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We present a distributed memory algorithm for the ap-
proximate hierarchical factorization of symmetric positive
definite (SPD) matrices. Our method is based on the dis-
tributed memory GOFMM, an algorithm that appeared in SC18
(doi:10.1109/SC.2018.00018). GOFMM constructs a hierarchi-
cal matrix approximation of an arbitrary SPD matrix that
compresses the matrix by creating low-rank approximations
of the off-diagonal blocks. GOFMM method has no guarantees
of success for arbitrary SPD matrices. (This is similar to
the SVD; not every matrix admits a good low-rank approx-
imation.) But for many SPD matrices, GOFMM does enable
compression that results in fast matrix-vector multiplication
that can reach N log N time—as opposed to N? required for a
dense matrix. GOFMM supports shared and distributed memory
parallelism. In this paper, we build an approximate “ULV” fac-
torization based on the Hierarchically Semi-Separable (HSS)
compression of the GOFMM. This factorization requires O(IV)
work (given the compressed matrix) and O(N/p) + O(logp)
time on p MPI processes (assuming a hypercube topology).
The previous state-of-the-art required O(N log N) work. We
present the factorization algorithm, discuss its complexity, and
present weak and strong scaling results for the “factorization”
and “solve” phases of our algorithm. We also discuss the per-
formance of the inexact ULV factorization as a preconditioner
for a few exemplary large dense linear systems. In our largest
run, we were able to factorize a 67M-by-67M matrix in less
than one second; and solve a system with 64 right-hand sides
in less than one-tenth of a second. This run was on 6,144
Intel “Skylake” cores on the SKX partition of the Stampede2
system at the Texas Advanced Computing Center.

I. INTRODUCTION

Let K € RV*YN be a dense SPD matrix. The work for
an exact factorization of K scales as O(N?) and therefore it
is not practical when N is large. (For example, factorizing a
dense matrix with N = 67M would require over three days
on a one-exaflop machine.) To enable the solution of very
large systems we resort to approximation. Here we propose
an algorithm for the approximate factorization of K.

Our method is based on GOFMM [23], [24], which constructs
a hierarchical matrix factorization for K, using only entries in
K. (We review GOFMM in §lI). In particular, GOFMM constructs
a matrix K (hereby “compresses”) using O(N log N) entries

from K such that |[K — K|| < ¢||K|| (for a user-defined
tolerance € > 0) and a matvec with K requires as low as O(N)
work. The constants in the compression and multiplication
complexity estimates depend on e. K itself requires O(N?)
storage, which is not scalable. So we assume that either K
is of modest size so that it can fit on a distributed memory
system or there is a way to compute the entries Kj;; of
K in sublinear time, typically O(1) or O(log N). From a
software engineering point of view, the only required input to
GOFMM is a routine that returns a submatrix K7 s, for arbitrary
row and column index sets I and J. GOFMM belongs to the
class of hierarchical matrix (#-matrix in brief) approximation
methods [12]. Roughly speaking, we say that a matrix K is
hierarchically low-rank [4], [12], if

K=D+S+UV, (1)

where D is block-diagonal with every block being hierarchi-
cally low-rank, U and V are low-rank, and S is sparse. A
matvec with K requires O(N log N) work. The constant in
the complexity estimate depends on the rank of U and V. It
is critical to observe that this hierarchical low-rank structure
is not invariant to row and column permutations. GOFMM
appropriately permutes K using only entries from K, before
constructing the matrices U, V, D, and S. There are many
variants on this structure. For example, when the matrices U
and V are nested and S = 0 then we refer to HSS matrices. If
U and V are not nested we refer to HODLR matrices. If S # 0,
then K is an FMM matrix. (Note that there is no standard
agreement on the nomenclature.) GOFMM supports both HSS
and FMM variants. For non experts, in HSS, every off-diagonal
block is approximated by a low-rank approximation; in FMM,
certain off-diagonal blocks remain dense.

