
Distributed O(N) Linear Solver for Dense
Symmetric Hierarchical Semi-Separable Matrices

Chenhan D. Yu∗, Severin Reiz†, and George Biros‡

∗Department of Computer Science
∗ † ‡ Oden Institute for Computational Engineering and Science

The University of Texas at Austin, Austin, Texas, USA
† Technische Universität München

∗chenhan@utexas.edu, †s.reiz@tum.de, ‡gbiros@acm.org

We present a distributed memory algorithm for the ap-

proximate hierarchical factorization of symmetric positive

definite (SPD) matrices. Our method is based on the dis-

tributed memory GOFMM, an algorithm that appeared in SC18

(doi:10.1109/SC.2018.00018). GOFMM constructs a hierarchi-

cal matrix approximation of an arbitrary SPD matrix that

compresses the matrix by creating low-rank approximations

of the off-diagonal blocks. GOFMM method has no guarantees

of success for arbitrary SPD matrices. (This is similar to

the SVD; not every matrix admits a good low-rank approx-

imation.) But for many SPD matrices, GOFMM does enable

compression that results in fast matrix-vector multiplication

that can reach N logN time—as opposed to N2 required for a

dense matrix. GOFMM supports shared and distributed memory

parallelism. In this paper, we build an approximate “ULV” fac-

torization based on the Hierarchically Semi-Separable (HSS)

compression of the GOFMM. This factorization requires O(N)
work (given the compressed matrix) and O(N/p) +O(log p)
time on p MPI processes (assuming a hypercube topology).

The previous state-of-the-art required O(N logN) work. We

present the factorization algorithm, discuss its complexity, and

present weak and strong scaling results for the “factorization”

and “solve” phases of our algorithm. We also discuss the per-

formance of the inexact ULV factorization as a preconditioner

for a few exemplary large dense linear systems. In our largest

run, we were able to factorize a 67M-by-67M matrix in less

than one second; and solve a system with 64 right-hand sides

in less than one-tenth of a second. This run was on 6,144

Intel “Skylake” cores on the SKX partition of the Stampede2

system at the Texas Advanced Computing Center.

I. INTRODUCTION

Let K ∈ R
N×N be a dense SPD matrix. The work for

an exact factorization of K scales as O(N3) and therefore it

is not practical when N is large. (For example, factorizing a

dense matrix with N = 67M would require over three days

on a one-exaflop machine.) To enable the solution of very

large systems we resort to approximation. Here we propose

an algorithm for the approximate factorization of K.

Our method is based on GOFMM [23], [24], which constructs

a hierarchical matrix factorization for K, using only entries in

K. (We review GOFMM in §II). In particular, GOFMM constructs

a matrix K̃ (hereby “compresses”) using O(N logN) entries

from K such that ‖K̃ − K‖ ≤ ǫ‖K‖ (for a user-defined

tolerance ǫ > 0) and a matvec with K̃ requires as low as O(N)
work. The constants in the compression and multiplication

complexity estimates depend on ǫ. K itself requires O(N2)
storage, which is not scalable. So we assume that either K
is of modest size so that it can fit on a distributed memory

system or there is a way to compute the entries Kij of

K in sublinear time, typically O(1) or O(logN). From a

software engineering point of view, the only required input to

GOFMM is a routine that returns a submatrix KIJ , for arbitrary

row and column index sets I and J . GOFMM belongs to the

class of hierarchical matrix (H-matrix in brief) approximation

methods [12]. Roughly speaking, we say that a matrix K̃ is

hierarchically low-rank [4], [12], if

K̃ = D + S + UV, (1)

where D is block-diagonal with every block being hierarchi-

cally low-rank, U and V are low-rank, and S is sparse. A

matvec with K̃ requires O(N logN) work. The constant in

the complexity estimate depends on the rank of U and V . It

is critical to observe that this hierarchical low-rank structure

is not invariant to row and column permutations. GOFMM

appropriately permutes K using only entries from K, before

constructing the matrices U, V,D, and S. There are many

variants on this structure. For example, when the matrices U
and V are nested and S = 0 then we refer to HSS matrices. If

U and V are not nested we refer to HODLR matrices. If S �= 0,

then K̃ is an FMM matrix. (Note that there is no standard

agreement on the nomenclature.) GOFMM supports both HSS

and FMM variants. For non experts, in HSS, every off-diagonal

block is approximated by a low-rank approximation; in FMM,

certain off-diagonal blocks remain dense.

Background and significance: Dense SPD matrices appear

in Schur complement matrices [5], in Hessian operators, in

optimization, in simulation [20] and machine learning [6],

in kernel methods for statistical learning [10], [14], and in

N -body methods and integral equations [11], [12]. In many

applications, the entries of the input matrix K are given by

Kij = K(xi, xj), where xi and xj are points in D dimensions

and K is a kernel function. For example, a Gaussian kernel

matrix with bandwidth h:

Kij = K(xi, xj) = exp

(
−
1

2

‖xi − xj‖
2
2

h2

)
. (2)

�

�����*&&&���UI�*OUFSOBUJPOBM�4ZNQPTJVN�PO�&NCFEEFE�.VMUJDPSF�.BOZ�DPSF�4ZTUFNT�PO�$IJQ�	.$4P$

����������������������������¥�����*&&&
%0*���������.$4P$�����������

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27,2022 at 16:39:28 UTC from IEEE Xplore. Restrictions apply.

For such problems, H-matrix methods (like N -body methods)

use clustering methods (typically trees) to define compressible

blocks of K and appropriately permute it. However, such an

approach is not possible for arbitrary SPD matrices whose

entries are not defined by kernel functions or for which we

do not have points. Examples include SPD matrices related

to graphs of social networks, protein/gene networks, fMRI

data, microarray data, Hessian operators, maximum likelihood

empirical covariance matrices [1], [17], and kernel methods

for word sequences and graphs [7], [15].

