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RCHOL: RANDOMIZED CHOLESKY FACTORIZATION FOR
SOLVING SDD LINEAR SYSTEMS∗
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Abstract. We introduce a randomized algorithm, namely, rchol, to construct an approximate
Cholesky factorization for a given Laplacian matrix (a.k.a., graph Laplacian). From a graph perspec-
tive, the exact Cholesky factorization introduces a clique in the underlying graph after eliminating
a row/column. By randomization, rchol only retains a sparse subset of the edges in the clique us-
ing a random sampling developed by Spielman and Kyng [private communication, 2020]. We prove
rchol is breakdown free and apply it to solving large sparse linear systems with symmetric diago-
nally dominant matrices. In addition, we parallelize rchol based on the nested-dissection ordering
for shared-memory machines. We report numerical experiments that demonstrate the robustness
and the scalability of rchol. For example, our parallel code scaled up to 64 threads on a single
node for solving the three-dimensional Poisson equation, discretized with the 7-point stencil on a
1024× 1024× 1024 grid, a problem that has one billion unknowns.
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AMS subject classifications. 65F08, 65F50, 62D05

DOI. 10.1137/20M1380624

1. Introduction. We consider the solution of a large sparse linear system

(1.1) Ax = b,

where A = (aij) ∈ R
N×N is a symmetric diagonally dominant (SDD) matrix, i.e.,

(1.2) A = A⊤, and aii ≥
∑

j 6=i

|aij | for i = 1, 2, . . . , N.

Note we require the diagonal of an SDD matrix to be nonnegative.1 The linear system
(1.1) appears in many scientific and engineering domains, e.g., the discretization of a
partial differential equation (PDE) using finite difference or finite elements, spectral
graph partitioning, and learning problems on graphs.

The essential ingredient of our method is the randomized Cholesky factorization
(rchol). When A has only negative nonzero off-diagonal entries , rchol computes an
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1A relaxed definition requires |aii| ≥
∑

j 6=i |aij | allowing negative diagonal entries. This relaxed
definition is not what we use in this paper.
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approximate Cholesky factorization

(1.3) P⊤AP ≈ GG⊤,

where P is a permutation matrix and G is a lower triangular matrix. Using GG⊤

as the preconditioner, we can solve (1.1) with the PCG method [36]. Generally, A
also has positive off-diagonal entries. In some cases (section 3.2.1), we can find a
diagonal matrix D with +1 or −1 on the diagonal such that DAD has only negative
nonzero off-diagonal entries; otherwise, we solve an equivalent linear system that has
only negative nonzero off-diagonal entries but is twice larger.

1.1. Related work. Direct solvers compute exact factorizations of A and gen-
erally require O(N3) work and O(N2) storage. Although matrix A is sparse, a naive
direct method may introduce excessive new nonzero entries (a.k.a., fill-in) during the
factorization. To minimize fill-in, sparse-matrix reordering schemes, such as nested
dissection [12] and approximate minimum degree (AMD) [2], are usually employed in
state-of-the-art methods, namely, sparse direct solvers [9]. One notable example is
the nested-dissection multifrontal method [11,28], where the elimination ordering and
the data flow follow a special hierarchy of separator fronts. When applied to matrix
A from the discretization of PDEs in three-dimensional (3D) space, the multifrontal
method generally reduces the computation and memory complexities to O(N2) and
O(N4/3), respectively. However, such costs, dominated by those for factorizing the
largest separator front of size O(N2/3), are still prohibitive for large-scale problems.

Preconditioned iterative methods are often preferred for large-scale problems [36].
A key design decision in iterative solvers is the preconditioner. State-of-the-art meth-
ods such as domain decomposition and multigrid methods work efficiently for a large
class of problems, including SDD matrices. A cheaper and simpler alternative is to
use an approximate factorization as in (1.3), and one popular strategy to compute
such a factorization is the incomplete factorization [32]. An incomplete factorization
permits fill-in at only specified locations in the resulting factorization. These locations
can be computed in two ways: statically, based on the sparsity structure of A with a
level-based strategy, or dynamically, generated during the factorization process with
a threshold-based strategy [35] or its variants [17, 37]. Because of its importance, an
incomplete Cholesky factorization is often parallelized on single-node shared-memory
machines, and this type of parallel algorithm has been studied extensively [3,7,22,34].
Incomplete factorizations are widely used in computational science and engineering,
especially when the underlying physics of a problem are difficult to exploit. Besides
being used as a stand-alone preconditioner, an incomplete factorization is also an
important algorithmic primitive in more sophisticated methods. For example, it can
be used to precondition subdomain solves in domain decomposition schemes or as a
smoother in multigrid methods. In this paper, we focus on a randomized scheme for
constructing incomplete factorizations. Although we compare our method directly
with other solvers, we would like to emphasize that we envision it as an algorithmic
primitive in more complex solvers.

More recently, a class of methods known as the Laplacian paradigm have been de-
veloped specifically for solving SDD linear systems as in (1.1). In a breakthrough [39],
Spielman and Teng proved in 2004 that (1.1) can be solved in nearly-linear time. De-
spite the progress with asymptotically faster and simpler algorithms [21, 23, 25, 26],
practical implementations of these methods that are able to compete with state-of-
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the-art linear solvers are limited [24, 29]. A notable recent effort is Laplacians.jl,2

a Julia package containing linear solvers for Laplacian matrices, but no results have
been reported for solving problems related to PDEs, the target application of our
work. In this paper, we build on two established ideas: the SparseCholesky algo-
rithm in [25] and a random sampling scheme implemented in Laplacians.jl. In
the SparseCholesky algorithm, the Schur-complement update is written as a diagonal
matrix plus the graph Laplacian of a clique. Then edges in the clique are sampled
and reweighted, so the graph Laplacian of sampled edges equals that of the clique in
expectation. In Laplacians.jl, Spielman and Kyng [38] proposed another sampling
strategy, which empirically performed better but has not been analyzed, according to
our knowledge and the software documentation.

1.2. Contributions. In this work, we focus on solving SDD linear systems aris-
ing from the discretization of PDEs, and the main ingredient of our approach is an
approximate Cholesky factorization constructed via random sampling. In particular,
we introduce a randomized Cholesky factorization for Laplacian matrices building on
top of previous work by Spielman and Kyng [25,38]. As observed in [25], eliminating
a row/column in the matrix is equivalent to subtracting the graph Laplacian of a star
and adding the graph Laplacian of a clique. Following [38], we sample a sparse subset
of the edges instead of keeping the full clique. Our specific contributions include the
following:

• We prove that the sampled edges form a spanning tree on the clique, and
consequently, rchol is breakdown free for an irreducible Laplacian matrix.
We also extend rchol to compute approximate factorizations for subclasses of
SDD matrices that are not Laplacian matrices. For the rest of SDD matrices
that we cannot apply rchol directly, we clarify how to obtain an approximate
solution of (1.1) under a given tolerance through solving an extended problem
using PCG.

• We introduce a high-performance parallel algorithm for rchol based on the
nested-dissection ordering and the multifrontal method. We implemented
the parallel algorithm using a task-based approach for shared-memory mul-
ticore machines. Our software offering C++/MATLAB/Python interfaces is
available at https://github.com/ut-padas/rchol.

• We benchmarked our code on various problems: Poisson’s equation, variable-
coefficient Poisson’s equation, anisotropic Poisson’s equation, and problems
from the SuiteSparse Matrix Collection.3 With our benchmark results, we
demonstrated the importance of using fill-reducing orderings, the stability
and the scalability of our method. We also compared our method to the
well-established incomplete Cholesky factorization with threshold dropping.

