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ABSTRACT

Differential privacy has been accepted as one of the most popular
techniques to protect user data privacy. A common way for utilizing
private data under DP is to take an input dataset and synthesize
a new dataset that preserves features of the input dataset while
satisfying DP. A trade-off always exists between the strength of pri-
vacy protection and the utility of the final output: stronger privacy
protection requires larger randomness, so the outputs usually have
alarger variance and can be far from optimal. In this paper, we sum-
marize our proposed metric for the NIST “A Better Meter Stick for
Differential Privacy” competition [26], MarGinal Difference (MGD),
for measuring the utility of a synthesized dataset. Our metric is
based on earth mover distance. We introduce new features in our
metric so that it is not affected by some small random noise that is
unavoidable in the DP context but focuses more on the significant
difference. We show that our metric can reflect the range query
error better compared with other existing metrics. We introduce
an efficient computation method based on the min-cost flow to
alleviate the high computation cost of the earth mover’s distance.
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1 INTRODUCTION

Driven by the successive user privacy regulations, such as
GDPR [29] and CCPA [21], companies and governments have been
putting more attention on how to perform data analysis without
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breaching user privacy. Differential privacy (DP) [9], as a de facto
notion for privacy protection, has been applied on a large number
of applications. Uber and LinkedIn build their differentially private
database applications Flex [18], and Pinot [28] for data analysis.
Google and Microsoft apply (local) differentially private mecha-
nisms [8, 10, 12] to collect data from user devices. There are also
a large number of efforts in the machine learning area to ensure
the output model is private [1, 31], and the DP training has been
integrated into both TensorFlow [14] and PyTorch [11]. Recently,
DP has been applied by the US census bureau when the 2020 census
statistics are published [2].

All the applications mentioned above are private mechanisms
designed for specific tasks given user datasets. One disadvantage of
these mechanisms is that privacy loss, which can be understood as
the risk of privacy leakage, will be accumulated when the mecha-
nisms are executed multiple times on the same dataset. One promis-
ing idea is to generate synthetic datasets with DP guarantee based
on the real datasets to avoid privacy loss. Any mechanism executed
on the differentially private synthetic dataset can be considered
post-process and does not introduce additional privacy loss [9].

Many impressive differential private data synthesis methods
have been proposed. Some of the methods are based on proba-
bilistic graphical models. PrivBayes [32] synthesize data using a
Bayesian network. The mechanism first privately determines the
network structure, then obtains noisy marginals for the conditional
probability distribution of each node to determine the probabil-
ities of the edges. Another approach, PGM, which uses Markov
Random Fields, was proposed in [24]. Both PrivBayes and PGM
synthesize data by sampling from the privatized graphical model.
Another more recent work, PrivSyn [33] first privately selects im-
portant marginals and then builds dense graph models based on
those privatized marginals. When generating the synthetic data, it
will first initialize a random dataset and update it until it matches
the marginals.

Given the differentially private synthetic datasets generated by
the above methods, how to evaluate the utility of the synthetic
dataset can be tricky. In the DP data synthesis papers [32, 33], the
{7 distance between the marginal tables of the ground truth dataset
and the ones of synthetic data is a common metric. However, this
metric can not capture the semantic meaning of the values. Another
common metric used in the papers is to train classification models
on both the ground truth dataset and the synthetic dataset, then
compare the test accuracies of these two classification models on
a ground truth test dataset. If these two models have similar test
accuracies, then the synthetic dataset arguably has similar utility
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as the ground truth one. However, most machine learning models
are not explainable, so it may be hard to interpret and quantify the
utility. A third metric that appears in the literature is called range
query. It generates random rang queries on some specified attributes
and compares the results from the ground truth dataset and the
synthetic dataset. The smaller the differences are, the closer these
two datasets are. Compared with the marginal table distance, the
range query difference also considers the basic semantic meaning of
the value. However, it is only mainly used for numerical or ordinal
datasets.

In this paper, we propose a metric, MarGinal Difference (MGD).
The MGD consists of a set of Approximate Earth Mover Cost (AEMC)
between the ground truth marginals and the marginals of the syn-
thetic dataset. The AEMC is derived from the earth mover distance,
so the MGD takes the semantics of the values into account. Our pro-
posed metric is also configurable so that MGD can handle different
kinds of attributes, whether numerical or categorical. Users can
further specify the weights of different marginals so that the final
metric score is proportional to the importance of the marginals.
Because DP protects users’ privacy with randomness, the generated
datasets cannot be exactly the same as the ground truth dataset.
Our metric ignores the small mismatches and only focuses on the
significant differences.

The standard way to obtain an earth mover’s distance is to solve
an optimization problem. The computation cost of solving such an
optimization problem is one of the major concerns for the earth
mover’s distance. We design an efficient algorithm for the AEMC
based on the min-flow algorithm to ease the concern.

To summarize, our main contribution in this paper are the fol-
lowing:

e We propose a new utility metric for the differential private
data publication. Our metric is configurable and can handle
a mixture of numerical and categorical attributes. The se-
mantic meaning of the values and the stochastic nature of
the DP mechanisms are both considered by our metric.

e We show how to apply our metric to some real-world use
cases and give a concrete case study to show the effectiveness
of our metric.

o We design an efficient algorithm for our metric so that the
computation time can be reduced significantly compared
with the general solution with optimization packages.

Road map. In Section 2, we revisit the definition of DP and a
private data synthesis methods. We also summarize the common
metrics used in the existing literature for measuring the utility of
the private dataset. In Section 3, we provide a high-level summary
for our proposed metric. We formalized our metric in Section 4 and
show use cases and a concrete case study in Section 5. We discuss
how to alleviate computation cost in Section 6, and conclude with
discussions in Section 7.

2 BACKGROUND
2.1 Differential privacy

Differential privacy was first introduced in [9]. Its secure setting
assumes a central data curator has access to all users’ data and
publishes outputs of some mechanisms. Intuitively, DP requires
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that adding or removing any individual’s record should have a
limited impact on the mechanism’s output.

DEFINITION 1 ((€,§)-DIFFERENTIAL PRIVACY). A randomized
mechanism A is differentially private iff given any pair of neighbor-
ing datasets X and X', the following holds for all possible output o:
Pr[A(X) = 0] < e°Pr[AX’) = 0] + 6.

The neighboring datasets are defined as any pairs of datasets
that differ at exactly one user’s record.

Private data synthesis. In this paper, we focus on designing a
utility metric for synthetic datasets generated differential private
mechanisms. Compared to designing specific algorithms for each
task, such differential private data synthesis has the advantage
that additional data analysis tasks can be performed without any
further privacy concern: a property of differential privacy called
post-processing allow us to arbitrarily process data that is already
differentially private. Furthermore, existing algorithms for perform-
ing data analysis do not need to be modified.

The most promising existing method for the private generation of
synthetic datasets uses probabilistic graphical models. The earliest
work is PrivBayes [32], which uses a Bayesian network. It comprises
two phases: (1) privately determines the network structure, and (2)
obtains noisy marginals used as the basis for sampling along with
the network. In 2018, NIST hosted a Differential Privacy Synthetic
Data Challenge [25]. Three lines of methods are developed during
and after this challenge.

e PGM [24] proposes a method only for sampling synthetic
datasets (assuming the structure is chosen) by replacing the
Bayesian network with Markov Random Fields. PGM (and
PrivBayes) can only handle sparse fields. The authors then
extend it to handle dense fields [23].

o PrivMRF developed a method only for privately choosing
marginals based on Markov Random Fields [6]. The sampling
procedure uses PGM.

e PrivSyn [33] is a complete toolkit that first privately selects
important marginals and then builds dense graph models
based on those privatized marginals. Unlike PrivBayes and
PGM, which synthesize data by sampling from the privatized
graphical model, PrivSyn first initializes a random dataset
and updates it until it matches the marginals. Because of this,
PrivSyn can naturally handle dense graphical models.

