

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2021 Society for Industrial and Applied Mathematics
Vol. 42, No. 1, pp. 165–184

FAST APPROXIMATION OF THE GAUSS–NEWTON HESSIAN

MATRIX FOR THE MULTILAYER PERCEPTRON∗

CHAO CHEN† , SEVERIN REIZ‡ , CHENHAN D. YU§ , HANS-JOACHIM BUNGARTZ‡ ,

AND GEORGE BIROS†

Abstract. We introduce a fast algorithm for entrywise evaluation of the Gauss–Newton Hessian
(GNH) matrix for the fully connected feed-forward neural network. The algorithm has a precompu-
tation step and a sampling step. While it generally requires O(Nn) work to compute an entry (and
the entire column) in the GNH matrix for a neural network with N parameters and n data points,
our fast sampling algorithm reduces the cost to O(n+d/ǫ2) work, where d is the output dimension of
the network and ǫ is a prescribed accuracy (independent of N). One application of our algorithm is
constructing the hierarchical-matrix (H-matrix) approximation of the GNH matrix for solving linear
systems and eigenvalue problems. It generally requires O(N2) memory and O(N3) work to store and
factorize the GNH matrix, respectively. The H-matrix approximation requires only O(Nro) memory
footprint and O(Nr2o) work to be factorized, where ro ≪ N is the maximum rank of off-diagonal
blocks in the GNH matrix. We demonstrate the performance of our fast algorithm and the H-matrix
approximation on classification and autoencoder neural networks.

Key words. Gauss–Newton Hessian, fast Monte Carlo sampling, hierarchical matrix, second-
order optimization, multilayer perceptron

AMS subject classifications. 65F08, 62D05

DOI. 10.1137/19M129961X

1. Introduction. Consider a multilayer perceptron (MLP) with L fully con-
nected layers and n data pairs {(x0

i , yi)}ni=1, where yi is the label of x0
i . Given input

data point x0
i ∈ R

d0 , the output of the MLP is computed via the forward pass,

(1.1) xℓ
i = s(Wℓ x

ℓ−1
i), ℓ = 1, . . . , L,

where xℓ
i ∈ R

dℓ , Wℓ ∈ R
dℓ×dℓ−1 , and s is a nonlinear activation function applied

to every entry of the input vector. Without loss of generality, (1.1) does not have
bias parameters. Otherwise, bias can be included in the weight matrix Wℓ, and
correspondingly vector xℓ

i is appended with an additional homogeneous coordinate of
value one. For ease of presentation, we assume constant layer size, i.e., dℓ ≡ d, for
ℓ = 0, 1, 2, . . . , L, so the total number of parameters is N = d2L. Define the weight
vector consisting of all weight parameters concatenated together as

w = [vec(W1), vec(W2), . . . , vec(WL)],

where w ∈ R
N and vec is the operator vectorizing matrices.

∗Received by the editors November 14, 2019; accepted for publication (in revised form) by L.
Grigori November 13, 2020; published electronically February 2, 2021.

https://doi.org/10.1137/19M129961X
Funding: The work of the authors was supported by NIH award 5R01NS042645-14; National

Science Foundation (NSF) grants CCF-1817048 and CCF-1725743; U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program
grant DE-SC0019393; and U.S. Air Force Office of Scientific Research grant FA9550-17-1-0190. Any
opinions, findings, and conclusions or recommendations expressed herein are those of the authors
and do not necessarily reflect the views of the NIH, NSF, DOE, or AFOSR. Computing time on the
Texas Advanced Computing Centers Stampede system was provided by an allocation from TACC
and the NSF.

†University of Texas at Austin, Austin, TX 78705 USA (chenchao.nk@gmail.com, biros@ices.
utexas.edu).

‡Technical University of Munich, 85748 Munich, Germany (s.reiz@tum.de, bungartz@in.tum.de).
§Nvidia Corp., Santa Clara, CA 95051 USA (b94201001@gmail.com).

165

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

166 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

Given a loss function f(xL
i , yi), which measures the misfit between the network

output and the true label, we define

F (w) =
1

n

n
∑

i=1

f
(

xL
i , yi

)

as the loss of the MLP with respect to the weight vector w. Note xL
i is a function of

the weights w.

Definition 1.1 ((generalized) Gauss–Newton Hessian). Let Qi =
1
n ∂2

xxf(x
L
i , yi)

be the Hessian of the loss function f(xL
i , yi) for i = 1, 2, . . . , n, and define Q ∈ R

dn×dn

as a block diagonal matrix with Qi being the ith diagonal block. Let Ji = ∂wx
L
i ∈ R

d×N

be the Jacobian of xL
i with respect to the weights w for i = 1, 2, . . . , n, and define

J ∈ R
dn×N as the vertical concatenation of all Ji. The (generalized) Gauss–Newton

Hessian (GNH) matrix H ∈ R
N×N associated with the loss F with respect to the

weights w is defined as

H = JTQJ =

n
∑

i=1

JT
i QiJi.(1.2)

The GNH matrix is closely related to the Hessian matrix in that it is the Hessian
matrix of a particular approximation of F (w) constructed by replacing xL

i with its
first-order approximation (on weights w) [30]. Importantly, the GNH matrix is always
(symmetric) positive semidefinite when the loss function f(xL

i , yi) is convex in xL
i

(Qi is positive semidefinite), a useful property in many applications. In addition,
for several standard choices of the loss function, the GNH matrix is mathematically
equivalent to the Fisher matrix as used in the natural gradient method.

This paper is concerned with fast entrywise evaluation of the GNH matrix. Such
an algorithmic primitive can be used in constructing approximations of the GNH ma-
trix for solving linear systems and eigenvalue problems, which are useful for training
and analyzing neural networks [6, 30, 5, 34], for selecting training data to minimize the
inference variance [9], for estimating learning rates [25], for network pruning [19], for
robust training [41], for probabilistic inference [20], for designing fast solvers [7, 38, 15],
and so on.

1.1. Previous work. We classify related work into two groups. One group
avoids entrywise evaluation of the GNH matrix and relies on the matrix-vector mul-
tiplication (matvec) with the Hessian or the GNH that is matrix-free [28, 32, 30]. For
example, the matrix-free matvec can be used to construct low-rank approximations of
the GNH matrix through the randomized singular value decomposition (RSVD) [18],
but the numerical rank may not be small [44, 11]. Other examples are the following:
[10] introduces a low-rank approximation using the Lanczos algorithm to tackle saddle
points, [36] maintains a low-rank approximation of the inverse of the Hessian based
on rank-one updates at each optimization step, [15] uses a quasi-Newton-like con-
struction of the low-rank approximation, [43, 40] study the convergence of stochastic
Newton methods combined with a randomized low-rank approximation, and [41] uses
a matrix-free method with only the layers near the output layer.

The other group of methods are based on evaluating or approximating entries
on or close to the diagonal of the GNH matrix [24]. For example, [48] introduces
a recursive fast algorithm to construct block-diagonal approximations. As another
example, [31, 30] introduce the Kronecker-factored approximate curvature (K-FAC),
which is based on an entrywise approximation of the Fisher matrix (mathematically
equivalent to the GNH for some popular loss functions). The Fisher matrix is given by

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 167

1/n
∑n

i=1 Ey[gi(y)gi(y)
T], where gi is the gradient evaluated for the ith training point

x0
i and y is sampled from the network’s predictive distribution ∝ exp(−f(xL

i , y)).
In practice, an extra step of block-diagonal or block-tridiagonal approximation is
used for fast inversion purpose. The method has been tested within optimization
frameworks on modern supercomputers and has been shown to perform well [35].
However, the sampling in the K-FAC algorithm converges slowly, and block-diagonal
approximations do not account for off-diagonal information.

1.2. Contributions. In this paper, we introduce a fast algorithm for entrywise
evaluation of the GNH matrix H, i.e., computing

Hkm = eTk H em,

where ek and em are two canonical bases for k,m = 1, 2, . . . , N . With the fast
evaluation, we propose the hierarchical-matrix (H-matrix) approximation [4, 17] of
the GNH matrix for the MLP network, which has applications in autoencoders and
long-short memory networks and is often used to study the potential of second-order
training methods. Notice if the matrix-free matvec is used to evaluate Hkm, the
computational cost would be O(Nn).

Our fast algorithm includes a precomputation step and a sampling step, which
reduces the cost to O(n + d) work (independent of N), where d is the output di-
mension of the network. To illustrate the idea, suppose the network employs the
mean squared loss, i.e., f(xL

i , yi) = 1
2‖xL

i − yi‖2, and therefore the GNH matrix is
H = 1

nJJ
T , where J ∈ R

dn×N is the Jacobian of the network output with respect
to the weights. Then Hkm = 1

n (Jek)
T (Jem), and only columns in the Jacobian are

required to be computed. Our precomputation algorithm exploits the structure of a
feed-forward neural network, where the gradient is back propagated layer by layer,
so the intermediate results effectively form a compressed format of the Jacobian with
O(Nn) memory. As a result, every column can be retrieved in only O(nd) time (note
every column has O(nd) entries).

To accelerate the computation of Hkm, we introduce a fast Monte Carlo sampling
algorithm. Let vk(i) denote the subvector in the Jacobian’s kth column corresponding
to the ith data point, and therefore Hkm = 1

n

∑n
i=1 vk(i)

T vm(i). In the sampling, we
draw c (independent of n) independent samples t1, t1, . . . , tc from {1, 2, . . . , n} with a
carefully designed probability distribution Pkm and compute an estimator

H̃km =
1

nc

c
∑

j=1

vk(tj)
T vm(tj)

Pkm(tj)
.

We prove |Hkm − H̃km| = O(1/
√
c) with high probability. Note it requires only

O(n+dc) work to compute H̃km as an approximation, where d is the output dimension
of the network.

With the fast evaluation algorithm, we are able to take advantage of the exist-
ing GOFMM method [45, 46, 47] to construct the H-matrix approximation of the GNH
matrix through evaluating O(N) entries in the matrix. The H-matrix approximation
is a multilevel scheme that stores diagonal blocks and employs low-rank approxima-
tions for off-diagonal blocks in the input matrix. So previous work on the (global)
low-rank approximation and the block-diagonal approximation can be viewed as the
two extremes in the spectrum of our H-matrix approximation, which effectively works
for a broader range of problems. H-matrices are algebraic generalizations of the well-
known fast n-body calculation algorithms [3, 16] in computational physics, and they
have been applied to kernel methods in machine learning [26, 27]. An H-matrix can

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 169

2.1. Neural network training. In an MLP, the weight vector w is obtained
via solving the following constrained optimization problem (regularization on w could
be added):

minF (w) = min
1

n

n
∑

i=1

f
(

xL
i , yi

)

subject to equation (1.1).

(2.1)

Recall that f is the loss function and xL
i is the network output corresponding to input

x0
i , which has label yi.

To solve for w in problem (2.1), a second-order optimization method solves a se-
quence of local quadratic approximations of F (w), which requires solving the following
linear systems repeatedly:

(2.2) Hp = −g,

where H is the curvature matrix (the Hessian of F (w) in the standard Newton
method), g = ∂wF is the gradient, and p is the update direction. Generally speak-
ing, second-order optimization methods are highly concurrent and could require a
much fewer number of iterations to converge than first-order methods, which imply
potentially significant speedup on modern distributed computing platforms.

In the Gauss–Newton method, a popular second-order solver, the GNH matrix
is employed (with a small regularization) as the curvature matrix in (2.2), which can
be solved using the CG method. Since the GNH is mathematically equivalent to the
Fisher matrix for several standard choices of the loss, the solution of (2.2) becomes
the natural gradient, an efficient steepest descent direction in the space of probability
distribution with an appropriately defined distance measure [29].

2.2. Back propagation and matrix-free matvec. Table 1 shows the algo-
rithm known as back propagation for evaluating the gradient g = ∂wF and the matrix-
free matvec with the GNH matrix, both of which have complexity O(Nn). Both
algorithms can be derived by introducing Lagrange multipliers zℓi and ẑℓi for the cor-
responding weights Wℓ at every layer [13, 14]. Note that a direct matvec with the
full GNH matrix would require O(N2) work, not to mention the amount of work to
compute the entire matrix.

Based on the two basic ingredients, iterative solvers such as Krylov methods can
be used to solve (2.2) as in Hessian-free methods [28, 32]. However, the iteration

Table 1

Gradient evaluation and matrix-free matvec with the GNH matrix. Step (a) of gradient eval-
uation is the forward pass in (1.1), and steps (b) and (c) are the well-known back propagation.
In the matvec, step (a) is known as the linearized forward (x̂0

i = 0), which computes Jŵ. No-

tations: Mℓ
i = diag(ṡ(Wℓ x

ℓ−1
i)), where ṡ stands for the derivative; gℓ is the gradient for Wℓ;

ŵ = [vec(Ŵ1), . . . , vec(ŴL)] is the input of the matvec; and (Hŵ)ℓ refers to the ℓth block of the
output.

Evaluate gradient g Matvec with GNH: Hŵ = JTQJŵ (Definition 1.1)

(a) xℓ
i = s

(

Wℓ x
ℓ−1
i

)

∀i, ℓ
(b) zLi = ∂xf(xL

i , yi), ∀i
(c) zℓ−1

i = WT
ℓ
Mℓ

i z
ℓ
i ∀i, ℓ

(d) gℓ =
∑n

i=1

(

Mℓ
i z

ℓ
i

)

(xℓ−1
i)T ∀ℓ

(a) x̂ℓ
i = Mℓ

i

(

Wℓx̂
ℓ−1
i + Ŵℓx

ℓ−1
i

)

∀i, ℓ
(b) ẑLi = Qix̂

L
i ∀i

(c) ẑℓ−1
i = WT

ℓ
Mℓ

i ẑ
ℓ
i ∀i, ℓ

(d) (Hŵ)ℓ =
∑n

i=1

(

Mℓ
i ẑ

ℓ
i

)

(xℓ−1
i)T ∀ℓ

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

170 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

count for convergence can grow rapidly in the presence of ill-conditioning, in which
case fast solvers or preconditioners for (2.2) are necessary [2, 23, 30].

3. Fast computation of entries in GNH. This section presents a precompu-
tation algorithm and a fast Monte Carlo algorithm for fast computation of arbitrary
entries in the GNH matrix of an MLP network.

A naive method. Consider a GNH matrix H ∈ R
N×N , where an entry Hkm can

be written as

(3.1) Hkm = eTk H em,

where ek and em are the kth and the mth columns, respectively, of the N -dimensional
identity matrix. We can take advantage of the matrix-free matvec with the GNH
matrix in Table 1 to compute Hkm = eTk (Hem), which costs the same as one pass of
forward propagation plus one pass of backward propagation, i.e., O(Nn) = O(d2Ln)
work.

In the following, we introduce a precomputation algorithm that reduces the cost
of evaluating an entry in the GHN to O(dn) work with O(Nn) memory and a fast
Monte Carlo algorithm that further reduces the cost to O(n+ d/ǫ2) work, where ǫ is
a prescribed accuracy that does not depend on n or N .