Our results highlight several features of the new method that are distinct from
existing deterministic incomplete Cholesky factorizations: (1) Fill-reducing ordering
(as opposed to natural/lexicographical ordering), such as AMD and nested-dissection,
improved the performance of our method; (2) the number of iterations required by
PCG increased approximately logarithmically with the problem size for discretized 3D
Poisson equation; and (3) the performance of our parallel algorithm is hardly affected
by the number of threads used.

2https://github.com/danspielman/Laplacians.jl.
3https://sparse.tamu.edu/.
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1.3. Outline and notations. The remainder of this paper is organized as fol-
lows. Section 2 introduces rchol with analysis. Section 3 focuses on solving SDD
linear systems and the parallel algorithm for rchol. Section 5 presents numerical
experiments, and section 6 discusses generalizations and draws conclusions.

Throughout this paper, matrices are denoted by capital letters with their entries
given by the corresponding lowercase letter in the usual way, e.g., A = (aij) ∈ R

N×N .
We adopt the MATLAB notation to denote a submatrix; e.g., A(i, :) and A(:, i) stand
for the ith row and ith column in matrix A, respectively.

2. Randomized Cholesky factorization for Laplacian matrix. In this sec-
tion, we focus on irreducible Laplacian matrices, which can be viewed as weighted
undirected graphs that have only one connected component. Then we introduce
Cholesky factorization and give the first formal statement of the clique sampling
scheme by Spielman and Kyng [38] in the Laplacians.jl package. Finally, we provide
analysis on the resulting randomized Cholesky factorization.

Definition 2.1 (Laplacian matrix [25]). Matrix A ∈ R
N×N is a Laplacian

matrix if (1) A = A⊤, (2)
∑N

j=1 aij = 0 for i = 1, 2, . . . , N , and (3) aij ≤ 0 when
i 6= j.

Definition 2.2 (irreducible matrix [40]). Matrix A is irreducible if there does
not exist a permutation matrix P such that P⊤AP is a block triangular matrix.

Lemma 2.3 (irreducible Laplacian matrix). Suppose A ∈ R
N×N is an irreducible

Laplacian matrix. If N > 1, then aii > 0 for all i = 1, 2, . . . , N ; otherwise, A is a
scalar zero.

Note a Laplacian matrix is always positive semidefinite, and the null space is
span{1} if it is irreducible. Below we state a well-known result that there exists a
bijection between the class of Laplacian matrices and the class of weighted undirected
graphs to prepare for the sampling algorithm.

Definition 2.4 (graph Laplacian). Let G = (V,E) be a weighted undirected
graph, where V = (v1, v2, . . . , vN ) and an edge eij = (vi, vj) ∈ E carries weight
wij > 0. The graph Laplacian of G is

(2.1) L =
∑

eij∈E

wij bijb
⊤
ij ,

where bij = ei − ej, the difference of two standard bases ei, ej ∈ R
N (the order of

difference does not affect L).

Remark 2.5. For completeness, we also mention another equivalent definition of
graph Laplacian. Given a weighted undirected graph G = (V,E), the graph Laplacian
of G is

L = D −W,

where W is the weighted adjacency matrix; i.e., −wij is the weight associated with
edge eij ∈ E, and D is the weighted degree matrix, i.e., dii = −∑

j 6=i wij for all i.

Theorem 2.6. Definitions 2.1 and 2.4 are equivalent: Matrix L in (2.1) is a
Laplacian matrix, and there exists a weighted undirected graph of which the graph
Laplacian is equal to a given Laplacian matrix.
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RANDOMIZED CHOLESKY FACTORIZATION C415

Proof. Note that











i j

. . .

i 1 . . . −1
...

...
j −1 . . . 1

. . .











= bij b
⊤
ij ,

and it is straightforward to verify that L in (2.1) is a Laplacian matrix. In the other
direction, for a given Laplacian matrix A, we can construct a weighted undirected
graph G based on the weighted adjacency matrixD−A, whereD contains the diagonal
of A. According to Remark 2.5, A is the graph Laplacian of G.

2.1. Cholesky factorization and clique sampling. Consider applying the
Cholesky factorization to an irreducible Laplacian matrix L ∈ R

N×N for N − 1 steps
as shown in Algorithm 2.1. It is straightforward to verify that L is always a Laplacian
matrix inside the for-loop (line 4). Furthermore, the Schur complement at the kth
step, i.e., L(k+1:N, k+1:N), is an irreducible Laplacian matrix for k = 1, 2, . . . , N−1.
According to Lemma 2.3, we know that ℓkk > 0 at line 3 and ℓNN = 0 after the for-
loop. An irreducible Laplacian matrix corresponds to a connected graph, and the zero
Schur complement, which stands for an isolated vertex, would not occur earlier until
the other N − 1 vertices have been eliminated.

Algorithm 2.1 Classical Cholesky factorization for Laplacian matrix.

Input: irreducible Laplacian matrix L ∈ R
N×N

Output: lower triangular matrix G ∈ R
N×N

1: G = 0N×N

2: for k = 1 to N − 1 do
3: G(:, k) = L(:, k)/

√
ℓkk // ℓkk > 0 for an irreducible Laplacian input

4: L = L− 1
ℓkk

L(:, k)L(k, :) // dense Schur-complement update
5: end for

At the kth step in Algorithm 2.1, the elimination (line 4) leads to a dense sub-
matrix in the Schur complement. Next, we use the idea of random sampling to reduce
the amount of fill-in. At the kth step, we define the neighbors of k as

(2.2) Nk , {i : ℓki 6= 0, i 6= k},

corresponding to vertices connected to vertex k in the underlying graph. We also
define the graph Laplacian of the subgraph consisting of k and its neighbors as

(2.3) L(k) ,
∑

i∈Nk

(−ℓki) bkib
⊤
ki.

It is observed in [25] that the elimination at line 4 in Algorithm 2.1 can be written as
the sum of two Laplacian matrices:

L− 1

ℓkk
L(:, k)L(k, :) = L− L(k)

︸ ︷︷ ︸

Laplacian matrix

+L(k) − 1

ℓkk
L(:, k)L(k, :)

︸ ︷︷ ︸

Laplacian matrix
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The next theorem addresses the time complexity and the storage of rchol em-
ploying a random elimination ordering, which follows the argument in [25] closely.
(We prove this in Appendix A.)

Theorem 2.9 (running time and storage). Suppose that an irreducible Laplacian
matrix L ∈ R

N×N has M nonzeros and that a random row/column is eliminated at
every step in Algorithm 2.2. Then the expected running time of Algorithm 2.2 is upper
bounded by O(M logN), and the expected number of nonzeros in the output triangular
matrix G is upper bounded by O(M logN).

The next theorem shows that Algorithm 2.3 returns an unbiased estimator at
every step in Algorithm 2.2.

Theorem 2.10 (unbiased estimator). At the kth step in Algorithm 2.2, the
expectation of C = SampleClique(L,k) is equal to the result of exact elimination, as
defined in (2.4).

Proof. Suppose i, j ∈ Nk and 0 < |ℓki| < |ℓkj |. The probability that edge (i, j)
being sampled is Pij = |ℓkj |/S, according to line 8 in Algorithm 2.3. Therefore, we
have

E[C] =
∑

i,j∈Nk and |ℓki|<|ℓkj |

Pij
S (−ℓki)

ℓkk
bijb

⊤
ij =

∑

i,j∈Nk and |ℓki|<|ℓkj |

ℓkj ℓki
ℓkk

bijb
⊤
ij .