There are also other approaches that do not use probabilistic
graphical models, such as [5, 13, 17], but they either are computa-
tionally inefficient or have poor empirical performance.

2.2 Existing common utility metrics

The following are some common metrics have been used to show
the utility of the private synthetic dataset.

Marginal table distance metric. This metric computes the L,
distance between pairs k-way marginal tables, each pair having
one from the ground truth dataset and the other from the synthetic
dataset. The limitation of this metric is that it does not consider
the semantic meaning of the values. For example, assume a 1-way
marginal has 3 bins corresponding to frequencies of numerical
values in intervals [0, 10], (10, 20] and (20, 30]. If the ground truth
marginal is a vector [5, 4, 1], and synthetic dataset A has marginal
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[4,5, 1] and synthetic dataset B has [4, 4, 2]. Both marginals from
synthetic datasets have L; distance 2 to the ground truth marginal.
However, synthetic dataset A is arguably close to the ground truth
because the (10, 20] bin is semantically closer to [0, 10] than (20, 30].

Model performance metric. This metric evaluates the utility of
the synthesis data based on the accuracy of the machine learning
models. Classification machine learning models are trained on the
ground truth and synthetic datasets. The closer the testing accu-
racy of the model trained on the synthetic dataset is to the testing
accuracy of one trained on the ground truth dataset, the higher
utility the synthetic dataset has maintained.

One of the motivations of this metric is that the performance
of the classification model depends on the correlation between
the attributes. If a model trained on a synthetic dataset has simi-
lar performance, then the correlations between the attributes are
maintained well in the synthetic data. However, it is hard to quanti-
tatively explain how the performance of the models can be related
to the utility of the synthetic dataset. An accuracy drop of about 5%
may be unacceptable on some datasets, but it may be considered
a severe performance regression on other datasets. Besides, if we
want to investigate whether some attributes are synthesized well
while the others are not, comparing the results of may not explain
the reason.

Range query metric. A third metric that has been widely used
for DP mechanisms is the range query. A range query returns the
number of records with values that fall in a specified range. When
used as a metric in the DP literature, a large number (usually > 1000)
of range queries with random ranges of some random attributes are
applied on both the ground truth dataset and the synthetic dataset.
The metric score is the average difference between the results on
the ground truth dataset and the synthetic dataset.

One advantage of the range query metric is that range queries
return the local frequencies to measure how the synthetic dataset
maintains semantic meaning. However, range queries are not de-
signed for categorical attributes, so there is no standard way to
apply range queries when a dataset has both ordinal and categorical
attributes.

Pie-chart metric. The pie-chart metric is used in Sprint 1 of the
Differential Privacy Temporal Map Challenge [27]. It is a metric
applied to the marginal table of attributes neighborhood, month
and incident type. To remove the effect of the random noise on
insignificant counts, the metric first set the counts less than 5% of
the overall incidents count to zero. After the preprocessing, the
penalty of the score consists of three parts: the Jensen—-Shannon
distance (JSD), the misleading presence penalty, and a bias penalty.
The JSD mainly considers the over distribution, the second one
penalizes the “false frequent” counts, and the third penalizes the
seriously wrong total count. The final score is calculated as one
minus the normalized penalty.

Compared with the previous ones, the improvement of this met-
ric is that it disregards the effect of DP on the small incident counts
and focuses on the accuracy of the significant incident counts.
However, it is only motivated by and defined on a special use case.
Another limitation of this metric, similar to the marginal table dis-
tance metric, is that it does not consider the semantic meaning of
the attributes.
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3 MGD METRIC OVERVIEW

We propose MarGinal Difference (MGD), a utility metric for private
data publication of relational datasets. MGD assigns a difference score
between a pair of datasets (Dg, D7), where Dg is the synthesized
dataset, and Dr is the ground truth. The high-level idea behind MGD
is to measure the differences between many pairs marginal tables,
each pair having one computed from Dg and one from Dr.

3.1 Design Desiderata

To turn the high-level idea of measuring differences between mar-
ginal tables into a concrete metric, we need to specify the following:
which marginal tables are used in computing the score, how to
measure the differences between two marginal tables, and how to
combine these measurements into one score. We use the following
design objectives to guide our choices for fleshing out the details
of MGD.

o Flexibility. The set of marginal tables and their weights in
deciding the final score can be configured. Under DP con-
straints, one cannot preserve all distribution information in
the input dataset. Fortunately, it is often unnecessary for
a synthetic dataset to preserver all distributions for it to
be useful. Oftentimes not all distributions are equally im-
portant; however, the relative importance among different
distributions, when they exist, cannot be determined without
considering the attributes in the datasets and the application
domain.

Balancing Flexibility with Ease of Use. To provide flexibility,

a metric needs to have configurable parameters; however,
this may make a metric difficult to use. We solve this prob-
lem in two ways. First, instead of making everything config-
urable, we fix some aspects of the metric when we believe
doing so preserves sufficient flexibility. Second, for almost all
parameters, we provide default values that we hope would
work for most application scenarios.

e Accommodation of Numerical Attributes.
with numerical values, we want to take into consideration of
the natural semantic distance between values. For example,
for an age attribute, 19 is not very different from 20, but
is very different from 90, and treating them just as three
different values loses this semantic meaning.

e Accommodation of Structured Attributes. For many cate-
gorical attributes, the semantic meanings also suggest natu-
ral semantic distances between values. The metric should be
able to use these semantic meanings when the application
domain can benefit from doing so.

o Awareness of Noises. Under DP the data are noisy, and it
is understood that small differences cannot be relied upon.
The metric should reflect this, avoiding being dominated by
many small differences.

For attributes

3.2 Key Elements of MGD
The MGD metric is parameterized by the following.

e Data Schema. This specifies what attributes are in the
dataset, the domain of possible values for each attribute,
and any relationships between the values. At the minimum,
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it should be clear whether each attribute is ordinal or not
and the set of values that can be taken for each attribute.
Optionally, one can also provide generalization hierarchies
for these attributes.

o Target Marginal Schemas and Weights. This includes a set

of marginal schemas where each schema specifies the at-
tributes to be included. One applies each schema to Dg and
Dt to obtain marginal tables and computes the AEMC score
between the two resulting marginal tables. The final score
is the weighted average of these AEMC scores, where the
weights are equal by default but can be configured if one
wants to.

Approximate Earth Mover Cost (AEMC) between Two
Marginals. For measuring differences between two marginals,
commonly used metrics include L, Ly, KS divergence, Jensen-
Shannon distance, etc.. However, these metrics do not take into
consideration of the underlying semantic distances between the
values. The desire to use semantic distance values naturally led
us to the earth mover’s distance (EMD). Informally, suppose two
distributions are interpreted as two different ways of piling up a
certain amount of dirt over the region. In that case, the EMD is the
minimum cost of turning one pile into the other, where the cost is
assumed to be the amount of moving dirt times the distance by
which it is moved.

