covers 
emerging topics of the pharmaceutical capabilities of hemp 
especially in light of the recent severe acute respiratory syndrome 
(SARS)-coronavirus-2 (COVID-19) pandemic. Further, an 
overview of the scientific literature is presented on forensic 
techniques involving differentiating legal hemp from illegal 
marijuana and the challenges that accompany 
such determinations.

DIFFERENTIATION BETWEEN 
INDUSTRIAL HEMP AND MARIJUANA

The 2018 Farm Bill, signed into law on 20 December 2018, 
made way for the legalization of industrial hemp by categorizing 
it as an ordinary agricultural commodity (Hillig and Mahlberg, 2004; 

Zuardi, 2006; Battistella et  al., 2014; Shover and Humphreys, 
2019; Quaicoe et  al., 2020; Schumacher et  al., 2020; Adhikary 
et  al., 2021). Industrial hemp along with marijuana are two 
varieties of Cannabis sativa L. The primary distinction between 
industrial hemp and marijuana is the threshold concentration 
of the cannabinoid, THC, the psychoactive component that gives 
users psychotropic effects (Shover and Humphreys, 2019; Figure 1). 
Unlike marijuana, hemp contains less than 0.3% based on dry 
weight of THC in leaves and buds. According to the 2018 Farm 
Bill, if THC levels exceed this threshold, it is then classified as 
marijuana, the illegal plants are destroyed, and the grower faces 
the possibility of prosecution (Shover and Humphreys, 2019). 
Both plants are similar in appearance; however, hemp plants, 
with a 120-day growth cycle, tend to grow taller and have thinner 
leaves than marijuana plants and are harvested approximately 
5  weeks prior to marijuana (Sankari and Mela, 1998). As an 
industrial product, marijuana fibers contain low tensile strength 
that break and shred easily; thus, it is not suitable for legal 
industrial applications.

Although, legally grown industrial hemp contains low levels 
of THC, it contains high levels of the CBD, the non-intoxicating 
compound extracted from the resinous flower of Cannabis. It 
contains many volatile compounds including terpenes which 
bestows a distinctive odor, terpenoid-like compounds, and 
cannabinoids which are extracted through steam distillation 
(Turner et  al., 1980). These compounds interact directly with 
cannabinoid receptors located in the endocannabinoid system 
(Di Marzo, 2008), which bind human endogenous cannabinoids 
as well as exogenous plant-derived and synthetic cannabinoids. 
These molecules help modulate chronic inflammatory conditions 
and regulate immune homeostasis. CBD is purported to have 
multiple advantageous therapeutic and medicinal uses and does 
not demonstrate the psychotropic and euphoric effects 
exhibited by THC.

HEMP GROWTH

Industrial hemp is very sensitive to ecological conditions, 
including photoperiod (length of day), plant density, harvest 
time, irrigation, soil nutrients, and temperature; therefore, 
cultivar genotypes are typically produced in specific environments 
for certain hemp applications. The plant is a branching herb 
and has a rigid, herbaceous stalk with varieties that come in 
an assortment of heights: 3–4 ft. (0.91–1.2 m; dwarf tall), 4–5 ft. 
(1.2–1.5 m; semi-dwarf tall), and 6–7 ft. (1.8–2.1 m; medium 
height; Small, 2015). The plant contains nodes at intervals of 
10 to 50 cm. The leaflets are dark green, serrated, and taper 
at each end in 5 to 11 points (Small, 2015). The leaves grow 
up to 15 cm in length and 12 cm in width (Ehrensing, 1998; 
Kraenzel et  al., 1998). The spindle-shaped central root grows 
to depths of 2–2.5 m and branches up to 80 cm in width.

Prior to the formation of flowers, hemp plants are dioecious, 
having both female and male reproductive organs and are 
visually indistinguishable (Onofri and Mandolino, 2017). The 
diploid plant includes both dioecious genotypes containing 
heteromorphic sex chromosomes and monoecious types with 
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homomorphic sex chromosomes. It is primarily open-pollinated, 
that is, it is wind-pollenated. Female (pistillate) hemp plants 
are dense and produce raceme which looks similar to a candle-
like clusters of flowers, whereas male (staminate) plants are 
tall and slender with fewer leaves surrounding the terminal, 
branched inflorescence. Sexual expressions are determined by 
abiotic and biotic environmental stressors (Onofri and Mandolino, 
2017). For example, dry soils, extreme temperatures, low soil 
nitrogen concentrations, and low light intensities decrease the 
female: male plant ratio (Freeman et  al., 1980). Male plants 
flower and senesce earlier than females (Struik et  al., 2000). 
After flowers form, male hemp plants grow slenderer with 
elongated internodes at their tops. Male plants are more 
advantageous for industrial uses due to their production of a 
finer fiber (Salentijn et  al., 2019). Although CBD is present 
in both male and female plants, most are found in resin glands 
on trichomes of the female flower buds (Mahlberg and Kim, 
2004). The terpenophenolic compounds are secreted from head 
cells of trichome glands, specifically from the capitate-stalked 
glandular hairs (Happyana et al., 2013). Female flowers require 
mild temperatures and high nitrogen concentrations and light 
intensity. They are often propagated in greenhouses from 
feminized seeds or female clones and then transplanted two 
to 4  weeks after establishing growth (Adesina et  al., 2020).

