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ABSTRACT
Differential privacy has been accepted as one of the most popular

techniques to protect user data privacy. A commonway for utilizing

private data under DP is to take an input dataset and synthesize

a new dataset that preserves features of the input dataset while

satisfying DP. A trade-off always exists between the strength of pri-

vacy protection and the utility of the final output: stronger privacy

protection requires larger randomness, so the outputs usually have

a larger variance and can be far from optimal. In this paper, we sum-

marize our proposed metric for the NIST “A Better Meter Stick for

Differential Privacy” competition [26], MarGinal Difference (MGD),

for measuring the utility of a synthesized dataset. Our metric is

based on earth mover distance. We introduce new features in our

metric so that it is not affected by some small random noise that is

unavoidable in the DP context but focuses more on the significant

difference. We show that our metric can reflect the range query

error better compared with other existing metrics. We introduce

an efficient computation method based on the min-cost flow to

alleviate the high computation cost of the earth mover’s distance.
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1 INTRODUCTION
Driven by the successive user privacy regulations, such as

GDPR [29] and CCPA [21], companies and governments have been

putting more attention on how to perform data analysis without
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breaching user privacy. Differential privacy (DP) [9], as a de facto
notion for privacy protection, has been applied on a large number

of applications. Uber and LinkedIn build their differentially private

database applications Flex [18], and Pinot [28] for data analysis.

Google and Microsoft apply (local) differentially private mecha-

nisms [8, 10, 12] to collect data from user devices. There are also

a large number of efforts in the machine learning area to ensure

the output model is private [1, 31], and the DP training has been

integrated into both TensorFlow [14] and PyTorch [11]. Recently,

DP has been applied by the US census bureau when the 2020 census

statistics are published [2].

All the applications mentioned above are private mechanisms

designed for specific tasks given user datasets. One disadvantage of

these mechanisms is that privacy loss, which can be understood as

the risk of privacy leakage, will be accumulated when the mecha-

nisms are executed multiple times on the same dataset. One promis-

ing idea is to generate synthetic datasets with DP guarantee based

on the real datasets to avoid privacy loss. Any mechanism executed

on the differentially private synthetic dataset can be considered

post-process and does not introduce additional privacy loss [9].

Many impressive differential private data synthesis methods

have been proposed. Some of the methods are based on proba-

bilistic graphical models. PrivBayes [32] synthesize data using a

Bayesian network. The mechanism first privately determines the

network structure, then obtains noisy marginals for the conditional

probability distribution of each node to determine the probabil-

ities of the edges. Another approach, PGM, which uses Markov

Random Fields, was proposed in [24]. Both PrivBayes and PGM

synthesize data by sampling from the privatized graphical model.

Another more recent work, PrivSyn [33] first privately selects im-

portant marginals and then builds dense graph models based on

those privatized marginals. When generating the synthetic data, it

will first initialize a random dataset and update it until it matches

the marginals.

Given the differentially private synthetic datasets generated by

the above methods, how to evaluate the utility of the synthetic

dataset can be tricky. In the DP data synthesis papers [32, 33], the

ℓ1 distance between the marginal tables of the ground truth dataset

and the ones of synthetic data is a common metric. However, this

metric can not capture the semantic meaning of the values. Another

common metric used in the papers is to train classification models

on both the ground truth dataset and the synthetic dataset, then

compare the test accuracies of these two classification models on

a ground truth test dataset. If these two models have similar test

accuracies, then the synthetic dataset arguably has similar utility
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as the ground truth one. However, most machine learning models

are not explainable, so it may be hard to interpret and quantify the

utility. A third metric that appears in the literature is called range

query. It generates random rang queries on some specified attributes

and compares the results from the ground truth dataset and the

synthetic dataset. The smaller the differences are, the closer these

two datasets are. Compared with the marginal table distance, the

range query difference also considers the basic semantic meaning of

the value. However, it is only mainly used for numerical or ordinal

datasets.

In this paper, we propose a metric, MarGinal Difference (MGD).
The MGD consists of a set of Approximate Earth Mover Cost (AEMC)
between the ground truth marginals and the marginals of the syn-

thetic dataset. The AEMC is derived from the earth mover distance,

so the MGD takes the semantics of the values into account. Our pro-

posed metric is also configurable so that MGD can handle different

kinds of attributes, whether numerical or categorical. Users can

further specify the weights of different marginals so that the final

metric score is proportional to the importance of the marginals.

Because DP protects users’ privacy with randomness, the generated

datasets cannot be exactly the same as the ground truth dataset.

Our metric ignores the small mismatches and only focuses on the

significant differences.

The standard way to obtain an earth mover’s distance is to solve

an optimization problem. The computation cost of solving such an

optimization problem is one of the major concerns for the earth

mover’s distance. We design an efficient algorithm for the AEMC
based on the min-flow algorithm to ease the concern.

To summarize, our main contribution in this paper are the fol-

lowing:

• We propose a new utility metric for the differential private

data publication. Our metric is configurable and can handle

a mixture of numerical and categorical attributes. The se-

mantic meaning of the values and the stochastic nature of

the DP mechanisms are both considered by our metric.

• We show how to apply our metric to some real-world use

cases and give a concrete case study to show the effectiveness

of our metric.

• We design an efficient algorithm for our metric so that the

computation time can be reduced significantly compared

with the general solution with optimization packages.

Road map. In Section 2, we revisit the definition of DP and a

private data synthesis methods. We also summarize the common

metrics used in the existing literature for measuring the utility of

the private dataset. In Section 3, we provide a high-level summary

for our proposed metric. We formalized our metric in Section 4 and

show use cases and a concrete case study in Section 5. We discuss

how to alleviate computation cost in Section 6, and conclude with

discussions in Section 7.

2 BACKGROUND
2.1 Differential privacy
Differential privacy was first introduced in [9]. Its secure setting

assumes a central data curator has access to all users’ data and

publishes outputs of some mechanisms. Intuitively, DP requires

that adding or removing any individual’s record should have a

limited impact on the mechanism’s output.

Definition 1 ((ϵ,δ )-differential privacy). A randomized
mechanism A is differentially private iff given any pair of neighbor-
ing datasets X and X′, the following holds for all possible output o:
Pr [A(X) = o] ≤ eϵPr [A(X′) = o] + δ .

The neighboring datasets are defined as any pairs of datasets

that differ at exactly one user’s record.

Private data synthesis. In this paper, we focus on designing a

utility metric for synthetic datasets generated differential private

mechanisms. Compared to designing specific algorithms for each

task, such differential private data synthesis has the advantage

that additional data analysis tasks can be performed without any

further privacy concern: a property of differential privacy called

post-processing allow us to arbitrarily process data that is already

differentially private. Furthermore, existing algorithms for perform-

ing data analysis do not need to be modified.

Themost promising existingmethod for the private generation of

synthetic datasets uses probabilistic graphical models. The earliest

work is PrivBayes [32], which uses a Bayesian network. It comprises

two phases: (1) privately determines the network structure, and (2)

obtains noisy marginals used as the basis for sampling along with

the network. In 2018, NIST hosted a Differential Privacy Synthetic

Data Challenge [25]. Three lines of methods are developed during

and after this challenge.