We adapt EMD in three ways to suit our purpose and call the
result AEMC. Instead of normalizing the marginal tables into prob-
ability distributions (i.e., all entries sum up to 1), we first use the
unnormalized record counts to compute a score so that the absolute
number of records also conveys information. The AEMC is obtained
by dividing this score by the total number of records in the ground
truth dataset. Second, in addition to moving counts from one bin
to another, we also allow adding/removing counts directly. This
helps deal with unequal total counts between the two datasets and
make the metric a generalization of the L; distance between two
marginal tables. Third, the earth moving does not need to get the
two marginal tables exactly the same, but only so that the difference
is below a threshold A. The small error tolerance avoids penaliz-
ing small differences in the counts. Without this feature, the score
between two marginal tables can be dominated by cells that have
small values when there are many such cells.

AEMC can be computed either by formulating it as a linear pro-
gram and using a general linear programming solver or by formulat-
ing it as a flow problem in graphs and adapting existing algorithms
to compute it. We have implemented both approaches and provide
the details in the Appendix and code in github . Experiments show
that modeling AEMC as a flow problem results in a fast computation
for fairly large marginals.

4 DEFINITION OF THE MGD METRIC
4.1 Technical Background

Earth Mover Distance (EMD). In statistics, EMD measures the
distances between two probability distributions. EMD has been

Ihttps://github.com/SkinfaxiL/NIST_metric
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considered as an useful tool in computer vision area for the tasks in-
cluding image retrieval [7], feature matching [15], and face verifica-
tion [30]. In recent years, EMD is also widely used in deep learning
models, such as generative adversarial network (GAN) [4, 16, 19].
EMD is also used in document similarity analysis [20] on high
dimensional and sparse bag-of-words vectors.

More formally, EMD takes P and Q, each being a size T vector
of non-negative values such that the sum over each vector is 1. Let
M be a matrix of size T X T in which M;; > 0 is the cost of moving
an element from the i'" position to the jth position (M;; = 0 for
all i values). The standard EMD is defined as:

min XiiM;;
X E Tl
i,j

s.t. Vi, Z Xij = p;
J

Vj, ZXU’ =Qj, Vi,j,X;j20
i

Intuitively, X;; represents the amount one moves from the i’ h ele-
ment to the j¢# element. EMD can be easily extended to vectors that
are not probability distributions. There are also extensions to EMD
that accommodate the situation where the sum of elements in P and
the sum of elements in Q are different, either by allowing free dis-
posal of excess quantities, or introducing cost for adding/removing
values. We use the latter approach in our proposal.

Linear Programs (LP). Linear programming is used to optimize
linear objective functions subject to linear equality and linear in-
equality constraints. One of the most canonical applications of lin-
ear programming is solving the network maximum flow problem.
Also, it can be applied to regression problems and linear classifi-
cation problems. Computing EMD is a special case of the linear
programming problem. There exist software packages that can
solve large LP instances reasonably fast.

Flow Algorithms. EMD can be computed by solving an instance
of the transportation problem using any algorithm for minimum
cost flow problem, e.g. the network simplex algorithm. Since such
algorithms exploit the specific nature of the transportation problem,
they are faster than using LP solvers for the same problem size.

Additional Resources. Any software package used in linear pro-
gramming problems can calculate EMD and the new metric we
proposed in this document. There are both open-sourced and com-
mercial packages. With Python, there are CVXOPT and CVXPY, both
of which are open-source libraries that can be used to solve linear
programming problems. CPLEX, a commercial package developed
by IBM, is another choice to solve the optimization problem. To
accelerate the computation of AEMC, we reduce the problem to a
special kind of min-cost problem and use OR-Tools solver (ortools
python package) to solve the problem.

4.2 Formal Definition of AEMC

AEMC extends EMD in a few ways to be more suitable for our purpose.
More formally, AEMC is parameterized by two parameters: (1) M is
a T X T matrix where each cell M;; is the distance between the
i-th bin and the j-th bin. It is required that M;; € [0, 1] U {co} and
Vi Mj; = 0. Setting M;; = oo means prohibiting moving from bin i
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to bin j. Furthermore, (2) A > 0 is a threshold such that differences
between A are tolerated. AEMC is applied to a pair of size T marginals
P and Q. Each element in P and Q corresponds to a count in the
marginals. We view P and Q as two vectorized/flattened marginal
tables of size T X 1. P denotes the marginal computed from the
synthesized dataset, and Q is computed from the ground truth.
AEMC is defined as:
- A, 0}

1

AEMCp, A (P, Q)
1
= —— min XiiM;i + max
ol "4 2, XM+ 2, {
s.t. Vi, injZPi
J

Here ||Q||1 is the L1 norm of Q, i.e., the sum of all components
in the vector Q. The factor ‘% normalizes the score so that

inj -Qj

it is independent of the total number of records in the dataset.
Intuitively, each movement scheme is specified by a T X T matrix
X, such that X;; gives the amount of moving from bin i to bin j.
The condition }}; X;; = P; says that the total amount of quantity
moving from bin i (some of which can be to itself) is exactly P;. We
want to minimize the cost, which has two components. The first
one, Zl—’j XijM;j, is the cost of moving. Here we define 0 co to be 0,
so when M;; = oo, the corresponding X;; should be 0 to minimize
the above formula. The second one, Zj max {lzi Xij - Qj| — A, 0},
computes the penalty where the result after moving still differs from
the ground truth Q. When the difference is below a threshold A,
the penalty stays at 0. However, when the difference is above A, the
part above A is penalized, representing the cost of adding/removing
counts.

When M;; = co forall i # j, and A = 0, AEMCy A approximates
the L; distance. When P and Q are the same, or their L, distance
is < A, the AEMC between them is 0.

4.3 Parameters and Configurations for MGD

The MGD metric has the following parameters. While many parame-
ters can be configured, we list the default choices for almost all of
them to simplify practical use of MGD.

4.3.1 Data Schema. Any dataset needs accompanying data
schemas for it to make sense. To apply MGD, we require that the
following information be extracted from the data schema for each
attribute.

e IsOrdinal: whether the attribute is ordinal or not, i.e., whether
there is a linear ordering among all values.
e Domain D: the set of all possible values for this attribute.
o Generalization Hierarchy H: a rooted tree such that:
— There is a one-to-one correspondence between the leaves
and each value in the domain D.
— All leaves are at the same depth (distance from the root).
— If an attribute is ordinal, the nodes at each level should
appear (from left to right) in the order of small to large.

Whether an attribute is ordinal or not and its domain are usually
determined by the nature of the dataset. We use a default hierar-
chy with two levels when an attribute does not have an explicitly
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specified generalization hierarchy. All values in the domain are the
leaves, and there is one single root value. Allowing generalization
hierarchy serves several purposes. First, they can be used to capture
semantic distances among values in non-ordinal attributes. Second,
they allow one to use marginals that involve attributes with many
values while keeping the marginal size feasible. One can use gener-
alized values for the attributes that have large domains. Third, for
similar reasons as above, they enable marginals that involve more
attributes.

Semantic Distance. Given a generalization hierarchy, we define
the level of a node as the number of edges from the node to the root.
Thus the root has level 0, and the root’s children have level 1, and
so on. Whether an attribute is ordinal or not and its generalization
hierarchy together fully determine the Semantic Distance function
sd, which assigns a real value between 0 and 1 to each pair of nodes
in the same level. For an ordinal attribute, when a level has k > 1
values, the distance between the i-th and the j-th value at that level
is ‘ii’ll . For two values of a non-ordinal attribute at level ¢, let s be
the level of the lowest common ancestor of the two values, then the
distance between the two values is defined to be t;—s Note that for
any attribute in a marginal, only values from one specific level can
appear, and we thus only need semantic distances between values
at the same level. The definition normalizes the distances to be in
[0, 1] no matter which level is used.

