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Abstract—Electroencephalography entirely inside the ear (in-
ear EEG) opens up exciting avenues for unobtrusive continuous
physiological and cognitive state monitoring. This work presents
techniques towards precise attention state classification based on
data recorded from comfortable, binaural in-ear EEG instru-
ments used during a vigilance task experiment. We recorded both
on-scalp and in-ear EEG signals from multiple subjects, and we
show that in-ear EEG offers comparable classification accuracy.
Our work is the first adaptation of Common-mode spatial
filtering techniques applied to signals acquired from sparse elec-
trodes on untethered subjects. We demonstrate 90-95% accuracy
(scalp-EEG with 30 electrodes) and 70-75% (in-ear EEG with
5 electrodes inside the ear canal and concha) in classifying
attentive and resting states. We also show our approach to be
lightweight for low-power on-chip classification with the capacity
for few-shot learning. A necessity for wearable, continuous health
sensors accommodating resource-constrained applications and
adaptation to inter-subject differences and varying environmental
conditions. This study suggests the future viability for a System-
on-Chip (SoC) integration for user-generic and portable devices
capable of closed-loop cognitive state monitoring and neuro-
feedback.

Index Terms—BCI, in-ear EEG, cognitive state monitoring,
vigilance task

I. INTRODUCTION

Brain-Computer Interfaces (BCI) are an important technol-
ogy that bridge human brains and different types of functional
devices. Clinically, BCIs are in use for people with motor
disabilities to extend control of their real, or virtual, environ-
ment using just brain waves. The technology has also been
applied to training, rehabilitation, and recreation. Electroen-
cephalography (EEG) is a ubiquitous non-invasive, portable
neuro-imaging technique foundation to most BCIs, responsible
for providing the rich spatiotemporal neural information in
mental state classification [1]. The conventional EEG acquisi-
tion methods acquire brain waves with attachment of metallic
electrodes with ionic conductive pastes to the subject’s scalp
together with a cap or other wearable equipment. Practical use
of conventional scalp EEG in everyday life is severely limited
because of the long setup procedures and obtrusive head-worn
apparatus.
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EEG recorded from inside the ear (in-ear EEG) has emerged
as a new type of sensing modality that slims down conven-
tional scalp EEG brain monitoring methods by reducing elec-
trode count and footprint to a discrete, comfortable device akin
to wireless earphones [2]-[6]. In-ear EEG opens an exciting
road map to wearable BCIs and continuous unobtrusive physi-
ological and cognitive state monitoring. From normal everyday
tasks like reading and driving, to critical tasks requiring sheer
focus and self regulation like surgery, maintain attention on the
task for enhanced safety and productivity becomes imperative.
The requirement of continuous monitoring of attention during
such tasks necessitates low-profile comfortable and portable
EEG sensing. As the conventional bulky EEG headsets are
unsuitable for wearable settings, in-ear EEG sensors offer a
promising and convenient alternative. However, in-ear EEG
devices have not been demonstrated yet to be practically
suitable for real world applications as they can also have long
wires and perform poorly compared to on-scalp headsets.

In particular, sensing in the ear canal produces not only
new sensing locations other than the scalp and also proximity
to brain sources, especially the auditory cortex, but also
utilizes body real estate shared with everyday devices. In-
ear EEG sensors have the potential to integrate with widely
used earphones, hearing aids, and hearing prostheses. While
in-ear EEG sensors have already shown great promises in
the clinic and some daily applications, the main challenges
of in-ear EEG sensing are weaker measured signals from
smaller electrodes with reduced spacing and a lower signal-to-
noise ratio compared to scalp EEG measurements. Specifically
here, we only consider in-ear EEG for which all sensing,
referencing, and active grounding (DRL) electrodes are placed
only in the ear canal, concha cymba, or concha cavum [3].

There have been several studies on monitoring subject
attention states through brain activity measurement techniques.
There are various situations (driving [7], studying [8], exercis-
ing [9]) where we are often required to maintain attention
to boost efficiency and prevent severe consequences such
as traffic accidents and workplace fatalities. However, most

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:00:06 UTC from IEEE Xplore. Restrictions apply.



works involving mental state classification through in-ear EEG
acquisition suffer from low accuracy or require higher epochs
(in the order of 30 seconds to several minutes) [10] as
compared to scalp-EEG, and the model is substantially prone
to inter-subject variability, noise in the operating environments,
and performance of the acquisition instruments. As a result,
designing a robust in-ear EEG device capable of accurate
cognitive-state analysis under various sources of noise and
variability is challenging.