Contributions: Based on GOFMM [24] (which we summa-

rize in §§II-A), we introduce an approximate factorization for

dense matrices. As we mentioned, GOFMM supports both FMM

and HSS approximations of K. The FMM, however, is much

harder to factorize. Our ULV factorization is based on the

HSS version of GOFMM. When K is better approximated by

FMM, we use the HSS variant as a preconditioner. (When the

user selects FMM for the approximation of K, GOFMM builds

the HSS variant so it can be used as preconditioner.) Our

contributions are summarized below.

• We introduce a parallel algorithm approximate factoriza-

tion based on the ULV scheme proposed in [8]. Our algo-

rithm supports both distributed and shared memory, and

is based on the HSS factorization of GOFMM. (See §II-B

for the ULV algorithm and §II-C for its parallelization.)

• We present weak and strong scaling results for several

matrices on up to 6,144 cores on the Stampede2 system

on the Texas Advanced Computing center.

• We make the code publicly available in [25].

The algorithm has several parameters and presents several

opportunities for tuning. For example, the leaf size in the

compression, the maximum rank, and the number of nearest

neighbors that are used to permute the matrix. We discuss

more in §II-E.

Limitations: Like GOFMM, we cannot simultaneously guar-

antee both approximation accuracy and work complexity. We

require the ability to evaluate in O(1) time arbitrary matrix

entries, which may not be possible in general. What about the

SPD properties of K? Do they extend to K̃? GOFMM does

guarantee symmetry but it cannot guarantee positivity if the

approximation error is large. Standard eigenvalue perturbation

theory can be used to relate the approximation error to the

minimum eigenvalue and the distance from being singular. In

practice, however, we do not have access to the minimum

eigenvalue. As a result, the factorization may suffer from

instabilities when the approximation error is large. To partially

address this issue, we use a pivoted LU factorization for the

block factorization, as opposed to a Cholesky one.

Related work: There is a very rich literature in exact

and approximate dense matrix factorization for solving linear

systems. Here we only review algorithms for distributed mem-

ory architectures. For arbitrary matrices the state-of-the-art

is STRUMPACK [9], [19], [21]. It uses OpenMP and MPI based

on a static 2D block cyclic data decomposition and, like us,

uses a HSS compression. Unlike GOFMM, STRUMPACK does

not permute K; such permutation is critical in order to improve

the “approximability” of K by a HSS or FMM matrix. In [23],

[24] we compared GOFMM with STRUMPACK and in most

cases GOFMM was significantly faster. However, STRUMPACK

also supports sparse matrices (with appropriate reordering),

whereas GOFMM does not. Another library that supports low-

rank approximations for the Cholesky factorization is the

HiCMA library [2], [3], which is essentially a one-level block-

Cholesky factorization where the off-diagonal blocks are low-

rank approximated. Unlike GOFMM, HiCMA is not hierarchi-

cal so diagonal blocks are not further approximated. This

limits HiCMA’s scalability. In [22], we presented a similar

O(N logN) algorithm for approximate factorization of kernel

matrices. However, our K̃ approximation in [22] does not

preserve the symmetry of K, whereas GOFMM does. Here, we

exploit this to construct an ULV factorization that has O(N)
linear complexity (once the matrix has been compressed). Fur-

thermore, [22] is applicable only on kernel matrices whereas

GOFMM can be applied to arbitrary matrices.

II. METHODS

Given an SPD matrix K ∈ R
N×N and p MPI processes,

we aim to construct a distributed H-matrix approximation K̃
and an approximate linear solver solve() such that

u = Kw ≈ K̃w, w ≈ solve(K̃, u) for w ∈ R
N×r, (3)

can be computed with O(N logN) work and O(N/p logN)+
O(log p) time where K, u, and w are also distributed on p-

process. First, we review the key components of GOFMM in

§II-A. Second, we discuss how we can use the hierarchical

semi-separable (HSS) portion of GOFMM to construct a fast

direct solver in §II-B. Third, we derive the complexity of

our algorithms in §II-D. Finally, we discuss the tuning and

selection of hyper-parameter in our method.

A. GOFMM: Geometry-Oblivious Fast Multipole Method

Following [23], GOFMM comprises two phases: compression

and evaluation. In the compression phase, an SPD matrix K
is compressed to K̃ recursively using a binary tree such that

K̃αα =

[
K̃ll 0

0 K̃rr

]
+

[
0 Slr

Srl 0

]
+

[
0 UVlr

UVrl 0

]
, (4)

where l and r are the left and right children of treenode α.

Each node α contains a set of column indices (or row indices

due to symmetry) and the two children evenly split this set

such that α = l∪r. The off-diagonal low-rank property is not

invariant to matrix permutations. An ordered distance metric

between rows and columns is essential for matrix partition.

GOFMM uses either geometry based (for kernel matrices) or the

Gram distance, which is computed using matrix entries. For

example, the Gram-ℓ2 distance dij = Kii−2Kij+Kjj and the

Gram-angle distance (the angle between underlying gram vec-

tors using the cosine similarity) dij = 1−K2
ij/(KiiKjj) can

be computed using only matrix entries. Throughout the paper,

we use the second metric (Gram-angle) to compute pairwise

distances. Then GOFMM performs hierarchical clustering of the

matrix indices using a binary tree based on pairwise distance

dij between indices. Ideally, indices in different clusters are

�

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27,2022 at 16:39:28 UTC from IEEE Xplore. Restrictions apply.

separated by large distances (Far-clusters) that correspond

to off-diagonal blocks, which in turn, can be low-rank ap-

proximated. The low-rank approximations are computed by

randomized linear algebra, in particular using a sampled nested

interpolative decomposition [13]. Due to space limitations we

cannot provide more details, nor describe the FMM variant of

the algorithm. The complete mathematical description of the

algorithm can be found in [23].