Hemp grows optimally in mild, humid climates; however, 
the ideal growing temperatures ranges from 13°C-22°C. As 
temperatures exceed 13°C, hemp starts an accelerated growth 
stage (Ehrensing, 1998; Kraenzel et  al., 1998). The optimal 
pH for hemp growth is 6–8.5  in well-drained, loamy soil 
(Amaducci et  al., 2015). Further, soil should be  deep, 

well-aerated, with good water-holding capacity. Four months 
of frost is required to produce industrial hemp fibers (Ehrensing, 
1998). According to the Purdue Industrial Hemp Project, hemp 
requires calcium concentrations of less than 6,000 ppm, 
phosphorus concentrations greater than 40 ppm, potassium 
concentrations greater than 250 ppm, and sulfur concentrations 
greater than 5,000 ppm (Schumacher et  al., 2020).

STRUCTURAL PROPERTIES OF 
INDUSTRIAL HEMP

Industrial hemp consists of three types of fibers in its stem: 
primary bast (outer long fibers), secondary bast fibers, and 
hemp hurds or shives (inner short fibers). The fibers have 
very high cellulose content with varying amounts of hemicellulose, 
lignin, and pectin as its major constituents (Tutt and Olt, 
2011). The length of hemp fibers is 1–3 cm, and the bast 
contains 70.2–74.4% (wt%) of cellulose and only 3.7–5.7% 
(wt%) lignin (Sisti et  al., 2018). By comparison, the length of 
wood fibers is only 1–3 mm with less cellulose content (40–50%). 
A single fiber of hemp has a density of 1.48 g/cm3 (Sisti et  al., 
2018) and a tensile strength of 350–800 MPa (Thygesen et  al., 
2006; Sisti et  al., 2018), depending on the climate during the 
growing season and the genotype, soil type, fertilization, and 
retting processes. Hemp fibers have an elastic modulus (75 GPa) 
similar to the stiffness of glass fibers which varies from 50 
to 70  GPa (Thygesen et  al., 2006). Cellulose and hemicellulose 
molecules are bound together by lignin molecules. The S2 
layer of hemp fiber walls are constructed of 100 mm thick 

FIGURE 1  |  Comparison of the two varieties of Cannabis: industrial hemp and marijuana. The general leaf structure, percent levels of THC, psychoactive 
properties, growth height, growth cycle days, and uses are shown.
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lamellae consisting of one to four cellulose-rich and lignin-
poor concentric layers (Thygesen et  al., 2006). The inner fibers 
consist of a secondary xylem fiber network that are shorter 
(approximately 2 mm) and thinner (6 μm) than the outer 
fibers and represent approximately 10% of the total fibers 
(Marrot et  al., 2013).

Prior to use as an industrial composite, non-cellulosic 
materials and lignin are generally removed to expose interfacial 
hydroxyl groups of cellulose which can be  functionalized with 
other composite materials (Pickering et al., 2007). For example, 
treatment using alkali conditions removes lignin content by 
approximately 50% which increases the crystallinity and 
roughness of the fiber surface. The highest stem biomass is 
usually yielded if the fiber is harvested prior to the onset of 
flowering. This phenomenon positively correlates with prolonged 
durations of the vegetative phase (Salentijn et al., 2019). Hemp 
fibers harvested early in the blooming stage demonstrate high 
tensile strength that decreases as the plant matures due to an 
increase in the proportion of hemps hurds compared to bast 
(Sisti et  al., 2018).

THE HEMP MICROBIOME

Despite incipient interest in industrial hemp, the microbiome 
of hemp has yet to be  fully characterized. However, emergent, 
amplicon-based DNA sequencing technologies have made way 
for the analyses of its microbial constituents. Microbial 
components (i.e., bacteria, archaea, and fungi) are indispensable 
factors that help maintain soil and hemp plant health. 
Microorganisms provide plants with protection from pathogens, 
nitrogen fixation, and acquisition of micronutrients from the 
surrounding ecosystem. Plants in turn release life-sustaining 
nutrients to symbiotic microbes associated with plants. However, 
due to the decades-long Cannabis prohibition, there is a paucity 
of literature elucidating the composition and function of the 
hemp microbiome. Hemp plants harbor a robust microbial 
consortium that are present throughout its life cycle and persists 
during the retting process (McPartland, 1997; Barnett et al., 2020; 
Law et  al., 2020).