2.3. Relation to approximate Cholesky factorizations in [25] and [38].
While both rchol and the method in [25] follow the same template of Algorithm 2.2,
they differ in two manners. The first difference is that the algorithms of clique sam-
pling are different. In [25] the authors propose to sample n edges from a clique at
every step in Algorithm 2.1. To sample an edge, a neighbor i is sampled uniformly
from Nk, and a neighbor j is sampled from Nk with probability |ℓkj |/ℓkk; then an
edge between i and j is created with weight ℓkiℓkj/|ℓki + ℓkj | if i 6= j. With such a
sampling strategy, an edge can be sampled repeatedly, and there is a probability that
no edge is created (when i and j are identical). So Algorithm 2.3 can be viewed as a
derandomized variant of the sampling in [25].

The other difference is that there is an extra initialization step before entering
Algorithm 2.2 in [25]. For a Laplacian matrix, the initialization is to split every edge
in the associated graph into ρ = O(log2 N) copies with 1/ρ of the original weight.
Then the resulting multigraph becomes the input of Algorithm 2.2. It was proven
that the norm of the normalized graph Laplacian associated with every edge in the
multigraph is upper bounded by 1/ρ throughout the factorization with the aforemen-
tioned sampling algorithm. As a result, a nearly-linear time solver was obtained as
the following theorem states.

Theorem 2.11 (approximate Cholesky factorization in [25]). Let L ∈ R
N×N be

an irreducible Laplacian matrix with M nonzeros and P ∈ R
N×N be a random per-

mutation matrix. If we perform the above initialization step on P⊤LP and apply
Algorithm 2.2 with the above sampling algorithm, then the expected running time is
O(ρM logN) = O(M log3 N), and the expected number of nonzeros in the output tri-
angular matrix G is O(ρM logN) = O(M log3 N). In addition, with high probability,

1

2
L � (PG)(PG)

⊤ � 3

2
L.

(For two symmetric matrices A and B, the notation A � B means that B − A is a
positive semidefinite matrix.)
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Overall, the algorithm in [25] requires a more expensive factorization than rchol

(the extra log2 N factor in the running time can be significant in practice), but it
produces an approximation of better quality.

Compared to [38], rchol computes a mathematically equivalent operator if the
same elimination ordering is used. (rchol by default uses the AMD ordering [2] in
practice; see section 5.1.) Hence, our analysis for rchol also applies to the method
in [38]. While rchol represents the output as an approximate Cholesky factorization,
[38] uses a row-operation representation.

3. Randomized preconditioner for SDD matrix. In this section, we con-
sider an SDD linear system Ax = b, where A is irreducible as defined in Definition 2.2
but not a Laplacian matrix. In section 3.1, we consider the case when A is an SDDM
matrix, which can be viewed as the sum of a Laplacian matrix and a nonnegative di-
agonal matrix with at least one positive diagonal entry. In section 3.2.1, we introduce
bipartite SDD matrices, a subclass of SDD matrices that contain positive off-diagonal
entries but can be converted to either a Laplacian matrix or an SDDM matrix through
diagonal scaling.

When A is either an SDDM matrix or a bipartite SDD matrix, we can compute
an approximate Cholesky factorization of A and use it as a preconditioner to solve for
x. Otherwise, it is well known in the literature [15] that x can be obtained through
solving a twice larger linear system Ãy = b̃ in exact arithmetic. In section 3.2.2, we
show how to retrieve an approximate solution x that has the same relative residual
as a given approximate solution y for the larger system.

3.1. SDDM matrix.

Definition 3.1. Matrix A ∈ R
N×N is a symmetric diagonally dominant M-

matrix if A is (1) SDD, (2) positive definite, and (3) aij ≤ 0 when i 6= j.

Our goal is to compute an approximate Cholesky factorization for an SDDM
matrix A:

(3.1) A ≈ GG⊤.

The factorization can be used as a preconditioner for solving Ax = b. To obtain (3.1),
our approach is applying Algorithm 2.2 to the following extended matrix that initially
appeared in [15]:

(3.2) Ã ,

(
A −A1

−1⊤A 1⊤A1

)

, Ã ∈ R
(N+1)×(N+1),

where 1 ∈ R
N stands for the all-ones vector. The reason we can apply Algorithm 2.2

is the following lemma.

Lemma 3.2. Given an irreducible SDDM matrix A, the extended matrix Ã, de-
fined in (3.2), is an irreducible Laplacian matrix.

Proof. Since A is SDD and positive definite, the row-sum vector A1 has nonneg-
ative entries and at least one positive entry. Therefore, it is straightforward to verify
that Ã is an irreducible Laplacian matrix.

Suppose the output of Algorithm 2.2 is the following:

(3.3) rchol(Ã) , G̃ =

(
G̃11

G̃21 g̃22

)

,

where G̃11 ∈ R
N×N , G̃21 ∈ R

1×N , and g̃22 ∈ R. We know that g̃22 = 0 according to
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Corollary 2.8. In other words, we have the approximation

Ã =

(
A −A1

−1⊤A 1⊤A1

)

≈ G̃G̃⊤ =

(
G̃11

G̃21 0

)(

G̃⊤
11 G̃⊤

21

0

)

,

from which we see that

A ≈ G̃11G̃
⊤
11

in the leading principle block. We summarize the above algorithm in Algorithm 3.1.

Algorithm 3.1 Randomized Cholesky factorization for SDDM matrix.

Input: irreducible SDDM matrix A ∈ R
N×N

Output: lower triangular matrix G ∈ R
N×N

1: Construct Ã defined in (3.2).
2: Compute

(
G̃11

G̃21 0

)

= RandomizedCholesky(Ã) // call Algorithm 2.2

where G̃11 ∈ R
N×N and G̃21 ∈ R

1×N .
3: return G = G̃11.

Remark 3.3 (reducible SDDM matrix). In general, Algorithm 3.1 can be applied
to an SDDM matrix A that is reducible because (3.2) is still an irreducible Laplacian
matrix. However, it may be more efficient to apply Algorithm 3.1 to each irreducible
component for solving a linear system with A.

Before ending this section, we justify using G̃11G̃
⊤
11 as a preconditioner through

the following classical result.

Theorem 3.4 ( [15, Lemma 4.2, page 56]). Solving an irreducible SDDM linear
system Ax = b is equivalent to solving the following irreducible Laplacian linear system

(3.4) Ã y =

(
b

−1⊤b

)

.

Proof. It can be verified that the solution of (3.4) is

(3.5) y =

(
x
0

)

+ span{1}.

Therefore, we can solve (3.4) to obtain x and vice versa.

To solve (3.4) and obtain x, we first apply PCG with the preconditioner G̃G̃⊤

in (3.3). Then we orthogonalize the PCG solution with respect to span{1}. This
process turns out to be equivalent to using G̃11G̃

⊤
11 as the preconditioner (note G̃11

is nonsingular) for solving Ax = b with PCG directly, without going through the
extended problem.

3.2. SDD matrix. Given an irreducible SDD matrix A ∈ R
N×N , let

A , Ad +An +Ap,
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where Ad, An, Ap ∈ R
N×N contain the diagonal, the negative off-diagonal, and the

positive off-diagonal entries of A, respectively. In this section, we focus on the case
when Ap 6= 0; i.e., A contains at least two positive off-diagonal entries (due to sym-
metry).

3.2.1. Bipartite SDD matrix. We introduce bipartite SDD matrices and give
three equivalent definitions below (proof is in Appendix B).

Definition 3.5. A bipartite SDD matrix A can be defined in any of the following
three equivalent ways:

(a) Let Â be an SDD matrix defined by the off-diagonal part of A,

(3.6) Â , diag ((Ap −An)1) +Ap +An,

where diag(·) maps a vector to a diagonal matrix. If rank(Â) = N − 1, then
A is a bipartite SDD matrix.