• PGM [24] proposes a method only for sampling synthetic

datasets (assuming the structure is chosen) by replacing the

Bayesian network with Markov Random Fields. PGM (and

PrivBayes) can only handle sparse fields. The authors then

extend it to handle dense fields [23].

• PrivMRF developed a method only for privately choosing

marginals based onMarkov Random Fields [6]. The sampling

procedure uses PGM.

• PrivSyn [33] is a complete toolkit that first privately selects

important marginals and then builds dense graph models

based on those privatized marginals. Unlike PrivBayes and

PGM, which synthesize data by sampling from the privatized

graphical model, PrivSyn first initializes a random dataset

and updates it until it matches the marginals. Because of this,

PrivSyn can naturally handle dense graphical models.

There are also other approaches that do not use probabilistic

graphical models, such as [5, 13, 17], but they either are computa-

tionally inefficient or have poor empirical performance.

2.2 Existing common utility metrics
The following are some common metrics have been used to show

the utility of the private synthetic dataset.

Marginal table distance metric. This metric computes the Lp
distance between pairs k-way marginal tables, each pair having

one from the ground truth dataset and the other from the synthetic

dataset. The limitation of this metric is that it does not consider

the semantic meaning of the values. For example, assume a 1-way

marginal has 3 bins corresponding to frequencies of numerical

values in intervals [0, 10], (10, 20] and (20, 30]. If the ground truth

marginal is a vector [5, 4, 1], and synthetic dataset A has marginal
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[4, 5, 1] and synthetic dataset B has [4, 4, 2]. Both marginals from

synthetic datasets have L1 distance 2 to the ground truth marginal.

However, synthetic dataset A is arguably close to the ground truth

because the (10, 20] bin is semantically closer to [0, 10] than (20, 30].

Model performance metric. This metric evaluates the utility of

the synthesis data based on the accuracy of the machine learning

models. Classification machine learning models are trained on the

ground truth and synthetic datasets. The closer the testing accu-

racy of the model trained on the synthetic dataset is to the testing

accuracy of one trained on the ground truth dataset, the higher

utility the synthetic dataset has maintained.

One of the motivations of this metric is that the performance

of the classification model depends on the correlation between

the attributes. If a model trained on a synthetic dataset has simi-

lar performance, then the correlations between the attributes are

maintained well in the synthetic data. However, it is hard to quanti-

tatively explain how the performance of the models can be related

to the utility of the synthetic dataset. An accuracy drop of about 5%

may be unacceptable on some datasets, but it may be considered

a severe performance regression on other datasets. Besides, if we

want to investigate whether some attributes are synthesized well

while the others are not, comparing the results of may not explain

the reason.

Range query metric. A third metric that has been widely used

for DP mechanisms is the range query. A range query returns the

number of records with values that fall in a specified range. When

used as ametric in the DP literature, a large number (usually > 1000)

of range queries with random ranges of some random attributes are

applied on both the ground truth dataset and the synthetic dataset.

The metric score is the average difference between the results on

the ground truth dataset and the synthetic dataset.

One advantage of the range query metric is that range queries

return the local frequencies to measure how the synthetic dataset

maintains semantic meaning. However, range queries are not de-

signed for categorical attributes, so there is no standard way to

apply range queries when a dataset has both ordinal and categorical

attributes.

Pie-chart metric. The pie-chart metric is used in Sprint 1 of the

Differential Privacy Temporal Map Challenge [27]. It is a metric

applied to the marginal table of attributes neighborhood, month

and incident type. To remove the effect of the random noise on

insignificant counts, the metric first set the counts less than 5% of

the overall incidents count to zero. After the preprocessing, the

penalty of the score consists of three parts: the Jensen–Shannon

distance (JSD), the misleading presence penalty, and a bias penalty.

The JSD mainly considers the over distribution, the second one

penalizes the “false frequent” counts, and the third penalizes the

seriously wrong total count. The final score is calculated as one

minus the normalized penalty.

Compared with the previous ones, the improvement of this met-

ric is that it disregards the effect of DP on the small incident counts

and focuses on the accuracy of the significant incident counts.

However, it is only motivated by and defined on a special use case.

Another limitation of this metric, similar to the marginal table dis-

tance metric, is that it does not consider the semantic meaning of

the attributes.

3 MGDMETRIC OVERVIEW
We propose MarGinal Difference (MGD), a utility metric for private

data publication of relational datasets. MGD assigns a difference score
between a pair of datasets ⟨DS ,DT ⟩, where DS is the synthesized

dataset, and DT is the ground truth. The high-level idea behind MGD
is to measure the differences between many pairs marginal tables,

each pair having one computed from DS and one from DT .

3.1 Design Desiderata
To turn the high-level idea of measuring differences between mar-

ginal tables into a concrete metric, we need to specify the following:

which marginal tables are used in computing the score, how to

measure the differences between two marginal tables, and how to

combine these measurements into one score. We use the following

design objectives to guide our choices for fleshing out the details

of MGD.

• Flexibility. The set of marginal tables and their weights in

deciding the final score can be configured. Under DP con-

straints, one cannot preserve all distribution information in

the input dataset. Fortunately, it is often unnecessary for

a synthetic dataset to preserver all distributions for it to

be useful. Oftentimes not all distributions are equally im-

portant; however, the relative importance among different

distributions, when they exist, cannot be determined without

considering the attributes in the datasets and the application

domain.

• Balancing Flexibility with Ease of Use. To provide flexibility,

a metric needs to have configurable parameters; however,

this may make a metric difficult to use. We solve this prob-

lem in two ways. First, instead of making everything config-

urable, we fix some aspects of the metric when we believe

doing so preserves sufficient flexibility. Second, for almost all

parameters, we provide default values that we hope would

work for most application scenarios.

• Accommodation of Numerical Attributes. For attributes

with numerical values, we want to take into consideration of

the natural semantic distance between values. For example,

for an age attribute, 19 is not very different from 20, but

is very different from 90, and treating them just as three

different values loses this semantic meaning.

• Accommodation of Structured Attributes. For many cate-

gorical attributes, the semantic meanings also suggest natu-

ral semantic distances between values. The metric should be

able to use these semantic meanings when the application

domain can benefit from doing so.

• Awareness of Noises. Under DP the data are noisy, and it

is understood that small differences cannot be relied upon.

The metric should reflect this, avoiding being dominated by

many small differences.

3.2 Key Elements of MGD
The MGD metric is parameterized by the following.

• Data Schema. This specifies what attributes are in the

dataset, the domain of possible values for each attribute,

and any relationships between the values. At the minimum,
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it should be clear whether each attribute is ordinal or not

and the set of values that can be taken for each attribute.

Optionally, one can also provide generalization hierarchies

for these attributes.

• Target Marginal Schemas and Weights. This includes a set

of marginal schemas where each schema specifies the at-

tributes to be included. One applies each schema to DS and

DT to obtain marginal tables and computes the AEMC score
between the two resulting marginal tables. The final score

is the weighted average of these AEMC scores, where the

weights are equal by default but can be configured if one

wants to.