The primary motivation for this work is to develop efficient
signal processing and Machine Learning (ML) methods for
accurately determining attentive and resting brain states from
unobtrusively, sparse electrodes placed in the ear for wearable
and discrete electrophysiology measurement. Here we present
the use of filter bank common spatial pattern (FBCSP), a
spatial separation technique that we found to be most effective
for cognitive state classification from time-series data [11]-
[13]. Our FBCSP pipeline consists of a four-stage linear
transformation and a robust feature selection algorithm. We
observed that FBCSP is accommodating of inter-trials and
inter-subject variability, as it enables the extraction of features
at different frequency bands and eventually merges them into
a final feature vector. FBCSP is also a lightweight training
and test model which can be very reliably trained to various
conditions and perform classification with ultra-low latency.
Thus, this promises a better alternative to using multi-Layer
perceptrons or recurrent neural networks [14], which have yet
to be proven suitable for on-chip model tuning and low-power
classification.

II. ELECTROPYHSIOLOGY HARDWARE METHODS
A. In-Ear and Scalp EEG Acquisition

Brain activity was measured in this study simultaneously
from scalp electrodes and in-ear electrodes placed binaurally.
Scalp recordings were made using a battery-powered 30-
channel dry EEG headset (Quick-30r, CGX Systems, USA)
sampled at 500Hz to a PC over a wireless interface. A
total of five electrodes were placed in contact with each
ear of the subject. As shown in Fig. 1, three electrodes per
ear were sensing channels placed inside the ear canal with
equal spacing around the canal circumference. Each sensing
electrode has an ellipse profile with a height of ~1 mm, and
a major and minor axis of 6 mm and 4.5 mm, respectively.
One electrode placed on the concha cavum was the reference,
and one electrode was placed in the concha cymba was the
ground DRL. All ear electrodes were dry Ag/AgCl. The
in-ear electrodes were attached to passive leads that were
connected to an eight-channel electrophysiology acquisition
system (BioRadio, GLNeurotech, USA) sampled at 500 Hz to
a PC over Bluetooth.

III. VIGILANCE EXPERIMENTAL METHODS
A. Participants

The study consisted of three healthy subjects between the
ages of 23 and 31, all male. The subjects did not have a history
of neuropathy, neuromuscular disorders, cognitive deficiencies,
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Fig. 1: Vigilance test setup and in-ear EEG sensor design.
(a) Vigilance test setup, (b) Zoom in view of the in-ear EEG
sensor inserted into the ear canal along with the earphone, (c)
Design of the in-ear EEG sensor and the acquisition system.

eye or ear-related diseases, had normal hearing and normal
eyesight, or wore corrective lenses. The ear canals of each
subject were cleaned with Isopropyl alcohol 30 minutes before
in-ear recording to removed cerumen. All subjects had an
adequate sleep the night prior to their respective recordings.

B. Experiment Protocol

To validate the performance of the ear sensor, benchmark
auditory steady-state response (ASSR) experiments were con-
ducted before and after the vigilance task. ASSR is an electro-
physiologic response to rapid auditory stimuli, and in-ear EEG
sensor has been demonstrated to obtain ASSR and provide
objective estimate of subject hearing threshold [2], [15]. Dur-
ing the benchmark ASSR experiment, auditory stimuli were
generated using broadband uniform white noise amplitude
modulated 100 percent by 40 Hz frequencies sinusoidal signal.
A Blackman window algorithm was utilized to create the
amplitude modulation pattern. A pair of earphones connected
via bluetooth were used to present the sound stimulus to
subjects at 75 dB for one minute. Characteristic power spectra
were obtained based on the raw time series data measurement
from each in-ear EEG sensing channel. Qualified ear EEG
sensing channels were featured with an around —130d5B (%)
noise floor and a corresponding 40 Hz ASSR peak with a
signal to noise ratio of 5-10dB.
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Fig. 2: Experimental protocol for visual vigilance study begins with a baseline period during which the subject is instructed
by on-screen directions to close their eye while the neutral colored, static screen is displayed. A beep indicated the end of the
baseline, during which the subject will open their eyes and read the prompts on the screen to begin the study. The fixation
cross appears in the same location at the center of the screen for each trial. Subject must focus their visual gaze to that position
for the duration of the trial (6 seconds) until a stimulus is presented in the form of a left or right arrow. Subjects will press
the keyboard key corresponding to the presented stimulus as fast as possible. The key press and response times are recorded.
The trials repeat until a rest phase is reached, during which the subject must maintain focus on a static screen with only a
fixation cross and no stimuli. The study ends after predetermined runs.