3.1. Precomputation algorithm. The motivation of our precomputation al-
gorithm is to exploit the sparsity of ek and em plus the symmetry of H in (3.1). Recall
the definition of H in (1.2), and let Qi = RT

i Ri be a symmetric factorization, which
can be computed via, e.g., the eigendecomposition or the LDLT factorization with
pivoting. We have

(3.2)
Hkm = eTk

(
∑n

i=1 J
T
i RT

i RiJi
)

em =
∑n

i=1(RiJiek)
T (RiJiem)

:=
∑n

i=1 vk(i)
T vm(i),

where vk(i) and vm(i) are two d-dimensional vectors,

(3.3) vk(i) = RiJiek, vm(i) = RiJiem,

for k,m = 1, 2, . . . , N and i = 1, 2, . . . , n. We state the following theorem and present
the precomputation algorithm in the proof.

Theorem 3.1. For an MLP network that has L fully connected layers with con-
stant layer size d (d-by-d weight matrices), every entry Hkm in the GNH matrix can
be computed in O(dn) time with a precomputation that requires O(nN) storage and
O(dnN) work.

Proof. We first compute xℓ−1
i and M ℓ

i = diag(ṡ(Wℓx
ℓ−1
i)) via the forward pass,

i.e., step (a) of gradient evaluation in Table 1, and then we precompute and store

(3.4) Cℓ
i = RiM

L
i WLM

L−1
i WL−1 · · ·M ℓ

i , i = 1, 2, . . . , n; ℓ = 1, 2, . . . , L.

Since every Cℓ
i is a d× d matrix, the total storage cost is O(d2 nL) = O(nN), where

N = d2L is the total number of weights. In addition, notice the relation that Cℓ−1
i =

Cℓ
i

(

WℓM
ℓ−1
i

)

, so they can be computed from ℓ = L to ℓ = 1 iteratively, which requires
O(d3Ln) = O(dnN) work in total. Note that the forward pass costs O(nN) work and
that computing the symmetric factorizations for Qi cost O(d3n), which is negligible
compared to other parts of the computation.

To complete the proof, we show how to compute vk(i) as defined in (3.3) with
O(d) work. Below we use the same notations as in Table 1, and ek is the input vector
of the matvec corresponding to ŵ = [vec(Ŵ1), . . . , vec(ŴL)] in Table 1. Recall step

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 171

(a) of the matrix-free matvec (linearized forward) with the GNH in Table 1, and we
evaluate Jiek as follows:

1. Let τ =
⌈

k/d2
⌉

, µ = k mod d, and ν =
⌈

(k mod d2)/d
⌉

. Since ek has only

one nonzero entry, x̂ℓ
i = 0 for ℓ = 1, 2, . . . , τ − 1 because Ŵℓ are all zeros

except for ℓ = τ . The matrix Ŵτ has only one nonzero at position (µ, ν)
(column-major ordering) as the following:







ν
...

µ . . . 1 . . .
...






= Ŵτ .

2. Following step (a) of the matvec in Table 1, we have x̂τ
i = Mτ

i Ŵτx
τ−1
i at

layer τ . Denote aτi = Ŵτx
τ−1
i , and we have

x̂τ
i = Mτ

i a
τ
i

x̂τ+1
i = Mτ+1

i Wτ+1x̂
τ
i (since Ŵτ+1 = 0)

= Mτ+1
i Wτ+1M

τ
i a

τ
i

. . .

x̂L
i = ML

i WLM
L−1
i WL−1 · · ·Mτ

i a
τ
i .

3. Notice that the only nonzero entry in aτi is the µth element, which equals the
νth element in xτ−1

i . Therefore,

(3.5) vk(i) = RiJiek = Rix̂
L
i = Cτ

i a
τ
i ,

where Cτ
i a

τ
i should be interpreted as a scaling of the µth column in Cτ

i by
the νth element in xτ−1

i , which costs O(d) work.

3.2. Fast Monte Carlo algorithm. Recall (3.2), which sums over a large num-
ber of data points, and the idea is to sample a subset with a judiciously chosen prob-
ability distribution and scale the (partial) sum appropriately to approximate Hkm.
It is important to note that the computation of the probabilities is fast based on the
previous precomputation. The fast sampling algorithm is given in Algorithm 3.1.

Algorithm 3.1 Fast Monte Carlo algorithm.

1: Input: ‖vk(i)‖ and ‖vm(i)‖ for i = 1, 2, . . . , n.
2: Compute sampling probabilities for t = 1, 2, . . . , n:

(3.6) Pkm(t) =
‖vk(t)‖ ‖vm(t)‖

∑n
j=1 ‖vk(j)‖ ‖vm(j)‖ .

3: Draw c independent random samples tj from {1, 2, . . . , n} with replacement.
4: Output:

(3.7) H̃km =
1

c

c
∑

j=1

vk(tj)
T vm(tj)

Pkm(tj)
.D

o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

172 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

Define vk = [vk(1), . . . , vk(n)] and vm = [vm(1), . . . , vm(n)] as two vectors in R
dn,

and (3.2) can be written as the inner product of the two vectors:

Hkm = vTk vm.

The following theorem shows that our sampling algorithm returns a good estimator
of Hkm, where the error is measured using ‖vk‖‖vm‖, an upper bound on |Hkm|.

Theorem 3.2 (sampling error). Consider an MLP network that has L fully
connected layers with constant layer size d (d-by-d weight matrices). For every entry
Hkm in the GNH matrix, Algorithm 3.1 returns an estimator H̃km

• that is an unbiased estimator of Hkm, i.e., E[H̃km] = Hkm;
• whose variance or mean squared error (MSE) satisfies

(3.8) Var[H̃km] = E

[

|Hkm − H̃km|2
]

≤ 1

c
‖vk‖2‖vm‖2,

where c is the number of random samples;
• whose absolute error satisfies

(3.9) |Hkm − H̃km| ≤ η√
c
‖vk‖‖vm‖,

with probability at least 1− δ, where δ ∈ (0, 1), η = 1+
√

8 log(1/δ), and c is
the number of random samples.

Proof. Our proof consists of the following three parts.
Unbiased estimator. Define a random variable

Xt =
vk(t)

T vm(t)

P (t)
,

where t is a random sample from {1, 2, . . . , n} with probability distribution P (t) as
defined in (3.6). Observe that H̃km is the mean of c independent identically distributed
variables (Xt1 , Xt2 , . . . , Xtc), and thus

E[H̃km] = E[Xt] =

n
∑

t=1

vk(t)
T vm(t)

P (t)
P (t) = Hkm.

Variance/MSE error. The variance or MSE error of the estimator is the following:

E

[

|Hkm − H̃km|2
]

= Var[H̃km] =
1

c
Var[Xt]

=
1

c

(

E[X2
t]− E

2[Xt]
)

=
1

c

n
∑

t=1

(

vk(t)
T vm(t)

P (t)

)2

P (t)− H2
km

c

≤
n
∑

t=1

(

vk(t)
T vm(t)

)2

c P (t)
(drop the last term)

≤
n
∑

t=1

‖vk(t)‖2‖vm(t)‖2
c P (t)

(Cauchy–Schwarz)

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 173

=
1

c

(n
∑

t=1

‖vk(t)‖‖vm(t)‖
)2

(equation (3.6))

≤ 1

c

(n
∑

t=1

‖vk(t)‖2
)(n

∑

t=1

‖vm(t)‖2
)

(Cauchy–Schwarz)

=
1

c
‖vk‖2‖vm‖2.

Notice that with Jensen’s inequality, we also obtain a bound of the absolute error in
expectation:

(3.10) E

[

|Hkm − H̃km|
]

≤ 1√
c
‖vk‖‖vm‖.

Concentration result. We will use McDiarmid’s (or the Hoeffding-Azuma or
bounded differences) inequality to obtain (3.9). See the conditions for the inequality
in Appendix A. Define function

F (t1, t2, . . . , tc) = |Hkm − H̃km|,

where t1, t2, . . . , tc are random samples, and we show that changing one sample ti at
a time does not affect F too much. Consider changing a sample ti to t′i while keeping

others the same. The new estimator Ĥkm differs from H̃km by only one term. Thus,

|H̃km − Ĥkm| =
∣

∣

∣

∣

vk(ti)
T vm(ti)

c P (ti)
− vk(t

′
i)

T vm(t′i)

c P (t′i)

∣

∣

∣

∣

≤
∣

∣

∣

∣

vk(ti)
T vm(ti)

c P (ti)

∣

∣

∣

∣

+

∣

∣

∣

∣

vk(t
′
i)

T vm(t′i)

c P (t′i)

∣

∣

∣

∣

≤ ‖vk(ti)‖‖vm(ti)‖
c P (ti)

+
‖vk(t′i)‖‖vm(t′i)‖

c P (t′i)

=
2

c

n
∑

j=1

‖vk(j)‖ ‖vm(j)‖

≤ 2

c
‖vk‖‖vm‖,

where we have used Cauchy–Schwarz inequality twice. Then define ∆ = 2
c‖vk‖‖vm‖;

using the triangle inequality, we see

|F (. . . , ti, . . .)− F (. . . , t′i, . . .)| ≤ ∆.

Finally, let γ =
√

2c log(1/δ)∆, and we use McDiarmid’s inequality to obtain (3.9)
as follows:

Pr

[

|Hkm − H̃km| ≥ η√
c
‖vk‖‖vm‖

]

= Pr

[

|Hkm − H̃km| ≥ 1√
c
‖vk‖‖vm‖+ γ

]

≤ Pr [F − E[F] ≥ γ] (equation (3.10))

≤ exp

(

− γ2

2c∆2

)

= δ (McDiarmid’s inequality).

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

174 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

Remark 3.3. The error ǫ in the approximation of Hkm depends on only the num-
ber of random samples c (but not n) and can be made arbitrarily small as needed. In
particular, if c ≥ 1/ǫ2, we have

Var[H̃km] = E

[

|Hkm − H̃km|2
]

≤ ǫ ‖vk‖2‖vm‖2,

and if c ≥ η2/ǫ2, then with probability at least 1− δ, where δ ∈ (0, 1),

|Hkm − H̃km| ≤ ǫ ‖vk‖‖vm‖.

Furthermore, the error of the entire matrix in the Frobenius norm is

‖H − H̃‖F ≤ ǫ

√

∑

k

∑

m

‖vk‖2‖vm‖2 = ǫ
∑

k

‖vk‖2

(3.2)
= ǫ

∑

k

Hkk = ǫ trace(H) ≤ ǫ
√
N ‖H‖F .

Remark 3.4. The estimator H̃km is exact using at most one sample when k = m.
The (trivial) case Hkk = 0 is implied by the situation that vkk(i) = 0 for all i;
otherwise, we have Hkk = ‖vk‖2, and the sampling probability becomes

Pkk(t) =
‖vk(t)‖2

∑n
j=1 ‖vk(j)‖2

=
‖vk(t)‖2
‖vk‖2

.

Therefore, H̃kk = ‖vk(t)‖2/Pkk(t) = Hkk with any random sample t.

Theorem 3.5 (computational cost of sampling). Given the precomputation in
Theorem 3.1, it requires O(nN) work to compute ‖vk(i)‖ for all i and k as the input
of Algorithm 3.1, and it requires O(n+d/ǫ2) work to compute every estimator, where
ǫ is a prescribed accuracy that does not depend on n.

Proof. Recall from (3.5) that ‖vk(i)‖ is proportional to the norm of a column in
Cℓ

i . Since every Cℓ
i is a d-by-d matrix, computing all the norms requires O(d2nL) =

O(nN) work. Once all ‖vk(i)‖ have been computed, the sampling probabilities in
(3.6) and the estimator in (3.7) require O(n) and O(d/ǫ2) work, respectively.

4. H-matrix approximation. This section introduces the H-matrix approxi-
mation of the GNH matrix for the MLP. While the low-rank and the block-diagonal
approximations focus on the global and the local structure of the problem, respec-
tively, the H-matrix approximation handles both, as they may be equally important.

4.1. Overall algorithm. Here we take advantage of the GOFMM method [45,
46, 47], which evaluates O(N) entries in a symmetric positive definite (SPD) matrix
H ∈ R

N×N to construct the H-matrix approximation HGOFMM such that

‖H −HGOFMM‖F ≤ ǫ ‖H‖F ,

where ǫ is a prescribed tolerance.
Since GOFMM requires only entrywise evaluation of the input matrix, we apply it

with our fast evaluation algorithm to the regularized GNH matrix (note the GNH
matrix is symmetric positive semidefinite, so we always add a small regularization of
λ times the identity matrix, where λ2 is the unit roundoff). The overall algorithm

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 175

Algorithm 4.1 Compute H-matrix approximation of GNH with GOFMM.

Require: training data {x0
i }ni=1, weights in the neural network w ∈ R

N

Ensure: approximation of the GNH and its factorization
1: Compute M ℓ

i with forward propagation. (step (a) of gradient evaluation in Ta-
ble 1)

2: Compute Cℓ
i in (3.4). (Theorem 3.1: O(Nnd) work and O(Nn) storage)

3: Compute ‖vk(i)‖ in (3.5). (Theorem 3.5: O(Nn) work and O(Nn) storage)
4: Apply GOFMM and evaluate entries in the GNH matrix through Algorithm 3.1.

(Theorem 3.5: O(n+ d/ǫ2) work/entry)

that computes the H-matrix approximation (and approximate factorization) of the
GNH matrix using the GOFMM method is shown in Algorithm 4.1.

The error analysis of Algorithm 4.1 is the following. Let H̃λ = H̃+λI be computed
by Algorithm 3.1, λ > 0 be a regularization, and H̃GOFMM be the approximation of H̃λ

computed by GOFMM. Then the error between the output H̃GOFMM from Algorithm 4.1
and the (regularized) GNH matrix Hλ = H+λI is the following (using the triangular
equality):

‖Hλ − H̃GOFMM‖F = ‖Hλ − H̃λ + H̃λ − H̃GOFMM‖F ≤ ‖H − H̃‖F + ‖H̃λ − H̃GOFMM‖F ,

where the first term is the sampling error from Algorithm 3.1 and the second term is
the GOFMM approximation error. For simplicity, we drop the regularization parameter
for the rest of this paper.

4.2. GOFMM overview. Given an SPD matrix H, the GOFMM takes two steps to
construct the H-matrix approximation as follows. First of all, a permutation matrix P
is computed to reorder the original matrix, which often corresponds to a hierarchical
domain decomposition for applications in two- or three-dimensional physical spaces.
The recursive domain partitioning is often associated with a tree data structure T .
Unlike methods targeting applications in physical spaces, the GOFMM does not require
the use of geometric information (thus its name “geometry-oblivious fast multipole
method”), which does not exist for neural networks. Instead of relying on geomet-
ric information, the GOFMM exploits the algebraic distance measure that is implicitly
defined by the input matrix H. As a matter of fact, any SPD matrix H ∈ R

N×N is
the Gram matrix of N unknown Gram vectors {φi}Ni=1 [22]. Therefore, the distance
between two row/column indices i and j can be defined as

(4.1) dij = sin2 (∠(φi, φj)) = 1−H2
ij/(HiiHjj)

or

dij = ‖φi − φj‖ =
√

Hii − 2Hij +Hjj .

We refer interested readers to [45] for the discussion and comparison of different dis-
tance metrics. With either definition, the GOFMM is able to construct the permutation
P and a balanced binary tree T .