Approximate Earth Mover Cost (AEMC) between Two
Marginals. For measuring differences between two marginals,

commonly used metrics include L1, L2, KS divergence, Jensen-

Shannon distance, etc.. However, these metrics do not take into

consideration of the underlying semantic distances between the

values. The desire to use semantic distance values naturally led

us to the earth mover’s distance (EMD). Informally, suppose two

distributions are interpreted as two different ways of piling up a

certain amount of dirt over the region. In that case, the EMD is the

minimum cost of turning one pile into the other, where the cost is

assumed to be the amount of moving dirt times the distance by

which it is moved.

We adapt EMD in three ways to suit our purpose and call the

result AEMC. Instead of normalizing the marginal tables into prob-

ability distributions (i.e., all entries sum up to 1), we first use the

unnormalized record counts to compute a score so that the absolute

number of records also conveys information. The AEMC is obtained

by dividing this score by the total number of records in the ground

truth dataset. Second, in addition to moving counts from one bin

to another, we also allow adding/removing counts directly. This

helps deal with unequal total counts between the two datasets and

make the metric a generalization of the L1 distance between two

marginal tables. Third, the earth moving does not need to get the

two marginal tables exactly the same, but only so that the difference

is below a threshold ∆. The small error tolerance avoids penaliz-

ing small differences in the counts. Without this feature, the score

between two marginal tables can be dominated by cells that have

small values when there are many such cells.

AEMC can be computed either by formulating it as a linear pro-

gram and using a general linear programming solver or by formulat-

ing it as a flow problem in graphs and adapting existing algorithms

to compute it. We have implemented both approaches and provide

the details in the Appendix and code in github
1
. Experiments show

that modeling AEMC as a flow problem results in a fast computation

for fairly large marginals.

4 DEFINITION OF THE MGD METRIC
4.1 Technical Background

Earth Mover Distance (EMD). In statistics, EMD measures the

distances between two probability distributions. EMD has been

1
https://github.com/SkinfaxiL/NIST_metric

considered as an useful tool in computer vision area for the tasks in-

cluding image retrieval [7], feature matching [15], and face verifica-

tion [30]. In recent years, EMD is also widely used in deep learning

models, such as generative adversarial network (GAN) [4, 16, 19].

EMD is also used in document similarity analysis [20] on high

dimensional and sparse bag-of-words vectors.

More formally, EMD takes P and Q , each being a size T vector

of non-negative values such that the sum over each vector is 1. Let

M be a matrix of size T ×T in which Mi j ≥ 0 is the cost of moving

an element from the ith position to the jth position (Mii = 0 for

all i values). The standard EMD is defined as:

min

X

∑
i, j

Xi jMi j

s.t. ∀i,
∑
j
Xi j = Pi

∀j,
∑
i
Xi j = Q j , ∀i, j,Xi j ≥ 0

Intuitively, Xi j represents the amount one moves from the ith ele-

ment to the jth element. EMD can be easily extended to vectors that

are not probability distributions. There are also extensions to EMD

that accommodate the situation where the sum of elements in P and

the sum of elements in Q are different, either by allowing free dis-

posal of excess quantities, or introducing cost for adding/removing

values. We use the latter approach in our proposal.

Linear Programs (LP). Linear programming is used to optimize

linear objective functions subject to linear equality and linear in-

equality constraints. One of the most canonical applications of lin-

ear programming is solving the network maximum flow problem.

Also, it can be applied to regression problems and linear classifi-

cation problems. Computing EMD is a special case of the linear

programming problem. There exist software packages that can

solve large LP instances reasonably fast.

Flow Algorithms. EMD can be computed by solving an instance

of the transportation problem using any algorithm for minimum

cost flow problem, e.g. the network simplex algorithm. Since such

algorithms exploit the specific nature of the transportation problem,

they are faster than using LP solvers for the same problem size.

Additional Resources. Any software package used in linear pro-

gramming problems can calculate EMD and the new metric we

proposed in this document. There are both open-sourced and com-

mercial packages. With Python, there are CVXOPT and CVXPY, both
of which are open-source libraries that can be used to solve linear

programming problems. CPLEX, a commercial package developed

by IBM, is another choice to solve the optimization problem. To

accelerate the computation of AEMC, we reduce the problem to a

special kind of min-cost problem and use OR-Tools solver (ortools
python package) to solve the problem.

4.2 Formal Definition of AEMC
AEMC extends EMD in a fewways to bemore suitable for our purpose.

More formally, AEMC is parameterized by two parameters: (1) M is

a T × T matrix where each cell Mi j is the distance between the

i-th bin and the j-th bin. It is required that Mi j ∈ [0, 1] ∪ {∞} and

∀i Mii = 0. Setting Mi j = ∞ means prohibiting moving from bin i
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to bin j . Furthermore, (2) ∆ > 0 is a threshold such that differences

between ∆ are tolerated. AEMC is applied to a pair of sizeT marginals

P and Q . Each element in P and Q corresponds to a count in the

marginals. We view P and Q as two vectorized/flattened marginal

tables of size T × 1. P denotes the marginal computed from the

synthesized dataset, and Q is computed from the ground truth.

AEMC is defined as:

AEMCM,∆(P ,Q)

=
1

| |Q | |1
min

X

∑
i, j

Xi jMi j +
∑
j
max

{�����∑
i
Xi j −Q j

����� − ∆, 0

}
s.t. ∀i,

∑
j
Xi j = Pi (1)

Here | |Q | |1 is the L1 norm of Q , i.e., the sum of all components

in the vector Q . The factor
1

| |Q | |1
normalizes the score so that

it is independent of the total number of records in the dataset.

Intuitively, each movement scheme is specified by a T ×T matrix

X, such that Xi j gives the amount of moving from bin i to bin j.
The condition

∑
j Xi j = Pi says that the total amount of quantity

moving from bin i (some of which can be to itself) is exactly Pi . We

want to minimize the cost, which has two components. The first

one,

∑
i, j Xi jMi j , is the cost of moving. Here we define 0 ·∞ to be 0,

so when Mi j = ∞, the corresponding Xi j should be 0 to minimize

the above formula. The second one,

∑
j max

{��∑i Xi j −Q j
�� − ∆, 0

}
,

computes the penalty where the result after moving still differs from

the ground truth Q . When the difference is below a threshold ∆,
the penalty stays at 0. However, when the difference is above ∆, the
part above ∆ is penalized, representing the cost of adding/removing

counts.

WhenMi j = ∞ for all i , j, and ∆ = 0, AEMCM,∆ approximates

the L1 distance. When P and Q are the same, or their L∞ distance

is ≤ ∆, the AEMC between them is 0.

4.3 Parameters and Configurations for MGD
The MGD metric has the following parameters. While many parame-

ters can be configured, we list the default choices for almost all of

them to simplify practical use of MGD.

4.3.1 Data Schema. Any dataset needs accompanying data

schemas for it to make sense. To apply MGD, we require that the
following information be extracted from the data schema for each

attribute.