Background and significance: Dense SPD matrices appear
in Schur complement matrices [5], in Hessian operators, in
optimization, in simulation [20] and machine learning [6],
in kernel methods for statistical learning [10], [14], and in
N-body methods and integral equations [11], [12]. In many
applications, the entries of the input matrix K are given by
K;; = K(z;,2;), where x; and z; are points in D dimensions
and K is a kernel function. For example, a Gaussian kernel
matrix with bandwidth A:
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For such problems, H-matrix methods (like /N-body methods)
use clustering methods (typically trees) to define compressible
blocks of K and appropriately permute it. However, such an
approach is not possible for arbitrary SPD matrices whose
entries are not defined by kernel functions or for which we
do not have points. Examples include SPD matrices related
to graphs of social networks, protein/gene networks, fMRI
data, microarray data, Hessian operators, maximum likelihood
empirical covariance matrices [1], [17], and kernel methods
for word sequences and graphs [7], [15].

Contributions: Based on GOFMM [24] (which we summa-
rize in §§I1-A), we introduce an approximate factorization for
dense matrices. As we mentioned, GOFMM supports both FMM
and HSS approximations of K. The FMM, however, is much
harder to factorize. Our ULV factorization is based on the
HSS version of GOFMM. When K is better approximated by
FMM, we use the HSS variant as a preconditioner. (When the
user selects FMM for the approximation of K, GOFMM builds
the HSS variant so it can be used as preconditioner.) Our
contributions are summarized below.

« We introduce a parallel algorithm approximate factoriza-
tion based on the ULV scheme proposed in [8]. Our algo-
rithm supports both distributed and shared memory, and
is based on the HSS factorization of GOFMM. (See §II-B
for the ULV algorithm and §II-C for its parallelization.)

« We present weak and strong scaling results for several
matrices on up to 6,144 cores on the Stampede2 system
on the Texas Advanced Computing center.

« We make the code publicly available in [25].

The algorithm has several parameters and presents several
opportunities for tuning. For example, the leaf size in the
compression, the maximum rank, and the number of nearest
neighbors that are used to permute the matrix. We discuss
more in §II-E.

Limitations: Like GOFMM, we cannot simultaneously guar-
antee both approximation accuracy and work complexity. We
require the ability to evaluate in O(1) time arbitrary matrix
entries, which may not be possible in general. What about the
SPD properties of K? Do they extend to K? GOFMM does
guarantee symmetry but it cannot guarantee positivity if the
approximation error is large. Standard eigenvalue perturbation
theory can be used to relate the approximation error to the
minimum eigenvalue and the distance from being singular. In
practice, however, we do not have access to the minimum
eigenvalue. As a result, the factorization may suffer from
instabilities when the approximation error is large. To partially
address this issue, we use a pivoted LU factorization for the
block factorization, as opposed to a Cholesky one.

Related work: There is a very rich literature in exact
and approximate dense matrix factorization for solving linear
systems. Here we only review algorithms for distributed mem-
ory architectures. For arbitrary matrices the state-of-the-art
is STRUMPACK [9], [19], [21]. It uses OpenMP and MP I based
on a static 2D block cyclic data decomposition and, like us,
uses a HSS compression. Unlike GOFMM, STRUMPACK does
not permute K'; such permutation is critical in order to improve

the “approximability” of K by a HSS or FMM matrix. In [23],
[24] we compared GOFMM with STRUMPACK and in most
cases GOFMM was significantly faster. However, STRUMPACK
also supports sparse matrices (with appropriate reordering),
whereas GOFMM does not. Another library that supports low-
rank approximations for the Cholesky factorization is the
HiCMA library [2], [3], which is essentially a one-level block-
Cholesky factorization where the off-diagonal blocks are low-
rank approximated. Unlike GOFMM, HiCMA is not hierarchi-
cal so diagonal blocks are not further approximated. This
limits HiCMA’s scalability. In [22], we presented a similar
O(N log N) algorithm for approximate factorization of kernel
matrices. However, our K approximation in [22] does not
preserve the symmetry of K, whereas GOFMM does. Here, we
exploit this to construct an ULV factorization that has O(N)
linear complexity (once the matrix has been compressed). Fur-
thermore, [22] is applicable only on kernel matrices whereas
GOFMM can be applied to arbitrary matrices.

II. METHODS

Given an SPD matrix K € RY*Y and p MPI processes,
we aim to construct a distributed H-matrix approximation K
and an approximate linear solver solve () such that

uw=Kw=~ Kw, ws solve([?,u) for weRVN*" (3)

can be computed with O(N log N) work and O(N/plog N )+
O(log p) time where K, u, and w are also distributed on p-
process. First, we review the key components of GOFMM in
8II-A. Second, we discuss how we can use the hierarchical
semi-separable (HSS) portion of GOFMM to construct a fast
direct solver in §II-B. Third, we derive the complexity of
our algorithms in §II-D. Finally, we discuss the tuning and
selection of hyper-parameter in our method.