Microbiological retting, or degumming, is the extraction of 
hemp fibers from harvested stalks that is a traditional and 
highly widespread retting method. In a recent study, the hemp 
stalk microbiome was studied during field (dew) retting processes 
using 16S rRNA next-generation sequencing on the Illumina 
MiSeq platform. The results demonstrated that the microbiome 
was largely dominated by endogenous Proteobacteria and showed 
a proliferation of Bacteroidetes during dew-retting processes 
(Punja, 2018).

A recent study was conducted using high-throughput 
sequencing of 16S ribosomal RNA (rRNA) gene (bacteria) and 
internal transcribed spacer 1 (ITS1; fungal) biomarkers to probe 
for taxa that comprise the core microbiome of hemp. The 
study identified operational taxonomic units (OTUs) across 
four plant compartments/organs (flowers, leaf surface rhizosphere, 
and root compartment) of C. sativa cultivated in six different 
fields (Barnett et al., 2020). The “core” microbiome was defined 

as bacterial and fungal OTUs that were ubiquitous in hemp 
plants and that significantly enriched a plant organ relative to 
bulk soil. The results demonstrated that hemp did not have 
a significantly effect on the overall rhizosphere microbial 
community composition. However, six core bacteria were 
discovered from root tissue, all of which belong to the phylum 
Proteobacteria. Eleven core bacteria from the leaf surface were 
comprised of members of the Proteobacteria, Actinobacteria, 
and Bacteroidetes phyla. Seven core bacteria from the flower 
were comprised of members of the Proteobacteria and Firmicutes 
phyla. All core fungi were classified as Basidiomycota or 
Ascomycota, or unclassified at the phylum level. Only one 
core soil rhizosphere fungal OTU, Bullera albawas, was identified, 
but there were 14 core fungal OTUs found on the leaf surfaces 
and only two core fungi found in the flowers.

In a related study, Wei et  al. (2021), also used amplicon-
based studies to elucidate the hemp microbiome in 15 plants 
across 4 hemp ecotypes. The results demonstrated that the 
Proteobacteria phylum exhibited the highest relative abundance 
(67.26%) and significant variations in soil and plant 
compartments. Cyanobacteria and Firmicutes had the greatest 
abundance in the flower samples, and Proteobacteria, 
Actinobacteria, and Bacteroidetes were greatly enriched in soil 
and root samples. Further, Rhizobium, Pseudomonas, Bacillus, 
and Sphingomonas were the top bacterial genera detected in 
samples, with Pseudomonas and Bacillus highest in flowers, 
and Rhizobium and Sphingomonas highest in stems. Regarding 
fungi, Ascomycota (50.59%) exhibited the highest relative 
abundance of fungal taxa.

HEMP DISEASES

Hemp diseases are primarily caused by fungi and rarely by 
bacteria and viruses (Table  1; McPartland, 1997; Kusari et  al., 
2013; Giladi et  al., 2020; Jerushalmi et  al., 2020; Chiginsky 
et  al., 2021; Punja, 2021). Studies have shown that there are 
100 true Cannabis-related fungal pathogenic species (Punja, 
2021). Microbial diseases are present in every growth stage, 
i.e., from seedling to maturity, and are ubiquitous in every 
plant organ. Fungal diseases typically cause blight, cankers, 
leaf spots, mildew, root rot, and wilt. Bacterial diseases generally 
cause blight, gall, and spots. Viruses and viroid communities 
cause mosaics and streaks as well as general nutrient deficiency 
(Chiginsky et  al., 2021).

In 1914, the first published report of microbial infection 
affecting C. sativa was demonstrated in a study by Charles 
and Jenkins (1914). The fungal disease was evident on fully 
grown plants and resulted in wilted and drooping foliage that 
eventually turned brown and died. The pathogen was identified 
as Botryosphaeria marconi (Cav.). It was noted as the first 
detection of this fungus in America. Since this historical 
occurrence, two of the most deleterious diseases of outdoor 
varieties of C. sativa have been reported to be  infections by 
phytopathogens B. cinerea and Trichothecium roseum (McPartland, 
1997). A recent Punja (2018), examined flower buds of field-
grown Cannabis from British Columbia and Alberta in which 
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TABLE 1  |  Common microbial diseases of hemp plants.

Fungi Bacteria Viruses

Anthracnose

Colletotrichum coccodes (Wallroth)

Black dot disease

Epicoccum nigrum Link

Brown blight

Acremonium sp.

Alternaria spp. (Fr.:Fr.) Keissl.

Brown leaf spot and stem canker

Ascochyta spp.

A. prasadii Shukia and Pathak

Phoma spp.

Didymella spp.