• IsOrdinal: whether the attribute is ordinal or not, i.e., whether
there is a linear ordering among all values.

• Domain D: the set of all possible values for this attribute.
• Generalization Hierarchy H : a rooted tree such that:

– There is a one-to-one correspondence between the leaves

and each value in the domain D.
– All leaves are at the same depth (distance from the root).

– If an attribute is ordinal, the nodes at each level should

appear (from left to right) in the order of small to large.

Whether an attribute is ordinal or not and its domain are usually

determined by the nature of the dataset. We use a default hierar-

chy with two levels when an attribute does not have an explicitly

specified generalization hierarchy. All values in the domain are the

leaves, and there is one single root value. Allowing generalization

hierarchy serves several purposes. First, they can be used to capture

semantic distances among values in non-ordinal attributes. Second,

they allow one to use marginals that involve attributes with many

values while keeping the marginal size feasible. One can use gener-

alized values for the attributes that have large domains. Third, for

similar reasons as above, they enable marginals that involve more

attributes.

Semantic Distance. Given a generalization hierarchy, we define

the level of a node as the number of edges from the node to the root.

Thus the root has level 0, and the root’s children have level 1, and

so on. Whether an attribute is ordinal or not and its generalization

hierarchy together fully determine the Semantic Distance function
sd, which assigns a real value between 0 and 1 to each pair of nodes
in the same level. For an ordinal attribute, when a level has k > 1

values, the distance between the i-th and the j-th value at that level

is
|j−i |
k−1 . For two values of a non-ordinal attribute at level t , let s be

the level of the lowest common ancestor of the two values, then the

distance between the two values is defined to be
t−s
t . Note that for

any attribute in a marginal, only values from one specific level can

appear, and we thus only need semantic distances between values

at the same level. The definition normalizes the distances to be in

[0, 1] no matter which level is used.

Figure 1 shows two categorical attribute examples in generaliza-

tion hierarchy structure. Figure 1(a) shows a default generalization

hierarchy that has only two levels. The semantic distances between

any two values, for example sd(“Armed Person”, “Bike Theft”), are

all 1. Figure 1(b) shows the case that a categorical attribute has a

customized hierarchy. Thus, the distance between any cities in the

same state is
1

2
; the distance between any cities in different states

and the distance between two states are both 1.

Figure 2 shows two ordinal attribute examples in generaliza-

tion hierarchy structure. For Figure 2(a), where months are ordinal

values, the semantic distance between any two months is the or-

dinal difference between them divided by 11. Figure 2(b) shows

an ordinal attribute hierarchy with more than two levels. In this

case, the semantic distance is defined for nodes in the same level.

sd(“1st grade”, “8th grade”) = 8−1
13−1 =

7

12
because there are 13 val-

ues in leave level and the distance between those two values are

7; sd(“Elementary school”, “Middle school”) = 2−1
4−1 =

1

3
because

there are only 4 values in the second level.

4.3.2 Target Marginals. MGD requires the specification of a set Φ of

target marginals, each ϕ ∈ Φ consisting of the following:

• Attributes in the Marginal. Users need to specify a set of

attributes included in the marginal, and for each selected at-

tribute, which level of the generalization hierarchy is used to

compute the marginal. The default level for each selected at-

tribute is the leaf level. All the bins in the target marginal are

determined after the attributes are specified. Alternatively,

this can be defined as selecting a generalization level for ev-

ery attribute. If the root level is selected for an attribute, all

records have the same value, and that attribute is effectively

not included in the marginal.
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(a) Generalization hierarchy of attribute “incident type” in 2019 Baltimore

911-Call and Police Incident data.

(b) Generalization hierarchy of cities in United States.

Figure 1: Generalization hierarchy of categorical attributes.

(a) Generalization hierarchy of attribute “month” in 2019 Baltimore 911-Call and Police Incident data.

(b) Generalization hierarchy of education levels in United States.

Figure 2: Generalization hierarchy of categorical attributes.

• Attribute Weights. A weightwa for each selected attribute

a. The weight wa ∈ {∞} ∪ [0, 1], and if any attribute has

a weight in [0, 1], such weights for all attributes sum up to

1. If an attribute is assigned a weight of ∞, it means that

when computing the difference score on this marginal, one

does not want to consider moving between bins where this

attribute has different values.

The assigned weights and the semantic distance function

sd together define the bin distance matrix Mϕ
needed for

computing the AEMC. Given two binsb andb ′ in the marginal,

if there exists an attribute such that b and b ′ differ in an

attribute that has a weight of∞, the distance between b and

b ′ is ∞. Otherwise, the bin distance:

Mϕ
b,b′ =

∑
a

wa · sd(ba ,b ′a ) (2)

where ba denotes value for attribute a of the bin b. The
matrix Mϕ

is used in Equation (1) to calculate AEMC. Note
that the distance between two cells are either∞ or a value

between [0, 1]. When the distance is ∞, this means that this

marginal one does not want to move between the two bins

in computing the earth mover distance.

The default for weight assignment is to assign the weight

of∞ to each categorical attribute and equal weight to each

numerical attribute.

• Tolerance threshold ∆ϕ . The threshold under which differ-

ences in bins are not penalized in AEMC. (See Equation (1)).

• Marginal Score Weight ωϕ
. It is a positive number. The

weight specifies how much the AEMC computed on the mar-

ginal ϕ contributes to the final MGD score.
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Summary of Difference Measures in defining MGD . There are

several notions that measure differences between two things here.

For clarity, we recap them here.

• Semantic Distance sd is for the distance between two values

for the same attribute. It is defined for any pair of values

that are on the same level of the generalization hierarchy,

and is fully determined by the generalization hierarchy and

whether the attribute is ordinal or not. Its value is always in

[0, 1].

• Bin Distance Mϕ
, defined in Equation (2), uses the semantic

distance to define the distance between two bins in one mar-

ginal. Each bin is specified by the value that each attribute

can take. Mϕ
is defined as the weighted sum of semantic

distances on all attributes. It is a generalization of the Man-

hattan distance by adding a weight to each dimension. We

choose to use a generalization of Manhattan distance (in-

stead of, e.g., Euclidean distance) in part because this enables

faster computation of AEMC.
• AEMC, defined in Equation (1), is for measuring the difference

between a pair of marginal tables, one computed from the

synthesized dataset, and the other from the ground truth

dataset.

• MGD score is the weighted average of the AEMC score for all
marginals in Φ. More specifically:

MGDΦ(DS ,DT ) =
©­«
∑
ϕ ∈Φ

ωϕ · AEMCMϕ ,∆ϕ (ϕ(DS ),ϕ(DT ))
ª®¬ /©­«

∑
ϕ ∈Φ

ωϕª®¬
(3)

where ϕ(D) is the marginal table obtained from dataset D
using the marginal schema ϕ and flattened to a vector.