The second step is to approximate the reordered matrix PTHP by

HGOFMM =

[

Hll 0
0 Hrr

]

+

[

0 Slr

Srl 0

]

+

[

0 UlrV
T
lr

UrlV
T
rl 0

]

,

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

176 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

where Hll and Hrr are two diagonal blocks that have the same structure as HGOFMM un-
less their sizes are small enough to be treated as dense blocks, which occurs at the leaf
level of the tree T ; Slr and Srl are block-sparse matrices; and UlrV

T
lr and UrlV

T
rl are

low-rank approximations of the remaining off-diagonal blocks in H. These bases are
computed recursively with a postorder traversal of T using the interpolative decom-
position [18] and a nearest neighbor–based fast sampling scheme. There is a trade-off
here: While the so-called weak-admissibility criterion sets Slr and Srl to zero and
obtains relatively large ranks, the so-called strong-admissibility criterion selects Slr

and Srl to be certain subblocks in H corresponding to a few nearest neighbors/indices
of every leaf node in T and achieves smaller (usually constant) ranks.

Here we focus on the hierarchical semiseparable (HSS) format among other types
of hierarchical matrices. Technically speaking, the HSS format means Slr and Srl are
both zero and the bases Ulr/Vlr and Url/Vrl of a node in T are recursively defined
through the bases of the node’s children, i.e., the so-called nested bases.

We refer interested readers to [45, 46, 47] for details about the GOFMM method.

4.3. Summary and contrast with related work. We summarize the storage
and computational complexity of our H-matrix approximation method (HM) and
describe its relation with three existing methods, namely, the Hessian-free method
(HF) [28, 32], the RSVD [18], and the K-FAC [30, 31]. As before, we assume the
MLP network has L layers of constant layer sizes d, so the number of weights is
N = d2L. Let n be the number of data points.

HM. The algorithm is given in Algorithm 4.1, where the first three steps re-
quire O(Nnd) work and O(Nn) storage. Suppose the rank is ro in the H-matrix
approximation. The GOFMM needs to call Algorithm 3.1 O(Nro) times, which results
in O((n + d/ǫ2)Nro) work. Here, ǫ is chosen to be around the same accuracy as
the H-matrix approximation with rank ro. In addition, standard results in the HSS
literature [33, 39, 21] state that the factorization requires O(Nr2o) work and O(Nro)
storage, which can be applied to solving a linear system with O(Nro) work.

MF. Unlike the other three methods, the MF does not approximate the GNH.
It takes advantage of the (exact) matrix-free matvec and utilizes the CG method for
solving linear systems. It is based on the two primitives in Table 1, where every
iteration costs O(Nn) work and storage. The number of CG iteration is generally
upper bounded by O(

√
κ), where κ is the condition number of the (regularized) GNH

matrix.
RSVD. Recall the GNH matrix H = JTQJ . Without loss of generality, assume

Q is an identity for ease of description. The algorithm is to compute an approximate
SVD of J with the following steps, which naturally leads to an approximate eigenvalue
decomposition of H. First, we apply the back propagation in Table 1 with a random
Gaussian matrix as input. Second, the QR decomposition of the result is used to esti-
mate the row space of J . Third, the linearized forward is applied to project J onto the
approximate row space, and, finally, the SVD is computed on the projection. Overall,
the storage is O(Nr), and the work required is O(Nnr+Nr2 + dnr2), where r is the
numerical rank from the QR decomposition. Compared with the HM approximating
off-diagonal blocks, the RSVD approximates the entire matrix.

K-FAC. It computes an approximation of the Fisher matrix F (mathemati-
cally equivalent to the GNH for some popular loss functions). Let a column vec-
tor g = [vec(g1), . . . , vec(gL)] ∈ R

N be the gradient and F = E[g gT] be a L-by-L
block matrix with block size d2-by-d2. Note the expectation here is taken with re-
spect to both the empirical input data distribution Q̂x0 and the network’s predictive

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 177

Table 2

Asymptotic complexities of the MF, the RSVD, the K-FAC, and the HM with respect to the
number of weights N and the data size n (“lower-order” terms not involving Nn are dropped). We
assume r, k, ro, d < n, where r, k, and ro are the parameters in the RSVD, the K-FAC, and the
HM, respectively, and d is the (constant/average) layer size. In addition, κ stands for the condition
number of the GNH matrix.

MF RSVD K-FAC HM

construction - O(Nnr) O(Nnk) O(Nn(ro + d))
storage O(Nn) O(Nr) O(N) O(Nn)
solve O(Nn

√
κ) O(Nr) O(Nd) O(Nro)

distribution Py|xℓ . In particular, the (ℓ1, ℓ2)th block (ℓ1, ℓ2 = 1, 2, . . . , L) is given by

Fblock(ℓ1, ℓ2) = E[vec(gℓ1)vec(gℓ2)T]

= E[M ℓ1zℓ1(xℓ1−1)T
(

M ℓ2zℓ2(xℓ2−1)T
)T

](4.2)

= E[(M ℓ1zℓ1 ⊗ xℓ1−1)
(

M ℓ2zℓ2 ⊗ xℓ2−1
)T

](4.3)

= E[(M ℓ1zℓ1 ⊗ xℓ1−1)
(

(M ℓ2zℓ2)T ⊗ (xℓ2−1)T
)

](4.4)

= E[M ℓ1zℓ1(M ℓ2zℓ2)T ⊗ xℓ1−1(xℓ2−1)T](4.5)

≈ E[M ℓ1zℓ1(M ℓ2zℓ2)T]⊗ E[xℓ1−1(xℓ2−1)T],(4.6)

where (4.2) uses the definition of the network gradient in Table 1, (4.3) rewrites the
equation using Kronecker products, (4.4) and (4.5) use the properties of the Kron-
ecker product, and (4.6) assumes the statistical independence between the two terms
(see section 6.3.1 in [30]). In (4.6), the former expectation is taken with respect to
both Q̂x0 and Py|xℓ , and the latter is taken with respect to Q̂x0 . To compute the

first expectation, k samples are drawn from the distribution Py|x ∝ exp(−f(xL
i , y)),

where xL
i is the network’s output corresponding to input x0

i . In practice, an additional
block-diagonal or block-tridiagonal approximation of the inverse is employed for fast
solution of linear systems. The main cost of the algorithm is constructing, updating,
and inverting O(L) matrices of size d-by-d, which requires O(d2L) = O(N) storage
and O((nk + d)N) work. Overall, the approximation error of K-FAC has three com-
ponents: the error of making the assumption (4.6), the sampling error from approxi-
mating the expectations in (4.6) and the error of block-diagonal or block-tridiagonal
approximation of the inverse.

We summarize the asymptotic complexities of the four methods discussed above
in Table 2.

5. Experimental results. In this section, we show (1) the cost and the ac-
curacy of our H-matrix approximations, (2) the memory savings from using the pre-
computation algorithm (O(N2) → O(Nn)), and (3) the efficiency of the fast sampling
algorithm. In Algorithm 4.1, the first two steps (precomputation) are implemented in
MATLAB for the convenience of extracting intermediate values of neural networks,
and the last two steps (sampling) are implemented in C++ (GOFMM is written in C++).

Networks and datasets. We focus on classification networks and autoencoder net-
works with the MNIST and CIFAR-10 datasets. In the following, we denote networks’
layer sizes as d1→d2→· · ·→dL from the input layer to the output layer. Every net-
work has been trained using the stochastic gradient descent for a few steps, so the
weights are not random:

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

178 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

1. “classifier”: classification networks with the ReLU activation and the cross-
entropy loss:
(a) N=15,910; MNIST dataset; layer sizes: 784→20→10;
(b) N=61,670; CIFAR-10 dataset; layer sizes: 3072→20→10;
(c) N=219,818; MNIST dataset; layer sizes: 784→256→64→32→10;
(d) N=1,643,498; CIFAR-10 dataset; layer sizes: 3072→512→128→32→10.

2. “AE”: autoencoder networks with the softplus activation (sigmoid activation
at the last layer) and the mean-squared loss:
(a) N=16,474; MNIST dataset; layer sizes: 784→10→784;
(b) N=64,522; CIFAR-10 dataset; layer sizes: 3072→10→3072;
(c) N=125,972; CIFAR-10 dataset; layer sizes: 3072→20→3072.

GOFMM parameters. We employ the default “angle” distance metric in (4.1) and
focus on three parameters in the GOFMM that control the accuracy of the H-matrix
approximation: (1) the leaf node size m of the hierarchical partitioning T (equivalent
to setting the number of tree levels), (2) the maximum rank ro of off-diagonal blocks,
and (3) the accuracy τ of low-rank approximations. In particular, we ran GOFMM

with two different accuracies: “low” (m = 128, ro = 128, τ = 5E-2) and “high”
(m = 1024, ro = 1024, τ = 1E-5).

GOFMM results. We report the following results for our approach:
• tbuild: time of constructing the H-matrix approximation of the GNH matrix
(not including precomputation time);

• tmatv: time of applying the H-matrix approximation to 128 random vectors;
• %K: compression rate of the H-matrix approximation, i.e., ratio between the
H-matrix storage and the GNH matrix storage;

• ǫF : relative error of the H-matrix approximation measured in Frobenius
norm, estimated by ‖Hx−HGOFMM x‖F /‖Hx‖F , where x ∈ R

N×128 is a Gauss-
ian random matrix.

5.1. Cost and accuracy of H-matrix approximation. Table 3 shows results
of our H-matrix approximations for networks that have relatively small numbers of
parameters. The GNH matrices are computed and fully stored in memory.

As Table 3 shows, the approximation can achieve four digits’ accuracy except
for one network (two digits) when the accuracy of low-rank approximations is 1E-5.
Since we have enforced the maximum rank ro, the runtime of constructing H-matrix
approximations (tbuild) increases proportionally to the number of network parameters,
and the compression rate scales inverse proportionally to the number of parameters.
The reported construction time tbuild includes the cost of creating an implicit tree
data structure T in GOFMM, which is less than 20% of tbuild. In addition, applying the
H-matrix approximations to 128 random vectors took less than one second for the
five networks. These H-matrix approximations can be factorized in linear time for
solving linear systems and eigenvalue problems.

Comparison with RSVD and K-FAC. We implemented the RSVD using Keras
and TensorFlow for fast back propogation, and we implemented the K-FAC in MAT-
LAB for the convenience of extracting intermediate values. Table 4 shows the accu-
racies of our method (HM), the RSVD and the K-FAC under about the same com-
pression rate for the low- and high-accuracy settings, respectively. For the RSVD, the
storage is rN entries, where r is the numerical rank of the (symmetric) GNH matrix,
so the compression rate is r/N . For the K-FAC, we use the relatively more accurate
block tridiagonal version. The compression rate of the K-FAC is defined as k/N , and
the reason is that the construction of the RSVD and the K-FAC requires the same

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 179

Table 3

Timing (tbuild and tmatv), compression rate (%K), and accuracy (ǫF) of H-matrix approxima-
tions corresponding to low- and high-accuracy settings, respectively. tbuild is the time of applying
the GOFMM on the GNH matrices corresponding to 1, 000 data points. Experiments performed on one
node from the Texas Advanced Computing Center “Stampede 2” system, which has two sockets with
48 cores of Intel Xeon Platinum 8160/“Skylake” and 192 GB of RAM.

network N accuracy tbuild tmatv %K ǫF

1 classifier (a) 16k low 0.24 0.03 1.80% 1.5E-1
2 high 5.74 0.11 13.59% 4.4E-4

3 classifier (b) 61k low 0.42 0.08 0.57% 4.7E-1
4 high 13.28 0.33 4.78% 4.0E-2

5 AE (a) 16k low 0.27 0.03 1.25% 1.2E-1
6 high 5.67 0.10 11.38% 6.5E-4

7 AE (b) 64k low 0.43 0.08 0.53% 5.5E-3
8 high 13.26 0.38 4.62% 6.6E-4

9 AE (c) 126k low 0.87 0.17 0.28% 4.1E-3
10 high 24.10 0.94 2.32% 5.2E-4

Table 4

Comparison of accuracies (ǫF) among the H-matrix approximation (HM), the RSVD and the
K-FAC with about the same compression rate (%K) for the low- and high-accuracy settings, respec-
tively. For the RSVD and the K-FAC, the compression rate means r/N and k/N , respectively, where
r is the rank and k is the number of random samples. For all cases, the GNH matrices correspond
to 10, 000 data points (n = 10, 000 in (1.2)).

HM-low HM-high RSVD-
low

RSVD-
high

K-FAC-
low

K-FAC-
high

AE(a) %K 1.23% 11.77% 1.40% 12.14% 1.40% 12.14%
ǫF 1.7E-1 4.7E-4 4.3E-1 5.1E-3 1.2E-1 7.3E-2

AE(b) %K 0.53% 4.62% 0.62% 4.65% 0.62% 4.65%
ǫF 5.7E-3 6.4E-4 8.4E-1 2.3E-1 1.7E-1 3.8E-2

AE(c) %K 0.28% 2.31% 0.32% 2.38% 0.32% 2.38%
ǫF 4.2E-3 4.9E-4 9.1E-1 2.1E-1 1.6E-1 4.1E-2

number of back propagation if k = r (recall Table 2). So we choose k and r to be
the same value such that the corresponding compression rate of the RSVD and the
K-FAC are slightly higher than the HM.

As Table 4 shows, the H-matrix approximation achieved higher accuracy than the
RSVD and the K-FAC for most cases, especially for the high-accuracy setting. For the
RSVD, suppose the eigenvalues of the GHN matrix are {σi}i and the error of the rank-
k approximation measured in the Frobenius norm is proportional to (

∑

i>k σ
2
i)

1/2. For
autoencoders (b) and (c), the spectrums of the GNH matrices decay slowly, so the
RSVD is not efficient. For the K-FAC, the approximation that the expectation of a
Kronecker product equals the Kronecker product of expectations (4.6) is, in general,
not exact, impeding the overall accuracy of the method.

5.2. Memory savings. Table 5 shows the memory footprint between our pre-
computation (3.4) and the full GNH matrix, i.e., O(N2). Recall from Theorem 3.1
that the storage of our precomputation is O(nN), where n is the number of data
points.

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

180 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

Table 5

Comparison of memory footprint (in single precision) between our precomputation (3.4) and
the full GNH matrix. For each network, we show the compression rate and accuracy of H-matrix
approximations for two levels of accuracies. For both cases, the GNH matrices correspond to n =
10, 000 data points.