Figure 1 shows two categorical attribute examples in generaliza-
tion hierarchy structure. Figure 1(a) shows a default generalization
hierarchy that has only two levels. The semantic distances between
any two values, for example sd(“Armed Person”, “Bike Theft”), are
all 1. Figure 1(b) shows the case that a categorical attribute has a
customized hierarchy. Thus, the distance between any cities in the
same state is %; the distance between any cities in different states
and the distance between two states are both 1.

Figure 2 shows two ordinal attribute examples in generaliza-
tion hierarchy structure. For Figure 2(a), where months are ordinal
values, the semantic distance between any two months is the or-
dinal difference between them divided by 11. Figure 2(b) shows
an ordinal attribute hierarchy with more than two levels. In this
case, the semantic distance is defined for nodes in the same level.
sd(“1%¢ grade”, “8!" grade”) = = 7 because there are 13 val-
ues in leave level and the distance between those two values are
7; sd(“Elementary school”, “Middle school”) = % = % because
there are only 4 values in the second level.

8—1
13-1

4.3.2 Target Marginals. MGD requires the specification of a set ® of
target marginals, each ¢ € ® consisting of the following:

e Attributes in the Marginal. Users need to specify a set of

attributes included in the marginal, and for each selected at-
tribute, which level of the generalization hierarchy is used to
compute the marginal. The default level for each selected at-
tribute is the leaf level. All the bins in the target marginal are
determined after the attributes are specified. Alternatively,
this can be defined as selecting a generalization level for ev-
ery attribute. If the root level is selected for an attribute, all
records have the same value, and that attribute is effectively
not included in the marginal.
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(a) Generalization hierarchy of attribute “incident type” in 2019 Baltimore
911-Call and Police Incident data.
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(b) Generalization hierarchy of cities in United States.

Figure 1: Generalization hierarchy of categorical attributes.
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(a) Generalization hierarchy of attribute “month” in 2019 Baltimore 911-Call and Police Incident data.

All Education Levels
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(b) Generalization hierarchy of education levels in United States.

Figure 2: Generalization hierarchy of categorical attributes.

o Attribute Weights. A weight w, for each selected attribute

a. The weight w, € {oo} U [0, 1], and if any attribute has
a weight in [0, 1], such weights for all attributes sum up to
1. If an attribute is assigned a weight of oo, it means that
when computing the difference score on this marginal, one
does not want to consider moving between bins where this
attribute has different values.
The assigned weights and the semantic distance function
sd together define the bin distance matrix M? needed for
computing the AEMC. Given two bins b and b’ in the marginal,
if there exists an attribute such that b and b’ differ in an
attribute that has a weight of oo, the distance between b and
b’ is co. Otherwise, the bin distance:

M), =" wa - sd(ba, bl) (2)
a
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where b, denotes value for attribute a of the bin b. The
matrix M? is used in Equation (1) to calculate AEMC. Note
that the distance between two cells are either co or a value
between [0, 1]. When the distance is co, this means that this
marginal one does not want to move between the two bins
in computing the earth mover distance.

The default for weight assignment is to assign the weight
of oo to each categorical attribute and equal weight to each
numerical attribute.

Tolerance threshold A?. The threshold under which differ-
ences in bins are not penalized in AEMC. (See Equation (1)).
Marginal Score Weight w?. It is a positive number. The
weight specifies how much the AEMC computed on the mar-
ginal ¢ contributes to the final MGD score.
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Summary of Difference Measures in defining MGD . There are

several notions that measure differences between two things here.
For clarity, we recap them here.

e Semantic Distance sd is for the distance between two values
for the same attribute. It is defined for any pair of values
that are on the same level of the generalization hierarchy,
and is fully determined by the generalization hierarchy and
whether the attribute is ordinal or not. Its value is always in
[0,1].

e Bin Distance M?, defined in Equation (2), uses the semantic
distance to define the distance between two bins in one mar-
ginal. Each bin is specified by the value that each attribute

can take. M? is defined as the weighted sum of semantic
distances on all attributes. It is a generalization of the Man-
hattan distance by adding a weight to each dimension. We
choose to use a generalization of Manhattan distance (in-
stead of, e.g., Euclidean distance) in part because this enables
faster computation of AEMC.

o AEMC, defined in Equation (1), is for measuring the difference
between a pair of marginal tables, one computed from the
synthesized dataset, and the other from the ground truth
dataset.

® MGD score is the weighted average of the AEMC score for all
marginals in ®. More specifically:

MGDa(Ds, Dr) = | ), @ - ABMCys a6 (#(Ds), ¢(DT)) |/| Y o
ped ped
®)
where ¢(D) is the marginal table obtained from dataset D
using the marginal schema ¢ and flattened to a vector.

4.4 More Fine-grained Utility Information

MGD provides a single final score. However, since MGD is based on the
AEMC scores for different marginals, examining these AEMC scores
provides more fine-grained utility information. One can see which
marginals are preserved well and which are not. It is also possible to
expose more detailed information in computing AEMC to provide an
even deeper dive. For example, within one marginal, we can com-
pute the contribution of each attribute to the AEMC score, illustrating
the information on which attribute is less accurately preserved. It is
even possible to compute the contribution of individual bins to the
AEMC score and output the ones that have the most contribution,
illustrating where the errors concentrate.

5 APPLICATIONS OF THE MGD METRIC

Here we discuss applications of the MGD metric. We discuss an
application of MGD first to census-style data used in NIST’s 2018
Differential Privacy Synthetic Data Challenge [25], then to tem-
poral map data in NIST’s 2020 Differential Privacy Temporal Map
Challenge [26]. Finally, we show experimental results using one
concrete dataset from [27].

5.1 Application to Census-type Data

Here we demonstrate how to apply MGD to census data. As an ap-
plication example, we consider the Public Use Microdata Sample
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(PUMS) of the 1940 USA Census Data used in Phase 3 of the 2018
Differential Privacy Synthetic Data challenge [25]. The dataset has
98 attributes. In the challenge, three metrics were used.

o Density Estimation. For this metric, the scoring algorithm
randomly samples 300 marginal schemas, each with three
randomly chosen attributes. Then, compute the normalized
marginal tables from the synthetic dataset and the ground
truth dataset for each marginal schema. Then, use the L;
distance between the two marginal tables as the penalty.
This can be defined in a straightforward way using MGD.

e Range Query. For this metric, the scoring algorithm ran-
domly samples 300 range queries and assesses the synthetic
dataset’s accuracy to answer these queries. This cannot be
directly implemented using MGD, although this score is highly
correlated with the above density estimation score computed
from 3-way marginals, as observed during the competition.

¢ Gini Index and Rank Accuracy. For each city present in the

dataset (as specified by the CITY column), we calculate, based
on the SEX and INCWAGE columns, the Gini index and
gender pay gap. This utility can be captured by using the
3-way marginal over CITY, SEX, and INCWAGE. If a dataset
more accurately preserves this 3-way marginal, it would also
result in more accurate estimations of the Gini index and
rank of cities based on the gender pay gap.

If one wants a MGD scheme that correlates highly with the scoring
scheme used in this challenge (which involves the three metrics
mentioned above), one can use a sufficiently large number of 3-way
marginals, and ensuring that the marginal involving CITY, SEX,
and INCWAGE has a high weight, while treating INCWAGE as an
ordinal attribute.