(b) Let D be a diagonal matrix whose diagonal entries are either 1 or −1. If there
exists such a matrix D that DAD has only nonpositive off-diagonal entries,
then A is a bipartite SDD matrix.

(c) Let G = (V,E) be a undirected graph, where V = (v1, v2, . . . , vN ) has N
vertices; an edge eij = (vi, vj) ∈ E exists if aij 6= 0 and carries weight
wij = −aij. If the graph G is 2-colorable (bipartite) in the sense that

• vi and vj have the same color if wij > 0,
• vi and vj have different colors if wij < 0,

then A is a bipartite SDD matrix.

Example 3.6. The following shows three 3 × 3 SDD matrices with positive off-
diagonal entries, where a symbol × denotes any value greater than or equal to 2.
Among the three matrices, A1 is a bipartite SDD matrix, and the other two are not:

A1 =





× 1 1
1 × −1
1 −1 ×



 A2 =





× 1 −1
1 × −1
−1 −1 ×



 A3 =





× 1 1
1 × 1
1 1 ×



 .

Remark 3.7. Whether A is a bipartite SDD matrix or not depends on only its
off-diagonal part according to Definition 3.5(a). When Ap 6= 0, we have rank(Â) = N
if A is not a bipartite SDD matrix. Otherwise, when Ap = 0 (A is either a Laplacian

matrix or an SDDM matrix), we have rank(Â) = N − 1.

Our goal is to compute an approximate (generalized) Cholesky factorization of
an irreducible bipartite SDD matrix. In the following, we show that it takes linear
time to find the matrix D in Definition 3.5(b), and thus we can apply rchol to
DAD, which is either a Laplacian matrix or an SDDM matrix. Given an irreducible
SDD matrix, Algorithm 3.2 tries to find the matrix D by traversing the graph G
defined in Definition 3.5(c). Algorithm 3.2 is based on the breadth-first search and
can also be implemented in the depth-first search. With the matrix D, we obtain
an approximate (generalized) Cholesky factorization A ≈ GG⊤, where G has both
positive and negative diagonal entries.

3.2.2. General SDD matrix. We consider solving Ax = b, where Ap 6= 0 and
A is not a bipartite SDD matrix (A is nonsingular according to Remark 3.7). Our
goal is to find x such that the relative residual is smaller than a prescribed tolerance
ǫ, i.e.,

(3.7) ‖b−Ax‖/‖b‖ < ǫ,
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Algorithm 3.2 Check bipartite SDD matrix.

Input: irreducible SDD matrix A ∈ R
N×N (not necessarily bipartite)

Output: flag BSDD or not and diagonal matrix D ∈ R
N×N (if A is bipartite)

1: Let BSDD or not = true and d11 = 1.
2: Mark index 1 as visited; and queue.push(1).
3: while queue is not empty do
4: i = queue.pop()
5: for k : aik 6= 0, k 6= i do
6: if index k has not been visited then
7: if aik < 0 then
8: Let dkk = dii.
9: else

10: Let dkk = −dii.
11: end if
12: Mark index k as visited; and queue.push(k).
13: else
14: if aik dkk dii > 0 then // see lines 7–11
15: Let BSDD or not = false and return .
16: end if
17: end if
18: end for
19: end while

Algorithm 3.3 Randomized Cholesky factorization for bipartite SDD matrix.

Input: irreducible bipartite SDD matrix A
Output: lower triangular matrix G
1: D = CheckBipartiteSDDMatrix(A)
2: G̃ = RandomizedCholesky(DAD) // Algorithm 2.2 or Algorithm 3.1
3: G = DG̃ // A ≈ DG̃G̃⊤D

a common stopping criteria for iterative solvers such as PCG. Our approach is to solve
the extended system Ãy = b̃ as initially proposed in [15], where

(3.8) Ã ,

(
Ad +An −Ap

−Ap Ad +An

)

, b̃ ,

(
b
−b

)

,

and we seek to find y satisfying

(3.9) ‖b̃− Ãy‖/‖b̃‖ < ǫ.

Before discussing how to solve the extended system, we state our main result in the
following theorem.

Theorem 3.8. Given y = (
y1

−y2
) such that (3.9) holds, where y1, y2 ∈ R

N , the
vector

(3.10) x =
y1 + y2

2

satisfies (3.7).
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Proof. According to (3.9), we have

‖b̃− Ãy‖2 =

∥
∥
∥
∥

(
b− (Ad +An)y1 −Apy2
b−Apy1 − (Ad +An)y2

)∥
∥
∥
∥

2

= ‖b− (Ad +An)y1 −Apy2‖2 + ‖b−Apy1 − (Ad +An)y2‖2

< ǫ2‖b̃‖2,

where ‖b̃‖2 = 2‖b‖2. We obtain (3.7) as follows:

‖b−Ax‖2 =
1

4
‖2b− (Ad +An +Ap)(y1 + y2)‖2

=
1

4
‖ (b− (Ad +An)y1 −Apy2) + (b−Apy1 − (Ad +An)y2) ‖2

≤ 1

2
‖ (b− (Ad +An)y1 −Apy2) ‖2 +

1

2
‖ (b−Apy1 − (Ad +An)y2) ‖2

< ǫ2‖b‖2.

A similar result on the relative errors also holds [40],

∥
∥
∥y − Ã†b̃

∥
∥
∥ ≤ ǫ

∥
∥
∥Ã†b̃

∥
∥
∥ implies

∥
∥x−A−1b

∥
∥ ≤ ǫ

∥
∥A−1b

∥
∥ ,

where Ã† denotes the pseudoinverse of Ã. (Ã may be singular, i.e., a Laplacian
matrix.) In addition, if we seek for the exact solution, i.e., ǫ = 0, then (3.10) is indeed
the solution of Ax = b [31, 40].

Next, we focus on solving the extended system Ãy = b̃. It is easy to see that Ã
is an SDD matrix with nonpositive off-diagonal entries, i.e., a Laplacian matrix or an
SDDM matrix. In addition, Ã is irreducible as the following theorem states (proof is
in Appendix C).

Theorem 3.9. If an irreducible SDD matrix A contains positive off-diagonal en-
tries (Ap 6= 0) and is not a bipartite SDD matrix, then the matrix Ã defined in (3.8)
is irreducible.

Therefore, we can construct an approximate Cholesky factorization of Ã, solve
the extended system with PCG, and obtain x according to Theorem 3.8. To summa-
rize, Algorithm 3.4 shows the pseudocode of solving a general irreducible SDD linear
system.

4. Sparse matrix reordering and parallel algorithm. In this section, we
discuss two techniques for improving the practical performance of Algorithm 2.2 in-
cluding reordering the input sparse matrix and parallelizing the computation.

Sparse matrix reordering is a mature technique that is used in sparse direct solvers
to speed up factorization and to reduce the memory footprint. Since Algorithm 2.2
keeps a subset of fill-in at every step, it is intuitive that Algorithm 2.2 can also benefit
from an appropriate ordering. The challenge, however, is that the fill-in pattern as a
result of the random sampling algorithm is not deterministic and thus is impossible
to predict beforehand. We resort to using the AMD ordering [2], a fill-in reducing
heuristic for the (exact) Cholesky factorization. The advantage is that the AMD can
be precomputed quickly and applied to the input sparse matrix before Algorithm 2.2.
In practice, we find the AMD working well with rchol, although the fill-in behavior
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Algorithm 4.1 Compute ordering.