C. Stimulus Protocol

To evaluate the attentiveness of subjects, a visual vigi-
lance protocol was designed similar to the one presented in
[14], which incorporated an Eriksen flanker task [16] and a
psychomotor vigilance task (PVT) [17]. The tasks evaluate
the overall behavioral alertness during prolonged fixation and
selective attention during reaction-timed button presses.

Subjects fitted with the EEG devices were seated comfort-
ably in a quiet, naturally lit room at a desk in front of a 144 Hz
monitor with a keyboard, as depicted in Fig. 1. They were
directed by on-screen instructions to attend to a fixation cross
at the center of the screen and press either the left or right
arrow keys on the keyboard to indicate to which direction
the fixation cross changed during each trial, according to the
experimental protocol in Fig. 2. Each trial consisted of a
fixation period of 6 seconds, during which time the subject
was to pay attention to a cross on the screen flanked by a
pair of static symbols. The second phase of each trial would
change the screen such that the fixation cross became either
a left or a right arrow, and the flanking symbols would also
change at the same time to random left or right arrows. Phase
3 of each trial occurs when the subject presses the left or
right key on the keyboard after seeing the cross change to an
arrow. The key pressed is recorded and later compared to the
actual direction arrow that was displayed. The reaction time
from symbol change to key press is also captured in each
trial. After eight trials, there is a 48 second rest period during
which the subject is asked to attend to a static screen showing
only the fixation cross and no flanking symbols. There are
no direction arrows presented or key presses required during
the rest period. The cycle repeats for eight runs until 64 trials
and eight rest periods are completed, or sooner if the subject
decides to end the study early. Subjects are asked not to move
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Fig. 3: Response time calculated between stimulus presenta-
tion and keyboard press across all trials.

during either fixation or rest periods.

D. Preprocessing

EEG data captured from the scalp headset and in-ear de-
vices went through minimal preprocessing. Raw datasets were
loaded into EEGLAB for visualization of time series data and
LSL markers. Any channels that were not to be used, such as
accelerometer and impedance, were removed, and a bandpass
filter (FIR 1 to 58 Hz) was applied to all scalp channels. Data
was exported in .edf format.

IV. DATA ANALYSIS AND ATTENTION STATE
CLASSIFICATION

Both scalp and in-ear EEG data obtained from all subjects
were analyzed using different techniques discussed below. In
all of the techniques, around 85% of the trials were used
for training and cross-validation while 15% were used for
testing. We selected continuous trial intervals for train and test
data (eight 6-second attentive, and a 48-second resting phase
divided into 8 trials per run i.e., total of 64 trials) to completely
separate the train and test data and avoid overfitting. As the
total duration of the attentive and rest states is close, the train
and test data have almost 50% of attentive and rest labels. We
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Fig. 4: The FBCSP processing pipeline.

examined the possibility of using baseline machine learning
classifiers without feature extraction (i.e., on raw data with
lightweight preprocessing as explained in Section III-D) and
with feature extraction. Specifically, we implemented a filter-
bank common spatial pattern (FBCSP algorithm) for feature
extraction.

A. Filter-Bank Common Spatial Pattern (FBCSP) Algorithm

Common Spatial Pattern (CSP) algorithm is an efficient
method for classifying EEG data [18] and has been explored
for multi-class feature extractions in BCI systems. However,
the effectiveness of CSP depends on subject-specific frequency
bands to precisely determine the features. Thus recently there
have been some developments on Filter-Bank CSP (FBCSP)
algorithm [12] [13]. FBCSP separately calculates the features
in each relevant frequency band and combines them into the
most significant CSP features based on a mutual information-
based best individual feature (MIBIF algorithm) [12].