5.2 Application to Temporal Map Data

Temporal map data are relational data where some important at-
tributes represent time and space. When applying MGD to temporal
map data, there are several considerations.

e The temporal spatial nature of the dataset can guide the
choice of which marginals are included in ® to compute
the MGD score. For example, when there are 40 attributes,
considering all 3-way marginals may be too many, and one
may want to consider all 3-way marginals that include at
least one of the temporal or spatial attributes.

e The temporal attribute is naturally ordinal. When tempo-
ral attributes are used in NIST competitions, they are often
processed to have a limited set of values. For example, the
Police Incident Data used in Spring 1 generalizes the time
attribute to month. Similarly, the time attribute in the San
Francisco Fire dataset, which spans several years, was buck-
eted to 100 values. In some sense, the ground truth dataset
has already lost much information. This was because using
finer-grained values results in sparse distribution, which pre-
vious metrics cannot handle well. MGD has several features
that make it more capable of handling finer-grained ordinal
attributes. First, the usage of semantic distance enables one
to distinguish synthetic datasets that have the time attribute
approximately but are not completely correct. Second, by
defining a generalization hierarchy over the time attribute,
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one has the flexibility of measuring both more precise dis-
tribution over the time attribute (e.g., by using a one-way
marginal over the time), and correlation of time with other
attributes (e.g., by using multi-way marginals in which more
coarse-grained values for time are used).

e The spatial attributes are similar to the time attributes in
that they can be ordinal. It is also possible to extend MGD to
handle spatial attributes better. For example, for computa-
tional efficiency considerations, we use the generalization
hierarchy to derive the semantic distance function. However,
when there are natural distance measures for a spatial at-
tribute, it is possible to specify a distance matrix that directly
assigns a distance to any two values. The trade-off is that
we can no longer exploit the hierarchical structure under-
lying the semantic distance function and have to explicitly
consider movement between any pair of values, resulting in
a quadratic number of movement variables.

5.3

We consider the dataset used in Sprint 1 of the Differential Privacy
Temporal Map Challenge [27], namely Baltimore 911 Call and Po-
lice Incident Data. There sample dataset in the contest has three
attributes: time (12 months), neighborhood (278 values), and in-
cident type (174 values). Below, we show how different types of
information one may be interested in the data can be represented
with MGD.

A Concrete Case Study

e Per neighborhood-month distribution of incident types.

The utility of property is what the pie-chart metric used in
Sprint 1 tries to measure. Conceptually, the dataset is first
partitioned into 12 X 278 = 3336 parts (one for each month
and neighborhood), and for each part, the distribution over
the 174 incident type is compared to the ground truth.

To simulate this using MGD, one uses a 3-way marginal over
time, neighborhood, and incident type, with all weights being
o0, and a suitable A, which can be a small constant. (We use
A = 2 in our experiments. Such a metric is similar to L;
distance, but ignores the impact of small differences, which
is in the same spirit as the pie-chart metric ignoring densities
for incident types that are below 5%.

Per neighborhood total incidents over time. Here we as-

sume that one is only interested in how the total number of
incidents (aggregating over all incident types) changes over
time for each neighborhood.

Distribution of certain types of incidents over neighborhoods.

To determine whether adequate resources are available
to handle incidents of certain types, we can consider a
two-way marginal over neighborhood and incident type.
When we want to analyze different incident types separately,
we define the weight for incident type as co so that counts
from bins with different incident types cannot flow into
each other. The overall score thus reflects accuracy within
each incident type. One can also dive down into the details
and look at movement cost for each incident type separately.
Assuming that a meaningful distance measure exists for
the neighborhood, one can run hierarchical clustering to
develop a generalization hierarchy.
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When one does not have a specific goal in mind, one could
choose to measure the three one-way marginals, the three two-
way marginals, and the three-way marginal. One possible marginal
weight assignment is 1/9 for each one-way marginals, 1/9 for two-
way marginals, and 1/3 for the three-way marginal.

In this paper, we apply MGD on the synthetic datasets generated
by the following methods, with the police incident data as input.

e PrivSyn: PrivSyn [33] is one of the state-of-the-art differen-
tial private data synthesis mechanisms. We generate eight
synthetic datasets with PrivSyn and different privacy bud-
gets € € {0.1,0.25,0.5, 1.0, 2.0, 4.0, 10.0, 100.0}

Laplace: The Laplace mechanism is considered as a bench-

mark in the NIST competition [27], but its synthetic

datasets should have inferior performance compared to
the one from PrivSyn. We generate six synthetic datasets
with the Laplace mechanism and privacy budgets € €

{0.25,0.5,1.0,2.0,4.0,10.0}. We use the Laplace mechanism

to process the marginal and sampling from the marginal

after that.

e Sampling: We also generate four datasets by sampling
from the ground truth dataset with sampling probability
{0.01,0.05,0.1,0.5}. These four datasets are not private but
at different representative levels of the ground truth dataset.
Thus, they can be used as benchmarks to show how the
metric scores change with different similarity levels.

Figure 3 shows four scores from different metrics: (1) average
error for randomly generated range queries; (2) Inv-Pie (short for
Inverse Pie Chart), defined to be (1-S/3336), where S is the pie-chart
score of the dataset and 3336 is the total number of neighborhood-
month pairs; (3) the MGD score using the above weighting scheme
(i.e., 1/9 for each of 1-way and 2-way marginals, and 1/3 for the
3-way marginal); and (4) the AEMC scores for the 3-way marginal,
which can also be viewed as MGD scores that use only the 3-way
marginal. Because the range for (1), (3), and (4) is large, they are
plotted on a log scale. Each point in Figure 3 represents one dataset,
and a few different methods are used to generate synthetic data.
See Appendix B for details.

From Figure 3, we can see that MGD correlates well with the range
query error. AEMC correlates worse because it considers only the
accuracy of individual cells of 3-way marginals and not accumulated
errors over a range of values. The pie-chart scores do not correlate
well with range query error because they were not designed to do
sO.

6 COMPUTATION ISSUES

Computing the MGD requires computing the AEMC between two
marginals. We now present two approaches for computing AEMC.
The first approach, which is more general, is to transform the op-
timization problem of computing AEMC into a linear program and
use the existing LP solver. The second approach, which is more
efficient, is to model AEMC as a variant of the min-cost network flow
problem.
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6.1 Transform AEMC as a Linear Program
Recall that AEMC is defined as:

_A,o}

The use of absolute values in the objective function of AEMC can be
removed by introducing additional dummy variables. The above is
equivalent to the following linear program:

AEMCp, A (P, Q) = m)én g XijM;; + ; max {

inj -Qj

s.t. Vi, ZXU =P;
J

min ej
X.e 7

inj-Qj—A)

i

ej = injMij+ (_inj+Qj_A)
i i

ej > ZXUMU

i
Vi, ZXU =P;
J

s.t. Vj, ej = ZXijMij +
i

With M, A, P, Q as the input to an optimization solver, we can obtain
the AEMC between two marginals represented by P and Q.

6.2 Model AEMC as Min-cost Flow Problem

The AEMC is equivalent to a min-cost flow problem with some edges
requiring both maximum and minimum flow through them. High-
level speaking, the customized min-cost flow problem asks for the
minimum cost of flows from source node s to sink node ¢. Between
s and t, there are two sets, each having T nodes. The nodes in the
first set correspond to the bins of P, while the nodes in the other
set correspond to Q. There are flows in the following scenarios:

(1) From s to all the nodes in first set. The flow from s to the ith
node in the first set is constrained to P;, with cost 0.