A. GOFMM: Geometry-Oblivious Fast Multipole Method

Following [23], GOFMM comprises two phases: compression
and evaluation. In the compression phase, an SPD matrix K
is compressed to K recursively using a binary tree such that

o {Ku 0 ] . { 0 sh} . { 0 ler} @
0 K S 0 UV 0

where 1 and r are the left and right children of treenode a.
Each node « contains a set of column indices (or row indices
due to symmetry) and the two children evenly split this set
such that « = 1Ur. The off-diagonal low-rank property is not
invariant to matrix permutations. An ordered distance metric
between rows and columns is essential for matrix partition.
GOFMM uses either geometry based (for kernel matrices) or the
Gram distance, which is computed using matrix entries. For
example, the Gram-/? distance di; = Ky —2K;;+K; and the
Gram-angle distance (the angle between underlying gram vec-
tors using the cosine similarity) d;; = 1 — Kfj /(K Kjj) can
be computed using only matrix entries. Throughout the paper,
we use the second metric (Gram-angle) to compute pairwise
distances. Then GOFMM performs hierarchical clustering of the
matrix indices using a binary tree based on pairwise distance
d;; between indices. Ideally, indices in different clusters are
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separated by large distances (Far-clusters) that correspond
to off-diagonal blocks, which in turn, can be low-rank ap-
proximated. The low-rank approximations are computed by
randomized linear algebra, in particular using a sampled nested
interpolative decomposition [13]. Due to space limitations we
cannot provide more details, nor describe the FMM variant of
the algorithm. The complete mathematical description of the
algorithm can be found in [23].

B. Fast Solver

The approximate factorization and linear solver are con-
structed from the hierarchical semi-separable (HSS) portion of
the GOFMM approximation. If the FMM variant is used in K,
the sparse correction S is dropped such that the off-diagonal
blocks are purely low-rank:

~ |Kn 0 0 PT K5 Psy
Ka(l B |: 0 [?rr * |:P'1£K?Ipil . 0

}. 5)

For a two-level HSS matrix K that contains two inner nodes
{a, 8} and four leaf nodes {1,r,t,b}, K has the following
structure (where X denotes symmetric part):
Ky, X
{Pg;KﬁPh Krr:| ) (6)
run, ]

ABa
g PIKgPr  Ku
where the off-diagonal block Ag, can be written in terms of
a two-way expansion using the children of node 5 and «

Age — | P2 Pr_ K. P |0 (7
pa = PL| " e Ba” alis) P |"

In summary, an HSS matrix is typically stored as a binary tree.
Each inner node o owns factor Pa[':i}] and K5z, where 1 and
r are the two child nodes of a. Each leaf node o owns factor
P5., and a diagonal block K. In the rest of the discussion,
we use P(a) to denote factor Py, (leaf nodes) or Py 7 (inner
nodes). Similarly, we use Q(«) to denote the ) factor (the full
orthonormal basis computed from the full QR-factorization of

K=

P(a)T) owned by node «. The sub-index will be used to
denote the matrix partitioning in the partial LU factorization.

ULV factorization: [8] describes how an HSS matrix can
be factorized and solved fast by exploiting the nested basis (i.e.
the two-way expansion in off-diagonal blocks). The key idea
of ULV is to factorize the diagonal blocks recursively from the
left- and right-hand side, which results in a post-order traversal
of the tree due to the Read-After-Write data dependency of
the parent node. We present the full factorization and solve in
Algorithm II.1 and Algorithm II.2 for symmetric matrices (not
necessary SPD). We discuss their distributed memory version
in Algorithm I1.3 and Algorithm I1.4.