Input: irreducible Laplacian matrix L ∈ R
N×N and number of threads p

Output: the nested-dissection tree T

1: ℓ = log2(p) // assume p is a power of 2
2: Create a full binary tree T of ℓ levels // initialize output
3: ComputeOrdering(T →root, L, ℓ) // start recursion

4: function ComputeOrdering(node, L, ℓ)
5: if ℓ > 0 then

// partition graph/indices into “left,” “right,” and “seperator”
6: Il, Ir, Is = PartitionGraph(L) // call METIS
7: node→store indices(Is)
8: ComputeOrdering(node→left, L(Il, Il), ℓ− 1)
9: ComputeOrdering(node→right, L(Ir, Ir), ℓ− 1)

10: else
11: I = ComputeAMD(L) // AMD ordering at leaf level
12: node→store indices(I)
13: end if
14: end function

can execute in parallel. Notice a task depends on not only its children but also some
of their descendants. We employ a multifrontal type of approach [28] in our parallel
algorithm, where a task receives the Schur-complement updates from its two children
and sends necessary updates to its parent. In other words, a task communicates with
only its children and parent. The pseudocode is shown in Algorithm 4.2, where we
traverse the task tree in postorder to generate all tasks.

We have implemented Algorithm 4.2 with both OpenMP4 tasks and the C++
thread library,5 and we found the latter delivered slightly better performance in our
numerical tests. Specifically, we use std::async to launch an asynchronous task at
line 4 on a new thread and store the results in an std::future object. Synchroniza-
tion is achieved by calling the get() method on the previous future object at line 7.
One advantage of our approach is that we are able to pin threads on cores for locality
via sched setaffinity() in sched.h.

5. Numerical results. In this section, we refer to our randomized precondi-
tioner as rchol. Recall our goal is solving Ax = b, and our approach is constructing
a preconditioner GG⊤, where G is a lower triangular matrix.

Besides problems from the SuiteSparse Matrix Collection, we generate test matri-
ces from discretizing Poisson’s equation, variable-coefficient Poisson’s equation, and
anisotropic Poisson’s equation:

(5.1) −∇ · (a(x)∇u(x)) = f, x ∈ Ω = [0, 1]3, u(x) = 0 on ∂Ω.

• Poisson’s equation: a(x) = 1.
• Variable-coefficient Poisson’s (VC-Poisson) equation: We generate a high-
contrast coefficient field a(x) following [5,6,16]. First, we generate {ai} from

4https://www.openmp.org/.
5https://en.cppreference.com/w/cpp/thread.
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Algorithm 4.2 Parallel randomized Cholesky factorization.

Input: irreducible Laplacian matrix L ∈ R
N×N and the nested-dissection tree T

Output: matrix G ∈ R
N×N (lower triangular if reordered according to T )

1: ParRchol(T →root, L, G) // start recursion; L and G modified in place

2: function ParRchol(node, L, G) // postorder tree traversal
3: if node→not leaf() then

// recursive task generation
4: Sl = ParRchol(node→left, L, G)
5: Sr = ParRchol(node→right, L, G)
6: end if
7: // wait until child tasks finish
8: L = L+ Sl + Sr // merge updates from children (reduction)
9: I = node→get indices()

10: S = RcholBlock(I, L, G) // apply rchol to a block of indices
11: return S
12: end function

13: function RcholBlock(I, L, G)
14: S = 0N×N

15: for k ∈ I do
16: // ℓkk = 0 at the last index in the top separator according to Corollary 2.8

17: G(:, k) =

{
L(:, k)/

√
ℓkk ℓkk 6= 0

0 ℓkk = 0
18: C = SampleClique(L, k)
19: C1, C2 = SeparateEdges(I, C) // C1 + C2 = C
20: L = L− L(k) + C1

21: S = S + C2 // cumulate updates and send to parent
22: end for
23: return S
24: end function

25: function SeparateEdges(I, C)
26: C1 = 0N×N , C2 = 0N×N

// suppose C =
∑

eij∈E wij bijb
⊤
ij since C is a graph Laplacian

27: for eij ∈ E do
28: if i ∈ I or j ∈ I then
29: C1 = C1 + wij bijb

⊤
ij // needed by the current node

30: else
31: C2 = C2 + wij bijb

⊤
ij // needed by ancestors

32: end if
33: end for
34: return C1, C2

35: end function
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standard uniform distribution on a regular grid and compute the median µ.
Then we convolve {ai} with an isotropic Gaussian of width 4h, where h is
the grid spacing. Finally, we quantize {ai} by setting

(5.2) ai =

{
ρ1/2 if ai ≥ µ,
ρ−1/2 if ai < µ.

See Appendix D for an example of the random coefficients.
• Anisotropic Poisson’s (Aniso-Poisson) equation: a(x) = diag(δ1/2, 1, δ−1/2),

where the coefficients are constant along each dimension.
In particular, we discretize the above elliptic PDE using the standard 7-point finite
difference stencil over a uniform n×n×n grid. Let h = 1/n, xj = h(j1, j2, j3), where
j is the index of the triplet (j1, j2, j3) for 1 ≤ j1, j2, j3 ≤ n. The discretized PDE
reads

(aj−e1/2 + aj+e1/2 + aj−e2/2 + aj+e2/2 + aj−e3/2 + aj+e3/2)uj

− aj−e1/2uj−e1 + aj+e1/2uj+e1 − aj−e2/2uj−e2 + aj+e2/2uj+e2

− aj−e3/2uj−e3 + aj+e3/2uj+e3 = h2fj ,

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), and uj ≈ u(xj) is to be solved.
Experiments were performed on a node from Frontera.6 Results in subsections 5.1

and 5.2 were obtained using a single thread on an Intel Xeon Platinum 8280 (Cascade
Lake), and results in subsection 5.4 were obtained using multiple threads/cores on
an Intel Xeon Platinum 8280M. Below are the notations we use to report results (all
timing results are in seconds):

• N : matrix size of A.
• p: number of threads/cores.
• nnz: number of nonzeros in A.
• fill: twice the number of nonzeros in G.
• tp: time for computing a permutation/reordering for A.
• tf : time for computing the factorization/preconditioner.
• ts: total PCG time for solving a standard-uniform random b.
• nit: number of the PCG iterations with tolerance 1e−10. In cases where PCG
stagnated before convergence, we report the iteration number to stagnation
and the corresponding relative residual (relres) ‖b−Ax‖2/‖b‖2.

5.1. Reordering and stability. We present results for five commonly used
reordering strategies in Table 1. The test problem is the standard 7-point finite-
difference discretization of Poisson’s equation in a unit cube with the Dirichlet bound-
ary condition. We have also tested the five strategies on other problems including
VC-Poisson, Aniso-Poisson, and problems from the SuiteSparse Matrix Collection
(see section 5.2.1), and the following observations generally apply:

1. Natural ordering (a.k.a., lexicographic ordering)/no reordering leads to signif-
icant amount of fill-in. Although PCG required a small number of iterations,
the total solve time is significant with a relatively dense preconditioner.

2. Reverse Cuthill–McKee ordering aims at a small bandwidth of the reordered
matrix, which helps reduce fill-in for some applications. But results showed
that it is was not effective for rchol.

6https://frontera-portal.tacc.utexas.edu/user-guide/.
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Table 1

Sparse matrix reordering. The matrix is from discretizing Poisson’s equation on a 3D regular
grid of size 2563 using the standard 7-point finite difference. The orderings are computed using
MATLAB commands in parentheses.