N Mours MGNH accuracy %K ǫF

classifier (c) 219k 191 MB 193 GB low 0.165% 3.1E-1
high 1.268% 4.2E-2

classifier (d) 1.6m 423 MB 10.8 TB low 0.012% 1.2E-1
high 0.177% 2.2E-2

Table 6

Accuracy of our fast Monte Carlo (FMC) sampling scheme. The error ǫK = ‖H−H̃‖F /‖H‖F ,
where H and H̃ are the exact GNH matrix and its approximation computed using K random samples
in Algorithm 3.1, respectively. The exact GNH matrices correspond to the AE (a) network with
the entire MNIST dataset and the class (a) network with the entire CIFAR-10 training dataset,
respectively. The reference uniform sampling scheme uses a uniform sampling probability instead of
(3.6) in Algorithm 3.1.

n scheme ǫ10 ǫ100 ǫ1,000 ǫ10,000

MNIST 60,000 uniform 3.6E-1 1.1E-1 3.6E-1 1.1E-2
FMC 9.7E-3 3.1E-3 9.6E-4 3.1E-4

CIFAR-10 50,000 uniform 9.7E-1 3.1E-1 9.8E-2 3.6E-2
FMC 6.1E-1 1.9E-1 6.1E-2 1.9E-2

As Table 5 shows, our precomputation leads to huge memory reduction compared
with storing the full GNH matrix. This allows using the GOFMM method for networks
that have a large number of parameters. For example, the storage of the GNH matrix
for the classifier (d) network requires more than 10 TB! But we were able to run GOFMM

with the compressed storage (at the price of spending O(dn) work for the evaluation
of every entry). The precomputation of (3.4) took merely about 2 seconds and 7
seconds, respectively.

5.3. Fast Monte Carlo sampling. We show the accuracy of our fast Monte
Carlo sampling scheme. The relative error measured in the Frobenius norm is between
the exact GNH matrix H and the approximation H̃ computed using Algorithm 3.1
with a prescribed number of random samples. For reference, we also run the same
sampling scheme but with a uniform probability distribution.

As Table 6 shows, when the number of random samples increases by 100, the ac-
curacy improves by 10, which confirms the standard convergence rate of Monte Carlo
in Theorem 3.2. Importantly, the error bound and the convergence rate do not de-
pend on the problem size n. Moreover, our sampling scheme outperforms the uniform
sampling by at most two orders of magnitude for the MNIST dataset. In other words,
the uniform sampling requires 100 times more random samples to achieve about the
same accuracy as our sampling scheme.

H-matrix approximation with sampling. Table 7 shows the error of Algorithm 4.1
for a sequence of increasingly large number of random samples. Recall that Algo-
rithm 4.1 computes the H-matrix approximation H̃GOFMM for the (inexact) GNH ma-
trix, namely, H̃, from Algorithm 3.1. The error between the H-matrix approximation
H̃GOFMM and the exact GNH matrix, namely, H, is bounded as below (using the trian-

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 181

Table 7

H-matrix approximation with sampling. The exact GNH matrices correspond to the AE (a)
network with the entire MNIST dataset and the class (a) network with the entire CIFAR-10 training
dataset, respectively. The compression rate and the accuracy are shown for low- and high-accuracy
settings, respectively.

(a) MNIST dataset (n = 60, 000 images)

10 samples 100 samples 1,000 samples 10,000 samples

accuracy %K ǫF %K ǫF %K ǫF %K ǫF

low 1.74% 2.8E-1 1.69% 1.3E-1 1.68% 1.4E-1 1.68% 6.1E-2
high 17.1% 2.2E-2 16.9% 9.5E-3 16.6% 2.7E-3 16.2% 9.6E-4

(b) CIFAR-10 training dataset (n = 50, 000 images)

10 samples 100 samples 1,000 samples 10,000 samples

accuracy %K ǫF %K ǫF %K ǫF %K ǫF

low 0.61% 9.7E-1 0.61% 5.3E-1 0.61% 4.1E-1 0.61% 4.3E-1
high 4.83% 9.7E-1 4.83% 3.6E-1 4.83% 1.9E-1 4.83% 7.3E-2

gular equality)

‖H − H̃GOFMM‖F = ‖H − H̃ + H̃ − H̃GOFMM‖F ≤ ‖H − H̃‖F + ‖H̃ − H̃GOFMM‖F ,

where the first term is the sampling error and the second term is the H-matrix ap-
proximation error. As Table 6 shows, the former converges to zero and is independent
of the data size. Table 7 shows that the latter also converges as the sampling becomes
increasingly accurate, which justifies the overall approach.

6. Conclusions. We have presented a fast method to evaluate entries in the
GNH matrix of the MLP network, and our method consists of two parts: a precom-
putation algorithm and a fast Monte Carlo algorithm. While the precomputation
allows evaluating entries in the GNH matrix exactly with reduced storage, the ran-
dom sampling is based on the precomputation and further accelerates the evaluation.
Let N be the number of weights, n be the data size, and d be the constant layer size.
Our scheme requires O(n + d/ǫ2) work for any entry in the GNH matrix H, where
ǫ is the accuracy, whereas the worst-case complexity to evaluate an entry exactly is
O(Nn) through the matrix-free matvec. For example, the evaluation of HN,N would
require O(Nn) work, while given our precomputation, it requires only O(n) work to
compute a diagonal entry exactly (Remark 3.4). One application of this fast diagonal
evaluation would be computing all the diagonals of H to precondition/accelerate the
training of neural networks [42]. In this paper, we focused on applying the GOFMM to
construct the H-matrix approximation for the GNH matrix. As a result, we obtain
an H-matrix and its factorization for solving linear systems and eigenvalue problems
with the GNH.

Two important directions for future research are (1) extending our method to
other types of networks, such as convolutional networks, where weight matrices are
highly structured (preliminary experiments on the VGG network show similar results
as those in Table 3), and (2) incorporating our method in the context of a learning
task, which would also require several algorithmic choices related to optimization,
such as initialization, damping, and adding momentum.

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

182 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

Appendix A. McDiarmid’s inequality.

Theorem A.1. Let X1, X2, . . . , Xn be independent random variables taking val-
ues in the set X . If a mapping F : Xn → R satisfies

sup
x1,...,xi,x′

i
,...,xn

|F (x1, . . . , xi, . . . , xn)− F (x1, . . . , x
′
i, . . . , xn)| ≤ ∆i ∀i,

where x1, . . . , xi, x
′
i, . . . , xn ∈ X , then for all ǫ > 0,

Pr(f − E[f] ≥ ǫ) ≤ exp

(−2ǫ2
∑n

i=1 ∆
2
i

)

.

REFERENCES

[1] A. Aminfar, S. Ambikasaran, and E. Darve, A fast block low-rank dense solver with appli-
cations to finite-element matrices, J. Comput. Phys., 304 (2016), pp. 170–188.

[2] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.
[3] J. Barnes and P. Hut, A hierarchical O(NlogN) force-calculation algorithm, Nature, 324

(1986), pp. 446–449.
[4] M. Bebendorf, Hierarchical Matrices, Springer-Verlag, Berlin, 2008.
[5] L. Bottou, F. E. Curtis, and J. Nocedal, Optimization methods for large-scale machine

learning, SIAM Rev., 60 (2018), pp. 223–311.
[6] R. H. Byrd, G. M. Chin, W. Neveitt, and J. Nocedal, On the use of stochastic Hessian

information in optimization methods for machine learning, SIAM J. Optim., 21 (2011),
pp. 977–995.

[7] Y. Carmon and J. C. Duchi, Analysis of Krylov subspace solutions of regularized non-
convex quadratic problems, in Advances in Neural Information Processing Systems, 2018,
pp. 10728–10738, https://arxiv.org/pdf/1806.09222.pdf.

[8] C. Chen, H. Pouransari, S. Rajamanickam, E. G. Boman, and E. Darve, A distributed-
memory hierarchical solver for general sparse linear systems, Parallel Comput., 74 (2018),
pp. 49–64.

[9] D. A. Cohn, Neural Network Exploration using Optimal Experiment Design, in Advances in
Neural Information Processing Systems, 1994, pp. 679–686.

[10] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio, Identi-
fying and attacking the saddle point problem in high-dimensional non-convex optimiza-
tion, in Proceedings of the 27th International Conference on Neural Information Pro-
cessing Systems, Vol. 2, NIPS’14, MIT Press, Cambridge, MA, 2014, pp. 2933–2941,
http://dl.acm.org/citation.cfm?id=2969033.2969154.

[11] L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio, Sharp Minima Can Generalize for Deep
Nets, preprint, arXiv:1703.04933, 2017.

[12] P. Ghysels, X. S. Li, F.-H. Rouet, S. Williams, and A. Napov, An efficient multicore
implementation of a novel HSS-structured multifrontal solver using randomized sampling,
SIAM J. Sci. Comput., 38 (2016), pp. S358–S384, https://doi.org/10.1137/15M1010117.

[13] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New
York, 1981.

[14] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning, Vol. 1, MIT
Press, Cambridge, MA, 2016.

[15] R. M. Gower, N. L. Roux, and F. Bach, Tracking the Gradients Using the Hessian: A New
Look at Variance Reducing Stochastic Methods, preprint, arXiv:1710.07462, 2017.

[16] L. Greengard, Fast algorithms for classical physics, Science, 265 (1994), pp. 909–914.
[17] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis, Springer Series in Computa-

tional Mathematics 49, Springer-Verlag, Berlin, 2015.
[18] N. Halko, P.-G. Martinsson, and J. Tropp, Finding structure with randomness: Probabilis-

tic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011),
pp. 217–288.

[19] B. Hassibi and D. G. Stork, Second order derivatives for network pruning: Optimal brain
surgeon, in Advances in Neural Information Processing Systems, 1993, pp. 164–171.

[20] G. Hennequin, L. Aitchison, and M. Lengyel, Fast sampling-based inference in balanced
neuronal networks, in Advances in Neural Information Processing Systems, 2014, pp. 2240–
2248.

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 183

[21] K. L. Ho and L. Ying, Hierarchical Interpolative Factorization for Elliptic Operators: Integral
Equations, preprint, arXiv:1307.2666, 2013.

[22] T. Hofmann, B. Schölkopf, and A. J. Smola, Kernel methods in machine learning, Ann.
Statist., (2008), pp. 1171–1220.

[23] D. A. Knoll and D. E. Keyes, Jacobian-free Newton-Krylov methods: A survey of approaches
and applications, J. Comput. Phys., 193 (2004), pp. 357–397.

[24] J. Lafond, N. Vasilache, and L. Bottou, Diagonal Rescaling for Neural Networks, preprint,
arXiv:1705.09319, 2017.

[25] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, Efficient backprop, in Neural Networks:
Tricks of the Trade, Springer-Verlag, Berlin, 1998, pp. 9–50.

[26] D. Lee and A. G. Gray, Fast high-dimensional kernel summations using the Monte Carlo
multipole method, in Proceedings of the 22nd Annual Conference on Neural Information
Processing Systems (NIPS), 2008, pp. 929–936.

[27] W. B. March, B. Xiao, C. D. Yu, and G. Biros, Askit: An efficient, parallel library for
high-dimensional kernel summations, SIAM J. Sci. Comput., 38 (2016), pp. S720–S749,
https://doi.org/10.1137/15M1026468.

[28] J. Martens, Deep learning via Hessian-free optimization, in International Conference on Ma-
chine Learning, Vol. 27, 2010, pp. 735–742.

[29] J. Martens, New Insights and Perspectives on the Natural Gradient Method, preprint,
arXiv:1412.1193, 2014.

[30] J. Martens, Second-Order Optimization for Neural Networks, Ph.D. thesis, University of
Toronto, Toronto, ON, Canada, 2016.

[31] J. Martens and R. Grosse, Optimizing neural betworks with Kronecker-factored approximate
curvature, in International Conference on Machine Learning, 2015, pp. 2408–2417.

[32] J. Martens and I. Sutskever, Learning recurrent neural networks with Hessian-free optimiza-
tion, in Proceedings of the 28th International Conference on Machine Learning (ICML-11),
Citeseer, 2011, pp. 1033–1040.

[33] P.-G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in
two dimensions, J. Comput. Phys., 205 (2005), pp. 1–23.

[34] T. O’Leary-Roseberry, N. Alger, and O. Ghattas, Inexact Newton Methods for Stochas-
tic Non-Convex Optimization with Applications to Neural Network Training, preprint,
arXiv:1905.06738, 2019.

[35] K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, R. Yokota, and S. Matsuoka, Second-Order
Optimization Method for Large Mini-Batch: Training Resnet-50 on Imagenet in 35 Epochs,
preprint, arXiv:1811.12019, 2018.

[36] N. L. Roux, P.-A. Manzagol, and Y. Bengio, Topmoumoute online natural gradient algo-
rithm, in Advances in Neural Information Processing Systems, 2008, pp. 849–856.

[37] T. Takahashi, C. Chen, and E. Darve, Parallelization of the Inverse Fast Multipole Method
with an Application to Boundary Element Method, preprint, arXiv:1905.10602, 2019.

[38] N. Tripuraneni, M. Stern, C. Jin, J. Regier, and M. I. Jordan, Stochastic
cubic regularization for fast nonconvex optimization, in Advances in Neural In-
formation Processing Systems, 2018, pp. 2904–2913, http://papers.nips.cc/paper/
7554-stochastic-cubic-regularization-for-fast-nonconvex-optimization.pdf.

[39] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisep-
arable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.

[40] P. Xu, J. Yang, F. Roosta-Khorasani, C. Ré, and M. W. Mahoney, Sub-sampled New-
ton methods with non-uniform sampling, in Advances in Neural Information Processing
Systems, 2016, pp. 3000–3008.

[41] Z. Yao, A. Gholami, Q. Lei, K. Keutzer, and M. W. Mahoney, Hessian-Based Analysis of
Large Batch Training and Robustness to Adversaries, preprint, arXiv:1802.08241, 2018.

[42] Z. Yao, A. Gholami, S. Shen, K. Keutzer, and M. W. Mahoney, Adahessian: An Adaptive
Second Order Optimizer for Machine Learning, preprint, arXiv:2006.00719, 2020.

[43] H. Ye, L. Luo, and Z. Zhang, Approximate Newton methods and their local convergence,
in Proceedings of the 34th International Conference on Machine Learning, Proceedings
of Machine Learning Research, International Convention Centre, Sydney, Australia, 2017,
pp. 3931–3939, http://proceedings.mlr.press/v70/ye17a.html.

[44] Y. You, Z. Zhang, C. Hsieh, J. Demmel, and K. Keutzer, Imagenet Training in Minutes,
CoRR, abs/1709.05011, 2017.

[45] C. D. Yu, J. Levitt, S. Reiz, and G. Biros, Geometry-oblivious FMM for compressing dense
SPD matrices, in Proceedings of SC17, AMC SCxy Conference series, IEEE, Denver, CO,
2017, https://doi.org/10.1145/3126908.3126921.

[46] C. D. Yu, S. Reiz, and G. Biros, Distributed-memory hierarchical compression of dense SPD
matrices, in Proceedings of the International Conference for High Performance Computing,

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

184 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

Networking, Storage, and Analysis, SC ’18, IEEE Press, Piscataway, NJ, 2018, pp. 15:1–
15:15, https://dl.acm.org/citation.cfm?id=3291676.

[47] C. D. Yu, S. Riesz, and J. Levitt, GOFMM Home Page, https://github.com/ChenhanYu/hmlp,
2018.

[48] H. Zhang, C. Xiong, J. Bradbury, and R. Socher, Block-Diagonal Hessian-Free Optimiza-
tion for Training Neural Networks, preprint, arXiv:1712.07296, 2017.

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

The original version of this article follows.