In Algorithm II.1, the first step is to factorize the leaf nodes
by invoking GEQRF (QR factorization without pivoting) and
extract the orthogonal basis from factor P(a)T. We then call
ORGQR to generate the orthonormal basis Qe r(a). Qc(a)
spans the column space of P(a)” and Qr(«) spans the null
space of P(a)T (i.e. the null space of the off-diagonal block).
Factorizing Q[C,F](a) out from both sides is equivalent to a
similar transformation Q7 K (o, ) Q. In the parent view of 1
and r, the similar transformation on K, in Equation 5 (on-
diagonal block in Equation 6) results in

{Q(l)

T
|t =g o
Q)] [PRKaPn K x|
If we further repartition the blocked 2-by-2 matrix above to
separate the matrix indices in the column space of the off-
diagonal block from the null space, then we get the following

[Z(l)cc ZW)er  B()” 0
Z(L)re Z(1)pr 0 0 ©)
{ Y(a) 0 Z(T)ce Z(r)CFJ ’

0 0 Z(t)re  Z(T)pr

where ¥(a) = Qc(r)PLK4P;Qc(1)T = R(r)KgR(1)7.
Observe that the three quarters of the off-diagonal blocks
have been zeroed automatically. The partialLU function
(at line 11, Algorithm II.1) factorizes Zgr, Zgc, and Zgp from
the both sides such that the partial L and U factors can be
decomposed from Equation 9 as presented in Equation 10.

[Z(l)cc ZM)er ()" 0 -‘ [0 -‘ [Z(l)cc S(a)” -‘ "0 Ur 0 0 -‘
ZZ?ELCEC Z(E)FF Z(S) Z(S) - LSC L(;:C 0 Y(a) : Z(r) e 8 Up
{ 0 0 z<r>§§ Z(I)EEJ {0 0 Lgc LCCJ[ * IJL UEZ J

Observe that Zpr, Zrc, and Zgr have all been factorized.
Zcc is the Schur complement of the partial factorization of Z.
The remaining system in the middle of Equation 10 is now
reducible and will be factorized when the algorithm visits the
parent node.

Different from factorizing the leaf node, factors V(<) and
Z(«) of an inner node « are computed using the factors of the
two children. While V' («) represents the low-rank factor in the
off-diagonal block of an HSS matrix, it can be computed from
its children as shown at line 6, Algorithm II.1. For example,

(10)

consider the off-diagonal block Ag, in Equation 6. After the
similar transformation that we apply from Equation 8, the odd-
diagonal block becomes

R() 0 0
T PETE’B]KE&P&[E{ 0 R(r) 0]
(1)

Observe that the factors above also have the columns and
rows representing the null space zero-out after applying the
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Algorithm II.1 factorize(a)

1: [, F] = [{a}, {a'\ a}]

2: if isLeaf («) then

3 V(o) =Pla), Z(a) = K(a,a)

4: else

s ¥ =R(r)KzR(1)"

o Vi =re) " g
Z(L)ee XT

oz [P 2

8: end if

9: [Qe(a ) ( )] = GEQRF (V' ()"

10: [Qc,r(e), R(a)] = ORGQR(Qc(cv))

11: Z[CCCFFCFF (@) partlalLU(QCF( @) Z(a)Qe,p ()

orthornomal transformation from the two sides. Specifically,
Q(1) and Q(r) are applied from the right such that only
the upper triangular matrices R(1) and R(r) were left. On
the other hand, the diagonal block Z(«) is reduced from
Equation 10. The rest of the factorization steps are the same
except that the computation of factor V' («) is skipped while
reaching the root of the tree. In this case, Q(«) is identity and
the partial factorization becomes a full LU factorization since
there is no null space left.

Algorithm II.2 solve(a,forward/backward)
1: if forward then

2:  if !isLeaf (a) then B(a) = [Be(1); Be(r)]

3 Brr(a) = Qer(a)” B (a)

4 Bgp(a) = partiallUForward(Z(a), B ()
5: else

6:  Bigr)(a) = partialLUBackward(Z(a), By («))
7. Bier (@) = Qep(a) By (@)

8. if !isLeaf («) then [B¢(1); Be(r)] = B(w)

9: end if

ULV solve: Mathematically, ULV factorization applies sim-
ilar transformation and LU factorization alternatively. As a
result, the linear solve also contains two phases: a forward
phase that resembles a post-order traversal of the tree (bottom-
up) and a backward phase (pre-order traversal, top-down).
Algorithm II.2 summarizes both traversals. Note that the
concatenation between Bc(1), Bc(r) and orthonormal trans-
formation Q7' B are the only differences compared to a normal
forward substitution. Similarly, in the backward phase we
need to apply orthonormal transformation QB and split the
intermediate results [B¢(1); Be(r)].

