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Forensic laboratories are required to have analytical tools to confidently differentiate illegal
substances such as marijuana from legal products (i.e., industrial hemp). The Achilles heel
of industrial hemp is its association with marijuana. Industrial hemp from the Cannabis
sativa L. plant is reported to be one of the strongest natural multipurpose fibers on earth.
The Cannabis plant is a vigorous annual crop broadly separated into two classes: industrial
hemp and marijuana. Up until the eighteenth century, hemp was one of the major fibers
in the United States. The decline of its cultivation and applications is largely due to
burgeoning manufacture of synthetic fibers. Traditional composite materials such as
concrete, fiberglass insulation, and lumber are environmentally unfavorable. Industrial
hemp exhibits environmental sustainability, low maintenance, and high local and national
economic impacts. The 2018 Farm Bill made way for the legalization of hemp by
categorizing it as an ordinary agricultural commodity. Unlike marijuana, hemp contains
less than 0.3% of the cannabinoid, A®-tetrahydrocannabinol, the psychoactive compound
which gives users psychotropic effects and confers illegality in some locations. On the
other hand, industrial hemp contains cannabidiol found in the resinous flower of Cannabis
and is purported to have multiple advantageous uses. There is a paucity of investigations
of the identity, microbial diversity, and biochemical characterizations of industrial hemp.
This review provides background on important topics regarding hemp and the quantification
of total tetrahydrocannabinol in hemp products. It will also serve as an overview of
emergent microbiological studies regarding hemp inflorescences. Further, we examine
challenges in using forensic analytical methodologies tasked to distinguish legal fiber-type
material from illegal drug-types.

Keywords: industrial hemp (Cannabis sativa L.), hemp microbiome, microbial diversity, tetrahydrocannabinol,
cannabidiol, forensic analyses

INTRODUCTION

Forensic science laboratories work police departments to help authorities distinguish between
industrial hemp and marijuana plants, which appear identical but confer very different legal
statuses. Industrial hemp, a variety of Cannabis sativa L., is reported to be one of the stiffest
and strongest natural fibers on earth (Pickering et al., 2007; Salentijn et al, 2019). It is also
purported to be one of the earliest plants cultivated by man for medicinal purposes (Zuardi, 2006).
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Cannabis from the Cannabaceae family is the genus name for
plants that are broadly separated into two classes: industrial
hemp and marijuana. These multifunctional, herbaceous products
have been farmed by mankind for millennia. Up until the
eighteenth century, hemp was one of the major fibers in the
United States. Cannabis spp. are the only plants that produce
a unique class of molecules known as cannabinoids, specifically
A®-tetrahydrocannabinol (THC) and cannabidiol (CBD; Hillig
and Mahlberg, 2004; Zuardi, 2006; Battistella et al., 2014; Shover
and Humpbhreys, 2019; Quaicoe et al., 2020; Schumacher et al.,
2020; Adhikary et al, 2021). The Agricultural Improvement
Act of 2018 (the 2018 Farm Bill) effectively exempted hemp
from the list of federal Schedule I substances under the Controlled
Substances Act (Shover and Humphreys, 2019). The incipient
bill allowed for universities to research industrial hemp and
for companies to commercially grow it in states with regulatory
oversight that permits it to be produced. It also made way to
produce hemp derivatives that contain less than 0.3% THC,
the psychotropic cannabinoid found in marijuana. However,
any hemp derivative that exceeds the 0.3% threshold is defined
as marijuana and confers illegality as a Schedule I narcotic.
The potential illegality of hemp material makes industrial hemp
of particular importance in the field of forensic science.

Currently, industrial hemp is grown legally in more than 30
countries as a sustainable, eco-friendly, and multifunctional plant.
It has high nutrient and water use efficiency and a superior
biomass quality for textile and construction resources (Crini
et al, 2020). Traditional building materials such as concrete,
fiberglass insulation, and lumber pose valid considerations regarding
their environmental impact and toxicity; however, industrial hemp
exhibits ecological sustainability, low maintenance, and high impact
for local and national economies. For example, hemp fiber
production presents a low ecological footprint of 1.46-2.01 global
hectares (gha; Schumacher et al, 2020). Industrial hemp has
recently garnered an increased interest in the United States, and
in 2022 it is expected to attain an annual revenue growth rate
of 18.4% (Quaicoe et al, 2020). Currently, as this review will
show, the topics of hemp-associated microbiome and fungi intended
for beneficial cultivation are emerging as one of great interests.

This work aims to provide the findings in research focusing
on the industrial hemp microbiome and the implications of
these finding on hemp applications. This review also covers
emerging topics of the pharmaceutical capabilities of hemp
especially in light of the recent severe acute respiratory syndrome
(SARS)-coronavirus-2 (COVID-19) pandemic. Further, an
overview of the scientific literature is presented on forensic
techniques involving differentiating legal hemp from illegal
marijuana  and  the  challenges  that  accompany
such determinations.