1

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. © 2021 Society for Industrial and Applied Mathematics
Vol. 42, No. 1, pp. 165–184

FAST APPROXIMATION OF THE GAUSS–NEWTON HESSIAN

MATRIX FOR THE MULTILAYER PERCEPTRON∗

CHAO CHEN† , SEVERIN REIZ‡ , CHENHAN D. YU§ , HANS-JOACHIM BUNGARTZ‡ ,

AND GEORGE BIROS†

Abstract. We introduce a fast algorithm for entrywise evaluation of the Gauss–Newton Hessian
(GNH) matrix for the fully connected feed-forward neural network. The algorithm has a precompu-
tation step and a sampling step. While it generally requires O(Nn) work to compute an entry (and
the entire column) in the GNH matrix for a neural network with N parameters and n data points,
our fast sampling algorithm reduces the cost to O(n+d/ǫ2) work, where d is the output dimension of
the network and ǫ is a prescribed accuracy (independent of N). One application of our algorithm is
constructing the hierarchical-matrix (H-matrix) approximation of the GNH matrix for solving linear
systems and eigenvalue problems. It generally requires O(N2) memory and O(N3) work to store and
factorize the GNH matrix, respectively. The H-matrix approximation requires only O(Nro) memory
footprint and O(Nr2o) work to be factorized, where ro ≪ N is the maximum rank of off-diagonal
blocks in the GNH matrix. We demonstrate the performance of our fast algorithm and the H-matrix
approximation on classification and autoencoder neural networks.

Key words. Gauss–Newton Hessian, fast Monte Carlo sampling, hierarchical matrix, second-
order optimization, multilayer perceptron

AMS subject classifications. 65F08, 62D05

DOI. 10.1137/19M129961X

1. Introduction. Consider a multilayer perceptron (MLP) with L fully con-
nected layers and n data pairs {(x0

i , yi)}ni=1, where yi is the label of x0
i . Given input

data point x0
i ∈ R

d0 , the output of the MLP is computed via the forward pass,

(1.1) xℓ
i = s(Wℓ x

ℓ−1
i), ℓ = 1, . . . , L,

where xℓ
i ∈ R

dℓ , Wℓ ∈ R
dℓ×dℓ−1 , and s is a nonlinear activation function applied

to every entry of the input vector. Without loss of generality, (1.1) does not have
bias parameters. Otherwise, bias can be included in the weight matrix Wℓ, and
correspondingly vector xℓ

i is appended with an additional homogeneous coordinate of
value one. For ease of presentation, we assume constant layer size, i.e., dℓ ≡ d, for
ℓ = 0, 1, 2, . . . , L, so the total number of parameters is N = d2L. Define the weight
vector consisting of all weight parameters concatenated together as

w = [vec(W1), vec(W2), . . . , vec(WL)],

where w ∈ R
N and vec is the operator vectorizing matrices.

∗Received by the editors November 14, 2019; accepted for publication (in revised form) by L.
Grigori November 13, 2020; published electronically February 2, 2021.

https://doi.org/10.1137/19M129961X
Funding: The work of the authors was supported by NIH award 5R01NS042645-14; National

Science Foundation (NSF) grants CCF-1817048 and CCF-1725743; U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program
grant DE-SC0019393; and U.S. Air Force Office of Scientific Research grant FA9550-17-1-0190. Any
opinions, findings, and conclusions or recommendations expressed herein are those of the authors
and do not necessarily reflect the views of the NIH, NSF, DOE, or AFOSR. Computing time on the
Texas Advanced Computing Centers Stampede system was provided by an allocation from TACC
and the NSF.

†University of Texas at Austin, Austin, TX 78705 USA (chenchao.nk@gmail.com, biros@ices.
utexas.edu).

‡Technical University of Munich, 85748 Munich, Germany (s.reiz@tum.de, bungartz@in.tum.de).
§Nvidia Corp., Santa Clara, CA 95051 USA (b94201001@gmail.com).

165

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

166 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

Given a loss function f(xL
i , yi), which measures the misfit between the network

output and the true label, we define

F (w) =
1

n

n
∑

i=1

f
(

xL
i , yi

)

as the loss of the MLP with respect to the weight vector w. Note xL
i is a function of

the weights w.

Definition 1.1 ((generalized) Gauss–Newton Hessian). Let Qi =
1
n ∂2

xxf(x
L
i , yi)

be the Hessian of the loss function f(xL
i , yi) for i = 1, 2, . . . , n, and define Q ∈ R

dn×dn

as a block diagonal matrix with Qi being the ith diagonal block. Let Ji = ∂wx
L
i ∈ R

d×N

be the Jacobian of xL
i with respect to the weights w for i = 1, 2, . . . , n, and define

J ∈ R
dn×N as the vertical concatenation of all Ji. The (generalized) Gauss–Newton

Hessian (GNH) matrix H ∈ R
N×N associated with the loss F with respect to the

weights w is defined as

H = JTQJ =

n
∑

i=1

JT
i QiJi.(1.2)

The GNH matrix is closely related to the Hessian matrix in that it is the Hessian
matrix of a particular approximation of F (w) constructed by replacing xL

i with its
first-order approximation (on weights w) [30]. Importantly, the GNH matrix is always
(symmetric) positive semidefinite when the loss function f(xL

i , yi) is convex in xL
i

(Qi is positive semidefinite), a useful property in many applications. In addition,
for several standard choices of the loss function, the GNH matrix is mathematically
equivalent to the Fisher matrix as used in the natural gradient method.

This paper is concerned with fast entrywise evaluation of the GNH matrix. Such
an algorithmic primitive can be used in constructing approximations of the GNH ma-
trix for solving linear systems and eigenvalue problems, which are useful for training
and analyzing neural networks [6, 30, 5, 34], for selecting training data to minimize the
inference variance [9], for estimating learning rates [25], for network pruning [19], for
robust training [41], for probabilistic inference [20], for designing fast solvers [7, 38, 15],
and so on.

1.1. Previous work. We classify related work into two groups. One group
avoids entrywise evaluation of the GNH matrix and relies on the matrix-vector mul-
tiplication (matvec) with the Hessian or the GNH that is matrix-free [28, 32, 30]. For
example, the matrix-free matvec can be used to construct low-rank approximations of
the GNH matrix through the randomized singular value decomposition (RSVD) [18],
but the numerical rank may not be small [44, 11]. Other examples are the following:
[10] introduces a low-rank approximation using the Lanczos algorithm to tackle saddle
points, [36] maintains a low-rank approximation of the inverse of the Hessian based
on rank-one updates at each optimization step, [15] uses a quasi-Newton-like con-
struction of the low-rank approximation, [43, 40] study the convergence of stochastic
Newton methods combined with a randomized low-rank approximation, and [41] uses
a matrix-free method with only the layers near the output layer.

The other group of methods are based on evaluating or approximating entries
on or close to the diagonal of the GNH matrix [24]. For example, [48] introduces
a recursive fast algorithm to construct block-diagonal approximations. As another
example, [31, 30] introduce the Kronecker-factored approximate curvature (K-FAC),
which is based on an entrywise approximation of the Fisher matrix (mathematically
equivalent to the GNH for some popular loss functions). The Fisher matrix is given by

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 167

1/n
∑n

i=1 Ey[gi(y)gi(y)
T], where gi is the gradient evaluated for the ith training point

x0
i and y is sampled from the network’s predictive distribution ∝ exp(−f(xL

i , y)).
In practice, an extra step of block-diagonal or block-tridiagonal approximation is
used for fast inversion purpose. The method has been tested within optimization
frameworks on modern supercomputers and has been shown to perform well [35].
However, the sampling in the K-FAC algorithm converges slowly, and block-diagonal
approximations do not account for off-diagonal information.

1.2. Contributions. In this paper, we introduce a fast algorithm for entrywise
evaluation of the GNH matrix H, i.e., computing

Hkm = eTk H em,

where ek and em are two canonical bases for k,m = 1, 2, . . . , N . With the fast
evaluation, we propose the hierarchical-matrix (H-matrix) approximation [4, 17] of
the GNH matrix for the MLP network, which has applications in autoencoders and
long-short memory networks and is often used to study the potential of second-order
training methods. Notice if the matrix-free matvec is used to evaluate Hkm, the
computational cost would be O(Nn).

Our fast algorithm includes a precomputation step and a sampling step, which
reduces the cost to O(n + d) work (independent of N), where d is the output di-
mension of the network. To illustrate the idea, suppose the network employs the
mean squared loss, i.e., f(xL

i , yi) = 1
2‖xL

i − yi‖2, and therefore the GNH matrix is
H = 1

nJJ
T , where J ∈ R

dn×N is the Jacobian of the network output with respect
to the weights. Then Hkm = 1

n (Jek)
T (Jem), and only columns in the Jacobian are

required to be computed. Our precomputation algorithm exploits the structure of a
feed-forward neural network, where the gradient is back propagated layer by layer,
so the intermediate results effectively form a compressed format of the Jacobian with
O(Nn) memory. As a result, every column can be retrieved in only O(nd) time (note
every column has O(nd) entries).

To accelerate the computation of Hkm, we introduce a fast Monte Carlo sampling
algorithm. Let vk(i) denote the subvector in the Jacobian’s kth column corresponding
to the ith data point, and therefore Hkm = 1

n

∑n
i=1 vk(i)

T vm(i). In the sampling, we
draw c (independent of n) independent samples t1, t1, . . . , tc from {1, 2, . . . , n} with a
carefully designed probability distribution Pkm and compute an estimator

H̃km =
1

nc

c
∑

j=1

vk(tj)
T vm(tj)

Pkm(tj)
.

We prove |Hkm − H̃km| = O(1/
√
c) with high probability. Note it requires only

O(n+dc) work to compute H̃km as an approximation, where d is the output dimension
of the network.

With the fast evaluation algorithm, we are able to take advantage of the exist-
ing GOFMM method [45, 46, 47] to construct the H-matrix approximation of the GNH
matrix through evaluating O(N) entries in the matrix. The H-matrix approximation
is a multilevel scheme that stores diagonal blocks and employs low-rank approxima-
tions for off-diagonal blocks in the input matrix. So previous work on the (global)
low-rank approximation and the block-diagonal approximation can be viewed as the
two extremes in the spectrum of our H-matrix approximation, which effectively works
for a broader range of problems. H-matrices are algebraic generalizations of the well-
known fast n-body calculation algorithms [3, 16] in computational physics, and they
have been applied to kernel methods in machine learning [26, 27]. An H-matrix can

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 169

2.1. Neural network training. In an MLP, the weight vector w is obtained
via solving the following constrained optimization problem (regularization on w could
be added):

minF (w) = min
1

n

n
∑

i=1

f
(

xL
i , yi

)

subject to equation (1.1).

(2.1)

Recall that f is the loss function and xL
i is the network output corresponding to input

x0
i , which has label yi.

To solve for w in problem (2.1), a second-order optimization method solves a se-
quence of local quadratic approximations of F (w), which requires solving the following
linear systems repeatedly:

(2.2) Hp = −g,

where H is the curvature matrix (the Hessian of F (w) in the standard Newton
method), g = ∂wF is the gradient, and p is the update direction. Generally speak-
ing, second-order optimization methods are highly concurrent and could require a
much fewer number of iterations to converge than first-order methods, which imply
potentially significant speedup on modern distributed computing platforms.

In the Gauss–Newton method, a popular second-order solver, the GNH matrix
is employed (with a small regularization) as the curvature matrix in (2.2), which can
be solved using the CG method. Since the GNH is mathematically equivalent to the
Fisher matrix for several standard choices of the loss, the solution of (2.2) becomes
the natural gradient, an efficient steepest descent direction in the space of probability
distribution with an appropriately defined distance measure [29].

2.2. Back propagation and matrix-free matvec. Table 1 shows the algo-
rithm known as back propagation for evaluating the gradient g = ∂wF and the matrix-
free matvec with the GNH matrix, both of which have complexity O(Nn). Both
algorithms can be derived by introducing Lagrange multipliers zℓi and ẑℓi for the cor-
responding weights Wℓ at every layer [13, 14]. Note that a direct matvec with the
full GNH matrix would require O(N2) work, not to mention the amount of work to
compute the entire matrix.

Based on the two basic ingredients, iterative solvers such as Krylov methods can
be used to solve (2.2) as in Hessian-free methods [28, 32]. However, the iteration

Table 1

Gradient evaluation and matrix-free matvec with the GNH matrix. Step (a) of gradient eval-
uation is the forward pass in (1.1), and steps (b) and (c) are the well-known back propagation.
In the matvec, step (a) is known as the linearized forward (x̂0

i = 0), which computes Jŵ. No-

tations: Mℓ
i = diag(ṡ(Wℓ x

ℓ−1
i)), where ṡ stands for the derivative; gℓ is the gradient for Wℓ;

ŵ = [vec(Ŵ1), . . . , vec(ŴL)] is the input of the matvec; and (Hŵ)ℓ refers to the ℓth block of the
output.

Evaluate gradient g Matvec with GNH: Hŵ = JTQJŵ (Definition 1.1)

(a) xℓ
i = s

(

Wℓ x
ℓ−1
i

)

∀i, ℓ
(b) zLi = ∂xf(xL

i , yi), ∀i
(c) zℓ−1

i = WT
ℓ
Mℓ

i z
ℓ
i ∀i, ℓ

(d) gℓ =
∑n

i=1

(

Mℓ
i z

ℓ
i

)

(xℓ−1
i)T ∀ℓ

(a) x̂ℓ
i = Mℓ

i

(

Wℓx̂
ℓ−1
i + Ŵℓx

ℓ−1
i

)

∀i, ℓ
(b) ẑLi = Qix̂

L
i ∀i

(c) ẑℓ−1
i = WT

ℓ
Mℓ

i ẑ
ℓ
i ∀i, ℓ

(d) (Hŵ)ℓ =
∑n

i=1

(

Mℓ
i ẑ

ℓ
i

)

(xℓ−1
i)T ∀ℓ

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

170 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

count for convergence can grow rapidly in the presence of ill-conditioning, in which
case fast solvers or preconditioners for (2.2) are necessary [2, 23, 30].

3. Fast computation of entries in GNH. This section presents a precompu-
tation algorithm and a fast Monte Carlo algorithm for fast computation of arbitrary
entries in the GNH matrix of an MLP network.

A naive method. Consider a GNH matrix H ∈ R
N×N , where an entry Hkm can

be written as

(3.1) Hkm = eTk H em,

where ek and em are the kth and the mth columns, respectively, of the N -dimensional
identity matrix. We can take advantage of the matrix-free matvec with the GNH
matrix in Table 1 to compute Hkm = eTk (Hem), which costs the same as one pass of
forward propagation plus one pass of backward propagation, i.e., O(Nn) = O(d2Ln)
work.

In the following, we introduce a precomputation algorithm that reduces the cost
of evaluating an entry in the GHN to O(dn) work with O(Nn) memory and a fast
Monte Carlo algorithm that further reduces the cost to O(n+ d/ǫ2) work, where ǫ is
a prescribed accuracy that does not depend on n or N .