C. Parallelism

We implemented our distributed ULV factorization (Al-
gorithm II.3) and solver (Algorithm I1.4) using GOFMM’s
distributed tree infrastructure. GOFMM maps the whole tree to
p distributed processes (see Figure 1 for an example where
p = 4 in four different colors). At depth-log(p), p subtrees
are distributed over p-process without replication. We say the
portion of the tree below depth-log(p) is local to each process

(with a single color in the figure). Tree nodes above depth-
log(p) are distributed (filled with the gradient of colors).

Each distributed tree node above depth-log(p) has a unique
MPI sub-communicator for collectives. A node « is assigned
with communicator comm(cx), where size(a) and rank(a)
denote the local MPI rank and size in comm(c). While
splitting a node «, processes are divided into two subgroups
comm(1) and comm(r) according to rank (). Processes with
rank(a) < (1/2)size(a) will be assigned to the comm(1)
otherwise comm(r). Processes in comm(1) and comm(r) store
the factors of node 1 and r. In our distributed algorithm,
factors of a distributed node 1 are stored on rank(1l) = 0,
and factors of r are stored on rank(r) = 0. In the view
of their parent’s communicator comm(c), these two MPI
processes represent rank(a) = 0 (the left master) and
rank(a) = (1/2)size(a) (the right master).

Factorization: In Algorithm II.3, we first deal with the base
case at line 2. While size(«) is one (the sub-communicator
only has one MPI process), node « is the root of the local
tree. We call our shared memory factorization (Algorithm II.1)
to decompose «. Otherwise, we must send factors R(r) and
Z(r) from the right master (rank(a) = (1/2)size(«)) to
the left master. Once received R(1) and R(r), the left master
(rank(a) = 0) can proceed to invoke the shared memory
factorization. Overall, the whole distributed factorization in-
volves a post-order traversal of the local tree and a post-order
traversal of the distributed tree.

Solve: Our distributed ULV solver Algorithm II.4 has a
similar structure where only the left and right master par-
ticipate in the computation. Line 2 calls the shared memory
solver (Algorithm I1.2) to deal with the base case that contains
only one MPI process. While node « is distributed, point-to-
point communication is required between the left and right
master. During the forward pass, the left master only needs
to receive Be(r) from the right master before calling the
shared memory forward solve. This is because all other factors
have been received previously the factorization step. During
the backward pass, the left master will first invoke a shared
memory backward solve and send Rg(r) back to the right
master. Overall the whole distributed solve involves a post-
order traversal of the local and distributed tree, and a preorder
traversal of the distributed and local tree.

Algorithm II.3 distFactorize(a)

1: if size (a) is one then

2 return factorize («)

3: end if

4: if rank (o) 1is 0 then
5. RECV (R(r), comm () )
6: RECV (Z(r), comm («))
7
8
9

factorize («)
: else if rank () is (1/2)size («) then
: SEND (R(r), comm («) )
10:  SEND (Z(r), comm () )
11: end if
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Fig. 1 Distributed HSS matrix stored in a complete binary tree. The four subtrees (at depth-log4) in four single colors on the right
represent the four hierarchical diagonal blocks on the left. Each process owns all the factors in the same color in the diagonal block, which
represents the local subtree. Tree nodes above depth-log 4 are distributed. That is, the factors of the off-diagonal blocks are stored on multiple
processes. To be specific, the low-rank factors PyzKy- Pxr are stored on four different processes, where each process owns the factors in

the same color.

Algorithm I1.4 distSolve(a,forward/backward)
1: if size (a) is one then
2: return solve («, forward/backward)

. end if

. if rank (o) is left master then

RECV (B¢(r), comm («) ) if forward

solve («a, forward/backward)

SEND (Bg(r), comm («) ) if backward

. else if rank (o) is the right master then

SEND (Bg(c), comm («) ) if forward

10:  RECV (Bg(c), comm («)) if backward

11: end if

R AN

D. Complexity Analysis

Let m be the leaf node size, D = log(N/m) be the tree
depth, N/p be the number of indices owned per MPT process,
ts be the latency, ¢,, be the reciprocal of the bandwidth, and s
be the rank of the off-diagonal blocks. For simplicity, let leaf
node size m be equal to the rank s of the off-diagonal blocks.