(2) From s to all the nodes in the second set. The flow from s
to the jth node in the second set is constrained to be non-
negative, with cost 1.

(3) From the nodes in the first set and the nodes in the second
set. The flow from i*" node in the first set to the jth node in
the second set is constrained to be non-negative and have
cost M;;.

(4) From the nodes in the second set to t. There are two flows
from the j*" node for j € [T] in the second set to ¢. One is
constrained to be [Qj — A, Qj + A] and with cost 0. The other
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flow between j'* node in the second set has non-negative
constraints but cost 1.

We detailed the algorithm in Appendix A.

6.3 Optimization of AEMC

Generally speaking, there are O(T?) variables in the AEMC optimiza-
tion problem, each of which corresponds to a movement of counts
(flow) from bin b to bin b’. In the second approach, these O(T?)
variables manifest as O(T?) edges. However, as introduced in [22],
the number of variables for solving earth-mover distance (also ap-
plied to AEMC in our case) can be reduced to O(T) if each bin b has a
set of “neighbors” N(b) such that the number of neighbors for each
bin is a constant independent from the domain size of any attribute,
and all flows between any two bins b and b’ can be replaced by
a sequence of flows between only neighbors, with the same cost.
That is,

Vb, b’,3b; € N(b), by € N(by), ..., b e N(by),
Mb,b' = Mb,b1 + Mbl,bz +...+ Mbk,b'

Several design features of AEMC aim at enabling the above opti-
mization, which we now discuss.

e The L1 nature of bin distance. The way the bin distance ma-

trix is defined, namely My, = >}, wq - sd(bg, b)), means
that we can limit neighboring bins for any bin only to those
that differ in exactly one attribute.

e Ordinal Attributes. The way semantic distance is defined
for ordinal attributes means that for each value v, one only
needs to consider the value just above v and the value just
below v as v’s neighbors.

o Non-ordinal Attributes. Recall that we define the semantic
distance between two values of a non-ordinal attribute at
level t of the generalization hierarchy as '%5,
the level of the lowest common ancestor of the two values.
Using this, we can introduce new dummy values for this
attribute, with one value for each node at a level < t. Then,
each value only neighbors by its parent and descendent. The
cost of moving between a parent and child node has cost 2_>1<t

Adding these new dummy values will create new dummy

bins, and constraints need to be added to ensure that they

start and end with 0 counts in the flow.

where s is

6.4 Scalability and Feasibility

We have found that the linear programming approach of computing
AEMC scales to thousands of bins in marginals but have difficulty
dealing with tens of thousands or more bins. On the other hand,
modeling AEMC as a min-cost flow problem and solving the instance
using OR-Tools (https://developers.google.com/optimization), we
can compute the AEMC between the ground truth 3-way marginal
of Police Incident Data (totally 580464 cells) and the privatized one
in 2 minutes.

We suggest avoiding using marginals with too many cells, both
for scalability concerns and effectiveness in measuring meaningful
differences between marginals. In general, if most cells in the mar-
ginal table from the ground truth dataset have a very low count, not
much meaningful information can be obtained under the constraint
of DP.
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6.5 Exploration of Parameter Tuning

Section 5.3 showed that depending on how one wants to use the
final data, one can choose different weights for marginals. The gen-
eralization hierarchies will also depend on the application domain,
and the nature of the attributes. Another parameter that one can
choose is A. We currently recommend choosing A to be a small
constant, e.g., some value between 2 and 10. Generally speaking, it
would be meaningful to set a smaller A for a synthetic dataset with
a large privacy budget € and focus more on the utility; set larger
A for those with small € in order to tolerate the noise required by
the strong privacy. Note that small differences have a larger impact
when accumulated, which can be captured by using more coarse-
grained marginals with fewer cells. In this paper, we mainly explore
the usability of our metric based on the temporal map data in NIST
competitions. Therefore, we do not yet have a deep understanding
of the impact of the exact choice of A in other tasks. We mark this
as a research direction for future study.

7 CONCLUSIONS AND DISCUSSIONS

We introduce the MGD metric, which can be configured to serve
individual needs. We show how the MGD can capture the seman-
tic meaning of attributes and handle various data types. We also
introduce an efficient algorithm that reduces the computation sig-
nificantly. One main challenge for designing a metric is that there is
no obvious metric for assessing proposed metrics. There are many
data analysis tasks one may be interested in, and one synthetic
dataset may perform very well on one task but poorly on another.
Thus no single metric can be simultaneously “accurate” for all tasks.
Without fixing the set of data analysis tasks, we cannot think of
a better metric than measuring the accuracy of many marginals.
Measuring L1 differences on either all 2-way and 3-way marginals
(or a randomly selected subset of them if there are too many) is
an excellent starting point, but it does not capture the semantic
meaning of the attributes.

Our proposed MGD metric in this paper can be viewed as an at-
tempt to improve the basic L1 difference on marginals by addressing
some limitations and issues we have experienced with the metric,
both through our prior research and through our experiences in
the NIST Differential Privacy Synthetic Data challenge. One goal is
to exploit semantic meanings among the values, both ordinal ones,
and non-ordinal ones. In the last NIST competition, we observed
that when an attribute has a large domain, almost all marginals
involving that attribute tend to have close to maximal L; error. This
is because the vast majority of the bins have 0 or close to 0 count.
After adding noises, which cells have non-zero counts are random.
Thus even if a synthesized dataset can capture the few high counts
of interest, the Lj error would still be dominated by those caused
by what are essentially white noises. We introduce the approximate
nature to enable one to avoid this issue.

We believe that for almost any data analysis task, one can find a
suitable subset of marginals and corresponding weight so that the
MGD scores are highly correlated with accuracy in the data analysis
task. However, the challenge in using MGD may be to identify the
right configurations for the application.

Acknowledgement. This work is supported in part by the United
States National Science Foundation under Grant No. 1931443.



MGD: A Utility Metric for Private Data Publication

REFERENCES

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 308-318.

[2] John M Abowd. 2018. The US Census Bureau adopts differential privacy. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. 2867-2867.

Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. 1993. Network Flows:

Theory, Algorithms, and Applications. Prentice hall.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein genera-

tive adversarial networks. In Proceedings of the 34th International Conference on

Machine Learning-Volume 70. 214-223.

Avrim Blum, Katrina Ligett, and Aaron Roth. 2008. A learning theory approach

to non-interactive database privacy. In STOC. 609-618.

Kuntai Cai, Xiaoyu Lei, Jianxin Wei, and Xiaokui Xiao. 2021. Data Synthesis via

Differentially Private Markov Random Fields. Proceedings of the VLDB Endowment

13 (2021).

Scott Cohen and L Guibasm. 1999. The earth mover’s distance under transforma-

tion sets. In Proceedings of the Seventh IEEE International Conference on Computer

Vision, Vol. 2. IEEE, 1076-1083.

Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting Telemetry

Data Privately. In Advances in Neural Information Processing Systems. 3574-3583.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrat-

ing Noise to Sensitivity in Private Data Analysis. In TCC. 265-284.

Ulfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rappor: Ran-

domized aggregatable privacy-preserving ordinal response. In Proceedings of the

2014 ACM SIGSAC conference on computer and communications security. ACM,

1054-1067.

Facebook. [n.d.]. Opacus. https://opacus.ai/.