3.1. Precomputation algorithm. The motivation of our precomputation al-
gorithm is to exploit the sparsity of ek and em plus the symmetry of H in (3.1). Recall
the definition of H in (1.2), and let Qi = RT

i Ri be a symmetric factorization, which
can be computed via, e.g., the eigendecomposition or the LDLT factorization with
pivoting. We have

(3.2)
Hkm = eTk

(
∑n

i=1 J
T
i RT

i RiJi
)

em =
∑n

i=1(RiJiek)
T (RiJiem)

:=
∑n

i=1 vk(i)
T vm(i),

where vk(i) and vm(i) are two d-dimensional vectors,

(3.3) vk(i) = RiJiek, vm(i) = RiJiem,

for k,m = 1, 2, . . . , N and i = 1, 2, . . . , n. We state the following theorem and present
the precomputation algorithm in the proof.

Theorem 3.1. For an MLP network that has L fully connected layers with con-
stant layer size d (d-by-d weight matrices), every entry Hkm in the GNH matrix can
be computed in O(dn) time with a precomputation that requires O(nN) storage and
O(dnN) work.

Proof. We first compute xℓ−1
i and M ℓ

i = diag(ṡ(Wℓx
ℓ−1
i)) via the forward pass,

i.e., step (a) of gradient evaluation in Table 1, and then we precompute and store

(3.4) Cℓ
i = RiM

L
i WLM

L−1
i WL−1 · · ·M ℓ

i , i = 1, 2, . . . , n; ℓ = 1, 2, . . . , L.

Since every Cℓ
i is a d× d matrix, the total storage cost is O(d2 nL) = O(nN), where

N = d2L is the total number of weights. In addition, notice the relation that Cℓ−1
i =

Cℓ
i

(

WℓM
ℓ−1
i

)

, so they can be computed from ℓ = L to ℓ = 1 iteratively, which requires
O(d3Ln) = O(dnN) work in total. Note that the forward pass costs O(nN) work and
that computing the symmetric factorizations for Qi cost O(d3n), which is negligible
compared to other parts of the computation.

To complete the proof, we show how to compute vk(i) as defined in (3.3) with
O(d) work. Below we use the same notations as in Table 1, and ek is the input vector
of the matvec corresponding to ŵ = [vec(Ŵ1), . . . , vec(ŴL)] in Table 1. Recall step

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 171

(a) of the matrix-free matvec (linearized forward) with the GNH in Table 1, and we
evaluate Jiek as follows:

1. Let τ =
⌈

k/d2
⌉

, µ = k mod d, and ν =
⌈

(k mod d2)/d
⌉

. Since ek has only

one nonzero entry, x̂ℓ
i = 0 for ℓ = 1, 2, . . . , τ − 1 because Ŵℓ are all zeros

except for ℓ = τ . The matrix Ŵτ has only one nonzero at position (µ, ν)
(column-major ordering) as the following:







ν
...

µ . . . 1 . . .
...






= Ŵτ .

2. Following step (a) of the matvec in Table 1, we have x̂τ
i = Mτ

i Ŵτx
τ−1
i at

layer τ . Denote aτi = Ŵτx
τ−1
i , and we have

x̂τ
i = Mτ

i a
τ
i

x̂τ+1
i = Mτ+1

i Wτ+1x̂
τ
i (since Ŵτ+1 = 0)

= Mτ+1
i Wτ+1M

τ
i a

τ
i

. . .

x̂L
i = ML

i WLM
L−1
i WL−1 · · ·Mτ

i a
τ
i .

3. Notice that the only nonzero entry in aτi is the µth element, which equals the
νth element in xτ−1

i . Therefore,

(3.5) vk(i) = RiJiek = Rix̂
L
i = Cτ

i a
τ
i ,

where Cτ
i a

τ
i should be interpreted as a scaling of the µth column in Cτ

i by
the νth element in xτ−1

i , which costs O(d) work.

3.2. Fast Monte Carlo algorithm. Recall (3.2), which sums over a large num-
ber of data points, and the idea is to sample a subset with a judiciously chosen prob-
ability distribution and scale the (partial) sum appropriately to approximate Hkm.
It is important to note that the computation of the probabilities is fast based on the
previous precomputation. The fast sampling algorithm is given in Algorithm 3.1.

Algorithm 3.1 Fast Monte Carlo algorithm.

1: Input: ‖vk(i)‖ and ‖vm(i)‖ for i = 1, 2, . . . , n.
2: Compute sampling probabilities for t = 1, 2, . . . , n:

(3.6) Pkm(t) =
‖vk(t)‖ ‖vm(t)‖

∑n
j=1 ‖vk(j)‖ ‖vm(j)‖ .

3: Draw c independent random samples tj from {1, 2, . . . , n} with replacement.
4: Output:

(3.7) H̃km =
1

c

c
∑

j=1

vk(tj)
T vm(tj)

Pkm(tj)
.D

o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

172 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

Define vk = [vk(1), . . . , vk(n)] and vm = [vm(1), . . . , vm(n)] as two vectors in R
dn,

and (3.2) can be written as the inner product of the two vectors:

Hkm = vTk vm.

The following theorem shows that our sampling algorithm returns a good estimator
of Hkm, where the error is measured using ‖vk‖‖vm‖, an upper bound on |Hkm|.

Theorem 3.2 (sampling error). Consider an MLP network that has L fully
connected layers with constant layer size d (d-by-d weight matrices). For every entry
Hkm in the GNH matrix, Algorithm 3.1 returns an estimator H̃km

• that is an unbiased estimator of Hkm, i.e., E[H̃km] = Hkm;
• whose variance or mean squared error (MSE) satisfies

(3.8) Var[H̃km] = E

[

|Hkm − H̃km|2
]

≤ 1

c
‖vk‖2‖vm‖2,

where c is the number of random samples;
• whose absolute error satisfies

(3.9) |Hkm − H̃km| ≤ η√
c
‖vk‖‖vm‖,

with probability at least 1−δ, where δ ∈ (0, 1), η = 1+ . . . and c is the number
of random samples.

Proof. Our proof consists of the following three parts.
Unbiased estimator. Define a random variable

Xt =
vk(t)

T vm(t)

P (t)
,

where t is a random sample from {1, 2, . . . , n} with probability distribution P (t) as
defined in (3.6). Observe that H̃km is the mean of c independent identically distributed
variables (Xt1 , Xt2 , . . . , Xtc), and thus

E[H̃km] = E[Xt] =

n
∑

t=1

vk(t)
T vm(t)

P (t)
P (t) = Hkm.

Variance/MSE error. The variance or MSE error of the estimator is the following:

E

[

|Hkm − H̃km|2
]

= Var[H̃km] =
1

c
Var[Xt]

=
1

c

(

E[X2
t]− E

2[Xt]
)

=
1

c

n
∑

t=1

(

vk(t)
T vm(t)

P (t)

)2

P (t)− H2
km

c

≤
n
∑

t=1

(

vk(t)
T vm(t)

)2

c P (t)
(drop the last term)

≤
n
∑

t=1

‖vk(t)‖2‖vm(t)‖2
c P (t)

(Cauchy–Schwarz)

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 173

=
1

c

(n
∑

t=1

‖vk(t)‖‖vm(t)‖
)2

(equation (3.6))

≤ 1

c

(n
∑

t=1

‖vk(t)‖2
)(n

∑

t=1

‖vm(t)‖2
)

(Cauchy–Schwarz)

=
1

c
‖vk‖2‖vm‖2.

Notice that with Jensen’s inequality, we also obtain a bound of the absolute error in
expectation:

(3.10) E

[

|Hkm − H̃km|
]

≤ 1√
c
‖vk‖‖vm‖.

Concentration result. We will use McDiarmid’s (or the Hoeffding-Azuma or
bounded differences) inequality to obtain (3.9). See the conditions for the inequality
in Appendix A. Define function

F (t1, t2, . . . , tc) = |Hkm − H̃km|,

where t1, t2, . . . , tc are random samples, and we show that changing one sample ti at
a time does not affect F too much. Consider changing a sample ti to t′i while keeping

others the same. The new estimator Ĥkm differs from H̃km by only one term. Thus,

|H̃km − Ĥkm| =
∣

∣

∣

∣

vk(ti)
T vm(ti)

c P (ti)
− vk(t

′
i)

T vm(t′i)

c P (t′i)

∣

∣

∣

∣

≤
∣

∣

∣

∣

vk(ti)
T vm(ti)

c P (ti)

∣

∣

∣

∣

+

∣

∣

∣

∣

vk(t
′
i)

T vm(t′i)

c P (t′i)

∣

∣

∣

∣

≤ ‖vk(ti)‖‖vm(ti)‖
c P (ti)

+
‖vk(t′i)‖‖vm(t′i)‖

c P (t′i)

=
2

c

n
∑

j=1

‖vk(j)‖ ‖vm(j)‖

≤ 2

c
‖vk‖‖vm‖,

where we have used Cauchy–Schwarz inequality twice. Then define ∆ = 2
c‖vk‖‖vm‖;

using the triangle inequality, we see

|F (. . . , ti, . . .)− F (. . . , t′i, . . .)| ≤ ∆.

Finally, let γ =
√

2c log(1/δ)∆, and we use McDiarmid’s inequality to obtain (3.9)
as follows:

Pr

[

|Hkm − H̃km| ≥ η√
c
‖vk‖‖vm‖

]

= Pr

[

|Hkm − H̃km| ≥ 1√
c
‖vk‖‖vm‖+ γ

]

≤ Pr [F − E[F] ≥ γ] (equation (3.10))

≤ exp

(

− γ2

2c∆2

)

= δ (McDiarmid’s inequality).

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

174 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

Remark 3.3. The error ǫ in the approximation of Hkm depends on only the num-
ber of random samples c (but not n) and can be made arbitrarily small as needed. In
particular, if c ≥ 1/ǫ2, we have

Var[H̃km] = E

[

|Hkm − H̃km|2
]

≤ ǫ ‖vk‖2‖vm‖2,

and if c ≥ η2/ǫ2, then with probability at least 1− δ, where δ ∈ (0, 1),

|Hkm − H̃km| ≤ ǫ ‖vk‖‖vm‖.

Furthermore, the error of the entire matrix in the Frobenius norm is

‖H − H̃‖F ≤ ǫ

√

∑

k

∑

m

‖vk‖2‖vm‖2 = ǫ
∑

k

‖vk‖2

(3.2)
= ǫ

∑

k

Hkk = ǫ trace(H) ≤ ǫ
√
N ‖H‖F .

Remark 3.4. The estimator H̃km is exact using at most one sample when k = m.
The (trivial) case Hkk = 0 is implied by the situation that vkk(i) = 0 for all i;
otherwise, we have Hkk = ‖vk‖2, and the sampling probability becomes

Pkk(t) =
‖vk(t)‖2

∑n
j=1 ‖vk(j)‖2

=
‖vk(t)‖2
‖vk‖2

.

Therefore, H̃kk = ‖vk(t)‖2/Pkk(t) = Hkk with any random sample t.

Theorem 3.5 (computational cost of sampling). Given the precomputation in
Theorem 3.1, it requires O(nN) work to compute ‖vk(i)‖ for all i and k as the input
of Algorithm 3.1, and it requires O(n+d/ǫ2) work to compute every estimator, where
ǫ is a prescribed accuracy that does not depend on n.

Proof. Recall from (3.5) that ‖vk(i)‖ is proportional to the norm of a column in
Cℓ

i . Since every Cℓ
i is a d-by-d matrix, computing all the norms requires O(d2nL) =

O(nN) work. Once all ‖vk(i)‖ have been computed, the sampling probabilities in
(3.6) and the estimator in (3.7) require O(n) and O(d/ǫ2) work, respectively.

4. H-matrix approximation. This section introduces the H-matrix approxi-
mation of the GNH matrix for the MLP. While the low-rank and the block-diagonal
approximations focus on the global and the local structure of the problem, respec-
tively, the H-matrix approximation handles both, as they may be equally important.

4.1. Overall algorithm. Here we take advantage of the GOFMM method [45,
46, 47], which evaluates O(N) entries in a symmetric positive definite (SPD) matrix
H ∈ R

N×N to construct the H-matrix approximation HGOFMM such that

‖H −HGOFMM‖F ≤ ǫ ‖H‖F ,

where ǫ is a prescribed tolerance.
Since GOFMM requires only entrywise evaluation of the input matrix, we apply it

with our fast evaluation algorithm to the regularized GNH matrix (note the GNH
matrix is symmetric positive semidefinite, so we always add a small regularization of
λ times the identity matrix, where λ2 is the unit roundoff). The overall algorithm

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 175

Algorithm 4.1 Compute H-matrix approximation of GNH with GOFMM.

Require: training data {x0
i }ni=1, weights in the neural network w ∈ R

N

Ensure: approximation of the GNH and its factorization
1: Compute M ℓ

i with forward propagation. (step (a) of gradient evaluation in Ta-
ble 1)

2: Compute Cℓ
i in (3.4). (Theorem 3.1: O(Nnd) work and O(Nn) storage)

3: Compute ‖vk(i)‖ in (3.5). (Theorem 3.5: O(Nn) work and O(Nn) storage)
4: Apply GOFMM and evaluate entries in the GNH matrix through Algorithm 3.1.

(Theorem 3.5: O(n+ d/ǫ2) work/entry)

that computes the H-matrix approximation (and approximate factorization) of the
GNH matrix using the GOFMM method is shown in Algorithm 4.1.

The error analysis of Algorithm 4.1 is the following. Let H̃λ = H̃+λI be computed
by Algorithm 3.1, λ > 0 be a regularization, and H̃GOFMM be the approximation of H̃λ

computed by GOFMM. Then the error between the output H̃GOFMM from Algorithm 4.1
and the (regularized) GNH matrix Hλ = H+λI is the following (using the triangular
equality):

‖Hλ − H̃GOFMM‖F = ‖Hλ − H̃λ + H̃λ − H̃GOFMM‖F ≤ ‖H − H̃‖F + ‖H̃λ − H̃GOFMM‖F ,

where the first term is the sampling error from Algorithm 3.1 and the second term is
the GOFMM approximation error. For simplicity, we drop the regularization parameter
for the rest of this paper.

4.2. GOFMM overview. Given an SPD matrix H, the GOFMM takes two steps to
construct the H-matrix approximation as follows. First of all, a permutation matrix P
is computed to reorder the original matrix, which often corresponds to a hierarchical
domain decomposition for applications in two- or three-dimensional physical spaces.
The recursive domain partitioning is often associated with a tree data structure T .
Unlike methods targeting applications in physical spaces, the GOFMM does not require
the use of geometric information (thus its name “geometry-oblivious fast multipole
method”), which does not exist for neural networks. Instead of relying on geomet-
ric information, the GOFMM exploits the algebraic distance measure that is implicitly
defined by the input matrix H. As a matter of fact, any SPD matrix H ∈ R

N×N is
the Gram matrix of N unknown Gram vectors {φi}Ni=1 [22]. Therefore, the distance
between two row/column indices i and j can be defined as

(4.1) dij = sin2 (∠(φi, φj)) = 1−H2
ij/(HiiHjj)

or

dij = ‖φi − φj‖ =
√

Hii − 2Hij +Hjj .

We refer interested readers to [45] for the discussion and comparison of different dis-
tance metrics. With either definition, the GOFMM is able to construct the permutation
P and a balanced binary tree T .