With the assumption above, distributed factorization Algo-
rithm 1.3 takes O(s®) work per node due to the QR and partial
LU factorization. Given a tree with 2(N/m) — 1 nodes, the
total work is O(s*(N/m)) for the factorization. While only
the left and right master participate in the factorization above
depth-log p, the parallel time complexity with p-process is

N
(@) ((ts +tys?)logp + 53 <—> +5° logp> . (12)
mp

The first portion represents the communication cost of R(r)
and Z(r). Each factor has message size s? and it takes one
SEND and RECV. As a result, the latency is constant per tree
level. The second portion represents the £1lops per process.
Each process factorizes a local subtree with 2(N/(pm)) —
1 nodes. The distributed tree above depth-logp is factorized
level-by-level due to the dependencies, hence O(s® log p) time.

Similarly distributed solve Algorithm I1.4 takes O(s2b)
work per node where b denotes the number of right-hand

sides. Given a tree with 2(N/m) — 1 nodes, the total work
(including both forward and backward) is O(s?b(N/m)) for
the solve. While only the left and right master participate in the
factorization above depth-log p, the parallel time complexity
with p-process is

o ((t + tysb) logp + s%b (pN ) + 52b10gp> (13)

The first portion represents the communication cost of Be(r).
The message size is sb per level and it only takes a single
SEND and RECV. As a result, the latency is constant per tree
level. The second portion represents the £1ops per process.
The distributed tree above depth-logp is solved level-by-level
due to the dependencies, hence O(s%blogp) time.

E. Parameter Turning

GOFMM has several parameters and algorithmic choices,
e.g. FMM vs. HSS; or adaptive rank selection vs. preset rank
selection (for the off-diagonal blocks). The most important
parameters are the leaf node size m, and the maximum rank
of the off-diagonal block s. These two parameters control the
asymptotic behavior of the total work to a great extent (§II-D);
both m and s must be small constants and must not scale with
the problem size N. For m this is not an issue. But for s it
highly depends on the generating process for the matrix. For
example for certain matrices constant s is only possible when
the FMM variant is used. A secondary side effect of s and m
is also their impact on FLOPS. They affect the size of BLAS
and LAPACK functions on each node; hence m and s must be
sufficiently large to achieve high FLOPS efficiency. Of course,
rank s directly affects the accuracy of the approximation and
m determine the block size of the sparsity (also accuracy
related). We tune these two parameters using a 2D grid-search
in log-2 scale and scan values from 64 to 2,048.

While the actual rank of each off-diagonal block is un-
known, GOFMM employs an adaptive interpolative decomposi-
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tion (ID) [13] to select the rank based on the desired accuracy
of the low-rank approximation. However, the accuracy of the
off-diagonal block (see [18] for a proof of the upper bound
of the nested adaptive ID with random sampling) does not
translate directly to the accuracy of the full matrix due to the
randomized sampling. To properly select tolerance for the ID,
we manually select and adjust the maximum rank.

Finally, there are a few parameters we need to tune depend-
ing on the applications. Here we take kernel ridge regression
with 2-norm regularization as an example. The objective
function we want to minimize is

. A
min [ju — Kwll3 + 3 |[wl]l3, (14)

where u denotes the labels, and A denotes the regularization.
The optimization above is equivalent to solving u = (K +
Al)w given A. When K is a Gaussian kernel matrix, we further
need to decide the bandwidth A that achieve the smallest
objective. To tune both A and h, we typically employ line
search and ten-fold cross-validation.

III. EMPIRICAL RESULTS

We conduct a number of experiments (#1-#36) to demon-
strate the efficiency, scalability of the direct solver. First, we
discuss the implementation and hardware. Then we report
the scaling experiments (Figure 2 and Figure 3). Finally, we
test the HSS factorization as a preconditioner for the FMM
approximation for K. We report the results in Table 1.

Implementation and hardware: Our solver is implemented
in C++ with MPI (MPI_THREAD_MULTIPLE is required)
and OpenMP. The implementation is available in GOFMM,
and its only dependencies are multi-threaded BLAS/LAPACK
and MPI (we used the Intel MPI library in the following
experiments). We conducted our experiments on the TACC’s
“Stampede 2” system. Each node has two 24-core, Intel Xeon
Platinum 8160 “Skylake” processors, which have two AVX-
512 units. Thus, theoretical peak per node is roughly 4.3
TFLOPS in single precision. We estimate this metric according
to the base frequency (1.4Ghz), AVX512 vector length (16
floats), FMA throughput per core/cycle (dual issue, i.e., 4
flops), and the number of physical cores per node (48
cores divided into two sockets). Except for kernel matrices
generated by the real world dataset COVTYPE [16], all runs
are performed in single precision and we use one MPI rank
and 48 OpenMP threads per node.