B. Fast Solver

The approximate factorization and linear solver are con-

structed from the hierarchical semi-separable (HSS) portion of

the GOFMM approximation. If the FMM variant is used in K̃,

the sparse correction S is dropped such that the off-diagonal

blocks are purely low-rank:

K̃αα =

[
K̃ll 0

0 K̃rr

]
+

[
0 PT

l̃l
K

l̃r̃
Pr̃r

PT
r̃r
K

r̃l̃
P
l̃l

0

]
. (5)

For a two-level HSS matrix K̃ that contains two inner nodes

{α, β} and four leaf nodes {l, r, t, b}, K̃ has the following

structure (where × denotes symmetric part):

K̃ =




[
Kll ×

PT
r̃r
K

r̃l̃
P
l̃l

Krr

]
×

Aβα

[
Ktt ×

PT
b̃b
K

b̃t̃
P
t̃t

Kbb

]


 , (6)

where the off-diagonal block Aβα can be written in terms of

a two-way expansion using the children of node β and α

Aβα =

[
PT
t̃t

PT
b̃b

]
PT

β̃ [̃tb̃]
K

β̃α̃
Pα̃[̃lr̃]

[
P
l̃l

Pr̃r

]
. (7)

In summary, an HSS matrix is typically stored as a binary tree.

Each inner node α owns factor Pα̃[̃lr̃] and K
l̃r̃

, where l and

r are the two child nodes of α. Each leaf node α owns factor

Pα̃α and a diagonal block Kαα. In the rest of the discussion,

we use P (α) to denote factor Pα̃α (leaf nodes) or Pα̃[̃lr̃] (inner

nodes). Similarly, we use Q(α) to denote the Q factor (the full

orthonormal basis computed from the full QR-factorization of

P (α)T) owned by node α. The sub-index will be used to

denote the matrix partitioning in the partial LU factorization.

ULV factorization: [8] describes how an HSS matrix can

be factorized and solved fast by exploiting the nested basis (i.e.

the two-way expansion in off-diagonal blocks). The key idea

of ULV is to factorize the diagonal blocks recursively from the

left- and right-hand side, which results in a post-order traversal

of the tree due to the Read-After-Write data dependency of

the parent node. We present the full factorization and solve in

Algorithm II.1 and Algorithm II.2 for symmetric matrices (not

necessary SPD). We discuss their distributed memory version

in Algorithm II.3 and Algorithm II.4.

In Algorithm II.1, the first step is to factorize the leaf nodes

by invoking GEQRF (QR factorization without pivoting) and

extract the orthogonal basis from factor P (α)T . We then call

ORGQR to generate the orthonormal basis Q[C,F](α). QC(α)
spans the column space of P (α)T and QF(α) spans the null

space of P (α)T (i.e. the null space of the off-diagonal block).

Factorizing Q[C,F](α) out from both sides is equivalent to a

similar transformation QTK(α, α)Q. In the parent view of l

and r, the similar transformation on K̃αα in Equation 5 (on-

diagonal block in Equation 6) results in
[
Q(l)

Q(r)

]T [
Kll ×

PT
r̃r
K

r̃l̃
P
l̃l

Krr

] [
×

×

]
(8)

If we further repartition the blocked 2-by-2 matrix above to

separate the matrix indices in the column space of the off-

diagonal block from the null space, then we get the following


Z(l)CC Z(l)CF Σ(α)T 0
Z(l)FC Z(l)FF 0 0
Σ(α) 0 Z(r)CC Z(r)CF
0 0 Z(r)FC Z(r)FF


 , (9)

where Σ(α) = QC(r)P
T
r̃r
K

r̃l̃
P
l̃l
QC(l)

T = R(r)K
r̃l̃
R(l)T .

Observe that the three quarters of the off-diagonal blocks

have been zeroed automatically. The partialLU function

(at line 11, Algorithm II.1) factorizes ZFF, ZFC, and ZCF from

the both sides such that the partial L and U factors can be

decomposed from Equation 9 as presented in Equation 10.




Z(l)CC Z(l)CF Σ(α)T 0
Z(l)FC Z(l)FF 0 0
Σ(α) 0 Z(r)CC Z(r)CF
0 0 Z(r)FC Z(r)FF


 =




0
LFC LCC

0 0 0
0 0 LFC LCC







Z(l)CC Σ(α)T

I
Σ(α) Z(r)CC

I







0 UCF 0 0
UCC 0 0

0 UCF

UCC


 (10)

Observe that ZFF, ZFC, and ZCF have all been factorized.

ZCC is the Schur complement of the partial factorization of Z.

The remaining system in the middle of Equation 10 is now

reducible and will be factorized when the algorithm visits the

parent node.

Different from factorizing the leaf node, factors V (α) and

Z(α) of an inner node α are computed using the factors of the

two children. While V (α) represents the low-rank factor in the

off-diagonal block of an HSS matrix, it can be computed from

its children as shown at line 6, Algorithm II.1. For example,

consider the off-diagonal block Aβα in Equation 6. After the

similar transformation that we apply from Equation 8, the odd-

diagonal block becomes


R(t)T

0 0
R(b)T

0 0


PT

β̃ [̃tb̃]
K

β̃α̃
Pα̃[̃lr̃]

[
R(l) 0 0

0 R(r) 0

]
.