DIFFERENTIATION BETWEEN
INDUSTRIAL HEMP AND MARIJUANA

The 2018 Farm Bill, signed into law on 20 December 2018,
made way for the legalization of industrial hemp by categorizing
it as an ordinary agricultural commodity (Hillig and Mahlberg, 2004;

Zuardi, 2006; Battistella et al., 2014; Shover and Humphreys,
2019; Quaicoe et al,, 2020; Schumacher et al., 2020; Adhikary
et al, 2021). Industrial hemp along with marijuana are two
varieties of Cannabis sativa L. The primary distinction between
industrial hemp and marijuana is the threshold concentration
of the cannabinoid, THC, the psychoactive component that gives
users psychotropic effects (Shover and Humphreys, 2019; Figure 1).
Unlike marijuana, hemp contains less than 0.3% based on dry
weight of THC in leaves and buds. According to the 2018 Farm
Bill, if THC levels exceed this threshold, it is then classified as
marijuana, the illegal plants are destroyed, and the grower faces
the possibility of prosecution (Shover and Humphreys, 2019).
Both plants are similar in appearance; however, hemp plants,
with a 120-day growth cycle, tend to grow taller and have thinner
leaves than marijuana plants and are harvested approximately
5 weeks prior to marijuana (Sankari and Mela, 1998). As an
industrial product, marijuana fibers contain low tensile strength
that break and shred easily; thus, it is not suitable for legal
industrial applications.

Although, legally grown industrial hemp contains low levels
of THC, it contains high levels of the CBD, the non-intoxicating
compound extracted from the resinous flower of Cannabis. It
contains many volatile compounds including terpenes which
bestows a distinctive odor, terpenoid-like compounds, and
cannabinoids which are extracted through steam distillation
(Turner et al., 1980). These compounds interact directly with
cannabinoid receptors located in the endocannabinoid system
(Di Marzo, 2008), which bind human endogenous cannabinoids
as well as exogenous plant-derived and synthetic cannabinoids.
These molecules help modulate chronic inflammatory conditions
and regulate immune homeostasis. CBD is purported to have
multiple advantageous therapeutic and medicinal uses and does
not demonstrate the psychotropic and euphoric effects
exhibited by THC.

HEMP GROWTH

Industrial hemp is very sensitive to ecological conditions,
including photoperiod (length of day), plant density, harvest
time, irrigation, soil nutrients, and temperature; therefore,
cultivar genotypes are typically produced in specific environments
for certain hemp applications. The plant is a branching herb
and has a rigid, herbaceous stalk with varieties that come in
an assortment of heights: 3-4ft. (0.91-1.2m; dwarf tall), 4-5ft.
(1.2-1.5m; semi-dwarf tall), and 6-7ft. (1.8-2.1m; medium
height; Small, 2015). The plant contains nodes at intervals of
10 to 50cm. The leaflets are dark green, serrated, and taper
at each end in 5 to 11 points (Small, 2015). The leaves grow
up to 15cm in length and 12cm in width (Ehrensing, 1998;
Kraenzel et al., 1998). The spindle-shaped central root grows
to depths of 2-2.5m and branches up to 80cm in width.
Prior to the formation of flowers, hemp plants are dioecious,
having both female and male reproductive organs and are
visually indistinguishable (Onofri and Mandolino, 2017). The
diploid plant includes both dioecious genotypes containing
heteromorphic sex chromosomes and monoecious types with
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FIGURE 1 | Comparison of the two varieties of Cannabis: industrial hemp and marijuana. The general leaf structure, percent levels of THC, psychoactive

homomorphic sex chromosomes. It is primarily open-pollinated,
that is, it is wind-pollenated. Female (pistillate) hemp plants
are dense and produce raceme which looks similar to a candle-
like clusters of flowers, whereas male (staminate) plants are
tall and slender with fewer leaves surrounding the terminal,
branched inflorescence. Sexual expressions are determined by
abiotic and biotic environmental stressors (Onofri and Mandolino,
2017). For example, dry soils, extreme temperatures, low soil
nitrogen concentrations, and low light intensities decrease the
female: male plant ratio (Freeman et al, 1980). Male plants
flower and senesce earlier than females (Struik et al., 2000).
After flowers form, male hemp plants grow slenderer with
elongated internodes at their tops. Male plants are more
advantageous for industrial uses due to their production of a
finer fiber (Salentijn et al, 2019). Although CBD is present
in both male and female plants, most are found in resin glands
on trichomes of the female flower buds (Mahlberg and Kim,
2004). The terpenophenolic compounds are secreted from head
cells of trichome glands, specifically from the capitate-stalked
glandular hairs (Happyana et al., 2013). Female flowers require
mild temperatures and high nitrogen concentrations and light
intensity. They are often propagated in greenhouses from
feminized seeds or female clones and then transplanted two
to 4 weeks after establishing growth (Adesina et al., 2020).
Hemp grows optimally in mild, humid climates; however,
the ideal growing temperatures ranges from 13°C-22°C. As
temperatures exceed 13°C, hemp starts an accelerated growth
stage (Ehrensing, 1998; Kraenzel et al, 1998). The optimal
pH for hemp growth is 6-8.5 in well-drained, loamy soil
(Amaducci et al, 2015). Further, soil should be deep,

well-aerated, with good water-holding capacity. Four months
of frost is required to produce industrial hemp fibers (Ehrensing,
1998). According to the Purdue Industrial Hemp Project, hemp
requires calcium concentrations of less than 6,000 ppm,
phosphorus concentrations greater than 40ppm, potassium
concentrations greater than 250 ppm, and sulfur concentrations
greater than 5,000 ppm (Schumacher et al., 2020).