SPD matrices: We conduct our experiments on several
different SPD and Gaussian kernel matrices. For the kernel
matrices we use random point clouds (normally distributed
from 500M to 16M points in 6D) and the COVTYPE UCI
dataset (100K, 54D). Notice that for kernel matrices, the higher
the intrinsic dimension of the dataset the harder is for the
matrix to compress and factorize. We also use three other non-
kernel matrices with size 65,536. K02 is a 2D regularized
inverse Laplacian squared, resembling the Hessian operator
of a PDE-constrained optimization problem. The Laplacian
is discretized using a 5-stencil finite-difference scheme with
Dirichlet boundary conditions on a regular grid. K13 is 2D

advection-diffusion operators on a regular grid with highly
variable coefficients. Both resemble inverse covariance matri-
ces and Hessian operators from optimization and uncertainty
quantification problems. K15 is 2D pseudo-spectral advection-
diffusion-reaction operators with variable coefficients.

Strong scaling: In Figure 2 (#1, #2, #3, #4, #5, #06, #7,
#8, #9, #10, #11, and #12), we use a 224-by-22* Gaussian
kernel matrix generated with a synthetic 6-D point dataset.
Using this matrix, we perform strong scaling experiments
using up to 6,144 Skylake cores (128 compute nodes, using
one MPI process per node and 48 OpenMP threads). First,
K is compressed by GOFMM. Then we report timings for
the factorization phase on the left; and the solving phase
(with 64 right-hand sides) on the right. The x-axis denotes
the number of cores, and the y-axis denotes the runtime in
seconds. The bar charts reveal the scaling trend, and the
blue dotted lines denote the absolute floating point arithmetic
efficiency computed as the ratio of the achieved GFLOPS over
the theoretical peak (4.3 TFLOPS per node).

The factorization phase achieves a higher floating efficiency
due to the O(s®) QR and LU factorization computed on
each node. The solving phase is more memory bound, since
there is only P(s%b) FLOPS per node (with number of right-
hand sides b = 64). The efficiency degradation is expected
as an artifact of our distributed algorithm. Recall that the
factorization and solving only happen on the left-master of
the local communicator, and the efficiency achieved by these
distributed tree nodes degrades exponentially. As a result, the
deeper the distributed tree (that is toward the right side of
the x-axis in the figure) is, the faster the efficiency decades.
Overall, our implementation is able to achieve 15.3% and
7.3% of peak using 6,144 CPU cores in the strong scaling
experiments.

Week scaling: In Figure 3 (experiments #13, #14, #15, #16,
#17, #18, #19, #20, #21, #22, #23, and #24, we perform weak
scaling experiments (2'7 per process) on synthetic Gaussian
kernel matrices with up to 128 MP I processes (6,144 cores). To
ensure the flops required by the computation scales linear
with the number cores, we fix the rank of the HSS matrix
generated by GOFMM to 256.

Comparing with the strong scaling results, we can observe
that weak scaling results usually achieve lower efficiency using
the same amount of cores. For example, #13 in the weak
scaling experiment achieves only 20% of peak but #1 in
the strong scaling experiment achieves almost 30%. This is
because #1 has 64x more available tasks to schedule due to a
taller tree. As a result, #13 suffers less from the effect of the
diminishing parallelism (according to the Amdahl’s law). The
discrepancy between strong and weak scaling in the solving
phase is smaller due to the fact that there are 2x more tasks
than the factorization phase and our setup with b = 64 is
more memory bound. Notice that the efficiency typically drops
dramatically from 768-core (16 compute nodes) to 1,536-core
(32 compute nodes). We suspect that this is because the leaf
switch size of Stampede2 fat-tree topology is 28-node. As a
result, the cost of the additional hop is introduced while scaling
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Fig. 2 Strong scaling (runtime in seconds as a function of the number of cores) of our ULV factorization and solver applied to a 16M-
by-16M Gaussian kernel matrix generated by a 6D random point cloud. Left: Factorization time and the floating point operation efficiency
(as the ratio between achieved GFLOPS and theoretical peak (~4.3 TFLOPS). Right: Solving time (64 right-hand sides) and the floating
point operation efficiency. The x-axis denotes number of cores (6,144 Skylake cores correspond to 128 Stampede-2 nodes), the y-axis denotes
time in seconds in log scale. We annotate the scale in the middle of each figure.
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Fig. 3 Weak scaling (runtime in seconds vs. cores) of our ULV factorization and solver applied to Gaussian kernel matrices generated
synthetically with point clouds in 6-D. The configuration is the same as Figure 2. The grain size is 524k points per MPI process. The largest
problem size involves factorizing of the 67M-by-67M kernel matrix and solving right-hand sides with a 67M-by-64 matrix of random vectors.