The second step is to approximate the reordered matrix PTHP by

HGOFMM =

[

Hll 0
0 Hrr

]

+

[

0 Slr

Srl 0

]

+

[

0 UlrV
T
lr

UrlV
T
rl 0

]

,

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

176 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

where Hll and Hrr are two diagonal blocks that have the same structure as HGOFMM un-
less their sizes are small enough to be treated as dense blocks, which occurs at the leaf
level of the tree T ; Slr and Srl are block-sparse matrices; and UlrV

T
lr and UrlV

T
rl are

low-rank approximations of the remaining off-diagonal blocks in H. These bases are
computed recursively with a postorder traversal of T using the interpolative decom-
position [18] and a nearest neighbor–based fast sampling scheme. There is a trade-off
here: While the so-called weak-admissibility criterion sets Slr and Srl to zero and
obtains relatively large ranks, the so-called strong-admissibility criterion selects Slr

and Srl to be certain subblocks in H corresponding to a few nearest neighbors/indices
of every leaf node in T and achieves smaller (usually constant) ranks.

Here we focus on the hierarchical semiseparable (HSS) format among other types
of hierarchical matrices. Technically speaking, the HSS format means Slr and Srl are
both zero and the bases Ulr/Vlr and Url/Vrl of a node in T are recursively defined
through the bases of the node’s children, i.e., the so-called nested bases.

We refer interested readers to [45, 46, 47] for details about the GOFMM method.

4.3. Summary and contrast with related work. We summarize the storage
and computational complexity of our H-matrix approximation method (HM) and
describe its relation with three existing methods, namely, the Hessian-free method
(HF) [28, 32], the RSVD [18], and the K-FAC [30, 31]. As before, we assume the
MLP network has L layers of constant layer sizes d, so the number of weights is
N = d2L. Let n be the number of data points.

HM. The algorithm is given in Algorithm 4.1, where the first three steps re-
quire O(Nnd) work and O(Nn) storage. Suppose the rank is ro in the H-matrix
approximation. The GOFMM needs to call Algorithm 3.1 O(Nro) times, which results
in O((n + d/ǫ2)Nro) work. Here, ǫ is chosen to be around the same accuracy as
the H-matrix approximation with rank ro. In addition, standard results in the HSS
literature [33, 39, 21] state that the factorization requires O(Nr2o) work and O(Nro)
storage, which can be applied to solving a linear system with O(Nro) work.

MF. Unlike the other three methods, the MF does not approximate the GNH.
It takes advantage of the (exact) matrix-free matvec and utilizes the CG method for
solving linear systems. It is based on the two primitives in Table 1, where every
iteration costs O(Nn) work and storage. The number of CG iteration is generally
upper bounded by O(

√
κ), where κ is the condition number of the (regularized) GNH

matrix.
RSVD. Recall the GNH matrix H = JTQJ . Without loss of generality, assume

Q is an identity for ease of description. The algorithm is to compute an approximate
SVD of J with the following steps, which naturally leads to an approximate eigenvalue
decomposition of H. First, we apply the back propagation in Table 1 with a random
Gaussian matrix as input. Second, the QR decomposition of the result is used to esti-
mate the row space of J . Third, the linearized forward is applied to project J onto the
approximate row space, and, finally, the SVD is computed on the projection. Overall,
the storage is O(Nr), and the work required is O(Nnr+Nr2 + dnr2), where r is the
numerical rank from the QR decomposition. Compared with the HM approximating
off-diagonal blocks, the RSVD approximates the entire matrix.

K-FAC. It computes an approximation of the Fisher matrix F (mathemati-
cally equivalent to the GNH for some popular loss functions). Let a column vec-
tor g = [vec(g1), . . . , vec(gL)] ∈ R

N be the gradient and F = E[g gT] be a L-by-L
block matrix with block size d2-by-d2. Note the expectation here is taken with re-
spect to both the empirical input data distribution Q̂x0 and the network’s predictive

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 177

Table 2

Asymptotic complexities of the MF, the RSVD, the K-FAC, and the HM with respect to the
number of weights N and the data size n (“lower-order” terms not involving Nn are dropped). We
assume r, k, ro, d < n, where r, k, and ro are the parameters in the RSVD, the K-FAC, and the
HM, respectively, and d is the (constant/average) layer size. In addition, κ stands for the condition
number of the GNH matrix.

MF RSVD K-FAC HM

construction - O(Nnr) O(Nnk) O(Nn(ro + d))
storage O(Nn) O(Nr) O(N) O(Nn)
solve O(Nn

√
κ) O(Nr) O(Nd) O(Nro)

distribution Py|xℓ . In particular, the (ℓ1, ℓ2)th block (ℓ1, ℓ2 = 1, 2, . . . , L) is given by

Fblock(ℓ1, ℓ2) = E[vec(gℓ1)vec(gℓ2)T]

= E[M ℓ1zℓ1(xℓ1−1)T
(

M ℓ2zℓ2(xℓ2−1)T
)T

](4.2)

= E[(M ℓ1zℓ1 ⊗ xℓ1−1)
(

M ℓ2zℓ2 ⊗ xℓ2−1
)T

](4.3)

= E[(M ℓ1zℓ1 ⊗ xℓ1−1)
(

(M ℓ2zℓ2)T ⊗ (xℓ2−1)T
)

](4.4)

= E[M ℓ1zℓ1(M ℓ2zℓ2)T ⊗ xℓ1−1(xℓ2−1)T](4.5)

≈ E[M ℓ1zℓ1(M ℓ2zℓ2)T]⊗ E[xℓ1−1(xℓ2−1)T],(4.6)

where (4.2) uses the definition of the network gradient in Table 1, (4.3) rewrites the
equation using Kronecker products, (4.4) and (4.5) use the properties of the Kron-
ecker product, and (4.6) assumes the statistical independence between the two terms
(see section 6.3.1 in [30]). In (4.6), the former expectation is taken with respect to
both Q̂x0 and Py|xℓ , and the latter is taken with respect to Q̂x0 . To compute the

first expectation, k samples are drawn from the distribution Py|x ∝ exp(−f(xL
i , y)),

where xL
i is the network’s output corresponding to input x0

i . In practice, an additional
block-diagonal or block-tridiagonal approximation of the inverse is employed for fast
solution of linear systems. The main cost of the algorithm is constructing, updating,
and inverting O(L) matrices of size d-by-d, which requires O(d2L) = O(N) storage
and O((nk + d)N) work. Overall, the approximation error of K-FAC has three com-
ponents: the error of making the assumption (4.6), the sampling error from approxi-
mating the expectations in (4.6) and the error of block-diagonal or block-tridiagonal
approximation of the inverse.

We summarize the asymptotic complexities of the four methods discussed above
in Table 2.

5. Experimental results. In this section, we show (1) the cost and the ac-
curacy of our H-matrix approximations, (2) the memory savings from using the pre-
computation algorithm (O(N2) → O(Nn)), and (3) the efficiency of the fast sampling
algorithm. In Algorithm 4.1, the first two steps (precomputation) are implemented in
MATLAB for the convenience of extracting intermediate values of neural networks,
and the last two steps (sampling) are implemented in C++ (GOFMM is written in C++).

Networks and datasets. We focus on classification networks and autoencoder net-
works with the MNIST and CIFAR-10 datasets. In the following, we denote networks’
layer sizes as d1→d2→· · ·→dL from the input layer to the output layer. Every net-
work has been trained using the stochastic gradient descent for a few steps, so the
weights are not random:

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

178 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

1. “classifier”: classification networks with the ReLU activation and the cross-
entropy loss:
(a) N=15,910; MNIST dataset; layer sizes: 784→20→10;
(b) N=61,670; CIFAR-10 dataset; layer sizes: 3072→20→10;
(c) N=219,818; MNIST dataset; layer sizes: 784→256→64→32→10;
(d) N=1,643,498; CIFAR-10 dataset; layer sizes: 3072→512→128→32→10.

2. “AE”: autoencoder networks with the softplus activation (sigmoid activation
at the last layer) and the mean-squared loss:
(a) N=16,474; MNIST dataset; layer sizes: 784→10→784;
(b) N=64,522; CIFAR-10 dataset; layer sizes: 3072→10→3072;
(c) N=125,972; CIFAR-10 dataset; layer sizes: 3072→20→3072.

GOFMM parameters. We employ the default “angle” distance metric in (4.1) and
focus on three parameters in the GOFMM that control the accuracy of the H-matrix
approximation: (1) the leaf node size m of the hierarchical partitioning T (equivalent
to setting the number of tree levels), (2) the maximum rank ro of off-diagonal blocks,
and (3) the accuracy τ of low-rank approximations. In particular, we ran GOFMM

with two different accuracies: “low” (m = 128, ro = 128, τ = 5E-2) and “high”
(m = 1024, ro = 1024, τ = 1E-5).

GOFMM results. We report the following results for our approach:
• tbuild: time of constructing the H-matrix approximation of the GNH matrix
(not including precomputation time);

• tmatv: time of applying the H-matrix approximation to 128 random vectors;
• %K: compression rate of the H-matrix approximation, i.e., ratio between the
H-matrix storage and the GNH matrix storage;

• ǫF : relative error of the H-matrix approximation measured in Frobenius
norm, estimated by ‖Hx−HGOFMM x‖F /‖Hx‖F , where x ∈ R

N×128 is a Gauss-
ian random matrix.

5.1. Cost and accuracy of H-matrix approximation. Table 3 shows results
of our H-matrix approximations for networks that have relatively small numbers of
parameters. The GNH matrices are computed and fully stored in memory.

As Table 3 shows, the approximation can achieve four digits’ accuracy except
for one network (two digits) when the accuracy of low-rank approximations is 1E-5.
Since we have enforced the maximum rank ro, the runtime of constructing H-matrix
approximations (tbuild) increases proportionally to the number of network parameters,
and the compression rate scales inverse proportionally to the number of parameters.
The reported construction time tbuild includes the cost of creating an implicit tree
data structure T in GOFMM, which is less than 20% of tbuild. In addition, applying the
H-matrix approximations to 128 random vectors took less than one second for the
five networks. These H-matrix approximations can be factorized in linear time for
solving linear systems and eigenvalue problems.

Comparison with RSVD and K-FAC. We implemented the RSVD using Keras
and TensorFlow for fast back propogation, and we implemented the K-FAC in MAT-
LAB for the convenience of extracting intermediate values. Table 4 shows the accu-
racies of our method (HM), the RSVD and the K-FAC under about the same com-
pression rate for the low- and high-accuracy settings, respectively. For the RSVD, the
storage is rN entries, where r is the numerical rank of the (symmetric) GNH matrix,
so the compression rate is r/N . For the K-FAC, we use the relatively more accurate
block tridiagonal version. The compression rate of the K-FAC is defined as k/N , and
the reason is that the construction of the RSVD and the K-FAC requires the same

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 179

Table 3

Timing (tbuild and tmatv), compression rate (%K), and accuracy (ǫF) of H-matrix approxima-
tions corresponding to low- and high-accuracy settings, respectively. tbuild is the time of applying
the GOFMM on the GNH matrices corresponding to 1, 000 data points. Experiments performed on one
node from the Texas Advanced Computing Center “Stampede 2” system, which has two sockets with
48 cores of Intel Xeon Platinum 8160/“Skylake” and 192 GB of RAM.

network N accuracy tbuild tmatv %K ǫF

1 classifier (a) 16k low 0.24 0.03 1.80% 1.5E-1
2 high 5.74 0.11 13.59% 4.4E-4

3 classifier (b) 61k low 0.42 0.08 0.57% 4.7E-1
4 high 13.28 0.33 4.78% 4.0E-2

5 AE (a) 16k low 0.27 0.03 1.25% 1.2E-1
6 high 5.67 0.10 11.38% 6.5E-4

7 AE (b) 64k low 0.43 0.08 0.53% 5.5E-3
8 high 13.26 0.38 4.62% 6.6E-4

9 AE (c) 126k low 0.87 0.17 0.28% 4.1E-3
10 high 24.10 0.94 2.32% 5.2E-4

Table 4

Comparison of accuracies (ǫF) among the H-matrix approximation (HM), the RSVD and the
K-FAC with about the same compression rate (%K) for the low- and high-accuracy settings, respec-
tively. For the RSVD and the K-FAC, the compression rate means r/N and k/N , respectively, where
r is the rank and k is the number of random samples. For all cases, the GNH matrices correspond
to 10, 000 data points (n = 10, 000 in (1.2)).

HM-low HM-high RSVD-
low

RSVD-
high

K-FAC-
low

K-FAC-
high

AE(a) %K 1.23% 11.77% 1.40% 12.14% 1.40% 12.14%
ǫF 1.7E-1 4.7E-4 4.3E-1 5.1E-3 1.2E-1 7.3E-2

AE(b) %K 0.53% 4.62% 0.62% 4.65% 0.62% 4.65%
ǫF 5.7E-3 6.4E-4 8.4E-1 2.3E-1 1.7E-1 3.8E-2

AE(c) %K 0.28% 2.31% 0.32% 2.38% 0.32% 2.38%
ǫF 4.2E-3 4.9E-4 9.1E-1 2.1E-1 1.6E-1 4.1E-2

number of back propagation if k = r (recall Table 2). So we choose k and r to be
the same value such that the corresponding compression rate of the RSVD and the
K-FAC are slightly higher than the HM.

As Table 4 shows, the H-matrix approximation achieved higher accuracy than the
RSVD and the K-FAC for most cases, especially for the high-accuracy setting. For the
RSVD, suppose the eigenvalues of the GHN matrix are {σi}i and the error of the rank-
k approximation measured in the Frobenius norm is proportional to (

∑

i>k σ
2
i)

1/2. For
autoencoders (b) and (c), the spectrums of the GNH matrices decay slowly, so the
RSVD is not efficient. For the K-FAC, the approximation that the expectation of a
Kronecker product equals the Kronecker product of expectations (4.6) is, in general,
not exact, impeding the overall accuracy of the method.

5.2. Memory savings. Table 5 shows the memory footprint between our pre-
computation (3.4) and the full GNH matrix, i.e., O(N2). Recall from Theorem 3.1
that the storage of our precomputation is O(nN), where n is the number of data
points.

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

180 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

Table 5

Comparison of memory footprint (in single precision) between our precomputation (3.4) and
the full GNH matrix. For each network, we show the compression rate and accuracy of H-matrix
approximations for two levels of accuracies. For both cases, the GNH matrices correspond to n =
10, 000 data points.

