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Abstract—Electroencephalography entirely inside the ear (in-
ear EEG) opens up exciting avenues for unobtrusive continuous
physiological and cognitive state monitoring. This work presents
techniques towards precise attention state classification based on
data recorded from comfortable, binaural in-ear EEG instru-
ments used during a vigilance task experiment. We recorded both
on-scalp and in-ear EEG signals from multiple subjects, and we
show that in-ear EEG offers comparable classification accuracy.
Our work is the first adaptation of Common-mode spatial
filtering techniques applied to signals acquired from sparse elec-
trodes on untethered subjects. We demonstrate 90–95% accuracy
(scalp-EEG with 30 electrodes) and 70–75% (in-ear EEG with
5 electrodes inside the ear canal and concha) in classifying
attentive and resting states. We also show our approach to be
lightweight for low-power on-chip classification with the capacity
for few-shot learning. A necessity for wearable, continuous health
sensors accommodating resource-constrained applications and
adaptation to inter-subject differences and varying environmental
conditions. This study suggests the future viability for a System-
on-Chip (SoC) integration for user-generic and portable devices
capable of closed-loop cognitive state monitoring and neuro-
feedback.

Index Terms—BCI, in-ear EEG, cognitive state monitoring,
vigilance task

I. INTRODUCTION

Brain-Computer Interfaces (BCI) are an important technol-

ogy that bridge human brains and different types of functional

devices. Clinically, BCIs are in use for people with motor

disabilities to extend control of their real, or virtual, environ-

ment using just brain waves. The technology has also been

applied to training, rehabilitation, and recreation. Electroen-

cephalography (EEG) is a ubiquitous non-invasive, portable

neuro-imaging technique foundation to most BCIs, responsible

for providing the rich spatiotemporal neural information in

mental state classification [1]. The conventional EEG acquisi-

tion methods acquire brain waves with attachment of metallic

electrodes with ionic conductive pastes to the subject’s scalp

together with a cap or other wearable equipment. Practical use

of conventional scalp EEG in everyday life is severely limited

because of the long setup procedures and obtrusive head-worn

apparatus.

EEG recorded from inside the ear (in-ear EEG) has emerged

as a new type of sensing modality that slims down conven-

tional scalp EEG brain monitoring methods by reducing elec-

trode count and footprint to a discrete, comfortable device akin

to wireless earphones [2]–[6]. In-ear EEG opens an exciting

road map to wearable BCIs and continuous unobtrusive physi-

ological and cognitive state monitoring. From normal everyday

tasks like reading and driving, to critical tasks requiring sheer

focus and self regulation like surgery, maintain attention on the

task for enhanced safety and productivity becomes imperative.

The requirement of continuous monitoring of attention during

such tasks necessitates low-profile comfortable and portable

EEG sensing. As the conventional bulky EEG headsets are

unsuitable for wearable settings, in-ear EEG sensors offer a

promising and convenient alternative. However, in-ear EEG

devices have not been demonstrated yet to be practically

suitable for real world applications as they can also have long

wires and perform poorly compared to on-scalp headsets.

In particular, sensing in the ear canal produces not only

new sensing locations other than the scalp and also proximity

to brain sources, especially the auditory cortex, but also

utilizes body real estate shared with everyday devices. In-

ear EEG sensors have the potential to integrate with widely

used earphones, hearing aids, and hearing prostheses. While

in-ear EEG sensors have already shown great promises in

the clinic and some daily applications, the main challenges

of in-ear EEG sensing are weaker measured signals from

smaller electrodes with reduced spacing and a lower signal-to-

noise ratio compared to scalp EEG measurements. Specifically

here, we only consider in-ear EEG for which all sensing,

referencing, and active grounding (DRL) electrodes are placed

only in the ear canal, concha cymba, or concha cavum [3].

There have been several studies on monitoring subject

attention states through brain activity measurement techniques.

There are various situations (driving [7], studying [8], exercis-

ing [9]) where we are often required to maintain attention

to boost efficiency and prevent severe consequences such

as traffic accidents and workplace fatalities. However, most
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works involving mental state classification through in-ear EEG

acquisition suffer from low accuracy or require higher epochs

(in the order of 30 seconds to several minutes) [10] as

compared to scalp-EEG, and the model is substantially prone

to inter-subject variability, noise in the operating environments,

and performance of the acquisition instruments. As a result,

designing a robust in-ear EEG device capable of accurate

cognitive-state analysis under various sources of noise and

variability is challenging.