4.4 More Fine-grained Utility Information
MGD provides a single final score. However, since MGD is based on the
AEMC scores for different marginals, examining these AEMC scores
provides more fine-grained utility information. One can see which

marginals are preserved well and which are not. It is also possible to

expose more detailed information in computing AEMC to provide an
even deeper dive. For example, within one marginal, we can com-

pute the contribution of each attribute to the AEMC score, illustrating
the information on which attribute is less accurately preserved. It is

even possible to compute the contribution of individual bins to the

AEMC score and output the ones that have the most contribution,

illustrating where the errors concentrate.

5 APPLICATIONS OF THE MGD METRIC
Here we discuss applications of the MGD metric. We discuss an

application of MGD first to census-style data used in NIST’s 2018

Differential Privacy Synthetic Data Challenge [25], then to tem-

poral map data in NIST’s 2020 Differential Privacy Temporal Map

Challenge [26]. Finally, we show experimental results using one

concrete dataset from [27].

5.1 Application to Census-type Data
Here we demonstrate how to apply MGD to census data. As an ap-

plication example, we consider the Public Use Microdata Sample

(PUMS) of the 1940 USA Census Data used in Phase 3 of the 2018

Differential Privacy Synthetic Data challenge [25]. The dataset has

98 attributes. In the challenge, three metrics were used.

• Density Estimation. For this metric, the scoring algorithm

randomly samples 300 marginal schemas, each with three

randomly chosen attributes. Then, compute the normalized

marginal tables from the synthetic dataset and the ground

truth dataset for each marginal schema. Then, use the L1
distance between the two marginal tables as the penalty.

This can be defined in a straightforward way using MGD.
• Range Query. For this metric, the scoring algorithm ran-

domly samples 300 range queries and assesses the synthetic

dataset’s accuracy to answer these queries. This cannot be

directly implemented using MGD, although this score is highly
correlated with the above density estimation score computed

from 3-way marginals, as observed during the competition.

• Gini Index and Rank Accuracy. For each city present in the

dataset (as specified by the CITY column), we calculate, based

on the SEX and INCWAGE columns, the Gini index and

gender pay gap. This utility can be captured by using the

3-way marginal over CITY, SEX, and INCWAGE. If a dataset

more accurately preserves this 3-way marginal, it would also

result in more accurate estimations of the Gini index and

rank of cities based on the gender pay gap.

If one wants a MGD scheme that correlates highly with the scoring

scheme used in this challenge (which involves the three metrics

mentioned above), one can use a sufficiently large number of 3-way

marginals, and ensuring that the marginal involving CITY, SEX,

and INCWAGE has a high weight, while treating INCWAGE as an

ordinal attribute.

5.2 Application to Temporal Map Data
Temporal map data are relational data where some important at-

tributes represent time and space. When applying MGD to temporal

map data, there are several considerations.

• The temporal spatial nature of the dataset can guide the

choice of which marginals are included in Φ to compute

the MGD score. For example, when there are 40 attributes,

considering all 3-way marginals may be too many, and one

may want to consider all 3-way marginals that include at

least one of the temporal or spatial attributes.

• The temporal attribute is naturally ordinal. When tempo-

ral attributes are used in NIST competitions, they are often

processed to have a limited set of values. For example, the

Police Incident Data used in Spring 1 generalizes the time

attribute to month. Similarly, the time attribute in the San

Francisco Fire dataset, which spans several years, was buck-

eted to 100 values. In some sense, the ground truth dataset

has already lost much information. This was because using

finer-grained values results in sparse distribution, which pre-

vious metrics cannot handle well. MGD has several features
that make it more capable of handling finer-grained ordinal

attributes. First, the usage of semantic distance enables one

to distinguish synthetic datasets that have the time attribute

approximately but are not completely correct. Second, by

defining a generalization hierarchy over the time attribute,
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one has the flexibility of measuring both more precise dis-

tribution over the time attribute (e.g., by using a one-way

marginal over the time), and correlation of time with other

attributes (e.g., by using multi-way marginals in which more

coarse-grained values for time are used).

• The spatial attributes are similar to the time attributes in

that they can be ordinal. It is also possible to extend MGD to
handle spatial attributes better. For example, for computa-

tional efficiency considerations, we use the generalization

hierarchy to derive the semantic distance function. However,

when there are natural distance measures for a spatial at-

tribute, it is possible to specify a distance matrix that directly

assigns a distance to any two values. The trade-off is that

we can no longer exploit the hierarchical structure under-

lying the semantic distance function and have to explicitly

consider movement between any pair of values, resulting in

a quadratic number of movement variables.

5.3 A Concrete Case Study
We consider the dataset used in Sprint 1 of the Differential Privacy

Temporal Map Challenge [27], namely Baltimore 911 Call and Po-

lice Incident Data. There sample dataset in the contest has three

attributes: time (12 months), neighborhood (278 values), and in-

cident type (174 values). Below, we show how different types of

information one may be interested in the data can be represented

with MGD.

• Per neighborhood-month distribution of incident types.

The utility of property is what the pie-chart metric used in

Sprint 1 tries to measure. Conceptually, the dataset is first

partitioned into 12 × 278 = 3336 parts (one for each month

and neighborhood), and for each part, the distribution over

the 174 incident type is compared to the ground truth.

To simulate this using MGD, one uses a 3-way marginal over

time, neighborhood, and incident type, with all weights being

∞, and a suitable ∆, which can be a small constant. (We use

∆ = 2 in our experiments. Such a metric is similar to L1
distance, but ignores the impact of small differences, which

is in the same spirit as the pie-chart metric ignoring densities

for incident types that are below 5%.

• Per neighborhood total incidents over time. Here we as-

sume that one is only interested in how the total number of

incidents (aggregating over all incident types) changes over

time for each neighborhood.

• Distribution of certain types of incidents over neighborhoods.

To determine whether adequate resources are available

to handle incidents of certain types, we can consider a

two-way marginal over neighborhood and incident type.

When we want to analyze different incident types separately,

we define the weight for incident type as∞ so that counts

from bins with different incident types cannot flow into

each other. The overall score thus reflects accuracy within

each incident type. One can also dive down into the details

and look at movement cost for each incident type separately.

Assuming that a meaningful distance measure exists for

the neighborhood, one can run hierarchical clustering to

develop a generalization hierarchy.

When one does not have a specific goal in mind, one could

choose to measure the three one-way marginals, the three two-

way marginals, and the three-way marginal. One possible marginal

weight assignment is 1/9 for each one-way marginals, 1/9 for two-

way marginals, and 1/3 for the three-way marginal.

In this paper, we apply MGD on the synthetic datasets generated

by the following methods, with the police incident data as input.

• PrivSyn: PrivSyn [33] is one of the state-of-the-art differen-

tial private data synthesis mechanisms. We generate eight

synthetic datasets with PrivSyn and different privacy bud-

gets ϵ ∈ {0.1, 0.25, 0.5, 1.0, 2.0, 4.0, 10.0, 100.0}

• Laplace: The Laplace mechanism is considered as a bench-

mark in the NIST competition [27], but its synthetic

datasets should have inferior performance compared to

the one from PrivSyn. We generate six synthetic datasets

with the Laplace mechanism and privacy budgets ϵ ∈

{0.25, 0.5, 1.0, 2.0, 4.0, 10.0}. We use the Laplace mechanism

to process the marginal and sampling from the marginal

after that.