P. exigua Desmaz.

P. glomerata (Corda) Wollenweb. and Hochapfel

P. herbarum Westendorp

Charcoal rot

Macrophomina phaseolina (Tassi) Goidanich

Cladosporium stem canker

Cladosporium cladosporioides (Fresen.) De Vries.

C. herbarum (Pers.:Fr.) Link

Mycosphaerella tassiana (De Not.) Johan.

Curvularia leaf spot

Curvularia cymbopogonis (C. W. Dodge) roves and Skolko

C. lunata (Wakker) Boedijn

Cochliobolus lunatus Nelson and Haasis

Cylindrosporium blight

Cylindrosporium spp.

C. cannabinum Ibrahimov

Damping-off

Botrytis cinerea Pers.:Fr.

Botryotinia fuckeliana (de Bary) Whetzel

Fusarium oxysporum Schlechtend.:Fr.

F. solani (Mart.) Sacc.

Nectria haematococca Berk. and Broome

Macrophomina phaseolina (Tassi) Goidanich

Pythium aphanidermatum (Edson) Fitzp.

P. debaryanum auct. Non-Hesse

P. ultimum Trow

Rhizoctonia solani Kühn

Thanatophorus cucumeris (A. B. Frank) Donk

Downy mildew

Pseudoperonospora cannabina (Otth) Curzi

P. humuli (Miyabe and Takah.) G. W. Wils.

Fusarium foot rot and root rot

F. solani (Mart.) Sacc.

Fusarium stem canker

F. sulphureum Schlechtend.

Gibberella cyanogena (Desmaz.) Sacc.

Olive leaf spot

Cercospora cannabis K. Hara and Fukui

Pseudocercospora cannabina (Wakef.) 
Deighton

Ophiobolus stem canker

Ophiobolus cannabinus Pass.

O. anguillidus (Cooke in Cooke and 
Ellis) Sacc.

Phoma stem canker

Phoma herbarum Westendorp.

P. exigua Desmaz

Phomopsis stem canker

Phomopsis cannabina Curzi

P. achilleae (Sacc.) Hohn.

Diaporthe arctii (Lasch) Nitschke var. 
achilleae (Auersw.) Wehmeyer

Phymatotrichum root rot (Cotton root 
rot)

Phymatotrichopsis omnivora (Duggar) 
Hennebert

Pink rot

Trichothecium roseum (Pers.:Fr.) Link

Powdery mildew

Leveillula taurica (Lév.) Arnaud.

Oidiopsis taurica Salmon

Sphaerotheca macularis (Wallroth:Fr.) 
Lind Oidium sp.

Red boot

Melanospora cannabis Behrens 
(secondary on hemp canker)

Rhizoctonia soreshin and root rot

R. solani Kühn

Rust

Aecidium cannabis Szembel

Uredo kriegeriana Syd. and P. Syd.

Uromyces inconspicuus Otth

Southern blight (Sclerotium root and 
stem rot)

Sclerotium rolfsii Sacc.

Athelia rolfsii (Curzi) Tu and Kimbrough

Stemphylium leaf and stem spot

Stemphylium botryosum Wallroth

Pleospora tarda E. Simmons

S. cannabinum (Bachtin and Gutner) 
Dobrozrakova et al.

Tar spot

Phyllachora cannabidis (P. Henn.)

Bacterial blight

Pseudomonas syringae pv. 
cannabina (Sutic and 
Dowson) Young et al.

Crown gall

Agrobacterium tumefaciens 
(Smith and Townsend) Conn

Striatura ulcerosa

P. syringae pv. mori (Boyer 
and Lambert) Young et al.

Xanthomonas leaf spot

Xanthomonas campestris pv. 
cannabis Severin

Alfalfa mosaic and Lucerne 
mosaic

genus Alfamovirus, Alfalfa 
mosaic virus (AMV)

Arabis mosaic

genus Nepovirus, Arabis 
mosaic virus (ArMV)

Cucumber mosaic

genus Cucumovirus, 
Cucumber mosaic virus 
(CMV)

Hemp mosaic

Hemp mosaic virus

Opuntia-like virus

Hemp streak

Hemp streak virus

Cryptic virus

Alfalfa mosaic and Lucerne 
mosaic

genus Alfamovirus, Alfalfa 
mosaic virus (AMV)

Beet curly top

Beet curly top virus

Hemp Vein

Citrus yellow vein associated 
virus

Mitovirus

Cannabis sativa mitovirus 1 
(CasaMV1)

Dudding

Hop latent viroid

(Continued)
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buds were harvested in 2015–2017. The results of the study 
demonstrated that internal rot in the bud was associated with 
a fungal infection caused by B. cinerea. Further, Penicillin olsonii 
and P. copticola fungi were discovered in pre-harvest flower 
buds and in dried buds (Punja, 2018). This study also 
demonstrated P. olsonii infection was found in the bracts and 
stigmas of flower buds.