Giulia Fanti, Vasyl Pihur, and Ulfar Erlingsson. 2016. Building a RAPPOR with the

Unknown: Privacy-Preserving Learning of Associations and Data Dictionaries.

Proceedings on Privacy Enhancing Technologies (PoPETS) issue 3, 2016 (2016).

Marco Gaboardi, Emilio Jests Gallego Arias, Justin Hsu, Aaron Roth, and Zhi-

wei Steven Wu. 2014. Dual Query: Practical private query release for high

dimensional data. In International Conference on Machine Learning. 1170-1178.

Google. [n.d.]. TensorFlow Privacy. https://github.com/tensorflow/privacy.

Kristen Grauman and Trevor Darrell. 2004. Fast contour matching using approx-

imate earth mover’s distance. In Proceedings of the 2004 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., Vol. 1.

IEEE, I-1.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron C Courville. 2017. Improved training of wasserstein gans. In Advances in

neural information processing systems. 5767-5777.

Moritz Hardt, Katrina Ligett, and Frank McSherry. 2012. A simple and practical

algorithm for differentially private data release. In Advances in Neural Information

Processing Systems. 2339-2347.

Noah Johnson, Joseph P Near, and Dawn Song. 2018. Towards practical differential

privacy for SQL queries. Proceedings of the VLDB Endowment 11, 5 (2018), 526~

539.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive

Growing of GANSs for Improved Quality, Stability, and Variation. In International

Conference on Learning Representations.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. 2015. From word

embeddings to document distances. In International conference on machine learn-

ing. 957-966.

California State Legislature. [n.d.]. California Consumer Privacy Act of

2018. https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=

3.&part=4.&lawCode=CIV&title=1.81.5.

Haibin Ling and Kazunori Okada. 2007. An efficient earth mover’s distance

algorithm for robust histogram comparison. IEEE transactions on pattern analysis

and machine intelligence 29, 5 (2007), 840-853.

Ryan McKenna, Siddhan Pradhan, Daniel Sheldon, and Gerome Miklau. 2021.

Relaxed Marginal Consistency for Differentially Private Query Answering. arXiv

(2021).

Ryan McKenna, Daniel Sheldon, and Gerome Miklau. 2019. Graphical-model

based estimation and inference for differential privacy. In International Conference

on Machine Learning. PMLR, 4435-4444.

NIST. [n.d.]. 2018 Differential Privacy Synthetic Data Challenge.

https://www.nist.gov/ctl/pscr/open-innovation-prize- challenges/past- prize-

challenges/2018-differential-privacy-synthetic.

NIST. [n.d.]. DeID2 - A Better Meter Stick for Differential Privacy.

/[www.herox.com/bettermeterstick/teams.

NIST. [n.d.]. Differential Privacy Temporal Map Challenge: Sprint 1.  https:

//www.drivendata.org/competitions/69/deid2- sprint- 1-prescreened/page/263/.

Ryan Rogers, Subbu Subramaniam, Sean Peng, David Durfee, Seunghyun Lee,

Santosh Kumar Kancha, Shraddha Sahay, and Parvez Ahammad. 2020. LinkedIn’s

T
)

=
2

(11
[12]

=
&

[17]

[18

[19]

[20]

[21

[22

[23

[24]

[25]

[26

https:
[27]

[28

116

8th NSysS 2021, December 21-23, 2021, Cox’s Bazar, Bangladesh

Audience Engagements API: A privacy preserving data analytics system at scale.
arXiv preprint arXiv:2002.05839 (2020).

Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection reg-
ulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing
10 (2017), 3152676.

Fan Wang and Leonidas J Guibas. 2012. Supervised earth mover’s distance learn-
ing and its computer vision applications. In European Conference on Computer
Vision. Springer, 442-455.

Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri, Somesh Jha, and Jeffrey F.
Naughton. 2017. Bolt-on Differential Privacy for Scalable Stochastic Gradient
Descent-based Analytics. In Proceedings of the 2017 ACM International Conference
on Management of Data (SIGMOD). 1307-1322.

Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xi-
aokui Xiao. 2017. Privbayes: Private data release via bayesian networks. ACM
Transactions on Database Systems (TODS) 42, 4 (2017), 25.

Zhikun Zhang, Tianhao Wang, Ninghui Li, Jean Honorio, Michael Backes, Shibo
He, Jiming Chen, and Yang Zhang. 2021. Privsyn: Differentially private data
synthesis. In 30th {USENIX} Security Symposium ({USENIX} Security 21).

[29

(30]

(31]

(32]

[33

A USING MIN-COST FLOW WITH LOWER
BOUNDS TO COMPUTE AEMC

The flow with lower bounds problem is similar to the classic flow
problem but with an additional constraint that there is a lower
bound on each edge. More formally, given a graph G = (V, E) with
a source s and a sink f, where each edge (u, v) has a capacity c(u, v)
and a lower bound b(u, v), the goal is to find a flow f from s to ¢
such that

b(u,v) < f(u,v) < c(u,v)

> frw- Y fay) =0

(x,u)eE (u,y)€E

Y(u,v) € E
YueV\{st}

Such a flow is called a valid flow on G. The min-cost flow with
lower bounds problem gives each edge (u, v) a cost w(u, v), and we
need to find a valid flow that minimizes

Z f(u,v) - wu,v)

(u,v)€E

We first show how to reduce the problem of computing AEMC
to min-cost flow with lower bounds, and then show how this can
be reduced to min-cost circulation problem, for which we use the
standard algorithm implemented in software packages such as OR-
Tools to solve.

A.1 Reducing Computing AEMC to Min-cost
Flow with Lower Bounds

For an AEMC instance, we create a graph with 4 layers, where the
first layer contains only the source node s, the second layer contains
n nodes representing cells of the marginal P computed from the
privatized data, the third layer contains n nodes representing cells
of the marginal Q computed from the ground truth, and the fourth
layer contains only the sink node. The Figure 4 below shows an
example of n = 3 bins.

Let us first restrict our problem: suppose we can only move
so that each bin ¢; lies within the approximated range of Q;, i.e.
Qi-A<qi <Qit+tA.

We will add edges (s, p;) with lower bound b(s, p;) = P;, capacity
c(s, pi) = P;j, and unit cost w(s, p;) = 0 for all 1 < i < n. Intuitively,
think of these edges as “whether we want it or not, each p; must
have P; value at first". Similarly, we will add edges (g;,t) with
lower bound b(g;,t) = Q; — A, capacity c(q;, t) = Q; + A, and unit
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https://github.com/tensorflow/privacy
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https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
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https://www.herox.com/bettermeterstick/teams
https://www.herox.com/bettermeterstick/teams
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Figure 4: Initializing with n = 3 bins.

Figure 6: Allowing each resulting bin to exceed the prede-
fined range with a unit cost of a.

cost w(q;, t) = 0, with the intuition that each resulting bin must
contribute at least Q; — A and at most Q; + A (as shown in Figure 5).

Let us relax the restriction and see how we can allow each re-
sulting bin to exceed the predefined range with a unit cost of a.
(In definition of AEMC, the value of « is implicitly set to 1. Here we
describe the general case, when & can be set to other values). We
can do it as follows as shown in Figure 6: for each node g;, add an
edge (s, g;) with lower bound b = 0, capacity ¢ = oo, and unit cost
w = a; additionally, add an edge (g;, t) with lower bound b = 0,
capacity ¢ = oo, and unit cost w = . Intuitively, the edge (s, q;)
helps ¢; to achieve the predefined range [Q; — A, Q; + A] with a
unit cost of «; similarly, the edge (q;, t) helps g; to “relieve" some
flow to allow it to reach the predefined range [Q; — A, Q; + A] with
a unit cost of a.