• Sampling: We also generate four datasets by sampling

from the ground truth dataset with sampling probability

{0.01, 0.05, 0.1, 0.5}. These four datasets are not private but

at different representative levels of the ground truth dataset.

Thus, they can be used as benchmarks to show how the

metric scores change with different similarity levels.

Figure 3 shows four scores from different metrics: (1) average

error for randomly generated range queries; (2) Inv-Pie (short for

Inverse Pie Chart), defined to be (1−S/3336), where S is the pie-chart
score of the dataset and 3336 is the total number of neighborhood-

month pairs; (3) the MGD score using the above weighting scheme

(i.e., 1/9 for each of 1-way and 2-way marginals, and 1/3 for the

3-way marginal); and (4) the AEMC scores for the 3-way marginal,

which can also be viewed as MGD scores that use only the 3-way

marginal. Because the range for (1), (3), and (4) is large, they are

plotted on a log scale. Each point in Figure 3 represents one dataset,

and a few different methods are used to generate synthetic data.

See Appendix B for details.

From Figure 3, we can see that MGD correlates well with the range
query error. AEMC correlates worse because it considers only the

accuracy of individual cells of 3-waymarginals and not accumulated

errors over a range of values. The pie-chart scores do not correlate

well with range query error because they were not designed to do

so.

6 COMPUTATION ISSUES
Computing the MGD requires computing the AEMC between two

marginals. We now present two approaches for computing AEMC.
The first approach, which is more general, is to transform the op-

timization problem of computing AEMC into a linear program and

use the existing LP solver. The second approach, which is more

efficient, is to model AEMC as a variant of the min-cost network flow

problem.
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(a) Inv pie v.s. range query (b) MGD v.s. range query

(c) Inv pie v.s. AEMC (3-way) (d) AEMC (3-way) v.s. range query

Figure 3: Comparison between range query, Inv Pie, MGD and AEMC (3-way). For MGD, we user weight 1

3
for the 3-way marginal,

ant 1

9
for the other 6 marginals

.

6.1 Transform AEMC as a Linear Program
Recall that AEMC is defined as:

AEMCM,∆(P ,Q) = min

X

∑
i, j

Xi jMi j +
∑
j
max

{�����∑
i
Xi j −Q j

����� − ∆, 0

}
s.t. ∀i,

∑
j
Xi j = Pi

The use of absolute values in the objective function of AEMC can be

removed by introducing additional dummy variables. The above is

equivalent to the following linear program:

min

X,e

∑
j
ej

s.t. ∀j, ej ≥
∑
i
Xi jMi j +

(∑
i
Xi j −Q j − ∆

)
ej ≥

∑
i
Xi jMi j +

(
−

∑
i
Xi j +Q j − ∆

)
ej ≥

∑
i
Xi jMi j

∀i,
∑
j
Xi j = Pi

WithM,∆, P ,Q as the input to an optimization solver, we can obtain

the AEMC between two marginals represented by P and Q .

6.2 Model AEMC as Min-cost Flow Problem
The AEMC is equivalent to a min-cost flow problem with some edges

requiring both maximum and minimum flow through them. High-

level speaking, the customized min-cost flow problem asks for the

minimum cost of flows from source node s to sink node t . Between
s and t , there are two sets, each having T nodes. The nodes in the

first set correspond to the bins of P , while the nodes in the other

set correspond to Q . There are flows in the following scenarios:

(1) From s to all the nodes in first set. The flow from s to the ith

node in the first set is constrained to Pi , with cost 0.

(2) From s to all the nodes in the second set. The flow from s
to the jth node in the second set is constrained to be non-

negative, with cost 1.

(3) From the nodes in the first set and the nodes in the second

set. The flow from ith node in the first set to the jth node in

the second set is constrained to be non-negative and have

cost Mi j .

(4) From the nodes in the second set to t . There are two flows
from the jth node for j ∈ [T ] in the second set to t . One is
constrained to be [Q j −∆,Q j +∆] and with cost 0. The other
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flow between jth node in the second set has non-negative

constraints but cost 1.

We detailed the algorithm in Appendix A.

6.3 Optimization of AEMC
Generally speaking, there areO(T 2) variables in the AEMC optimiza-

tion problem, each of which corresponds to a movement of counts

(flow) from bin b to bin b ′. In the second approach, these O(T 2)

variables manifest as O(T 2) edges. However, as introduced in [22],

the number of variables for solving earth-mover distance (also ap-

plied to AEMC in our case) can be reduced toO(T ) if each bin b has a

set of “neighbors” N(b) such that the number of neighbors for each

bin is a constant independent from the domain size of any attribute,

and all flows between any two bins b and b ′ can be replaced by

a sequence of flows between only neighbors, with the same cost.

That is,

∀b,b ′,∃b1 ∈ N(b),b2 ∈ N(b1), . . . ,b
′ ∈ N(bk ),

Mb,b′ = Mb,b1 +Mb1,b2 + . . . +Mbk ,b′

Several design features of AEMC aim at enabling the above opti-

mization, which we now discuss.

• The L1 nature of bin distance. The way the bin distance ma-

trix is defined, namely Mbb′ =
∑
a wa · sd(ba ,b ′a ), means

that we can limit neighboring bins for any bin only to those

that differ in exactly one attribute.

• Ordinal Attributes. The way semantic distance is defined

for ordinal attributes means that for each value v , one only
needs to consider the value just above v and the value just

below v as v’s neighbors.
• Non-ordinal Attributes. Recall that we define the semantic

distance between two values of a non-ordinal attribute at

level t of the generalization hierarchy as
t−s
t , where s is

the level of the lowest common ancestor of the two values.

Using this, we can introduce new dummy values for this

attribute, with one value for each node at a level < t . Then,
each value only neighbors by its parent and descendent. The

cost of moving between a parent and child node has cost
1

2×t .

Adding these new dummy values will create new dummy

bins, and constraints need to be added to ensure that they

start and end with 0 counts in the flow.

6.4 Scalability and Feasibility
We have found that the linear programming approach of computing

AEMC scales to thousands of bins in marginals but have difficulty

dealing with tens of thousands or more bins. On the other hand,

modeling AEMC as a min-cost flow problem and solving the instance

using OR-Tools (https://developers.google.com/optimization), we

can compute the AEMC between the ground truth 3-way marginal

of Police Incident Data (totally 580464 cells) and the privatized one

in 2 minutes.

We suggest avoiding using marginals with too many cells, both

for scalability concerns and effectiveness in measuring meaningful

differences between marginals. In general, if most cells in the mar-

ginal table from the ground truth dataset have a very low count, not

much meaningful information can be obtained under the constraint

of DP.