(11)

Observe that the factors above also have the columns and

rows representing the null space zero-out after applying the

�

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27,2022 at 16:39:28 UTC from IEEE Xplore. Restrictions apply.

Algorithm II.1 factorize(α)

1: [C, F] = [{α̃}, {α \ α̃}]
2: if isLeaf(α) then

3: V (α) = P (α), Z(α) = K(α, α)
4: else

5: Σ = R(r)K
r̃l̃
R(l)T

6: V (α) = P (α)

[
R(l)

R(r)

]

7: Z(α) =

[
Z(l)CC ΣT

Σ ZCC(r)

]

8: end if

9: [QC(α), R(α)] = GEQRF(V (α)T)
10: [Q[C,F](α), R(α)] = ORGQR(QC(α))
11: Z[CC,CF;FC,FF](α) =partialLU(Q

T
[C,F](α)Z(α)Q[C,F](α))

orthornomal transformation from the two sides. Specifically,

Q(l) and Q(r) are applied from the right such that only

the upper triangular matrices R(l) and R(r) were left. On

the other hand, the diagonal block Z(α) is reduced from

Equation 10. The rest of the factorization steps are the same

except that the computation of factor V (α) is skipped while

reaching the root of the tree. In this case, Q(α) is identity and

the partial factorization becomes a full LU factorization since

there is no null space left.

Algorithm II.2 solve(α,forward/backward)

1: if forward then

2: if !isLeaf(α) then B(α) = [BC(l);BC(r)]
3: B[C;F](α) = Q[C,F](α)

TB[C;F](α)
4: B[C;F](α) = partialLUForward(Z(α), B[C;F](α))
5: else

6: B[C;F](α) = partialLUBackward(Z(α), B[C;F](α))

7: B[C;F](α) = Q[C,F](α)B[C;F](α)
8: if !isLeaf(α) then [BC(l);BC(r)] = B(α)
9: end if

ULV solve: Mathematically, ULV factorization applies sim-

ilar transformation and LU factorization alternatively. As a

result, the linear solve also contains two phases: a forward

phase that resembles a post-order traversal of the tree (bottom-

up) and a backward phase (pre-order traversal, top-down).

Algorithm II.2 summarizes both traversals. Note that the

concatenation between BC(l), BC(r) and orthonormal trans-

formation QTB are the only differences compared to a normal

forward substitution. Similarly, in the backward phase we

need to apply orthonormal transformation QB and split the

intermediate results [BC(l);BC(r)].

C. Parallelism

We implemented our distributed ULV factorization (Al-

gorithm II.3) and solver (Algorithm II.4) using GOFMM’s

distributed tree infrastructure. GOFMM maps the whole tree to

p distributed processes (see Figure 1 for an example where

p = 4 in four different colors). At depth-log(p), p subtrees

are distributed over p-process without replication. We say the

portion of the tree below depth-log(p) is local to each process

(with a single color in the figure). Tree nodes above depth-

log(p) are distributed (filled with the gradient of colors).

Each distributed tree node above depth-log(p) has a unique

MPI sub-communicator for collectives. A node α is assigned

with communicator comm(α), where size(α) and rank(α)
denote the local MPI rank and size in comm(α). While

splitting a node α, processes are divided into two subgroups

comm(l) and comm(r) according to rank(α). Processes with

rank(α) < (1/2)size(α) will be assigned to the comm(l)
otherwise comm(r). Processes in comm(l) and comm(r) store

the factors of node l and r. In our distributed algorithm,

factors of a distributed node l are stored on rank(l) = 0,

and factors of r are stored on rank(r) = 0. In the view

of their parent’s communicator comm(α), these two MPI

processes represent rank(α) = 0 (the left master) and

rank(α) = (1/2)size(α) (the right master).

Factorization: In Algorithm II.3, we first deal with the base

case at line 2. While size(α) is one (the sub-communicator

only has one MPI process), node α is the root of the local

tree. We call our shared memory factorization (Algorithm II.1)

to decompose α. Otherwise, we must send factors R(r) and

Z(r) from the right master (rank(α) = (1/2)size(α)) to

the left master. Once received R(l) and R(r), the left master

(rank(α) = 0) can proceed to invoke the shared memory

factorization. Overall, the whole distributed factorization in-

volves a post-order traversal of the local tree and a post-order

traversal of the distributed tree.

Solve: Our distributed ULV solver Algorithm II.4 has a

similar structure where only the left and right master par-

ticipate in the computation. Line 2 calls the shared memory

solver (Algorithm II.2) to deal with the base case that contains

only one MPI process. While node α is distributed, point-to-

point communication is required between the left and right

master. During the forward pass, the left master only needs

to receive BC(r) from the right master before calling the

shared memory forward solve. This is because all other factors

have been received previously the factorization step. During

the backward pass, the left master will first invoke a shared

memory backward solve and send RC(r) back to the right

master. Overall the whole distributed solve involves a post-

order traversal of the local and distributed tree, and a preorder

traversal of the distributed and local tree.

Algorithm II.3 distFactorize(α)

1: if size(α) is one then

2: return factorize(α)
3: end if

4: if rank(α) is 0 then

5: RECV(R(r),comm(α))
6: RECV(Z(r),comm(α))
7: factorize(α)
8: else if rank(α) is (1/2)size(α) then

9: SEND(R(r),comm(α))
10: SEND(Z(r),comm(α))
11: end if

�

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27,2022 at 16:39:28 UTC from IEEE Xplore. Restrictions apply.