The primary motivation for this work is to develop efficient

signal processing and Machine Learning (ML) methods for

accurately determining attentive and resting brain states from

unobtrusively, sparse electrodes placed in the ear for wearable

and discrete electrophysiology measurement. Here we present

the use of filter bank common spatial pattern (FBCSP), a

spatial separation technique that we found to be most effective

for cognitive state classification from time-series data [11]–

[13]. Our FBCSP pipeline consists of a four-stage linear

transformation and a robust feature selection algorithm. We

observed that FBCSP is accommodating of inter-trials and

inter-subject variability, as it enables the extraction of features

at different frequency bands and eventually merges them into

a final feature vector. FBCSP is also a lightweight training

and test model which can be very reliably trained to various

conditions and perform classification with ultra-low latency.

Thus, this promises a better alternative to using multi-Layer

perceptrons or recurrent neural networks [14], which have yet

to be proven suitable for on-chip model tuning and low-power

classification.

II. ELECTROPYHSIOLOGY HARDWARE METHODS

A. In-Ear and Scalp EEG Acquisition

Brain activity was measured in this study simultaneously

from scalp electrodes and in-ear electrodes placed binaurally.

Scalp recordings were made using a battery-powered 30-

channel dry EEG headset (Quick-30r, CGX Systems, USA)

sampled at 500 Hz to a PC over a wireless interface. A

total of five electrodes were placed in contact with each

ear of the subject. As shown in Fig. 1, three electrodes per

ear were sensing channels placed inside the ear canal with

equal spacing around the canal circumference. Each sensing

electrode has an ellipse profile with a height of ∼1 mm, and

a major and minor axis of 6 mm and 4.5 mm, respectively.

One electrode placed on the concha cavum was the reference,

and one electrode was placed in the concha cymba was the

ground DRL. All ear electrodes were dry Ag/AgCl. The

in-ear electrodes were attached to passive leads that were

connected to an eight-channel electrophysiology acquisition

system (BioRadio, GLNeurotech, USA) sampled at 500 Hz to

a PC over Bluetooth.

III. VIGILANCE EXPERIMENTAL METHODS

A. Participants

The study consisted of three healthy subjects between the

ages of 23 and 31, all male. The subjects did not have a history

of neuropathy, neuromuscular disorders, cognitive deficiencies,

Fig. 1: Vigilance test setup and in-ear EEG sensor design.

(a) Vigilance test setup, (b) Zoom in view of the in-ear EEG

sensor inserted into the ear canal along with the earphone, (c)

Design of the in-ear EEG sensor and the acquisition system.

eye or ear-related diseases, had normal hearing and normal

eyesight, or wore corrective lenses. The ear canals of each

subject were cleaned with Isopropyl alcohol 30 minutes before

in-ear recording to removed cerumen. All subjects had an

adequate sleep the night prior to their respective recordings.

B. Experiment Protocol

To validate the performance of the ear sensor, benchmark

auditory steady-state response (ASSR) experiments were con-

ducted before and after the vigilance task. ASSR is an electro-

physiologic response to rapid auditory stimuli, and in-ear EEG

sensor has been demonstrated to obtain ASSR and provide

objective estimate of subject hearing threshold [2], [15]. Dur-

ing the benchmark ASSR experiment, auditory stimuli were

generated using broadband uniform white noise amplitude

modulated 100 percent by 40 Hz frequencies sinusoidal signal.

A Blackman window algorithm was utilized to create the

amplitude modulation pattern. A pair of earphones connected

via bluetooth were used to present the sound stimulus to

subjects at 75 dB for one minute. Characteristic power spectra

were obtained based on the raw time series data measurement

from each in-ear EEG sensing channel. Qualified ear EEG

sensing channels were featured with an around −130dB(μV
Hz

)
noise floor and a corresponding 40 Hz ASSR peak with a

signal to noise ratio of 5–10 dB.
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Fig. 2: Experimental protocol for visual vigilance study begins with a baseline period during which the subject is instructed

by on-screen directions to close their eye while the neutral colored, static screen is displayed. A beep indicated the end of the

baseline, during which the subject will open their eyes and read the prompts on the screen to begin the study. The fixation

cross appears in the same location at the center of the screen for each trial. Subject must focus their visual gaze to that position

for the duration of the trial (6 seconds) until a stimulus is presented in the form of a left or right arrow. Subjects will press

the keyboard key corresponding to the presented stimulus as fast as possible. The key press and response times are recorded.