More recently, a study of Chiginsky et  al. (2021) using 
amplicon-based sequencing to detect the diversity and 
prevalence of beet curly top as well as virus strains, viral 
pathogens, and viroid pathogens infecting hemp in Colorado. 
The phylogenetic results identified cryptic virus, cannabis 
sativa mitovirus, citrus yellow vein associated virus, opuntia-
like virus, and hop latent viroid (Chiginsky et  al., 2021). 
Another recent Punja (2021) publication also listed some 
of the most important infections that affect indoor cannabis 
growth. Since fungicides are not currently approved for 
hemp cultivation, the publication also provides management 
approaches to combat hemp pathogens. Hemp disease 
management includes applying anti-fungal and anti-bacterial 
agents, planting clean stock (mother) plants, adjusting 
environmental settings to decrease pathogen proliferation, 
removing diseased cuttings, etc. (Punja, 2021).

EMERGING TOPICS INVOLVING 
INDUSTRIAL HEMP

Antibacterial Properties of Hemp
An emerging consideration of hemp involves its use to combat 
the increasing resistance of bacteria to antibiotics. It is a 
long-held notion that whole hemp seeds inhibit the growth 
of Gram-positive Bacillus cereus and that the resinous flowering 

tops reduce the growth of other Gram-positive bacilli such 
as B. subtilis as well as Staphylococcus aureus (McPartland, 
1997). However, the seed does not appear to affect Gram-
negative bacteria. A recent study by Blaskovich et  al. (2021) 
confirmed reports that the activity of over 20 types of Gram-
positive bacteria, including several strains of the methicillin-
resistant Staphylococcus aureus (MRSA) pathogens, multidrug-
resistant (MDR) Streptococcus pneumoniae, Enterococcus 
faecalis, Clostridioides difficile, and Cutibacterium acnes were 
inhibited by hemp isolates. Also very interesting, this study 
demonstrated potent inhibitory activity of a small subset of 
four Gram-negative bacteria, of particular interest, 
Neisseria gonorrhoeae.

Pharmaceuticals Derived From Hemp 
Isolates
Pharmaceutical indications involving oral preparations of CBD 
oil formulated to effect targets of the central nervous system 
(CNS) have also emerged as a topic of great interest. Cannabinoids 
bind to a variety of extracellular targets though cannabinoid 
G-coupled type 1 receptors (CB1Rs) and type 2 receptors 
(CB2Rs). CB1Rs are highly expressed in the CNS and effect 
endocannabinoid system responses such as appetite, dependence, 
cognition, emotion, memory, motivation, and pain (Piomelli, 
2003; Di Marzo, 2008; Basu and Dittel, 2011). CB2Rs are 
expressed by all cells and play a significant role in potent 
immune regulation of effector functions, migration in response 
to endocannabinoids, and proliferation of immune cells (Piomelli, 
2003; Di Marzo, 2008; Basu and Dittel, 2011). Prior to the 
2018 Farm Bill, it was illegal to grow hemp, and pesticides 
have not been approved for use. Although there has been 
significant interest and ubiquitous and often unsubstantiated 
assertions of the efficacy of products containing CBD, the US 

Fungi Bacteria Viruses

Fusarium wilt

F. oxysporum Schlechtend.:Fr. f. sp. cannabis Noviello 
and W. C. Snyder

F. oxysporum Schlechtend.Fr. f. sp. vasinfectum (Atk.) 
W. C. Snyder and H. N. Hans.

Gray mold

Botrytis cinerea Pers.:Fr.

Hemp canker

Sclerotinia sclerotiorum (Lib.) de Bary

Leptosphaeria blight

Leptosphaeria cannabina Ferraris and Massa

L. woroninii Docea and Negru

L. acuta (Fuckel) P. Karst.

Tropical rot

Lasiodiplodia theobromae (Pat.) Griffon 
and Maubl.

Twig blight

Dendrophoma marconii Cav.

Botryosphaeria marconii V. Charles and 
Jenkins

Verticillium wilt

Verticillium albo-atrum Reinke and 
Berthier

V. dahliae Kleb.

White leaf spot

Phomopsis ganjae McPartland

Yellow leaf spot

Septoria cannabis (Lasch) Sacc.

S. cannabina Peck

List of common fungal, bacterial, and viral infections of hemp plants and the etiological taxa that cause the infections (McPartland, 1997; Kusari et al., 2013; Giladi et al., 2020; 
Jerushalmi et al., 2020; Chiginsky et al., 2021; Punja, 2021).