N Mours MGNH accuracy %K ǫF

classifier (c) 219k 191 MB 193 GB low 0.165% 3.1E-1
high 1.268% 4.2E-2

classifier (d) 1.6m 423 MB 10.8 TB low 0.012% 1.2E-1
high 0.177% 2.2E-2

Table 6

Accuracy of our fast Monte Carlo (FMC) sampling scheme. The error ǫK = ‖H−H̃‖F /‖H‖F ,
where H and H̃ are the exact GNH matrix and its approximation computed using K random samples
in Algorithm 3.1, respectively. The exact GNH matrices correspond to the AE (a) network with
the entire MNIST dataset and the class (a) network with the entire CIFAR-10 training dataset,
respectively. The reference uniform sampling scheme uses a uniform sampling probability instead of
(3.6) in Algorithm 3.1.

n scheme ǫ10 ǫ100 ǫ1,000 ǫ10,000

MNIST 60,000 uniform 3.6E-1 1.1E-1 3.6E-1 1.1E-2
FMC 9.7E-3 3.1E-3 9.6E-4 3.1E-4

CIFAR-10 50,000 uniform 9.7E-1 3.1E-1 9.8E-2 3.6E-2
FMC 6.1E-1 1.9E-1 6.1E-2 1.9E-2

As Table 5 shows, our precomputation leads to huge memory reduction compared
with storing the full GNH matrix. This allows using the GOFMM method for networks
that have a large number of parameters. For example, the storage of the GNH matrix
for the classifier (d) network requires more than 10 TB! But we were able to run GOFMM

with the compressed storage (at the price of spending O(dn) work for the evaluation
of every entry). The precomputation of (3.4) took merely about 2 seconds and 7
seconds, respectively.

5.3. Fast Monte Carlo sampling. We show the accuracy of our fast Monte
Carlo sampling scheme. The relative error measured in the Frobenius norm is between
the exact GNH matrix H and the approximation H̃ computed using Algorithm 3.1
with a prescribed number of random samples. For reference, we also run the same
sampling scheme but with a uniform probability distribution.

As Table 6 shows, when the number of random samples increases by 100, the ac-
curacy improves by 10, which confirms the standard convergence rate of Monte Carlo
in Theorem 3.2. Importantly, the error bound and the convergence rate do not de-
pend on the problem size n. Moreover, our sampling scheme outperforms the uniform
sampling by at most two orders of magnitude for the MNIST dataset. In other words,
the uniform sampling requires 100 times more random samples to achieve about the
same accuracy as our sampling scheme.

H-matrix approximation with sampling. Table 7 shows the error of Algorithm 4.1
for a sequence of increasingly large number of random samples. Recall that Algo-
rithm 4.1 computes the H-matrix approximation H̃GOFMM for the (inexact) GNH ma-
trix, namely, H̃, from Algorithm 3.1. The error between the H-matrix approximation
H̃GOFMM and the exact GNH matrix, namely, H, is bounded as below (using the trian-

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 181

Table 7

H-matrix approximation with sampling. The exact GNH matrices correspond to the AE (a)
network with the entire MNIST dataset and the class (a) network with the entire CIFAR-10 training
dataset, respectively. The compression rate and the accuracy are shown for low- and high-accuracy
settings, respectively.

(a) MNIST dataset (n = 60, 000 images)

10 samples 100 samples 1,000 samples 10,000 samples

accuracy %K ǫF %K ǫF %K ǫF %K ǫF

low 1.74% 2.8E-1 1.69% 1.3E-1 1.68% 1.4E-1 1.68% 6.1E-2
high 17.1% 2.2E-2 16.9% 9.5E-3 16.6% 2.7E-3 16.2% 9.6E-4

(b) CIFAR-10 training dataset (n = 50, 000 images)

10 samples 100 samples 1,000 samples 10,000 samples

accuracy %K ǫF %K ǫF %K ǫF %K ǫF

low 0.61% 9.7E-1 0.61% 5.3E-1 0.61% 4.1E-1 0.61% 4.3E-1
high 4.83% 9.7E-1 4.83% 3.6E-1 4.83% 1.9E-1 4.83% 7.3E-2

gular equality)

‖H − H̃GOFMM‖F = ‖H − H̃ + H̃ − H̃GOFMM‖F ≤ ‖H − H̃‖F + ‖H̃ − H̃GOFMM‖F ,

where the first term is the sampling error and the second term is the H-matrix ap-
proximation error. As Table 6 shows, the former converges to zero and is independent
of the data size. Table 7 shows that the latter also converges as the sampling becomes
increasingly accurate, which justifies the overall approach.

6. Conclusions. We have presented a fast method to evaluate entries in the
GNH matrix of the MLP network, and our method consists of two parts: a precom-
putation algorithm and a fast Monte Carlo algorithm. While the precomputation
allows evaluating entries in the GNH matrix exactly with reduced storage, the ran-
dom sampling is based on the precomputation and further accelerates the evaluation.
Let N be the number of weights, n be the data size, and d be the constant layer size.
Our scheme requires O(n + d/ǫ2) work for any entry in the GNH matrix H, where
ǫ is the accuracy, whereas the worst-case complexity to evaluate an entry exactly is
O(Nn) through the matrix-free matvec. For example, the evaluation of HN,N would
require O(Nn) work, while given our precomputation, it requires only O(n) work to
compute a diagonal entry exactly (Remark 3.4). One application of this fast diagonal
evaluation would be computing all the diagonals of H to precondition/accelerate the
training of neural networks [42]. In this paper, we focused on applying the GOFMM to
construct the H-matrix approximation for the GNH matrix. As a result, we obtain
an H-matrix and its factorization for solving linear systems and eigenvalue problems
with the GNH.

Two important directions for future research are (1) extending our method to
other types of networks, such as convolutional networks, where weight matrices are
highly structured (preliminary experiments on the VGG network show similar results
as those in Table 3), and (2) incorporating our method in the context of a learning
task, which would also require several algorithmic choices related to optimization,
such as initialization, damping, and adding momentum.

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

182 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

Appendix A. McDiarmid’s inequality.

Theorem A.1. Let X1, X2, . . . , Xn be independent random variables taking val-
ues in the set X . If a mapping F : Xn → R satisfies

sup
x1,...,xi,x′

i
,...,xn

|F (x1, . . . , xi, . . . , xn)− F (x1, . . . , x
′
i, . . . , xn)| ≤ ∆i ∀i,

where x1, . . . , xi, x
′
i, . . . , xn ∈ X , then for all ǫ > 0,

Pr(f − E[f] ≥ ǫ) ≤ exp

(−2ǫ2
∑n

i=1 ∆
2
i

)

.

REFERENCES

[1] A. Aminfar, S. Ambikasaran, and E. Darve, A fast block low-rank dense solver with appli-
cations to finite-element matrices, J. Comput. Phys., 304 (2016), pp. 170–188.

[2] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.
[3] J. Barnes and P. Hut, A hierarchical O(NlogN) force-calculation algorithm, Nature, 324

(1986), pp. 446–449.
[4] M. Bebendorf, Hierarchical Matrices, Springer-Verlag, Berlin, 2008.
[5] L. Bottou, F. E. Curtis, and J. Nocedal, Optimization methods for large-scale machine

learning, SIAM Rev., 60 (2018), pp. 223–311.
[6] R. H. Byrd, G. M. Chin, W. Neveitt, and J. Nocedal, On the use of stochastic Hessian

information in optimization methods for machine learning, SIAM J. Optim., 21 (2011),
pp. 977–995.

[7] Y. Carmon and J. C. Duchi, Analysis of Krylov subspace solutions of regularized non-
convex quadratic problems, in Advances in Neural Information Processing Systems, 2018,
pp. 10728–10738, https://arxiv.org/pdf/1806.09222.pdf.

[8] C. Chen, H. Pouransari, S. Rajamanickam, E. G. Boman, and E. Darve, A distributed-
memory hierarchical solver for general sparse linear systems, Parallel Comput., 74 (2018),
pp. 49–64.

[9] D. A. Cohn, Neural Network Exploration using Optimal Experiment Design, in Advances in
Neural Information Processing Systems, 1994, pp. 679–686.

[10] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio, Identi-
fying and attacking the saddle point problem in high-dimensional non-convex optimiza-
tion, in Proceedings of the 27th International Conference on Neural Information Pro-
cessing Systems, Vol. 2, NIPS’14, MIT Press, Cambridge, MA, 2014, pp. 2933–2941,
http://dl.acm.org/citation.cfm?id=2969033.2969154.

[11] L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio, Sharp Minima Can Generalize for Deep
Nets, preprint, arXiv:1703.04933, 2017.

[12] P. Ghysels, X. S. Li, F.-H. Rouet, S. Williams, and A. Napov, An efficient multicore
implementation of a novel HSS-structured multifrontal solver using randomized sampling,
SIAM J. Sci. Comput., 38 (2016), pp. S358–S384, https://doi.org/10.1137/15M1010117.

[13] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New
York, 1981.

[14] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning, Vol. 1, MIT
Press, Cambridge, MA, 2016.

[15] R. M. Gower, N. L. Roux, and F. Bach, Tracking the Gradients Using the Hessian: A New
Look at Variance Reducing Stochastic Methods, preprint, arXiv:1710.07462, 2017.

[16] L. Greengard, Fast algorithms for classical physics, Science, 265 (1994), pp. 909–914.
[17] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis, Springer Series in Computa-

tional Mathematics 49, Springer-Verlag, Berlin, 2015.
[18] N. Halko, P.-G. Martinsson, and J. Tropp, Finding structure with randomness: Probabilis-

tic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011),
pp. 217–288.

[19] B. Hassibi and D. G. Stork, Second order derivatives for network pruning: Optimal brain
surgeon, in Advances in Neural Information Processing Systems, 1993, pp. 164–171.

[20] G. Hennequin, L. Aitchison, and M. Lengyel, Fast sampling-based inference in balanced
neuronal networks, in Advances in Neural Information Processing Systems, 2014, pp. 2240–
2248.

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST ALGORITHM FOR GNH MATRIX 183

[21] K. L. Ho and L. Ying, Hierarchical Interpolative Factorization for Elliptic Operators: Integral
Equations, preprint, arXiv:1307.2666, 2013.

[22] T. Hofmann, B. Schölkopf, and A. J. Smola, Kernel methods in machine learning, Ann.
Statist., (2008), pp. 1171–1220.

[23] D. A. Knoll and D. E. Keyes, Jacobian-free Newton-Krylov methods: A survey of approaches
and applications, J. Comput. Phys., 193 (2004), pp. 357–397.

[24] J. Lafond, N. Vasilache, and L. Bottou, Diagonal Rescaling for Neural Networks, preprint,
arXiv:1705.09319, 2017.

[25] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, Efficient backprop, in Neural Networks:
Tricks of the Trade, Springer-Verlag, Berlin, 1998, pp. 9–50.

[26] D. Lee and A. G. Gray, Fast high-dimensional kernel summations using the Monte Carlo
multipole method, in Proceedings of the 22nd Annual Conference on Neural Information
Processing Systems (NIPS), 2008, pp. 929–936.

[27] W. B. March, B. Xiao, C. D. Yu, and G. Biros, Askit: An efficient, parallel library for
high-dimensional kernel summations, SIAM J. Sci. Comput., 38 (2016), pp. S720–S749,
https://doi.org/10.1137/15M1026468.

[28] J. Martens, Deep learning via Hessian-free optimization, in International Conference on Ma-
chine Learning, Vol. 27, 2010, pp. 735–742.

[29] J. Martens, New Insights and Perspectives on the Natural Gradient Method, preprint,
arXiv:1412.1193, 2014.

[30] J. Martens, Second-Order Optimization for Neural Networks, Ph.D. thesis, University of
Toronto, Toronto, ON, Canada, 2016.

[31] J. Martens and R. Grosse, Optimizing neural betworks with Kronecker-factored approximate
curvature, in International Conference on Machine Learning, 2015, pp. 2408–2417.

[32] J. Martens and I. Sutskever, Learning recurrent neural networks with Hessian-free optimiza-
tion, in Proceedings of the 28th International Conference on Machine Learning (ICML-11),
Citeseer, 2011, pp. 1033–1040.

[33] P.-G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in
two dimensions, J. Comput. Phys., 205 (2005), pp. 1–23.

[34] T. O’Leary-Roseberry, N. Alger, and O. Ghattas, Inexact Newton Methods for Stochas-
tic Non-Convex Optimization with Applications to Neural Network Training, preprint,
arXiv:1905.06738, 2019.

[35] K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, R. Yokota, and S. Matsuoka, Second-Order
Optimization Method for Large Mini-Batch: Training Resnet-50 on Imagenet in 35 Epochs,
preprint, arXiv:1811.12019, 2018.

[36] N. L. Roux, P.-A. Manzagol, and Y. Bengio, Topmoumoute online natural gradient algo-
rithm, in Advances in Neural Information Processing Systems, 2008, pp. 849–856.

[37] T. Takahashi, C. Chen, and E. Darve, Parallelization of the Inverse Fast Multipole Method
with an Application to Boundary Element Method, preprint, arXiv:1905.10602, 2019.

[38] N. Tripuraneni, M. Stern, C. Jin, J. Regier, and M. I. Jordan, Stochastic
cubic regularization for fast nonconvex optimization, in Advances in Neural In-
formation Processing Systems, 2018, pp. 2904–2913, http://papers.nips.cc/paper/
7554-stochastic-cubic-regularization-for-fast-nonconvex-optimization.pdf.

[39] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisep-
arable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.

[40] P. Xu, J. Yang, F. Roosta-Khorasani, C. Ré, and M. W. Mahoney, Sub-sampled New-
ton methods with non-uniform sampling, in Advances in Neural Information Processing
Systems, 2016, pp. 3000–3008.

[41] Z. Yao, A. Gholami, Q. Lei, K. Keutzer, and M. W. Mahoney, Hessian-Based Analysis of
Large Batch Training and Robustness to Adversaries, preprint, arXiv:1802.08241, 2018.

[42] Z. Yao, A. Gholami, S. Shen, K. Keutzer, and M. W. Mahoney, Adahessian: An Adaptive
Second Order Optimizer for Machine Learning, preprint, arXiv:2006.00719, 2020.

[43] H. Ye, L. Luo, and Z. Zhang, Approximate Newton methods and their local convergence,
in Proceedings of the 34th International Conference on Machine Learning, Proceedings
of Machine Learning Research, International Convention Centre, Sydney, Australia, 2017,
pp. 3931–3939, http://proceedings.mlr.press/v70/ye17a.html.

[44] Y. You, Z. Zhang, C. Hsieh, J. Demmel, and K. Keutzer, Imagenet Training in Minutes,
CoRR, abs/1709.05011, 2017.

[45] C. D. Yu, J. Levitt, S. Reiz, and G. Biros, Geometry-oblivious FMM for compressing dense
SPD matrices, in Proceedings of SC17, AMC SCxy Conference series, IEEE, Denver, CO,
2017, https://doi.org/10.1145/3126908.3126921.

[46] C. D. Yu, S. Reiz, and G. Biros, Distributed-memory hierarchical compression of dense SPD
matrices, in Proceedings of the International Conference for High Performance Computing,

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

184 CHEN, REIZ, YU, BUNGARTZ, AND BIROS

Networking, Storage, and Analysis, SC ’18, IEEE Press, Piscataway, NJ, 2018, pp. 15:1–
15:15, https://dl.acm.org/citation.cfm?id=3291676.

[47] C. D. Yu, S. Riesz, and J. Levitt, GOFMM Home Page, https://github.com/ChenhanYu/hmlp,
2018.

[48] H. Zhang, C. Xiong, J. Bradbury, and R. Socher, Block-Diagonal Hessian-Free Optimiza-
tion for Training Neural Networks, preprint, arXiv:1712.07296, 2017.

D
o
w

n
lo

ad
ed

 0
2
/1

6
/2

1
 t

o
 1

2
8
.8

3
.2

1
4
.1

9
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