The trials repeat until a rest phase is reached, during which the subject must maintain focus on a static screen with only a

fixation cross and no stimuli. The study ends after predetermined runs.

C. Stimulus Protocol

To evaluate the attentiveness of subjects, a visual vigi-

lance protocol was designed similar to the one presented in

[14], which incorporated an Eriksen flanker task [16] and a

psychomotor vigilance task (PVT) [17]. The tasks evaluate

the overall behavioral alertness during prolonged fixation and

selective attention during reaction-timed button presses.

Subjects fitted with the EEG devices were seated comfort-

ably in a quiet, naturally lit room at a desk in front of a 144 Hz

monitor with a keyboard, as depicted in Fig. 1. They were

directed by on-screen instructions to attend to a fixation cross

at the center of the screen and press either the left or right

arrow keys on the keyboard to indicate to which direction

the fixation cross changed during each trial, according to the

experimental protocol in Fig. 2. Each trial consisted of a

fixation period of 6 seconds, during which time the subject

was to pay attention to a cross on the screen flanked by a

pair of static symbols. The second phase of each trial would

change the screen such that the fixation cross became either

a left or a right arrow, and the flanking symbols would also

change at the same time to random left or right arrows. Phase

3 of each trial occurs when the subject presses the left or

right key on the keyboard after seeing the cross change to an

arrow. The key pressed is recorded and later compared to the

actual direction arrow that was displayed. The reaction time

from symbol change to key press is also captured in each

trial. After eight trials, there is a 48 second rest period during

which the subject is asked to attend to a static screen showing

only the fixation cross and no flanking symbols. There are

no direction arrows presented or key presses required during

the rest period. The cycle repeats for eight runs until 64 trials

and eight rest periods are completed, or sooner if the subject

decides to end the study early. Subjects are asked not to move
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Fig. 3: Response time calculated between stimulus presenta-

tion and keyboard press across all trials.

during either fixation or rest periods.

D. Preprocessing

EEG data captured from the scalp headset and in-ear de-

vices went through minimal preprocessing. Raw datasets were

loaded into EEGLAB for visualization of time series data and

LSL markers. Any channels that were not to be used, such as

accelerometer and impedance, were removed, and a bandpass

filter (FIR 1 to 58 Hz) was applied to all scalp channels. Data

was exported in .edf format.

IV. DATA ANALYSIS AND ATTENTION STATE

CLASSIFICATION

Both scalp and in-ear EEG data obtained from all subjects

were analyzed using different techniques discussed below. In

all of the techniques, around 85% of the trials were used

for training and cross-validation while 15% were used for

testing. We selected continuous trial intervals for train and test

data (eight 6-second attentive, and a 48-second resting phase

divided into 8 trials per run i.e., total of 64 trials) to completely

separate the train and test data and avoid overfitting. As the

total duration of the attentive and rest states is close, the train

and test data have almost 50% of attentive and rest labels. We
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Fig. 4: The FBCSP processing pipeline.

examined the possibility of using baseline machine learning

classifiers without feature extraction (i.e., on raw data with

lightweight preprocessing as explained in Section III-D) and

with feature extraction. Specifically, we implemented a filter-

bank common spatial pattern (FBCSP algorithm) for feature

extraction.

A. Filter-Bank Common Spatial Pattern (FBCSP) Algorithm

Common Spatial Pattern (CSP) algorithm is an efficient

method for classifying EEG data [18] and has been explored

for multi-class feature extractions in BCI systems. However,

the effectiveness of CSP depends on subject-specific frequency

bands to precisely determine the features. Thus recently there

have been some developments on Filter-Bank CSP (FBCSP)

algorithm [12] [13]. FBCSP separately calculates the features

in each relevant frequency band and combines them into the

most significant CSP features based on a mutual information-

based best individual feature (MIBIF algorithm) [12].