TABLE 1  |  Continued
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Food and Drug Administration (FDA) has approved three 
foods and only one drug obtained from hemp-derived ingredients 
contain less than 0.3% THC (Mead, 2019). The approved foods 
are hulled hemp seed, hemp seed protein powder, and hemp 
seed oil to be  used in human food to treat atypical and severe 
forms of epilepsy, Lennox–Gastaut syndrome, and Dravet 
syndrome in patients ages 2  years and older (Mullard, 2018; 
Mead, 2019; Shen et  al., 2021). CBD is prohibited from being 
marketed as a dietary supplement. Furthermore, foods with 
added CBD cannot be  introduced into interstate commerce 
according to the FD&C Act. One exception is if the drug 
product or substance was marketed in foods or dietary 
supplements prior to its approval and before it was subject 
to extensive clinical studies (Abernethy, 2019). In 2018, the 
FDA granted approval of the first and only drug containing 
CBD-derived substances. The drug, Epidiolex, is an oral solution 
containing a highly purified liquid formulation of CBD produced 
by GW Pharmaceuticals in the United  Kingdom. A dose of 
10 mg/kg of Epidiolex per day must have a purity of no less 
than 98% (w/w) CBD and less than 0.15% (w/w) THC 
(Hilderbrand, 2018).

COVID-19 and Hemp Isolates
In light of the current COVID-19 global pandemic, there has 
been an emerging demand for new therapies and prevention 
of the coronavirus infection that has led to millions of mild 
to fatal disease outcomes worldwide. The SARS-CoV-2 virus 
is transmitted through respiratory droplets, with possible 
transmission through aerosol and fomite contact. A recent 
study reported that CBD inhibits the replication of SARS-
CoV-2 through the strong upregulation of genes associated 
with the host stress response in the early stages of infection 
in mice (Nguyen et  al., 2022). Another recent study suggested 
that select high-CBD extracts downregulate serine protease 
TMPRSS2 gene that produces a crucial transmembrane protein 
required for SARS-CoV-2 entry into host cells (Wang et  al., 
2020). The authors suggest that the medical delivery of Cannabis 
should be  through capsules, inhalers, or mouth washes, but 
not through smoking preparations of C. sativa. Also, in related 
studies, tobacco smoking has been shown to exacerbate clinical 
outcomes of COVID-19. Tobacco smokers compared to 
non-smokers are 1.4 times more likely to have severe symptoms 
of COVID-19 and greater than 2.3 times more likely to need 
mechanical ventilators or die (Guan et al., 2020). Testing needs 
to be  conducted to determine the risk factors associated with 
different medical modes of delivery of medicinal Cannabis for 
the treatment of COVID-19 (Sexton, 2020).

Genetic Tools and C. sativa
Another topic of rising attention involves the genome editing 
capabilities facilitated by clustered regularly-interspaced short 
palindromic repeats (CRISPR/Cas9) technology that holds great 
promise for targeted improvement of Cannabis cultivars. Prior 
research has yielded hemp plants that contain 0.1% or less 
THC or single cannabinoids in high concentrations (Small 
and Marcus, 2003; Wirtshafter, 2004); however, access to the 
Cannabis genome might simplify production of THC-knockout 

plants via CRISPR technology. To date, there are no published 
accounts of CRISPR-mediated genome editing in Cannabis. 
Nevertheless, there are patents pending for the manipulation 
of cannabinoid synthesis in hemp using the CRISPR/Cas9 gene 
editing system to alter cannabinoid-synthesis pathways associated 
in THC and CBD production (Dolgin, 2019).

CANNABIS IN HUMAN SPECIMENS

Since the discovery of major cannabinoids from C. sativa L., 
various forensic analytical tools and protocols have been 
introduced for the detection, classification, and quantification 
of naturally occurring cannabinoids (Grijó et al., 2018; Ramirez 
et  al., 2019; Baranauskaite et  al., 2020; Moreno et  al., 2020; 
Nuapia et  al., 2020; Gerace et  al., 2021; Casati et  al., 2022). 
Furthermore, numerous tools and protocols for the extraction 
cannabinoids from human specimens such as hair, urine, blood, 
and saliva have also been implemented. As it relates to industrial 
hemp, analytical methods have primarily been used for forensic 
differentiation between illegal drug-type Cannabis and legal 
products (i.e., industrial fibers and CBD-rich/THC-poor 
materials; Hayley et  al., 2018).

Forensic qualitative determinations of THC/CBD ratios 
require unequivocal distinctions between CBD-rich industrial 
types and THC-rich drug types. Due to strict forensic guidelines, 
the analytical methods for THC concentration determinations 
rely on highly specialized and expensive instrumentation. The 
analytical techniques are based on chromatography methods 
that separate THC and/or CBD from specimens. The most 
commonly used techniques are liquid chromatography with 
tandem mass spectrometry (LC–MS/MS; Ambach et  al., 2014; 
McRae and Melanson, 2020; Karğılı and Aytaç, 2022) and gas 
chromatography (GC)-MS (Fodor and Molnár-Perl, 2017). Less 
commonly used separation methods include high pressure liquid 
chromatography (HPLC) with photodiode array (PDA; Brighenti 
et  al., 2017) and thin layer chromatography (HPTLC)-MS 
(Corni et  al., 2020). Other analytical methods include 
electrochemical detection of the electroactive groups in CBD 
using sensors (Cirrincione et  al., 2021a).