Our processing pipeline is detailed in Fig. 4. It consists of
multiple stages of combined signal processing and machine
learning techniques to enhance the feature extraction and
classification in the presence of signal variability in different
operating conditions, acquisition hardware mismatches, and
inter-subject signal quality fluctuations. The first stage of
FBCSP consists of a filter bank comprising multiple Cheby-
shev Type II band-pass filters between 440 Hz and in intervals
of 4Hz. The second stage performs spatial filtering using the
CSP algorithm. Each frequency band has its own optimized
CSP feature calculation. The primary purpose of CSP is to
maximize the variance of class-specific samples in a specific
spatial dimension. One typical discrimination of variance in
different spatial dimensions is illustrated in Fig. 5 for in-
ear EEG data (scatter plots of pre-CSP filtered and post-
CSP filtered). Before CSP, the variance of samples related to
attentive and resting class is approximately the same across
Electrode 1 and Electrode 3. However, there is more variation
observed across one particular spatial dimension after the
CSP transformation. The CSP algorithm computes the spatial
transformed signals Z; ; for each frequency band as,

Zyi = Wl Ey, (1)
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Fig. 5: Scatter plots of samples belonging to each class to
demonstrate their variance in two spatial directions before-
CSP and after-CSP transformation. After-CSP transformation
plot is obtained by combining the transformed signals from
all frequency bands.
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Fig. 6: Accuracy of in-ear EEG signals (with 3 electrodes)
using different classification techniques such as RF, KNN,
and SVM without any feature extraction, and comparison with
FBCSP feature extraction + classification method.

where I, ; denotes single-trial (i-th) EEG measurement from
which is a filtered input signal through b-th band-pass filter
and W, denotes the corresponding CSP projection matrix.
The projection matrices are computed to behave optimal for
distinguishing between two cognitive states. This is done by
solving the eigenvalue decomposition from the covariance
matrices of the measurements of different cognitive states. The
spatial filtered signal maximizes the differences in the variance
of two classes of measurements. After this, FBCSP feature
vectors vy, ; are calculated from the transformed signals.

The third stage implements a feature selection algorithm
which selects most discriminative CSP features from v, ;. This
is accomplished by a Mutual-Information based Individual
Feature (MIBF) where mutual information of each feature is
computed and sorted in descending order. Finally, the first &
features are selected to be used for classification. The fourth
stage is the classification step, for which we use a Support-
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Fig. 7: Accuracy of on-scalp EEG signals (with 25 electrodes)
using different classification techniques such as RF, KNN,
and SVM without any feature extraction, and comparison with
FBCSP feature extraction + classification method.

Vector-Machine (SVM)-based method with a Radial-Basis-
Function (RBF) kernel.

B. Classification Accuracy

Fig. 6 and Fig. 7 show the accuracy of the FBCSP and
conventional ML techniques on the, respectively, in-ear and
on-scalp signals for all the three subjects. There is a sig-
nificant accuracy gap between Filter-Bank CSP feature ex-
tracted classification and baseline methods such as Random
Forest (RF), K-Nearest Neighbor (KNN) and Support-Vector
Machine(SVM). For the in-ear signals, the conventional tech-
niques achieve no better than 54.3% on average. FBCSP, on
the other hand, achieves 72.6% average accuracy for the three
subjects with a standard deviation of 1.96%. It is noteworthy
that for the FBCSP we used a support vector machine (SVM)
classifier which, as shown in Fig. 6, achieves as low as 52.7%
when working on simple preprocessed data.

For the on-scalp data, the FBCSP achieves an average
accuracy of 90.2% (1.95% standard deviation), which is 17.6%
higher than the in-ear device accuracy. Without feature extrac-
tion, the random forest classifier (the best among the conven-
tional techniques) achieves 67.6%. The FBCSP accuracy on
our in-ear EEG dataset is promising, especially it is trained
over only 64 trials. This promises a very lightweight training
model that can be often trained on the fly. Our FBCSP model
is expected to provide higher accuracy (upto 80-85%) when
trained with larger datasets and through further experiment
trials.

V. CONCLUSION

We presented a low-profile user-generic and portable in-
ear EEG instrumentation device with just 5-electrodes capable
of classifying cognitive states using a multi-frequency band
feature extraction, feature selection, and classification algo-
rithm. We demonstrated up to 75% accuracy with a minimal
in-ear EEG training dataset. This work paves the path for a
complete system-on-chip closed-loop brain-state monitor that
can be reliably used irrespective of the operating conditions.
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