Kll

Krr

l r

�

level-1

level-2

level-3

Distributed

Tree

Local

Tree

K� P

K �P��

Pll

Prr

KlrPrr

KrlPll

~

~

~

~

K P~

P K P~ ~

P K P
~ ~

P ~

~ ~

~ ~

~ ~

~~

P��

P

~~
~

~

~~
~

~

~ ~

Fig. 1 Distributed HSS matrix stored in a complete binary tree. The four subtrees (at depth-log 4) in four single colors on the right
represent the four hierarchical diagonal blocks on the left. Each process owns all the factors in the same color in the diagonal block, which
represents the local subtree. Tree nodes above depth-log 4 are distributed. That is, the factors of the off-diagonal blocks are stored on multiple
processes. To be specific, the low-rank factors P

θθ̃
K

θ̃π̃
Pπ̃π are stored on four different processes, where each process owns the factors in

the same color.

Algorithm II.4 distSolve(α,forward/backward)

1: if size(α) is one then

2: return solve(α,forward/backward)
3: end if

4: if rank(α) is left master then

5: RECV(BC(r),comm(α)) if forward

6: solve(α,forward/backward)
7: SEND(BC(r),comm(α)) if backward

8: else if rank(α) is the right master then

9: SEND(BC(c),comm(α)) if forward

10: RECV(BC(c),comm(α)) if backward

11: end if

D. Complexity Analysis

Let m be the leaf node size, D = log(N/m) be the tree

depth, N/p be the number of indices owned per MPI process,

ts be the latency, tw be the reciprocal of the bandwidth, and s
be the rank of the off-diagonal blocks. For simplicity, let leaf

node size m be equal to the rank s of the off-diagonal blocks.

With the assumption above, distributed factorization Algo-

rithm II.3 takes O(s3) work per node due to the QR and partial

LU factorization. Given a tree with 2(N/m) − 1 nodes, the

total work is O(s3(N/m)) for the factorization. While only

the left and right master participate in the factorization above

depth-log p, the parallel time complexity with p-process is

O

(
(ts + tws

2) log p+ s3
(

N

mp

)
+ s3 log p

)
. (12)

The first portion represents the communication cost of R(r)
and Z(r). Each factor has message size s2 and it takes one

SEND and RECV. As a result, the latency is constant per tree

level. The second portion represents the flops per process.

Each process factorizes a local subtree with 2(N/(pm)) −
1 nodes. The distributed tree above depth-log p is factorized

level-by-level due to the dependencies, hence O(s3 log p) time.

Similarly distributed solve Algorithm II.4 takes O(s2b)
work per node where b denotes the number of right-hand

sides. Given a tree with 2(N/m) − 1 nodes, the total work

(including both forward and backward) is O(s2b(N/m)) for

the solve. While only the left and right master participate in the

factorization above depth-log p, the parallel time complexity

with p-process is

O

(
(ts + twsb) log p+ s2b

(
N

pm

)
+ s2b log p

)
. (13)

The first portion represents the communication cost of BC(r).
The message size is sb per level and it only takes a single

SEND and RECV. As a result, the latency is constant per tree

level. The second portion represents the flops per process.

The distributed tree above depth-log p is solved level-by-level

due to the dependencies, hence O(s2b log p) time.

E. Parameter Turning

GOFMM has several parameters and algorithmic choices,

e.g. FMM vs. HSS; or adaptive rank selection vs. preset rank

selection (for the off-diagonal blocks). The most important

parameters are the leaf node size m, and the maximum rank

of the off-diagonal block s. These two parameters control the

asymptotic behavior of the total work to a great extent (§II-D);

both m and s must be small constants and must not scale with

the problem size N . For m this is not an issue. But for s it

highly depends on the generating process for the matrix. For

example for certain matrices constant s is only possible when

the FMM variant is used. A secondary side effect of s and m
is also their impact on FLOPS. They affect the size of BLAS

and LAPACK functions on each node; hence m and s must be

sufficiently large to achieve high FLOPS efficiency. Of course,

rank s directly affects the accuracy of the approximation and

m determine the block size of the sparsity (also accuracy

related). We tune these two parameters using a 2D grid-search

in log-2 scale and scan values from 64 to 2,048.

While the actual rank of each off-diagonal block is un-

known, GOFMM employs an adaptive interpolative decomposi-

�

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27,2022 at 16:39:28 UTC from IEEE Xplore. Restrictions apply.

tion (ID) [13] to select the rank based on the desired accuracy

of the low-rank approximation. However, the accuracy of the

off-diagonal block (see [18] for a proof of the upper bound

of the nested adaptive ID with random sampling) does not

translate directly to the accuracy of the full matrix due to the

randomized sampling. To properly select tolerance for the ID,

we manually select and adjust the maximum rank.

Finally, there are a few parameters we need to tune depend-

ing on the applications. Here we take kernel ridge regression

with 2-norm regularization as an example. The objective

function we want to minimize is

min
w

‖u−Kw‖22 +
λ

2
‖w‖22, (14)

where u denotes the labels, and λ denotes the regularization.

The optimization above is equivalent to solving u = (K +
λI)w given λ. When K is a Gaussian kernel matrix, we further

need to decide the bandwidth h that achieve the smallest

objective. To tune both λ and h, we typically employ line

search and ten-fold cross-validation.

III. EMPIRICAL RESULTS

We conduct a number of experiments (#1–#36) to demon-

strate the efficiency, scalability of the direct solver. First, we

discuss the implementation and hardware. Then we report

the scaling experiments (Figure 2 and Figure 3). Finally, we

test the HSS factorization as a preconditioner for the FMM

approximation for K̃. We report the results in Table I.