Ordering fill/nnz tp tf ts nit

no reordering 10.2 0 139 173 39
reverse Cuthill–McKee (symrcm) 7.9 5 97 138 41
random ordering (randperm) 3.3 0.8 76 362 55
nested dissection (dissect) 3.3 206 66 132 65

approximate minimum degree (amd) 3.5 38 50 126 60

(a) AMD reordering: 2.1e + 8 nonzeros. (b) random reordering: 1.9e+8 nonzeros.

Fig. 4. Sparsity pattern of triangular factors computed by rchol corresponding to the AMD
ordering and the random ordering in Table 1, respectively. (The full spy plot for random ordering
is quite large, and (b) corresponds to the leading principle submatrix of size 3e+ 5.)

Table 2

Variance of rchol (minimums and maximums among 10 independent trials). The matrices
are from discretizing Poisson, VC-Poisson (ρ = 1e + 5), and Aniso-Poisson (δ = 1e + 4) on a 3D
regular grid of size 2563 using the standard 7-point finite difference. (PCG tolerance is 1e − 6 for
VC-Poisson, a highly ill-conditioned problem; see section 5.2.2.)

Ordering fill/nnz tf ts nit

Poisson 3.538 - 3.542 48 - 54 117 - 128 57 - 62
VC-Poisson 4.074 - 4.078 56 - 65 257 - 303 120 - 141

Aniso-Poisson 2.556 - 2.557 38 - 43 79 - 80 44 - 44

3. Random ordering as suggested in [25] is effective in fill-in reduction. However,
it results in widely scattered sparsity pattern in the triangular factor as shown
in Figure 4, hampering practical performance of triangular solves at every
iteration.

4. Nested-dissection ordering is effective in fill-in reduction but requires signifi-
cant time to compute.

5. AMD ordering [2] is also effective in fill-in reduction and can be computed
quickly. The fill-in pattern of rchol is not deterministic and is different from
the (exact) Cholesky factorization. Although the AMD is designed as a greedy
strategy for minimizing the fill-in of the (exact) Cholesky factorization, it also
performs well when used with rchol. Among the five reordering strategies
considered here, the AMD leads to the minimum running time consistently
for all of our test problems, so we use the AMD by default.

Although rchol uses randomness in the algorithm, the resulting preconditioner
delivers extremely consistent performance as Table 2 shows.

5.2. Comparison with incomplete Cholesky. We compare rchol to the in-
complete Cholesky preconditioner with thresholding dropping (ichol) in MATLAB
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Table 3

SPD matrices from the SuiteSparse Matrix Collection. With no preconditioner, CG converged
extremely slow, and the relative residuals were still quite large after 2, 500 iterations except for the
second problem.

Name N nnz Property nit relres

# 1 ecology2 1.0e+5 5.0e+6 SDDM 2500 1e-01
# 2 parabolic fem 5.3e+5 3.7e+6 SDD 2500 2e-07
# 3 apache2 7.2e+5 4.8e+6 not SDD 2500 1e-02
# 4 G3 circuit 1.6e+6 7.7e+6 not SDD 2500 5e-01

Table 4

Comparison between rchol preconditioner and ichol preconditioner on matrices from the
SuiteSparse Matrix Collection. AMD ordering is applied with rchol. Based on our experiments, the
vanilla ichol preconditioner without any reordering performs slightly better than with a reordering.

rchol ichol

fill/nnz tp tf ts nit relres fill/nnz tf ts nit relres

# 1 2.41 0.4 1.4 6.3 89 1e-08 2.72 0.2 68 798 3e-08
# 2 2.27 0.4 1.0 2.8 65 8e-11 2.29 0.2 15 411 2e-10
# 3 2.93 0.6 1.5 4.1 63 3e-10 2.96 0.2 18 322 4e-10
# 4 2.68 1.5 2.8 9.6 90 9e-11 2.75 0.3 40 379 2e-10

R2020a. In particular, we manually tuned the drop tolerance in ichol to obtain
preconditioners with slightly more fill-in. For both preconditioners, the construction
time is usually much smaller than the time spent in PCG. For every PCG iteration,
we expect similar running time because both preconditioners have approximately the
same amount of fill-in. Therefore, the performance depends mostly on the numbers
of PCG iterations. We used the AMD ordering in rchol. Based on our experiments,
ichol performed better without any reordering, which is consistent with empirical
results observed in the literature [10].

5.2.1. Matrices from the SuiteSparse Matrix Collection. We first com-
pare rchol with ichol on four SPD matrices from the SuiteSparse Matrix Collection7

that are not necessarily SDD. The first is an SDDM matrix, the second is an SDD
matrix, and the last two are SPD (but not SDD) matrices. All matrices have only
negative off-diagonal entries except for the second matrix. The second matrix is SDD,
but approximately a third of the off-diagonal entries are as small as 3.2e − 7. Since
these entries are quite small relative to the remaining entries, we simply ignored these
positives when applying rchol. The last two matrices are not SDD, and some of the
diagonals are smaller than the sum of the absolute value of off-diagonals. But we were
able to run rchol in a “black-box” fashion, which is equivalent to adding diagonal
compensations to make the original matrix SDD.

Without any preconditioner, CG converged extremely slowly as shown in Table 3.
As Table 4 shows, although the highly optimized ichol (in MATLAB) delivers faster
factorization than our implementation of rchol, the rchol-PCG took much less time
than the ichol-PCG due to significantly fewer iterations. In particular, PCG took
about 9× more iterations with ichol for “ecology2.” For all cases with ichol, PCG
stagnated before the 1e−10 tolerance was reached. With rchol, the relative residuals
decreased to below 1e−10 for the second and the last problems. We also tested ichol

with no fill-in, and the total times were greater than those in Table 4.

7https://sparse.tamu.edu.
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Table 5

Comparison between rchol preconditioner and ichol preconditioner on matrices from discretiz-
ing variable-coefficient Poisson’s equation on a regular grid of size 1283 using the standard 7-point
finite difference (N = 2.0e + 6, nnz = 1.4e + 7). The coefficients have contrast ratio ρ; see (5.2).
When ρ ≥ 1e + 3, PCG stagnated before reaching tolerance 1e− 10.

ρ
rchol ichol

fill/nnz tp tf ts nit fill/nnz tf ts nit

1e+0 3.23 3.8 5.3 12 51 3.40 0.7 21 102
1e+1 3.42 3.8 5.6 13 53 3.46 0.8 37 175
1e+2 3.57 3.8 5.7 19 83 3.63 0.8 50 235
1e+3 3.62 3.8 5.7 28 115 3.72 0.9 57 260
1e+4 3.62 3.9 5.7 29 126 3.78 0.9 57 254
1e+5 3.62 3.9 5.8 32 144 3.78 0.9 63 272

5.2.2. Variable-coefficient Poisson’s equation. We compare the rchol pre-
conditioner with the ichol preconditioner on a sequence of SDDM matrices that
become gradually more ill-conditioned. The discretization of VC-Poisson on a reg-
ular grid using the standard 7-point finite-difference stencil has a condition number
O(ρN2/3).

The results are similar to above, where ichol required at least twice as many
iterations. As a result, the total time taken with the rchol preconditioner is much
less than with the ichol preconditioner in all cases. In Table 5, when the condition
number is large, PCG stopped progressing before reaching the tolerance 1e − 10.
Consequently, the relative residual with the solution returned from PCG decreased
from approximately 1e− 11 to approximately 1e− 8 as ρ increases from 1 to 1e + 5.
Both preconditioners suffer from this performance deterioration.

5.3. Comparison to multigrid methods. We compared rchol to three multi-
grid methods including the combinatorial multigrid (CMG) [24],8 the Ruge–Stuben
(classical) AMG (RS-AMG), and the smoothed aggregation AMG (SA-AMG). The
RS-AMG and the SA-AMG are from the pyamg package [33].9 We ran rchol through
the C++ interface.