STRUCTURAL PROPERTIES OF
INDUSTRIAL HEMP

Industrial hemp consists of three types of fibers in its stem:
primary bast (outer long fibers), secondary bast fibers, and
hemp hurds or shives (inner short fibers). The fibers have
very high cellulose content with varying amounts of hemicellulose,
lignin, and pectin as its major constituents (Tutt and OIt,
2011). The length of hemp fibers is 1-3cm, and the bast
contains 70.2-74.4% (wt%) of cellulose and only 3.7-5.7%
(wt%) lignin (Sisti et al,, 2018). By comparison, the length of
wood fibers is only 1-3 mm with less cellulose content (40-50%).
A single fiber of hemp has a density of 1.48g/cm’ (Sisti et al.,
2018) and a tensile strength of 350-800 MPa (Thygesen et al.,
2006; Sisti et al., 2018), depending on the climate during the
growing season and the genotype, soil type, fertilization, and
retting processes. Hemp fibers have an elastic modulus (75 GPa)
similar to the stiffness of glass fibers which varies from 50
to 70 GPa (Thygesen et al., 2006). Cellulose and hemicellulose
molecules are bound together by lignin molecules. The S2
layer of hemp fiber walls are constructed of 100mm thick
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lamellae consisting of one to four cellulose-rich and lignin-
poor concentric layers (Thygesen et al., 2006). The inner fibers
consist of a secondary xylem fiber network that are shorter
(approximately 2mm) and thinner (6pum) than the outer
fibers and represent approximately 10% of the total fibers
(Marrot et al., 2013).

Prior to use as an industrial composite, non-cellulosic
materials and lignin are generally removed to expose interfacial
hydroxyl groups of cellulose which can be functionalized with
other composite materials (Pickering et al., 2007). For example,
treatment using alkali conditions removes lignin content by
approximately 50% which increases the crystallinity and
roughness of the fiber surface. The highest stem biomass is
usually yielded if the fiber is harvested prior to the onset of
flowering. This phenomenon positively correlates with prolonged
durations of the vegetative phase (Salentijn et al., 2019). Hemp
fibers harvested early in the blooming stage demonstrate high
tensile strength that decreases as the plant matures due to an
increase in the proportion of hemps hurds compared to bast
(Sisti et al., 2018).

THE HEMP MICROBIOME

Despite incipient interest in industrial hemp, the microbiome
of hemp has yet to be fully characterized. However, emergent,
amplicon-based DNA sequencing technologies have made way
for the analyses of its microbial constituents. Microbial
components (i.e., bacteria, archaea, and fungi) are indispensable
factors that help maintain soil and hemp plant health.
Microorganisms provide plants with protection from pathogens,
nitrogen fixation, and acquisition of micronutrients from the
surrounding ecosystem. Plants in turn release life-sustaining
nutrients to symbiotic microbes associated with plants. However,
due to the decades-long Cannabis prohibition, there is a paucity
of literature elucidating the composition and function of the
hemp microbiome. Hemp plants harbor a robust microbial
consortium that are present throughout its life cycle and persists
during the retting process (McPartland, 1997; Barnett et al., 2020,
Law et al., 2020).

Microbiological retting, or degumming, is the extraction of
hemp fibers from harvested stalks that is a traditional and
highly widespread retting method. In a recent study, the hemp
stalk microbiome was studied during field (dew) retting processes
using 16S rRNA next-generation sequencing on the Illumina
MiSeq platform. The results demonstrated that the microbiome
was largely dominated by endogenous Proteobacteria and showed
a proliferation of Bacteroidetes during dew-retting processes
(Punja, 2018).

A recent study was conducted using high-throughput
sequencing of 16S ribosomal RNA (rRNA) gene (bacteria) and
internal transcribed spacer 1 (ITS1; fungal) biomarkers to probe
for taxa that comprise the core microbiome of hemp. The
study identified operational taxonomic units (OTUs) across
four plant compartments/organs (flowers, leaf surface rhizosphere,
and root compartment) of C. sativa cultivated in six different
fields (Barnett et al., 2020). The “core” microbiome was defined

as bacterial and fungal OTUs that were ubiquitous in hemp
plants and that significantly enriched a plant organ relative to
bulk soil. The results demonstrated that hemp did not have
a significantly effect on the overall rhizosphere microbial
community composition. However, six core bacteria were
discovered from root tissue, all of which belong to the phylum
Proteobacteria. Eleven core bacteria from the leaf surface were
comprised of members of the Proteobacteria, Actinobacteria,
and Bacteroidetes phyla. Seven core bacteria from the flower
were comprised of members of the Proteobacteria and Firmicutes
phyla. All core fungi were classified as Basidiomycota or
Ascomycota, or unclassified at the phylum level. Only one
core soil rhizosphere fungal OTU, Bullera albawas, was identified,
but there were 14 core fungal OTUs found on the leaf surfaces
and only two core fungi found in the flowers.