Hair
Evidence obtained from hair samples is one of the most 
important resources in forensic investigations. Hair is an 
advantageous specimen because it is less invasive compared 
to collecting urine, blood, and saliva. Additionally, it does not 
have to be  frozen to be  stored, and it is harder to adulterate 
and falsify. Generally, the detection time for Cannabis is relatively 
long for hair samples; it may be detected up to 90 days (Taylor 
et  al., 2017). A solution of hair is commonly screened using 
Enzyme-Linked Immunoassay Sorbent Assay (ELISA), and the 
cutoff for a negative THC result is 0.30 pg./mg of hair, depending 
on the technique.

In contrast to other drugs, hair detection methods have 
been criticized as having a lack of the sensitivity to function 
as detectors for cannabinoids. Also, THC present in secondhand 
cannabis smoke may be incorporated into hair by contamination 
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not consumption. Therefore, new studies have been conducted 
to create new lines of inquiry for the use of hair to detect 
THC. A recent forensic study evaluated statistical differences 
in the CBD/THC ratio in scalp hair samples from 127 individual 
who reported chronic drug abuse versus samples from industrial 
hemp growers and seized materials (Casati et  al., 2022). Gas 
chromatography with flame ionization detector (GC-FID) and 
GC–MS were used to determine metabolic ratios capable of 
discriminating THC- and CBD-rich cannabis in marijuana 
consumers’ hair samples. The results determined that CBD/
THC ratios can be used as markers able to discriminate between 
illegal cannabis use and “light” (i.e., low THC/high CBD) use. 
Another recent study aimed to determine if the consumption 
of legal (light cannabis) with low THC/high CBD, resulted in 
positive test results during workplace screening or forensic 
testing (e.g., roadside or driving relicensing). The study involved 
the keratin matrix in head and pubic hair roots, and it 
demonstrated negative results (no accumulation) for the presence 
of THC in hair samples, but CBD was detected at high 
concentrations (Gerace et  al., 2021).

Urine
THC is detectable for 3  days to a month or longer in urine 
(Smith-Kielland et al., 1999; Dolan et al., 2004). The detection 
depends on how often the person uses marijuana (Dolan 
et  al., 2004). A recent study was performed to determine 
whether THC, CBD, and cannabinol (CBN) are detected in 
the urine at 1 and 12 weeks after consuming hemp products 
(Baeck et  al., 2019). GC/MS was used for simultaneous 
analysis of the three substances and found that consumption 
does not cause positive Cannabis urine test results. Another 
recent study was conducted to determine whether CBD/hemp 
products can influence results of urine drug screenings (Spindle 
et  al., 2020). Positive urine drug test results are compared 
to confirmatory cutoffs in the Mandatory Guidelines for 
federal workplace drug testing. The results demonstrated that 
acute administration of 100 mg of oral CBD and 100 mg of 
vaporized CBD does not generate positive results based on 
current US drug testing regulations.

Blood
THC is detectable as soon as 5 h and up to 36 h in blood 
(Skopp and Pötsch, 2008; Jarvis et  al., 2017). Blood testing 
allows for precise measurements of THC levels and may estimate 
the dose and the timing of consumption. Blood testing is the 
preferred method for the interpretation of acute effects after 
cannabis abuse in emergency situations. Although blood is 
generally used to detect recent use of THC, there are several 
apparent disadvantages. The technique is expensive and requires 
invasive specimen collection by highly trained personnel. 
Additionally, unlike hair sample collection, venipuncture 
collection of blood requires suitable venous access and carries 
a relatively high risk of infection (Hadland and Levy, 2016). 
In a typical blood specimen, approximately 90% of the THC 
is distributed in the plasma and the other 10% in red blood 
cells (Musshoff and Madea, 2006). Furthermore, cannabinoids 

in blood plasma are approximately twice as concentrated as 
those in whole blood.

An innovative study evaluated the use of atmospheric pressure 
chemical ionization for gas chromatography (APGC) coupled 
to triple quadrupole mass spectrometry (APGC–MS/MS) for 
the quantitative determination of cannabinoids in human blood 
serum (Gottardo et  al., 2019). The study was conducted to 
develop and validate new methodologies in accordance with 
international regulations. The results demonstrated that the 
technique may separate THC and CBD in less than 10  min. 
Its limits of quantification were 0.2 ng/ml for THC and 0.4 ng/
ml for CBD.