6.5 Exploration of Parameter Tuning
Section 5.3 showed that depending on how one wants to use the

final data, one can choose different weights for marginals. The gen-

eralization hierarchies will also depend on the application domain,

and the nature of the attributes. Another parameter that one can

choose is ∆. We currently recommend choosing ∆ to be a small

constant, e.g., some value between 2 and 10. Generally speaking, it

would be meaningful to set a smaller ∆ for a synthetic dataset with

a large privacy budget ϵ and focus more on the utility; set larger

∆ for those with small ϵ in order to tolerate the noise required by

the strong privacy. Note that small differences have a larger impact

when accumulated, which can be captured by using more coarse-

grained marginals with fewer cells. In this paper, we mainly explore

the usability of our metric based on the temporal map data in NIST

competitions. Therefore, we do not yet have a deep understanding

of the impact of the exact choice of ∆ in other tasks. We mark this

as a research direction for future study.

7 CONCLUSIONS AND DISCUSSIONS
We introduce the MGD metric, which can be configured to serve

individual needs. We show how the MGD can capture the seman-

tic meaning of attributes and handle various data types. We also

introduce an efficient algorithm that reduces the computation sig-

nificantly. One main challenge for designing a metric is that there is

no obvious metric for assessing proposed metrics. There are many

data analysis tasks one may be interested in, and one synthetic

dataset may perform very well on one task but poorly on another.

Thus no single metric can be simultaneously “accurate” for all tasks.

Without fixing the set of data analysis tasks, we cannot think of

a better metric than measuring the accuracy of many marginals.

Measuring L1 differences on either all 2-way and 3-way marginals

(or a randomly selected subset of them if there are too many) is

an excellent starting point, but it does not capture the semantic

meaning of the attributes.

Our proposed MGD metric in this paper can be viewed as an at-

tempt to improve the basic L1 difference onmarginals by addressing

some limitations and issues we have experienced with the metric,

both through our prior research and through our experiences in

the NIST Differential Privacy Synthetic Data challenge. One goal is

to exploit semantic meanings among the values, both ordinal ones,

and non-ordinal ones. In the last NIST competition, we observed

that when an attribute has a large domain, almost all marginals

involving that attribute tend to have close to maximal L1 error. This
is because the vast majority of the bins have 0 or close to 0 count.

After adding noises, which cells have non-zero counts are random.

Thus even if a synthesized dataset can capture the few high counts

of interest, the L1 error would still be dominated by those caused

by what are essentially white noises. We introduce the approximate

nature to enable one to avoid this issue.

We believe that for almost any data analysis task, one can find a

suitable subset of marginals and corresponding weight so that the

MGD scores are highly correlated with accuracy in the data analysis

task. However, the challenge in using MGD may be to identify the

right configurations for the application.
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A USING MIN-COST FLOWWITH LOWER
BOUNDS TO COMPUTE AEMC

The flow with lower bounds problem is similar to the classic flow

problem but with an additional constraint that there is a lower

bound on each edge. More formally, given a graph G = (V ,E) with
a source s and a sink t , where each edge (u,v) has a capacity c(u,v)
and a lower bound b(u,v), the goal is to find a flow f from s to t
such that

b(u,v) ≤ f (u,v) ≤ c(u,v) ∀(u,v) ∈ E∑
(x,u)∈E

f (x ,u) −
∑

(u,y)∈E

f (u,y) = 0 ∀u ∈ V \ {s, t}

Such a flow is called a valid flow on G. The min-cost flow with
lower bounds problem gives each edge (u,v) a costw(u,v), and we

need to find a valid flow that minimizes∑
(u,v)∈E

f (u,v) ·w(u,v)

We first show how to reduce the problem of computing AEMC
to min-cost flow with lower bounds, and then show how this can

be reduced to min-cost circulation problem, for which we use the

standard algorithm implemented in software packages such as OR-

Tools to solve.

A.1 Reducing Computing AEMC to Min-cost
Flow with Lower Bounds

For an AEMC instance, we create a graph with 4 layers, where the

first layer contains only the source node s , the second layer contains
n nodes representing cells of the marginal P computed from the

privatized data, the third layer contains n nodes representing cells

of the marginal Q computed from the ground truth, and the fourth

layer contains only the sink node. The Figure 4 below shows an

example of n = 3 bins.

Let us first restrict our problem: suppose we can only move

so that each bin qi lies within the approximated range of Qi , i.e.

Qi − ∆ ≤ qi ≤ Qi + ∆.
We will add edges (s,pi )with lower bound b(s,pi ) = Pi , capacity

c(s,pi ) = Pi , and unit costw(s,pi ) = 0 for all 1 ≤ i ≤ n. Intuitively,
think of these edges as “whether we want it or not, each pi must

have Pi value at first". Similarly, we will add edges (qi , t) with
lower bound b(qi , t) = Qi − ∆, capacity c(qi , t) = Qi + ∆, and unit

116

https://opacus.ai/
https://github.com/tensorflow/privacy
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic
https://www.herox.com/bettermeterstick/teams
https://www.herox.com/bettermeterstick/teams
https://www.drivendata.org/competitions/69/deid2-sprint-1-prescreened/page/263/
https://www.drivendata.org/competitions/69/deid2-sprint-1-prescreened/page/263/


8th NSysS 2021, December 21–23, 2021, Cox’s Bazar, Bangladesh Li and Dang, et al.

Figure 4: Initializing with n = 3 bins.

Figure 5: Adding restrictions Qi − ∆ ≤ qi ≤ Qi + ∆.

Figure 6: Allowing each resulting bin to exceed the prede-
fined range with a unit cost of α .

cost w(qi , t) = 0, with the intuition that each resulting bin must

contribute at leastQi −∆ and at mostQi +∆ (as shown in Figure 5).

Let us relax the restriction and see how we can allow each re-

sulting bin to exceed the predefined range with a unit cost of α .
(In definition of AEMC, the value of α is implicitly set to 1. Here we

describe the general case, when α can be set to other values). We

can do it as follows as shown in Figure 6: for each node qi , add an

edge (s,qi ) with lower bound b = 0, capacity c = ∞, and unit cost

w = α ; additionally, add an edge (qi , t) with lower bound b = 0,

capacity c = ∞, and unit cost w = α . Intuitively, the edge (s,qi )
helps qi to achieve the predefined range [Qi − ∆,Qi + ∆] with a

unit cost of α ; similarly, the edge (qi , t) helps qi to “relieve" some

flow to allow it to reach the predefined range [Qi − ∆,Qi + ∆] with
a unit cost of α .

Finally, for every pair of bins (i, j), add an edge (pi ,qj )with lower
bound b = 0, capacity c = ∞, and cost w = Mi, j . For example,

suppose Mi,i = 0 ∀i and only M1,2 is defined, then the resulting

graph as Figure 7.

Now we run the min-cost flow with lower bounds solver on

this graph to get the AEMC. Moreover, since the number of cells

in P and Q are the same, and the cost of not moving bins is 0 (i.e.

Figure 7: Adding lower bounds, capacities and costs.

Figure 8: Compressing the pi and qi nodes

Mi,i = 0 ∀i), we can compress the pi and qi nodes together to
reduce the number of nodes by half, as shown in Figure 8.