The test matrices include the four problems from the SuiteSparse Matrix Collec-
tion (see subsection 5.2.1) and three matrices of size 1283 from discretizing the three
Poisson equations, respectively. The results of comparison are shown in Table 6, which
shows that our method is the fastest for two of the problems, CMG is the fastest for
one problem, and the classical AMG is the fastest for the other four problems.

As is well accepted by the scientific computing community, the performance of
linear solvers may depend on the input matrices, and there is no single best solver
for all problems. As a result, there exist different solvers/preconditioners, including
incomplete factorizations, multigrid, sparse direct solvers, etc. As Table 6 shows,
multigrid methods usually perform well on matrices corresponding to regular grids.

5.4. Parallel scalability. In this section, we show the speedup of running rchol
with multiple threads and the stability of the resulting preconditioner in terms of the
fill-in ratio and the PCG iteration. The test problem is solving the 3D Poisson’s
equation with the Dirichlet boundary condition in the unit cube, which is discretized
using the 7-point stencil on regular grids. We ran rchol in single-precision floating-
point arithmetic to reduce memory footprint and computation time, and we ran PCG

8http://www.cs.cmu.edu/∼jkoutis/cmg.html.
9https://github.com/pyamg/pyamg.
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Table 6

Comparison to multigrid methods. Highlighted rows are the fastest solve time among all meth-
ods. See section 5.2.1 for the first four matrices. The remaining three matrices are discretizations
of Poisson, VC-Poisson (ρ = 1e + 5), and Aniso-Poisson (δ = 1e + 4) equations on a 3D regular
grid of size 128× 128× 128.

matrix
rchol

tf ts nit

ecology2 0.9 4.63 90
parabolic fem 0.9 2.08 67

apache2 1.4 2.91 64
G3 circuit 2.5 7.96 90
Poisson 6.1 8.07 53

VC-Poisson 6.6 20.7 131
Aniso-Poisson 3.71 4.88 36

matrix
CMG

tf ts nit

ecology2 1.0 4.27 58
parabolic fem 2.59 3.20 45

apache2 - - -
G3 circuit 5.67 9.59 73
Poisson 7.51 7.60 43

VC-Poisson 9.25 10.88 62
Aniso-Poisson 6.20 8.90 67

matrix
RS-AMG

tf ts nit

ecology2 1.44 3.00 21
parabolic fem 1.08 1.15 14

apache2 1.17 13.38 101
G3 circuit 2.38 10.82 39
Poisson 6.15 5.34 13

VC-Poisson 6.55 15.68 38
Aniso-Poisson 3.34 4.09 9

matrix
SA-AMG

tf ts nit

ecology2 3.30 2.54 19
parabolic fem 1.42 1.48 27

apache2 2.91 6.68 49
G3 circuit 7.29 23.43 67
Poisson 10.20 7.80 17

VC-Poisson 9.74 14.20 32
Aniso-Poisson 9.46 44.14 101

in double precision. The use of single precision in the construction of preconditioners
has been studied in the literature [1,13,27,30], which may lead to an increase of PCG
iterations for difficult problems. Here, our results show that the use of single precision
in rchol does not impact the number of PCG iterations for solving the discretized
Poisson’s equation.

With p = 1 thread, we used the AMD reordering; otherwise, when p > 1, we used
a log2 p-level nested-dissection ordering combined with the AMD ordering at the leaf
level. All experiments were performed on an Intel Xeon Platinum 8280M (Cascade
Lake), which has 112 cores on four sockets (28 cores/socket), and every thread is
bound to a different core in a scattered fashion (e.g., the first four threads are each
bound to one of the four sockets). We used the scalable memory allocator in the Intel
TBB library.10

Table 7 shows the results of three increasing problem sizes—the largest one being
one billion unknowns and the factorization time scaled up to 64 threads in each case.
(Results of parallel sparse triangular solves are given in Appendix E.) For N = 10243,
the sequential factorization took nearly 42 minutes, while it took approximately 3
minutes using 64 threads (cores), a 13.7× speedup. Table 7 also shows that the fill-in
ratio and the PCG iteration are extremely stable regardless of the number of threads
used. For the three problems, the memory footprints of the preconditioners are about
1.7 GB, 15 GB, and 130 GB, respectively, in single precision, where we stored only a
triangular factor for every symmetric preconditioner.

Figure 5 shows the time spent on leaf tasks and separator tasks in strong- and
weak-scaling experiments, respectively; recall the task graph in Figure 3. When p
doubles in strong scaling, the task tree increases by one level; in other words, every

10https://software.intel.com/content/www/us/en/develop/documentation/tbb-documentation/
top/intel-threading-building-blocks-developer-guide/package-contents/scalable-memory-allocator.
html.
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Table 7

Parallel scalability on an Intel Cascade Lake that has 112 cores on four sockets. We applied
rchol to solving the 3D Poisson’s equation (discretized with the 7-point stencil on regular grids).
We used single-precision floating-point arithmetic in rchol.

p
N = 2563 N = 5123 N = 10243

fill/nnz tf nit fill/nnz tf nit fill/nnz tf nit

1 3.56 19.9 57 3.93 226 65 4.31 2523 78
2 3.60 10.7 59 3.98 113 68 4.37 1279 79
4 3.61 5.7 57 3.98 58 65 4.39 664 75
8 3.63 3.3 61 3.99 35 65 4.38 388 75
16 3.66 2.3 59 4.00 23 65 4.38 258 76
32 3.66 1.9 57 4.02 18 64 4.39 197 71
64 3.66 1.7 57 4.02 16 67 4.38 184 75

strong scaling (N=10243)

1 2 4 8 16 32 64

number of threads

0

1000

2000

3000

ti
m

e
 (

s
)

leaf

separator

weak scaling (N/p=256 3)

1 8 64

number of threads

0

50

100

150

200

ti
m

e
 (

s
)

leaf

separator

Fig. 5. Strong and weak scalability of the rchol factorization/construction time on an Intel
Cascade Lake. The input matrices are discretization of the 3D Poisson’s equation using the 7-point
stencil on regular grids. We used single-precision floating-point arithmetic in rchol. “leaf” denotes
the maximum time of all leaf tasks executing in parallel, and “separator” denotes the remaining time
spent on all separators. (Recall the task graph in Figure 3.)

leaf task is decomposed into two smaller leaf tasks plus a separator task. In addition,
this decomposition computed algebraically by graph partitioning can hardly avoid
load imbalance. Therefore, the time reduction shrinks as p increases in strong scaling.
When p increases by 8× in weak scaling, the task tree increases by three levels, while
the problem size associated with every leaf task remains the same if the partitioning
is ideally uniform. In reality, however, load imbalance among leaf tasks becomes more
and more significant as p increases. The other reason for the increasing maximum
running time of leaf tasks is that these tasks are memory-bound and suffer from
memory bandwidth saturation if p is large. The other bottleneck in weak scaling
comes from the three extra levels of separator tasks when p increases by 8×. Indeed,
the top separator has size O(N2/3), but the corresponding task runs in sequential in
our parallel algorithm. Parallelizing such tasks for separators at top levels is left as
future work.