In a related study, Wei et al. (2021), also used amplicon-
based studies to elucidate the hemp microbiome in 15 plants
across 4 hemp ecotypes. The results demonstrated that the
Proteobacteria phylum exhibited the highest relative abundance
(67.26%) and significant variations in soil and plant
compartments. Cyanobacteria and Firmicutes had the greatest
abundance in the flower samples, and Proteobacteria,
Actinobacteria, and Bacteroidetes were greatly enriched in soil
and root samples. Further, Rhizobium, Pseudomonas, Bacillus,
and Sphingomonas were the top bacterial genera detected in
samples, with Pseudomonas and Bacillus highest in flowers,
and Rhizobium and Sphingomonas highest in stems. Regarding
fungi, Ascomycota (50.59%) exhibited the highest relative
abundance of fungal taxa.

HEMP DISEASES

Hemp diseases are primarily caused by fungi and rarely by
bacteria and viruses (Table 1; McPartland, 1997; Kusari et al.,
2013; Giladi et al., 2020; Jerushalmi et al., 2020; Chiginsky
et al, 2021; Punja, 2021). Studies have shown that there are
100 true Cannabis-related fungal pathogenic species (Punja,
2021). Microbial diseases are present in every growth stage,
ie, from seedling to maturity, and are ubiquitous in every
plant organ. Fungal diseases typically cause blight, cankers,
leaf spots, mildew, root rot, and wilt. Bacterial diseases generally
cause blight, gall, and spots. Viruses and viroid communities
cause mosaics and streaks as well as general nutrient deficiency
(Chiginsky et al., 2021).

In 1914, the first published report of microbial infection
affecting C. sativa was demonstrated in a study by Charles
and Jenkins (1914). The fungal disease was evident on fully
grown plants and resulted in wilted and drooping foliage that
eventually turned brown and died. The pathogen was identified
as Botryosphaeria marconi (Cav.). It was noted as the first
detection of this fungus in America. Since this historical
occurrence, two of the most deleterious diseases of outdoor
varieties of C. sativa have been reported to be infections by
phytopathogens B. cinerea and Trichothecium roseum (McPartland,
1997). A recent Punja (2018), examined flower buds of field-
grown Cannabis from British Columbia and Alberta in which
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TABLE 1 | Common microbial diseases of hemp plants.

Fungi

Bacteria

Viruses

Anthracnose
Colletotrichum coccodes (Wallroth)
Black dot disease
Epicoccum nigrum Link
Brown blight
Acremonium sp.
Alternaria spp. (Fr.:Fr.) Keissl.
Brown leaf spot and stem canker
Ascochyta spp.
A. prasadii Shukia and Pathak
Phoma spp.
Didymella spp.
P, exigua Desmaz.
P, glomerata (Corda) Wollenweb. and Hochapfel
P, herbarum Westendorp
Charcoal rot
Macrophomina phaseolina (Tassi) Goidanich
Cladosporium stem canker
Cladosporium cladosporioides (Fresen.) De Vries.
C. herbarum (Pers.:Fr.) Link
Mycosphaerella tassiana (De Not.) Johan.

Curvularia leaf spot

Curvularia cymbopogonis (C. W. Dodge) roves and Skolko

C. lunata (Wakker) Boedijn
Cochliobolus lunatus Nelson and Haasis
Cylindrosporium blight
Cylindrosporium spp.
C. cannabinum lbrahimov
Damping-off
Botrytis cinerea Pers.:Fr.
Botryotinia fuckeliana (de Bary) Whetzel
Fusarium oxysporum Schlechtend.:Fr.
F. solani (Mart.) Sacc.
Nectria haematococca Berk. and Broome
Macrophomina phaseolina (Tassi) Goidanich
Pythium aphanidermatum (Edson) Fitzp.
P, debaryanum auct. Non-Hesse
P, ultimum Trow
Rhizoctonia solani Kiihn
Thanatophorus cucumeris (A. B. Frank) Donk
Downy mildew
Pseudoperonospora cannabina (Otth) Curzi
P humuli (Miyabe and Takah.) G. W. Wils.
Fusarium foot rot and root rot
F. solani (Mart.) Sacc.
Fusarium stem canker
F. sulphureum Schlechtend.

Gibberella cyanogena (Desmaz.) Sacc.

Olive leaf spot
Cercospora cannabis K. Hara and Fukui

Pseudocercospora cannabina (Wakef.)
Deighton

Ophiobolus stem canker
Ophiobolus cannabinus Pass.

O. anguillidus (Cooke in Cooke and
Ellis) Sacc.

Phoma stem canker

Phoma herbarum Westendorp.

P, exigua Desmaz
Phomopsis stem canker

Phomopsis cannabina Curzi

P, achilleae (Sacc.) Hohn.