Implementation and hardware: Our solver is implemented

in C++ with MPI (MPI_THREAD_MULTIPLE is required)

and OpenMP. The implementation is available in GOFMM,

and its only dependencies are multi-threaded BLAS/LAPACK

and MPI (we used the Intel MPI library in the following

experiments). We conducted our experiments on the TACC’s

“Stampede 2” system. Each node has two 24-core, Intel Xeon

Platinum 8160 “Skylake” processors, which have two AVX-

512 units. Thus, theoretical peak per node is roughly 4.3

TFLOPS in single precision. We estimate this metric according

to the base frequency (1.4Ghz), AVX512 vector length (16

floats), FMA throughput per core/cycle (dual issue, i.e., 4

flops), and the number of physical cores per node (48

cores divided into two sockets). Except for kernel matrices

generated by the real world dataset COVTYPE [16], all runs

are performed in single precision and we use one MPI rank

and 48 OpenMP threads per node.

SPD matrices: We conduct our experiments on several

different SPD and Gaussian kernel matrices. For the kernel

matrices we use random point clouds (normally distributed

from 500M to 16M points in 6D) and the COVTYPE UCI

dataset (100K, 54D). Notice that for kernel matrices, the higher

the intrinsic dimension of the dataset the harder is for the

matrix to compress and factorize. We also use three other non-

kernel matrices with size 65,536. K02 is a 2D regularized

inverse Laplacian squared, resembling the Hessian operator

of a PDE-constrained optimization problem. The Laplacian

is discretized using a 5-stencil finite-difference scheme with

Dirichlet boundary conditions on a regular grid. K13 is 2D

advection-diffusion operators on a regular grid with highly

variable coefficients. Both resemble inverse covariance matri-

ces and Hessian operators from optimization and uncertainty

quantification problems. K15 is 2D pseudo-spectral advection-

diffusion-reaction operators with variable coefficients.

Strong scaling: In Figure 2 (#1, #2, #3, #4, #5, #6, #7,

#8, #9, #10, #11, and #12), we use a 224-by-224 Gaussian

kernel matrix generated with a synthetic 6-D point dataset.

Using this matrix, we perform strong scaling experiments

using up to 6,144 Skylake cores (128 compute nodes, using

one MPI process per node and 48 OpenMP threads). First,

K is compressed by GOFMM. Then we report timings for

the factorization phase on the left; and the solving phase

(with 64 right-hand sides) on the right. The x-axis denotes

the number of cores, and the y-axis denotes the runtime in

seconds. The bar charts reveal the scaling trend, and the

blue dotted lines denote the absolute floating point arithmetic

efficiency computed as the ratio of the achieved GFLOPS over

the theoretical peak (4.3 TFLOPS per node).

The factorization phase achieves a higher floating efficiency

due to the O(s3) QR and LU factorization computed on

each node. The solving phase is more memory bound, since

there is only P (s2b) FLOPS per node (with number of right-

hand sides b = 64). The efficiency degradation is expected

as an artifact of our distributed algorithm. Recall that the

factorization and solving only happen on the left-master of

the local communicator, and the efficiency achieved by these

distributed tree nodes degrades exponentially. As a result, the

deeper the distributed tree (that is toward the right side of

the x-axis in the figure) is, the faster the efficiency decades.

Overall, our implementation is able to achieve 15.3% and

7.3% of peak using 6,144 CPU cores in the strong scaling

experiments.

Week scaling: In Figure 3 (experiments #13, #14, #15, #16,

#17, #18, #19, #20, #21, #22, #23, and #24, we perform weak

scaling experiments (217 per process) on synthetic Gaussian

kernel matrices with up to 128 MPI processes (6,144 cores). To

ensure the flops required by the computation scales linear

with the number cores, we fix the rank of the HSS matrix

generated by GOFMM to 256.

Comparing with the strong scaling results, we can observe

that weak scaling results usually achieve lower efficiency using

the same amount of cores. For example, #13 in the weak

scaling experiment achieves only 20% of peak but #1 in

the strong scaling experiment achieves almost 30%. This is

because #1 has 64× more available tasks to schedule due to a

taller tree. As a result, #13 suffers less from the effect of the

diminishing parallelism (according to the Amdahl’s law). The

discrepancy between strong and weak scaling in the solving

phase is smaller due to the fact that there are 2× more tasks

than the factorization phase and our setup with b = 64 is

more memory bound. Notice that the efficiency typically drops

dramatically from 768-core (16 compute nodes) to 1,536-core

(32 compute nodes). We suspect that this is because the leaf

switch size of Stampede2 fat-tree topology is 28-node. As a

result, the cost of the additional hop is introduced while scaling

�

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27,2022 at 16:39:28 UTC from IEEE Xplore. Restrictions apply.

192-core 384 768 1536 3072 6144

E ciency Factorize

15.3%
20.3%

25.5%27.5%28.9%30%30% 28.9% 27.5% 25.5%
20.3%

15.3%

192-core 384 768 1536 3072 6144

E ciency Solve

7.3%
12.2%

16.2%16.2%16.5%16.6%16.6% 16.5% 16.2% 16.2%
12.2%

7.3%

1.41s 0.71s 0.36s 0.18s 0.12s 0.10s 11.07s 5.75s 3.01s 1.63s 1.02s 0.68s

#01 #02 #03 #04 #05 #06 #07 #08 #09 #10 #11 #12

1.0s

0.1s

Fig. 2 Strong scaling (runtime in seconds as a function of the number of cores) of our ULV factorization and solver applied to a 16M-
by-16M Gaussian kernel matrix generated by a 6D random point cloud. Left: Factorization time and the floating point operation efficiency
(as the ratio between achieved GFLOPS and theoretical peak (≈4.3 TFLOPS). Right: Solving time (64 right-hand sides) and the floating
point operation efficiency. The x-axis denotes number of cores (6,144 Skylake cores correspond to 128 Stampede-2 nodes), the y-axis denotes
time in seconds in log scale. We annotate the scale in the middle of each figure.