Saliva
Cannabis is one of the most prevalent drugs detected through 
saliva testing; it comprises approximately 78% of drug test 
results (Chatterjee, 2018). THC is detectable for 24 to 48 h in 
saliva (Dolan et  al., 2004; Hadland and Levy, 2016). THC 
concentrations in saliva may be greater than 1,000 μg/L shortly 
after smoking cannabis (Lee and Huestis, 2014). A very innovative 
study by Anizan et  al. (2013), compared differences in saliva 
cannabinoid concentrations from 19 h before to 30 h after 
smoking a cigarette containing 6.8% THC. The study sampled 
saliva from frequent and occasional cannabis smokers using 
the Statsure Saliva Sampler™ Oral Fluid (OD) device. 
Two-dimensional (2D)-GC–MS was then performed to quantify 
cannabinoids in saliva specimens. The results showed that saliva 
specimens were THC-positive for up to 13.5 h after smoking. 
However, there was no significant difference found between 
frequent and occasional smokers over 30 h. CBD had up to 
a 4-h window of detection and between a 6- and 8-h window 
for CBN.

FORENSIC CHALLENGES

The most frequently analyzed forensic samples using CG-MS 
range from 1.1% detection in samples of human sweat, airborne 
particles, e-Cigarettes, fingernails, etc. to 28.7% detection in 
specimens obtained from whole blood, plasma, and serum 
(Fodor and Molnár-Perl, 2017). There are apparent limitations 
associated with certain analytical methods. For example, 
differences in decarboxylation of the non-psychoactive precursor 
of THC, Δ9-tetrahydrocannabinolic acid-A (THC-A), may 
produce various results when analyzed by HPLC (Dussy et  al., 
2005). Abiotic factors such as temperature and time resulted 
in oxidation or ring-opening of THC-A which produced a 
decrease in total THC yield. Therefore, the authors of the 
study proposed that the conversion yield should be  evaluated 
with each use of HPLC when analyzed for forensic interests 
(Dussy et  al., 2005).

Cannabis chemotypes are largely variable, and drug breeders 
commonly produce hybrid varieties (Dufresnes et  al., 2017). 
For forensic purposes, the United Nations Office on Drugs 
and Crimes (UNODC) have provided guidelines for which 
Cannabis plants are classified. The guidelines are based on 
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the concentration of the main phytocannabinoids, specifically 
THC, CBN, and total CBDs. Using gas chromatographic 
analysis, if the peak area ratio of [THC + CBN]/[CBD] is less 
than 1.0, then the cannabis plant is classified as industrial 
hemp. If the THC/CBD peak area ratio is greater than 1.0, 
it is classified as marijuana (Tettey et  al., 2021). However, 
in the United  States and Canada, as previously stated, only 
hemp cultivars containing less than 0.3% THC are permitted 
to be  grown for cosmetics (Sun et  al., 2021), food (Shen 
et  al., 2021), supplements (Cerino et  al., 2021), and textile 
(Crini et al., 2020). Recent studies have used a high-throughput, 
spectroscopic-based method using attenuated total reflectance-
Fourier’s transform infrared (ATR-FTIR) spectroscopy that 
has been shown to discriminate fiber-type Cannabis from 
drug-type inflorescences (Cirrincione et  al., 2021b).

CONCLUSION

It is very timely and important for the scientific community 
to engage in research to assess the ecological feasibility of 
hemp once again becoming an American industrial staple. The 
eco-friendly properties of hemp increase its viability above 
other less environmentally friendly industrial products. Future 
studies are expected to elucidate many knowledge and data 
gaps that currently impede advancing management and 
production of industrial hemp. For example, in December 2019, 
the Environmental Protection Agency (EPA) approved the first 
pesticides for use on industrial hemp (Mark et  al., 2020). One 
of the newly approved pesticides is a conventional insecticide, 
fungicide, and miticide containing an active ingredient of 
potassium salts of fatty acids, and nine other biopesticides 
contain naturally occurring substances that control pests. 

The approval of these products is the first stride to permit 
protection for hemp growers.

The Achilles heel of industrial hemp remains its association 
with marijuana. From the perspective of forensics, a laboratory 
is required to answer the question, “Does the material presented 
for analysis contain an illegal THC amount?” The answer to 
that question must be  accurate and reliable using validated 
methods. Further exacerbating the problem in the USA is the 
inconsistency of the laws that govern marijuana. It is currently 
on the controlled substances list, but it is classified for legal 
use as medical marijuana in 36 states and recreational use in 
15 states as well as the District of Columbia (French et  al., 
2022). Therefore, as the delineation between legally produced 
hemp and psychoactive forms of Cannabis becomes clearer, 
and with the passage of more regulations to improve growth 
conditions, research will undoubtedly provide unprecedented 
opportunities to expand forensic advances and promote 
development of industrial and therapeutic possibilities for 
emblematic Cannabis products.
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