Diaporthe arctii (Lasch) Nitschke var.
achilleae (Auersw.) Wehmeyer

Phymatotrichum root rot (Cotton root
rot)

Phymatotrichopsis omnivora (Duggar)
Hennebert

Pink rot
Trichothecium roseum (Pers.:Fr.) Link
Powdery mildew
Leveillula taurica (Lév.) Arnaud.
Oidiopsis taurica Salmon

Sphaerotheca macularis (Wallroth:Fr.)
Lind Oidium sp.

Red boot

Melanospora cannabis Behrens
(secondary on hemp canker)

Rhizoctonia soreshin and root rot
R. solani Kihn

Rust
Aecidium cannabis Szembel
Uredo kriegeriana Syd. and P. Syd.
Uromyces inconspicuus Otth

Southern blight (Sclerotium root and
stem rot)

Sclerotium rolfsii Sacc.

Athelia rolfsii (Curzi) Tu and Kimbrough
Stemphylium leaf and stem spot

Stemphylium botryosum Wallroth

Pleospora tarda E. Simmons

S. cannabinum (Bachtin and Gutner)
Dobrozrakova et al.

Tar spot
Phyllachora cannabidis (P. Henn.)

Bacterial blight

Pseudomonas syringae pv.
cannabina (Sutic and
Dowson) Young et al.

Crown gall

Agrobacterium tumefaciens
(Smith and Townsend) Conn

Striatura ulcerosa

P, syringae pv. mori (Boyer
and Lambert) Young et al.

Xanthomonas leaf spot

Xanthomonas campestris pv.
cannabis Severin

Alfalfa mosaic and Lucerne
mosaic

genus Alfamovirus, Alfalfa
mosaic virus (AMV)

Arabis mosaic

genus Nepovirus, Arabis
mosaic virus (ArMV)

Cucumber mosaic

genus Cucumovirus,
Cucumber mosaic virus
Cmv)

Hemp mosaic
Hemp mosaic virus
Opuntia-like virus
Hemp streak
Hemp streak virus
Cryptic virus

Alfalfa mosaic and Lucerne
mosaic

genus Alfamovirus, Alfalfa
mosaic virus (AMV)

Beet curly top
Beet curly top virus
Hemp Vein

Citrus yellow vein associated
virus

Mitovirus

Cannabis sativa mitovirus 1
(CasalMV'1)

Dudding

Hop latent viroid

(Continued)
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TABLE 1 | Continued

Fungi

Bacteria

Viruses

Fusarium wilt

F. oxysporum Schlechtend.:Fr. f. sp. cannabis Noviello
and W. C. Snyder

F. oxysporum Schlechtend.Fr. f. sp. vasinfectum (Atk.)
W. C. Snyder and H. N. Hans.

Gray mold

Botrytis cinerea Pers.:Fr.
Hemp canker

Sclerotinia sclerotiorum (Lib.) de Bary
Leptosphaeria blight

Leptosphaeria cannabina Ferraris and Massa

L. woroninii Docea and Negru

Tropical rot

Lasiodliplodia theobromae (Pat.) Griffon
and Maubl.

Twig blight
Dendrophoma marconii Cav.

Botryosphaeria marconii V. Charles and
Jenkins

Verticillium wilt

Verticillium albo-atrum Reinke and
Berthier

V. dahliae Kleb.
White leaf spot

L. acuta (Fuckel) P. Karst.
Yellow leaf spot

Phomopsis ganjae McPartland

Septoria cannabis (Lasch) Sacc.

S. cannabina Peck

List of common fungal, bacterial, and viral infections of hemp plants and the etiological taxa that cause the infections (McPartland, 1997, Kusari et al., 2013; Giladi et al., 2020,

Jerushalmi et al., 2020; Chiginsky et al., 2021, Punja, 2021).

buds were harvested in 2015-2017. The results of the study
demonstrated that internal rot in the bud was associated with
a fungal infection caused by B. cinerea. Further, Penicillin olsonii
and P. copticola fungi were discovered in pre-harvest flower
buds and in dried buds (Punja, 2018). This study also
demonstrated P. olsonii infection was found in the bracts and
stigmas of flower buds.

More recently, a study of Chiginsky et al. (2021) using
amplicon-based sequencing to detect the diversity and
prevalence of beet curly top as well as virus strains, viral
pathogens, and viroid pathogens infecting hemp in Colorado.
The phylogenetic results identified cryptic virus, cannabis
sativa mitovirus, citrus yellow vein associated virus, opuntia-
like virus, and hop latent viroid (Chiginsky et al., 2021).
Another recent Punja (2021) publication also listed some
of the most important infections that affect indoor cannabis
growth. Since fungicides are not currently approved for
hemp cultivation, the publication also provides management
approaches to combat hemp pathogens. Hemp disease
management includes applying anti-fungal and anti-bacterial
agents, planting clean stock (mother) plants, adjusting
environmental settings to decrease pathogen proliferation,
removing diseased cuttings, etc. (Punja, 2021).