A.2 Solving Min-cost Flow with Lower Bounds
We solve the min-cost flow with lower bounds problem by reducing

it to themin-cost circulation problem. The difference is that there are

no source and sink in the graph in this new problem. Any min-cost

flow with lower bounds problem can be reduced to an instance of

the min-cost circulation problem by adding an edge (t , s)with lower
bound b(t , s) = 0, capacity c(t , s) = ∞, and unit costw(t , s) = 0.

Let us define another problem called min-cost circulation with
node demands: You are given a graph G = (V ,E), where each edge

(u,v) has a capacity c(u,v) and a unit costw(u,v), and each node

has a demandd(u). We need to assign a flow to each edge (u,v) such
that each node’s demand is satisfied, and the overall circulation is

minimal. Formally, the problem can be described as the following

linear program:

min

∑
(u,v)∈E

f (u,v) ·w(u,v)

s.t. 0 ≤ f (u,v) ≤ c(u,v) ∀(u,v) ∈ E∑
(x,u)∈E

f (x ,u) −
∑

(u,y)∈E

f (u,y) = d(u) ∀u ∈ V

We can transform an instance of min-cost circulation with lower

bounds to an instance of min-cost circulation with node demands

using the following reduction:

• First, initialize the demands for all nodes to be zero, i.e.d(u) =
0.

• For each edge (u,v), add b(u,v) ·w(u,v) to the answer, add

b(u,v) to d(u), subtract b(u,v) from d(v), and reform this
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edge to have no lower bound and with a capacity of c(u,v) −
b(u,v).

Intuitively, since each edge (u,v) must have a lower bound of

b(u,v), we simply force this lower bound (thus we need to add

b(u,v) · w(u,v) to the answer); this implies that the remaining

flexible capacity for this edge is only c(u,v) − b(u,v). To enforce

that there must be such flow going through that edge, we reserve a

supply of b(u,v) on the node u, therefore u must “absorb" b(u,v)
flow from other edges, hence adding b(u,v) to d(u); similarly, v
must “release" b(u,v) to other edges, hence subtracting b(u,v) from
d(v).

The min-cost circulation with node demands problem is a well

known problem, with the state of the art algorithm having a time

complexity of O(mn logU log(nC)), where n = |V |,m = |E |, U =
maxw(u,v), and C = max c(u,v)[3]. Our implementation uses OR-

Tools solver, which has a time complexity of O(n2m log(nC)).

B DETAILED RESULTS OF EXPERIMENTS
Table 1 shows different scores of synthetic datasets. The “mediocre”

and “very-poor” datasets are from Example Temporal Map Data

provided by the competition. The synthetic datasets, “PrivSyn-X ”,

are generated by algorithm in [33] with privacy budget ϵ = X and

truncation which limits the per-user contribution to 2. The “lap-X”

datasets are produced by basic Laplace mechanism in differential

privacy with privacy budget ϵ = X and sensitivity is set to 20. The

“sample-X ” is for randomly sampling X portion of incidents from

the incident datasets.

The Inv Pie score is computed by (1−S/3336), where S is the pie-

chart score of the dataset. The range query (RQ) is the relative error

of 300 randomly generated range queries, each of which queries on

the count in 30% of month, neighborhood and incident types.
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Dataset Inv Pie RQ

AEMC
M N I M+I M+N N+I 3-way

mediocre 0.5689 1.0666 0.8669 0.8666 0.8667 0.8641 0.8624 0.8117 0.2667

very-poor 0.96 9.0631 7.6956 7.6952 7.6954 7.6927 7.691 7.6401 7.1258

PrivSyn-0.1 0.8236 0.0451 0.026 0.0598 0.1026 0.0748 0.0755 0.1169 0.1013

PrivSyn-0.25 0.6751 0.0175 0.0086 0.0214 0.0413 0.0286 0.0266 0.0616 0.0556

PrivSyn-0.5 0.5801 0.0103 0.0048 0.009 0.018 0.0131 0.0125 0.0332 0.0361

PrivSyn-1.0 0.5222 0.007 0.0022 0.0044 0.0071 0.0053 0.0056 0.0157 0.0305

PrivSyn-2.0 0.5039 0.0074 0.0011 0.002 0.0029 0.0025 0.0026 0.0061 0.0298

PrivSyn-4.0 0.5113 0.0169 0.0142 0.0138 0.014 0.0117 0.0097 0.0016 0.0296

PrivSyn-10.0 0.5017 0.007 0.0019 0.0028 0.0034 0.0025 0.0025 0.0053 0.03

lap-0.25 0.9853 19.3996 15.6775 15.6772 15.6773 15.6747 15.673 15.6216 15.1237

lap-0.5 0.9619 8.8361 7.6918 7.6915 7.6916 7.689 7.6873 7.6366 7.1222

lap-1.0 0.9072 4.3788 3.7608 3.7604 3.7606 3.7579 3.7562 3.706 3.1763

lap-2.0 0.8278 2.115 1.8199 1.8195 1.8196 1.817 1.8153 1.7651 1.224

lap-4.0 0.5701 1.0375 0.8661 0.8658 0.8659 0.8634 0.8616 0.8115 0.2661

lap-10.0 0.3935 0.369 0.3178 0.3174 0.3176 0.3151 0.3132 0.2622 0.0481

sample-0.01 0.8883 0.0407 0.019 0.046 0.0252 0.0461 0.0827 0.1428 0.1956

sample-0.05 0.821 0.0152 0.0083 0.0199 0.0096 0.0197 0.0344 0.0669 0.111

sample-0.1 0.7337 0.0122 0.0059 0.0145 0.0075 0.0142 0.0244 0.0443 0.074

sample-0.25 0.5494 0.0072 0.0028 0.008 0.0044 0.0077 0.0135 0.0222 0.0315

sample-0.5 0.3834 0.0042 0.0019 0.0045 0.0022 0.0043 0.0073 0.0103 0.0106

Table 1: Compare inversed Pie-chart metric (Inv Pie), range query (RQ) and AEMC on different marginals, M: “months”, N:
“neighborhood”, I: “incident type”. ∆ = 2 for AEMC.

119


	Abstract
	1 Introduction
	2 Background
	2.1 Differential privacy
	2.2 Existing common utility metrics

	3 MGD Metric Overview
	3.1 Design Desiderata
	3.2 Key Elements of MGD

	4 Definition of the MGD Metric
	4.1 Technical Background
	4.2 Formal Definition of AEMC
	4.3 Parameters and Configurations for MGD
	4.4 More Fine-grained Utility Information

	5 Applications of the MGD Metric
	5.1 Application to Census-type Data
	5.2 Application to Temporal Map Data
	5.3 A Concrete Case Study

	6 Computation Issues
	6.1 Transform AEMC as a Linear Program
	6.2 Model AEMC as Min-cost Flow Problem
	6.3 Optimization of AEMC
	6.4 Scalability and Feasibility
	6.5 Exploration of Parameter Tuning

	7 Conclusions and Discussions
	References
	A Using Min-cost Flow with Lower Bounds to Compute AEMC
	A.1 Reducing Computing AEMC to Min-cost Flow with Lower Bounds
	A.2 Solving Min-cost Flow with Lower Bounds

	B Detailed Results of Experiments