192-core 384 768 1536 3072 6144

E ciency Factorize

15.3%16%17.1%18%18.7%19.7%19.7% 18.7% 18% 17.1% 16% 15.3%

192-core 384 768 1536 3072 6144

E ciency Solve

7.3%8.1%10.4%
14.6%15.5%16.2%16.2% 15.5% 14.6%

10.4% 8.1% 7.3%

0.04s 0.04s 0.05s 0.07s 0.09s 0.10s 0.20s 0.19s 0.18s 0.17s 0.16s 0.15s

#13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24

1.0s

0.1s

Fig. 3 Weak scaling (runtime in seconds vs. cores) of our ULV factorization and solver applied to Gaussian kernel matrices generated
synthetically with point clouds in 6-D. The configuration is the same as Figure 2. The grain size is 524k points per MPI process. The largest
problem size involves factorizing of the 67M-by-67M kernel matrix and solving right-hand sides with a 67M-by-64 matrix of random vectors.

from 16- to 32-node.

Preconditioner: We show that our HSS solver can be used

as a preconditioner for other more sophisticated hierarchical

matrices such as FMM matrices. To be specific, we use GOFMM

to construct algebraic FMM approximation of different SPD

matrices and extract their HSS structures to construct the

preconditioners. We show that the HSS preconditioners can

effectively improve the convergent rate.

In Table I, we report the convergence results (#25–#33) of

precondition conjugate gradient (PCG) method, an iterative

linear solver for symmetric matrices, on four different SPD

matrices. For each matrix, we conduct three experiments that

vary the percentage of the sparse correction in the off-diagonal

blocks, the preconditioner (identity of HSS) and observe the

convergent behavior. Throughout the experiments we use a

mixed stopping criteria that will terminate the PCG execution

either each 1E-3 in relative error or exceeding 20-minute in

the execution time.

Experiments #25, #28, #31 and #34 do not introduce any

sparse correction in the approximation. As a result, our HSS

solver is able to solve the system directly without any iteration.

While increasing the sparse correction to 1%, our HSS solver

can no longer solve the systems directly. Take #26 as an exam-

ple: From column MATVECǫ, we can observe that increasing

sparse correction in the off-diagonal blocks (the amount of

direct evaluation) can improve the approximation accuracy.

However, PCG takes 940 iterations to converge even with the

help of our HSS preconditioner. Without the preconditioner

(using an identity matrix as a preconditioner), we can observe

that the iterative solver terminated at 6E-2 (2,532 iterations)

and did not converge within 20 minutes. Despite that matrices

K02, K13, and K15 do not have no difficulty to converge

without a preconditioner. Still our HSS preconditioner further

improves the convergence rate in #29, #32, and #35.

�

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27,2022 at 16:39:28 UTC from IEEE Xplore. Restrictions apply.

Matrix Spy Pred MATVECǫ SOLVEǫ SOLVEt #Iter
25 COV 0% True 1E-2 4E-11 0.43 0
26 COV 1% True 7E-3 8E-4 0.43 940
27 COV 1% False 7E-3 6E-2 - 2,532

28 K02 0% True 1E-2 1E-6 0.13 0
29 K02 1% True 8E-3 3E-5 0.13 0
30 K02 1% False 8E-3 4E-4 - 1

31 K13 0% True 5E-5 9E-7 0.13 0
32 K13 1% True 4E-5 1E-6 0.13 0
33 K13 1% False 4E-5 2E-5 - 1

34 K15 0% True 5E-1 1E-6 0.05 0
35 K15 1% True 1E-1 2E-4 0.05 3
36 K15 1% False 1E-1 8E-4 - 3

TABLE I Preconditioner experiments using precondition conjugate
gradient (PCG). All experiments were done on four Stampede-2
nodes (192 Skylake cores) for different matrices. Throughout the
experiments we control the percentage of the sparse correction in
GOFMM and the type of the preconditioner (identity or HSS). The
results are reported base on a mixed stopping criteria. The PCG
execution terminates while either reaching 1E-3 in relative error or
exceeding 20-minute in the execution time.

IV. CONCLUSIONS

We presented an O(N) parallel algorithm for approximate

factorization of SPD matrices. To our knowledge, this is the

only publicly available library with this capability. Still this

complexity does not come with some hefty “fine print”. To

improve stability we use GETRF that messes up with the

symmetry and makes the factorization slower. Moreover, we

could switch to POTRF if we know that the approximation will

be stable; this however, has not been implemented yet. Finally,

we did not consider GPU implementation. The latter is quite

critical as most upcoming architectures will package most of

the bandwidth and compute power on multi-GPU systems.

This is future work.

ACKNOWLEDGMENTS

This material is based upon work supported by AFOSR

grant FOSR-FA9550-17-1-0190; by NSF grants CCF-CCF-

1725743 and CCF-1817048; by the U.S. Department of En-

ergy, Office of Science, Office of Advanced Scientific Com-

puting Research, Applied Mathematics program under Award

Number DE- SC0019393; by NIH grant R01NS042645-14;

and the Deutsche Forschungsgemeinschaft (DFG) through the

TUM International Graduate School of Science and Engi-

neering (IGSSE) and SPPEXA. Any opinions, findings, and

conclusions or recommendations expressed herein are those

of the authors and do not necessarily reflect the views of the

AFOSR, the DOE, the NIH, or the NSF. Computing time on

the Texas Advanced Computing Centers Stampede system was

provided by an allocation from TACC and the NSF.