EMERGING TOPICS INVOLVING
INDUSTRIAL HEMP

Antibacterial Properties of Hemp

An emerging consideration of hemp involves its use to combat
the increasing resistance of bacteria to antibiotics. It is a
long-held notion that whole hemp seeds inhibit the growth
of Gram-positive Bacillus cereus and that the resinous flowering

tops reduce the growth of other Gram-positive bacilli such
as B. subtilis as well as Staphylococcus aureus (McPartland,
1997). However, the seed does not appear to affect Gram-
negative bacteria. A recent study by Blaskovich et al. (2021)
confirmed reports that the activity of over 20 types of Gram-
positive bacteria, including several strains of the methicillin-
resistant Staphylococcus aureus (MRSA) pathogens, multidrug-
resistant (MDR) Streptococcus pneumoniae, Enterococcus
faecalis, Clostridioides difficile, and Cutibacterium acnes were
inhibited by hemp isolates. Also very interesting, this study
demonstrated potent inhibitory activity of a small subset of
four Gram-negative bacteria, of particular interest,
Neisseria gonorrhoeae.

Pharmaceuticals Derived From Hemp
Isolates

Pharmaceutical indications involving oral preparations of CBD
oil formulated to effect targets of the central nervous system
(CNS) have also emerged as a topic of great interest. Cannabinoids
bind to a variety of extracellular targets though cannabinoid
G-coupled type 1 receptors (CBIRs) and type 2 receptors
(CB2Rs). CBI1Rs are highly expressed in the CNS and effect
endocannabinoid system responses such as appetite, dependence,
cognition, emotion, memory, motivation, and pain (Piomelli,
2003; Di Marzo, 2008; Basu and Dittel, 2011). CB2Rs are
expressed by all cells and play a significant role in potent
immune regulation of effector functions, migration in response
to endocannabinoids, and proliferation of immune cells (Piomelli,
2003; Di Marzo, 2008; Basu and Dittel, 2011). Prior to the
2018 Farm Bill, it was illegal to grow hemp, and pesticides
have not been approved for use. Although there has been
significant interest and ubiquitous and often unsubstantiated
assertions of the efficacy of products containing CBD, the US
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Food and Drug Administration (FDA) has approved three
foods and only one drug obtained from hemp-derived ingredients
contain less than 0.3% THC (Mead, 2019). The approved foods
are hulled hemp seed, hemp seed protein powder, and hemp
seed oil to be used in human food to treat atypical and severe
forms of epilepsy, Lennox-Gastaut syndrome, and Dravet
syndrome in patients ages 2 years and older (Mullard, 2018;
Mead, 2019; Shen et al., 2021). CBD is prohibited from being
marketed as a dietary supplement. Furthermore, foods with
added CBD cannot be introduced into interstate commerce
according to the FD&C Act. One exception is if the drug
product or substance was marketed in foods or dietary
supplements prior to its approval and before it was subject
to extensive clinical studies (Abernethy, 2019). In 2018, the
FDA granted approval of the first and only drug containing
CBD-derived substances. The drug, Epidiolex, is an oral solution
containing a highly purified liquid formulation of CBD produced
by GW Pharmaceuticals in the United Kingdom. A dose of
10mg/kg of Epidiolex per day must have a purity of no less
than 98% (w/w) CBD and less than 0.15% (w/w) THC
(Hilderbrand, 2018).

COVID-19 and Hemp Isolates

In light of the current COVID-19 global pandemic, there has
been an emerging demand for new therapies and prevention
of the coronavirus infection that has led to millions of mild
to fatal disease outcomes worldwide. The SARS-CoV-2 virus
is transmitted through respiratory droplets, with possible
transmission through aerosol and fomite contact. A recent
study reported that CBD inhibits the replication of SARS-
CoV-2 through the strong upregulation of genes associated
with the host stress response in the early stages of infection
in mice (Nguyen et al., 2022). Another recent study suggested
that select high-CBD extracts downregulate serine protease
TMPRSS2 gene that produces a crucial transmembrane protein
required for SARS-CoV-2 entry into host cells (Wang et al,
2020). The authors suggest that the medical delivery of Cannabis
should be through capsules, inhalers, or mouth washes, but
not through smoking preparations of C. sativa. Also, in related
studies, tobacco smoking has been shown to exacerbate clinical
outcomes of COVID-19. Tobacco smokers compared to
non-smokers are 1.4 times more likely to have severe symptoms
of COVID-19 and greater than 2.3 times more likely to need
mechanical ventilators or die (Guan et al.,, 2020). Testing needs
to be conducted to determine the risk factors associated with
different medical modes of delivery of medicinal Cannabis for
the treatment of COVID-19 (Sexton, 2020).