Our processing pipeline is detailed in Fig. 4. It consists of

multiple stages of combined signal processing and machine

learning techniques to enhance the feature extraction and

classification in the presence of signal variability in different

operating conditions, acquisition hardware mismatches, and

inter-subject signal quality fluctuations. The first stage of

FBCSP consists of a filter bank comprising multiple Cheby-

shev Type II band-pass filters between 4–40 Hz and in intervals

of 4 Hz. The second stage performs spatial filtering using the

CSP algorithm. Each frequency band has its own optimized

CSP feature calculation. The primary purpose of CSP is to

maximize the variance of class-specific samples in a specific

spatial dimension. One typical discrimination of variance in

different spatial dimensions is illustrated in Fig. 5 for in-

ear EEG data (scatter plots of pre-CSP filtered and post-

CSP filtered). Before CSP, the variance of samples related to

attentive and resting class is approximately the same across

Electrode 1 and Electrode 3. However, there is more variation

observed across one particular spatial dimension after the

CSP transformation. The CSP algorithm computes the spatial

transformed signals Zb,i for each frequency band as,

Zb,i = W
T
b Eb,i (1)

Fig. 5: Scatter plots of samples belonging to each class to

demonstrate their variance in two spatial directions before-

CSP and after-CSP transformation. After-CSP transformation

plot is obtained by combining the transformed signals from

all frequency bands.

Fig. 6: Accuracy of in-ear EEG signals (with 3 electrodes)

using different classification techniques such as RF, KNN,

and SVM without any feature extraction, and comparison with

FBCSP feature extraction + classification method.

where Eb,i denotes single-trial (i-th) EEG measurement from

which is a filtered input signal through b-th band-pass filter

and Wb denotes the corresponding CSP projection matrix.

The projection matrices are computed to behave optimal for

distinguishing between two cognitive states. This is done by

solving the eigenvalue decomposition from the covariance

matrices of the measurements of different cognitive states. The

spatial filtered signal maximizes the differences in the variance

of two classes of measurements. After this, FBCSP feature

vectors vb,i are calculated from the transformed signals.

The third stage implements a feature selection algorithm

which selects most discriminative CSP features from vb,i. This

is accomplished by a Mutual-Information based Individual

Feature (MIBF) where mutual information of each feature is

computed and sorted in descending order. Finally, the first k

features are selected to be used for classification. The fourth

stage is the classification step, for which we use a Support-
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Fig. 7: Accuracy of on-scalp EEG signals (with 25 electrodes)

using different classification techniques such as RF, KNN,

and SVM without any feature extraction, and comparison with

FBCSP feature extraction + classification method.

Vector-Machine (SVM)-based method with a Radial-Basis-

Function (RBF) kernel.

B. Classification Accuracy

Fig. 6 and Fig. 7 show the accuracy of the FBCSP and

conventional ML techniques on the, respectively, in-ear and

on-scalp signals for all the three subjects. There is a sig-

nificant accuracy gap between Filter-Bank CSP feature ex-

tracted classification and baseline methods such as Random

Forest (RF), K-Nearest Neighbor (KNN) and Support-Vector

Machine(SVM). For the in-ear signals, the conventional tech-

niques achieve no better than 54.3% on average. FBCSP, on

the other hand, achieves 72.6% average accuracy for the three

subjects with a standard deviation of 1.96%. It is noteworthy

that for the FBCSP we used a support vector machine (SVM)

classifier which, as shown in Fig. 6, achieves as low as 52.7%

when working on simple preprocessed data.

For the on-scalp data, the FBCSP achieves an average

accuracy of 90.2% (1.95% standard deviation), which is 17.6%

higher than the in-ear device accuracy. Without feature extrac-

tion, the random forest classifier (the best among the conven-

tional techniques) achieves 67.6%. The FBCSP accuracy on

our in-ear EEG dataset is promising, especially it is trained

over only 64 trials. This promises a very lightweight training

model that can be often trained on the fly. Our FBCSP model

is expected to provide higher accuracy (upto 80–85%) when

trained with larger datasets and through further experiment

trials.

V. CONCLUSION

We presented a low-profile user-generic and portable in-

ear EEG instrumentation device with just 5-electrodes capable

of classifying cognitive states using a multi-frequency band

feature extraction, feature selection, and classification algo-

rithm. We demonstrated up to 75% accuracy with a minimal

in-ear EEG training dataset. This work paves the path for a

complete system-on-chip closed-loop brain-state monitor that

can be reliably used irrespective of the operating conditions.
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