REFERENCES

[1] S. ABDULAH, H. LTAIEF, Y. SUN, M. G. GENTON, AND D. E. KEYES,
Exageostat: A high performance unified software for geostatistics on
manycore systems, IEEE Transactions on Parallel and Distributed Sys-
tems, 29 (2018), pp. 2771–2784.

[2] , Parallel approximation of the maximum likelihood estimation
for the prediction of large-scale geostatistics simulations, in 2018 IEEE
International Conference on Cluster Computing (CLUSTER), IEEE,
2018, pp. 98–108.

[3] K. AKBUDAK, H. LTAIEF, A. MIKHALEV, A. CHARARA, A. ESPOS-
ITO, AND D. KEYES, Exploiting data sparsity for large-scale matrix
computations, in European Conference on Parallel Processing, Springer,
2018, pp. 721–734.

[4] M. BEBENDORF, Hierarchical matrices, Springer, 2008.
[5] M. BENZI, G. H. GOLUB, AND J. LIESEN, Numerical solution of saddle

point problems, Acta numerica, 14 (2005), pp. 1–137.
[6] R. H. BYRD, G. M. CHIN, W. NEVEITT, AND J. NOCEDAL, On the use

of Stochastic Hessian Information in Optimization methods for Machine
Learning, SIAM Journal on Optimization, 21 (2011), pp. 977–995.

[7] N. CANCEDDA, E. GAUSSIER, C. GOUTTE, AND J. M. RENDERS, Word
sequence kernels, Journal of Machine Learning Research, 3 (2003),
pp. 1059–1082.

[8] S. CHANDRASEKARAN, M. GU, AND T. PALS, A fast ulv decomposition
solver for hierarchically semiseparable representations, SIAM Journal
on Matrix Analysis and Applications, 28 (2006), pp. 603–622.

[9] P. GHYSELS, X. S. LI, F.-H. ROUET, S. WILLIAMS, AND A. NAPOV,
An efficient multicore implementation of a novel HSS-structured multi-
frontal solver using randomized sampling, SIAM Journal on Scientific
Computing, 38 (2016), pp. S358–S384.

[10] A. GRAY AND A. MOORE, N-body problems in statistical learning,
Advances in neural information processing systems, (2001), pp. 521–
527.

[11] GREENGARD, L., Fast algorithms for classical physics, Science, 265
(1994), pp. 909–914.

[12] W. HACKBUSCH, Hierarchical matrices: Algorithms and analysis,
Springer Series in Computational Mathematics 49, Springer-Verlag
Berlin Heidelberg, 1 ed., 2015.

[13] N. HALKO, P.-G. MARTINSSON, AND J. TROPP, Finding structure
with randomness: Probabilistic algorithms for constructing approximate
matrix decompositions, SIAM Review, 53 (2011), pp. 217–288.

[14] T. HOFMANN, B. SCHÖLKOPF, AND A. J. SMOLA, Kernel methods in
machine learning, The annals of statistics, (2008), pp. 1171–1220.

[15] R. I. KONDOR AND J. LAFFERTY, Diffusion kernels on graphs and other
discrete input spaces, in ICML, vol. 2, 2002, pp. 315–322.

[16] M. LICHMAN, UCI machine learning repository, 2013.
[17] H. LTAIEF, A. CHARARA, D. GRATADOUR, N. DOUCET, B. HADRI,

E. GENDRON, S. FEKI, AND D. KEYES, Real-time massively distributed
multi-object adaptive optics simulations for the european extremely large
telescope, in 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), IEEE, 2018, pp. 75–84.

[18] W. B. MARCH, B. XIAO, C. D. YU, AND G. BIROS, Askit: An efficient,
parallel library for high-dimensional kernel summations, SIAM Journal
on Scientific Computing, 38 (2016), pp. S720–S749.

[19] P.-G. MARTINSSON, Compressing rank-structured matrices via ran-
domized sampling, SIAM Journal on Scientific Computing, 38 (2016),
pp. A1959–A1986.

[20] K. R. MUSKE AND J. W. HOWSE, A Lagrangian method for simultane-
ous nonlinear model predictive control, in Large-Scale PDE-constrained
Optimization: State-of-the-Art, L. Biegler, O. Ghattas, M. Heinken-
schloss, and B. van Bloemen Waanders, eds., Lecture Notes in Compu-
tational Science and Engineering, Springer-Verlag, 2001.

[21] F.-H. ROUET, X. S. LI, P. GHYSELS, AND A. NAPOV, A distributed-
memory package for dense hierarchically semi-separable matrix com-
putations using randomization, ACM Transactions in Mathematical
Software, 42 (2016), pp. 27:1–27:35.

[22] C. YU, W. MARCH, AND G. BIROS, An n logn parallel fast direct
solver for kernel matrices, in 31th IEEE International Parallel &
Distributed Processing Symposium (IEEE IPDPS 2017), Orlando, USA,
May 2017.

[23] C. D. YU, J. LEVITT, S. REIZ, AND G. BIROS, Geometry-oblivious
FMM for compressing dense SPD matrices, in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ACM, 2017, p. 53.

[24] C. D. YU, S. REIZ, AND G. BIROS, Distributed-memory hierarchical
compression of dense SPD matrices, in Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis, SC ’18, Piscataway, NJ, USA, 2018, IEEE Press, pp. 15:1–
15:15.

[25] C. D. YU, S. RIESZ, AND J. LEVITT, GOFMM home page. 2018.

�

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 27,2022 at 16:39:28 UTC from IEEE Xplore. Restrictions apply.