Genetic Tools and C. sativa

Another topic of rising attention involves the genome editing
capabilities facilitated by clustered regularly-interspaced short
palindromic repeats (CRISPR/Cas9) technology that holds great
promise for targeted improvement of Cannabis cultivars. Prior
research has yielded hemp plants that contain 0.1% or less
THC or single cannabinoids in high concentrations (Small
and Marcus, 2003; Wirtshafter, 2004); however, access to the
Cannabis genome might simplify production of THC-knockout

plants via CRISPR technology. To date, there are no published
accounts of CRISPR-mediated genome editing in Cannabis.
Nevertheless, there are patents pending for the manipulation
of cannabinoid synthesis in hemp using the CRISPR/Cas9 gene
editing system to alter cannabinoid-synthesis pathways associated
in THC and CBD production (Dolgin, 2019).

CANNABIS IN HUMAN SPECIMENS

Since the discovery of major cannabinoids from C. sativa L.,
various forensic analytical tools and protocols have been
introduced for the detection, classification, and quantification
of naturally occurring cannabinoids (Grijo et al., 2018; Ramirez
et al,, 2019; Baranauskaite et al., 2020; Moreno et al., 2020;
Nuapia et al., 2020; Gerace et al., 2021; Casati et al., 2022).
Furthermore, numerous tools and protocols for the extraction
cannabinoids from human specimens such as hair, urine, blood,
and saliva have also been implemented. As it relates to industrial
hemp, analytical methods have primarily been used for forensic
differentiation between illegal drug-type Cannabis and legal
products (i.e., industrial fibers and CBD-rich/THC-poor
materials; Hayley et al., 2018).

Forensic qualitative determinations of THC/CBD ratios
require unequivocal distinctions between CBD-rich industrial
types and THC-rich drug types. Due to strict forensic guidelines,
the analytical methods for THC concentration determinations
rely on highly specialized and expensive instrumentation. The
analytical techniques are based on chromatography methods
that separate THC and/or CBD from specimens. The most
commonly used techniques are liquid chromatography with
tandem mass spectrometry (LC-MS/MS; Ambach et al., 2014;
McRae and Melanson, 2020; Kargili and Aytag, 2022) and gas
chromatography (GC)-MS (Fodor and Molndr-Perl, 2017). Less
commonly used separation methods include high pressure liquid
chromatography (HPLC) with photodiode array (PDA; Brighenti
et al, 2017) and thin layer chromatography (HPTLC)-MS
(Corni et al, 2020). Other analytical methods include
electrochemical detection of the electroactive groups in CBD
using sensors (Cirrincione et al., 2021a).

Hair

Evidence obtained from hair samples is one of the most
important resources in forensic investigations. Hair is an
advantageous specimen because it is less invasive compared
to collecting urine, blood, and saliva. Additionally, it does not
have to be frozen to be stored, and it is harder to adulterate
and falsify. Generally, the detection time for Cannabis is relatively
long for hair samples; it may be detected up to 90days (Taylor
et al., 2017). A solution of hair is commonly screened using
Enzyme-Linked Immunoassay Sorbent Assay (ELISA), and the
cutoff for a negative THC result is 0.30 pg./mg of hair, depending
on the technique.

In contrast to other drugs, hair detection methods have
been criticized as having a lack of the sensitivity to function
as detectors for cannabinoids. Also, THC present in secondhand
cannabis smoke may be incorporated into hair by contamination
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not consumption. Therefore, new studies have been conducted
to create new lines of inquiry for the use of hair to detect
THC. A recent forensic study evaluated statistical differences
in the CBD/THC ratio in scalp hair samples from 127 individual
who reported chronic drug abuse versus samples from industrial
hemp growers and seized materials (Casati et al., 2022). Gas
chromatography with flame ionization detector (GC-FID) and
GC-MS were used to determine metabolic ratios capable of
discriminating THC- and CBD-rich cannabis in marijuana
consumers’ hair samples. The results determined that CBD/
THC ratios can be used as markers able to discriminate between
illegal cannabis use and “light” (i.e., low THC/high CBD) use.
Another recent study aimed to determine if the consumption
of legal (light cannabis) with low THC/high CBD, resulted in
positive test results during workplace screening or forensic
testing (e.g., roadside or driving relicensing). The study involved
the keratin matrix in head and pubic hair roots, and it
demonstrated negative results (no accumulation) for the presence
of THC in hair samples, but CBD was detected at high
concentrations (Gerace et al., 2021).

Urine

THC is detectable for 3 days to a month or longer in urine
(Smith-Kielland et al., 1999; Dolan et al., 2004). The detection
depends on how often the person uses marijuana (Dolan
et al, 2004). A recent study was performed to determine
whether THC, CBD, and cannabinol (CBN) are detected in
the urine at 1 and 12weeks after consuming hemp products
(Baeck et al., 2019). GC/MS was used for simultaneous
analysis of the three substances and found that consumption
does not cause positive Cannabis urine test results. Another
recent study was conducted to determine whether CBD/hemp
products can influence results of urine drug screenings (Spindle
et al,, 2020). Positive urine drug test results are compared
to confirmatory cutoffs in the Mandatory Guidelines for
federal workplace drug testing. The results demonstrated that
acute administration of 100 mg of oral CBD and 100 mg of
vaporized CBD does not generate positive results based on
current US drug testing regulations.