from 16- to 32-node.

Preconditioner: We show that our HSS solver can be used
as a preconditioner for other more sophisticated hierarchical
matrices such as FMM matrices. To be specific, we use GOFMM
to construct algebraic FMM approximation of different SPD
matrices and extract their HSS structures to construct the
preconditioners. We show that the HSS preconditioners can
effectively improve the convergent rate.

In Table I, we report the convergence results (#25—#33) of
precondition conjugate gradient (PCG) method, an iterative
linear solver for symmetric matrices, on four different SPD
matrices. For each matrix, we conduct three experiments that
vary the percentage of the sparse correction in the off-diagonal
blocks, the preconditioner (identity of HSS) and observe the
convergent behavior. Throughout the experiments we use a
mixed stopping criteria that will terminate the PCG execution
either each 1E-3 in relative error or exceeding 20-minute in

the execution time.

Experiments #25, #28, #31 and #34 do not introduce any
sparse correction in the approximation. As a result, our HSS
solver is able to solve the system directly without any iteration.
While increasing the sparse correction to 1%, our HSS solver
can no longer solve the systems directly. Take #26 as an exam-
ple: From column MATVEC,, we can observe that increasing
sparse correction in the off-diagonal blocks (the amount of
direct evaluation) can improve the approximation accuracy.
However, PCG takes 940 iterations to converge even with the
help of our HSS preconditioner. Without the preconditioner
(using an identity matrix as a preconditioner), we can observe
that the iterative solver terminated at 6E-2 (2,532 iterations)
and did not converge within 20 minutes. Despite that matrices
K02, K13, and K15 do not have no difficulty to converge
without a preconditioner. Still our HSS preconditioner further
improves the convergence rate in #29, #32, and #35.
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# | Matrix | Spy | Pred | MATVEC, | SOLVEe | SOLVE¢ #ter
25 COV | 0% | True 1E-2 4E-11 0.43 0
26 COV | 1% | True 7E-3 8E-4 0.43 940
27 COV | 1% | False 7E-3 6E-2 - 12,532
28 K02 | 0% | True 1E-2 1E-6 0.13 0
29 K02 | 1% | True 8E-3 3E-5 0.13 0
30 K02 | 1% | False 8E-3 4E-4 - I
31 K13 | 0% | True 5E-5 9E-7 0.13 0
32 K13 | 1% | True 4E-5 1E-6 0.13 0
33 K13 | 1% | False 4E-5 2E-5 - 1
34 K15 [ 0% | True SE-1 1E-6 0.05 0
35 K15 | 1% | True 1E-1 2E-4 0.05 3
36 K15 | 1% | False 1E-1 8E-4 - 3

TABLE 1 Preconditioner experiments using precondition conjugate
gradient (PCG). All experiments were done on four Stampede-2
nodes (192 Skylake cores) for different matrices. Throughout the
experiments we control the percentage of the sparse correction in
GOFMM and the type of the preconditioner (identity or HSS). The
results are reported base on a mixed stopping criteria. The PCG
execution terminates while either reaching 1E-3 in relative error or
exceeding 20-minute in the execution time.

IV. CONCLUSIONS

We presented an O(N) parallel algorithm for approximate
factorization of SPD matrices. To our knowledge, this is the
only publicly available library with this capability. Still this
complexity does not come with some hefty “fine print”. To
improve stability we use GETRF that messes up with the
symmetry and makes the factorization slower. Moreover, we
could switch to POTREF if we know that the approximation will
be stable; this however, has not been implemented yet. Finally,
we did not consider GPU implementation. The latter is quite
critical as most upcoming architectures will package most of
the bandwidth and compute power on multi-GPU systems.
This is future work.
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