Finally, for every pair of bins (i, j), add an edge (p;, q;) with lower
bound b = 0, capacity ¢ = oo, and cost w = M;, j. For example,
suppose M; ; =0 Viand only My 3 is defined, then the resulting
graph as Figure 7.

Now we run the min-cost flow with lower bounds solver on
this graph to get the AEMC. Moreover, since the number of cells
in P and Q are the same, and the cost of not moving bins is 0 (i.e.
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Figure 8: Compressing the p; and g; nodes

M;; = 0 Vi), we can compress the p; and g; nodes together to
reduce the number of nodes by half, as shown in Figure 8.

A.2 Solving Min-cost Flow with Lower Bounds

We solve the min-cost flow with lower bounds problem by reducing
it to the min-cost circulation problem. The difference is that there are
no source and sink in the graph in this new problem. Any min-cost
flow with lower bounds problem can be reduced to an instance of
the min-cost circulation problem by adding an edge (t, s) with lower
bound b(t,s) = 0, capacity c(t,s) = oo, and unit cost w(t,s) = 0.

Let us define another problem called min-cost circulation with
node demands: You are given a graph G = (V, E), where each edge
(u, v) has a capacity c(u, v) and a unit cost w(u, v), and each node
has a demand d(u). We need to assign a flow to each edge (¢, v) such
that each node’s demand is satisfied, and the overall circulation is
minimal. Formally, the problem can be described as the following
linear program:

min Z f(u,v) - w(u,v)
(u,v)€E
st. 0 < f(u,v) < c(u,v)

> frw- D fwy) = dw)

(x,u)eE (u,y)€E

Y(u,v) € E
YueV

We can transform an instance of min-cost circulation with lower
bounds to an instance of min-cost circulation with node demands
using the following reduction:

e First, initialize the demands for all nodes to be zero, i.e. d(u) =
0.

e For each edge (u,v), add b(u, v) - w(u, v) to the answer, add
b(u,v) to d(u), subtract b(u,v) from d(v), and reform this
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edge to have no lower bound and with a capacity of c(u, v) —
b(u,v).

Intuitively, since each edge (u, v) must have a lower bound of
b(u,v), we simply force this lower bound (thus we need to add
b(u,v) - w(u,v) to the answer); this implies that the remaining
flexible capacity for this edge is only c(u, v) — b(u, v). To enforce
that there must be such flow going through that edge, we reserve a
supply of b(u,v) on the node u, therefore u must “absorb" b(u, v)
flow from other edges, hence adding b(u, v) to d(u); similarly, v
must “release” b(u, v) to other edges, hence subtracting b(u, v) from
d(v).

The min-cost circulation with node demands problem is a well
known problem, with the state of the art algorithm having a time
complexity of O(mnlogU log(nC)), where n = |V|, m = |[E, U =
max w(u, v), and C = max c¢(u, v)[3]. Our implementation uses OR-
Tools solver, which has a time complexity of O(n?mlog(nC)).
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B DETAILED RESULTS OF EXPERIMENTS

Table 1 shows different scores of synthetic datasets. The “mediocre”
and “very-poor” datasets are from Example Temporal Map Data
provided by the competition. The synthetic datasets, “PrivSyn-X”,
are generated by algorithm in [33] with privacy budget € = X and
truncation which limits the per-user contribution to 2. The “lap-X”
datasets are produced by basic Laplace mechanism in differential
privacy with privacy budget € = X and sensitivity is set to 20. The
“sample-X" is for randomly sampling X portion of incidents from
the incident datasets.

The Inv Pie score is computed by (1 —S/3336), where S is the pie-
chart score of the dataset. The range query (RQ) is the relative error
of 300 randomly generated range queries, each of which queries on
the count in 30% of month, neighborhood and incident types.
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AEMC

Dataset Inv Pie RQ M N I M4+l ‘ MaN ‘ N+I 3-way

mediocre 0.5689 | 1.0666 | 0.8669 | 0.8666 | 0.8667 | 0.8641 | 0.8624 | 0.8117 | 0.2667
very-poor 0.96 9.0631 7.6956 7.6952 7.6954 | 7.6927 | 7.691 7.6401 7.1258
PrivSyn-0.1 | 0.8236 | 0.0451 0.026 0.0598 | 0.1026 | 0.0748 | 0.0755 | 0.1169 | 0.1013
PrivSyn-0.25 | 0.6751 | 0.0175 | 0.0086 | 0.0214 | 0.0413 | 0.0286 | 0.0266 | 0.0616 | 0.0556
PrivSyn-0.5 | 0.5801 | 0.0103 | 0.0048 0.009 0.018 0.0131 | 0.0125 | 0.0332 | 0.0361
PrivSyn-1.0 | 0.5222 0.007 0.0022 | 0.0044 | 0.0071 0.0053 | 0.0056 | 0.0157 | 0.0305
PrivSyn-2.0 | 0.5039 | 0.0074 | 0.0011 0.002 0.0029 | 0.0025 | 0.0026 | 0.0061 0.0298
PrivSyn-4.0 | 0.5113 | 0.0169 | 0.0142 | 0.0138 0.014 0.0117 | 0.0097 | 0.0016 | 0.0296
PrivSyn-10.0 | 0.5017 0.007 0.0019 | 0.0028 | 0.0034 | 0.0025 | 0.0025 | 0.0053 0.03
lap-0.25 0.9853 | 19.3996 | 15.6775 | 15.6772 | 15.6773 | 15.6747 | 15.673 | 15.6216 | 15.1237
lap-0.5 0.9619 | 8.8361 7.6918 7.6915 7.6916 7.689 7.6873 | 7.6366 7.1222
lap-1.0 0.9072 | 4.3788 | 3.7608 | 3.7604 | 3.7606 | 3.7579 | 3.7562 | 3.706 3.1763
lap-2.0 0.8278 2.115 1.8199 1.8195 1.8196 1.817 1.8153 | 1.7651 1.224
lap-4.0 0.5701 1.0375 | 0.8661 0.8658 | 0.8659 | 0.8634 | 0.8616 | 0.8115 | 0.2661
lap-10.0 0.3935 0.369 0.3178 | 0.3174 | 0.3176 | 0.3151 | 0.3132 | 0.2622 | 0.0481
sample-0.01 | 0.8883 | 0.0407 0.019 0.046 0.0252 | 0.0461 | 0.0827 | 0.1428 | 0.1956
sample-0.05 0.821 0.0152 | 0.0083 | 0.0199 | 0.0096 | 0.0197 | 0.0344 | 0.0669 0.111
sample-0.1 0.7337 | 0.0122 | 0.0059 | 0.0145 0.0075 0.0142 | 0.0244 | 0.0443 0.074
sample-0.25 | 0.5494 | 0.0072 | 0.0028 0.008 0.0044 | 0.0077 | 0.0135 | 0.0222 | 0.0315
sample-0.5 0.3834 | 0.0042 | 0.0019 | 0.0045 | 0.0022 | 0.0043 | 0.0073 | 0.0103 | 0.0106

Table 1: Compare inversed Pie-chart metric (Inv Pie), range query (RQ) and AEMC on different marginals, M: “months”, N:
“neighborhood”, I: “incident type”. A = 2 for AEMC.
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