Blood

THC is detectable as soon as 5h and up to 36h in blood
(Skopp and Pétsch, 2008; Jarvis et al., 2017). Blood testing
allows for precise measurements of THC levels and may estimate
the dose and the timing of consumption. Blood testing is the
preferred method for the interpretation of acute effects after
cannabis abuse in emergency situations. Although blood is
generally used to detect recent use of THC, there are several
apparent disadvantages. The technique is expensive and requires
invasive specimen collection by highly trained personnel.
Additionally, unlike hair sample collection, venipuncture
collection of blood requires suitable venous access and carries
a relatively high risk of infection (Hadland and Levy, 2016).
In a typical blood specimen, approximately 90% of the THC
is distributed in the plasma and the other 10% in red blood
cells (Musshoff and Madea, 2006). Furthermore, cannabinoids

in blood plasma are approximately twice as concentrated as
those in whole blood.

An innovative study evaluated the use of atmospheric pressure
chemical ionization for gas chromatography (APGC) coupled
to triple quadrupole mass spectrometry (APGC-MS/MS) for
the quantitative determination of cannabinoids in human blood
serum (Gottardo et al, 2019). The study was conducted to
develop and validate new methodologies in accordance with
international regulations. The results demonstrated that the
technique may separate THC and CBD in less than 10 min.
Its limits of quantification were 0.2ng/ml for THC and 0.4ng/
ml for CBD.

Saliva

Cannabis is one of the most prevalent drugs detected through
saliva testing; it comprises approximately 78% of drug test
results (Chatterjee, 2018). THC is detectable for 24 to 48h in
saliva (Dolan et al., 2004; Hadland and Levy, 2016). THC
concentrations in saliva may be greater than 1,000 pg/L shortly
after smoking cannabis (Lee and Huestis, 2014). A very innovative
study by Anizan et al. (2013), compared differences in saliva
cannabinoid concentrations from 19h before to 30h after
smoking a cigarette containing 6.8% THC. The study sampled
saliva from frequent and occasional cannabis smokers using
the Statsure Saliva Sampler™ Oral Fluid (OD) device.
Two-dimensional (2D)-GC-MS was then performed to quantify
cannabinoids in saliva specimens. The results showed that saliva
specimens were THC-positive for up to 13.5h after smoking.
However, there was no significant difference found between
frequent and occasional smokers over 30h. CBD had up to
a 4-h window of detection and between a 6- and 8-h window
for CBN.

FORENSIC CHALLENGES

The most frequently analyzed forensic samples using CG-MS
range from 1.1% detection in samples of human sweat, airborne
particles, e-Cigarettes, fingernails, etc. to 28.7% detection in
specimens obtained from whole blood, plasma, and serum
(Fodor and Molnar-Perl, 2017). There are apparent limitations
associated with certain analytical methods. For example,
differences in decarboxylation of the non-psychoactive precursor
of THC, A’-tetrahydrocannabinolic acid-A (THC-A), may
produce various results when analyzed by HPLC (Dussy et al,,
2005). Abiotic factors such as temperature and time resulted
in oxidation or ring-opening of THC-A which produced a
decrease in total THC yield. Therefore, the authors of the
study proposed that the conversion yield should be evaluated
with each use of HPLC when analyzed for forensic interests
(Dussy et al., 2005).

Cannabis chemotypes are largely variable, and drug breeders
commonly produce hybrid varieties (Dufresnes et al., 2017).
For forensic purposes, the United Nations Office on Drugs
and Crimes (UNODC) have provided guidelines for which
Cannabis plants are classified. The guidelines are based on
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the concentration of the main phytocannabinoids, specifically
THC, CBN, and total CBDs. Using gas chromatographic
analysis, if the peak area ratio of [THC+ CBN]/[CBD] is less
than 1.0, then the cannabis plant is classified as industrial
hemp. If the THC/CBD peak area ratio is greater than 1.0,
it is classified as marijuana (Tettey et al., 2021). However,
in the United States and Canada, as previously stated, only
hemp cultivars containing less than 0.3% THC are permitted
to be grown for cosmetics (Sun et al, 2021), food (Shen
et al,, 2021), supplements (Cerino et al, 2021), and textile
(Crini et al., 2020). Recent studies have used a high-throughput,
spectroscopic-based method using attenuated total reflectance-
Fourier’s transform infrared (ATR-FTIR) spectroscopy that
has been shown to discriminate fiber-type Cannabis from
drug-type inflorescences (Cirrincione et al,, 2021b).

CONCLUSION

It is very timely and important for the scientific community
to engage in research to assess the ecological feasibility of
hemp once again becoming an American industrial staple. The
eco-friendly properties of hemp increase its viability above
other less environmentally friendly industrial products. Future
studies are expected to elucidate many knowledge and data
gaps that currently impede advancing management and
production of industrial hemp. For example, in December 2019,
the Environmental Protection Agency (EPA) approved the first
pesticides for use on industrial hemp (Mark et al., 2020). One
of the newly approved pesticides is a conventional insecticide,
fungicide, and miticide containing an active ingredient of
potassium salts of fatty acids, and nine other biopesticides
contain naturally occurring substances that control pests.
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