Table 8 shows the effectiveness of the rchol preconditioner computed with mul-
tiple threads, where the PCG iteration increases logarithmically with respect to the
problem size N . By contrast, the PCG iteration with the ichol preconditioner in-
creases by approximately 2× when the problem size N increases by 8× (the mesh is
refined by 2× in every dimension).
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Table 8

Comparison of PCG iterations for solving the 3D Poisson equation discretized with the 7-point
stencil on regular grids. We did not run ichol for N = 10243 limited by our computation budget.
(We manually tuned the drop tolerance in ichol to obtain preconditioners with slightly more fill-in.
See Table 7 for the fill-in of rchol preconditioners.)

N 1283 2563 5123 10243

ichol 100 185 341 -
rchol 50 57 67 75

6. Conclusions and generalizations. In this paper, we have introduced a pre-
conditioner named rchol for solving SDD linear systems. To that end, we construct a
closely related Laplacian linear system and apply the randomized Cholesky factoriza-
tion. Two essential ingredients for achieving practical performance include a heuristic
for sampling a clique and a fill-reducing reordering before factorization. The resulting
sparse factorization is shown to outperform ichol when both have roughly the same
amount of fill-in. We view rchol as a variant of standard incomplete Cholesky factor-
ization. But unlike classical threshold-based dropping and level-based dropping, the
sampling scheme in rchol is an unbiased estimator: It randomly selects a subset of a
clique and assigns them new weights. Interestingly, fill-reducing orderings are critical
for the practical performance of rchol but are generally not effective for ichol. In
addition, the nested-dissection decomposition used in our parallel algorithm does not
affect the performance of rchol but generally degrades the preconditioner quality of
ichol.

The described algorithm extends to the following two cases. The first is that A is
an SPD matrix that has only nonpositive off-diagonals (a.k.a., M-matrix). For such
a matrix, there exists a positive diagonal matrix D such that DAD is SDDM [18],
and then rchol can be applied to DAD. The other is that A is the finite-element
discretization of (5.1) in a bounded open region with positive conductivity, i.e., a(x) >
0. Such a matrix is generally SPD but not necessarily SDD, but there exists an
analytical way to construct an SDD matrix whose preconditioner remains effective for
A [4].

Three important directions for future research include the following:
• Investigating variants of Algorithm 2.3 to sample more edges in a clique,
which leads to approximate Cholesky factorizations with more fill-in than
the one computed by rchol. Such approximations can potentially be more
effective preconditioners for hard problems where the preconditioner based
on rchol converges slowly.

• Parallelizing tasks for separators, especially for those at top levels. As Fig-
ure 5 shows, such tasks become the bottleneck of the parallel factorization
time when a large number of threads are used. A naive method is to ap-
ply the current parallel algorithm recursively on the (sparse) frontal matrices
associated with those top separators.

• Extending the current framework combining Gaussian elimination with ran-
dom sampling to unsymmetric matrices, which leads to an approximate LU
factorization. See [8] for some progress in this direction.

Appendix A. Proof of Theorem 2.9.

Proof. Consider the matrix/graph after an elimination step in Algorithm 2.2; the
number of nonzeros/edges decreases by 1. The reason is that at every step n edges
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are eliminated and n − 1 edges are added/sampled, where n = |Nk| is the number
of neighbors or the number of nonzeros in the eliminated row/column excluding the
diagonal. Since a random row/column is eliminated at every step, we have

E[n] =
M − k + 1

N − k + 1

at the kth step. It is obvious to see that the computational cost and storage required
by Algorithm 2.3 is O(n) at every step. Therefore, the expected running time and
the expected storage are both bounded by

N∑

k=1

M − k + 1

N − k + 1
<

N∑

k=1

M

N − k + 1
< M logN.

Appendix B. Proof of equivalence in Definition 3.5.

B.1. Lemma.

Lemma B.1. If matrix A ∈ R
N×N is an irreducible SDD matrix, then rank(Â) ≥

N − 1, where matrix Â is defined in (3.6).

Proof. Consider the following quadratic form given a nonzero x ∈ R
N :

x⊤Â x =
∑

i,j

−anij(xi − xj)
2 +

∑

i,j

apij(xi + xj)
2 ≥ 0,

where anij and apij denote negative and positive off-diagonal entries in A, respectively.
Suppose x lies in the null space of A. We know that xi = xj corresponding to every anij
and xi = −xj corresponding to every apij . In addition, we know x is entrywise nonzero
because A is irreducible (underlying graph is connected). Therefore, we can find at
most one such x (up to a scalar multiplication), which implies that rank(Â) ≥ N−1.

B.2. Formal proof.

Proof. Assuming (a) holds, we derive (c). There exists a nonzero x ∈ R
N such

that Âx = 0. Consider the quadratic form

x⊤Â x =
∑

i,j

−anij(xi − xj)
2 +

∑

i,j

apij(xi + xj)
2 = 0,

where anij and apij denote negative and positive off-diagonal entries in A, respectively.
Hence, we know that xi = xj corresponding to every anij and xi = −xj corresponding
to every apij . In addition, we know x is entrywise nonzero because A is irreducible
(underlying graph is connected). Therefore, x implies that the graph G is 2-colorable
in that all vertices vi corresponding to xi > 0 have the same color, while all vertices
vi corresponding to xi < 0 have the other color.

Assuming (b) holds, we derive (a) and (c) as follows. Without loss of generality,
suppose D = diag(1, . . . , 1

︸ ︷︷ ︸

n1

,−1, . . . ,−1
︸ ︷︷ ︸

n2

) and the matrix A is partitioned as

A =

(
A11 A12

A21 A22

)

,

where A11 ∈ R
n1×n1 and A22 ∈ R

n2×n2 . Since DAD has only nonpositive off-diagonal
entries, A11 and A22 have nonpositive off-diagonal entries, while A12 and A21 have
nonnegative entries. Hence, we know the following:

D
o

w
n
lo

ad
ed

 0
4
/2

7
/2

2
 t

o
 1

7
4
.2

4
6
.1

9
8
.1

1
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANDOMIZED CHOLESKY FACTORIZATION C435

Fig. 6. Example of the high-contrast coefficients for the variable-coefficient Poisson’s equation
in the unit square with a 2D grid 256× 256.

• The vector D1 is in the null space of Â, which is thus rank deficient. Accord-
ing to Lemma B.1, we know rank(Â) = N − 1.

• The graph G is 2-colorable in that v1, v2, . . . , vn1
have the first color and

vn1+1, vn1+2, . . . , vN have the other color.
Assuming (c) holds, we derive (b). Without loss of generality, suppose v1, v2, . . . , vn1

have the same color, which is different from the color that vn1+1, vn1+2, . . . , vN have.
In other words, matrix A can be partitioned into

A =

(
A11 A12

A21 A22

)

,

where A11 ∈ R
n1×n1 and A22 ∈ R

n2×n2 have nonpositive off-diagonal entries and A12

and A21 have nonnegative entries. Therefore, the diagonal rescaling D given by

diag(1, . . . , 1
︸ ︷︷ ︸

n1

,−1, . . . ,−1
︸ ︷︷ ︸

n2

)

satisfies that DAD has only nonpositive off-diagonal entries.

Appendix C. Proof of Theorem 3.9.

Proof. Without loss of generality, assume A = Â ∈ R
N×N ; in other words, every

diagonal entry is equal to the sum of the absolute value of off-diagonal entries on
the same row/column. Suppose there exists a nonzero vector in the null space of
Ã ∈ R

2N×2N , i.e.,
(
Ad +An −Ap

−Ap Ad +An

)(
x1

x2

)

= 0,

where x1, x2 ∈ R
N . It is easy to see that

(Ad +An +Ap)(x1 − x2) = 0,

(Ad +An −Ap)(x1 + x2) = 0.

Since A = Ad+An+Ap is an irreducible nonbipartite SDD matrix, we know rank(Â) =
rank(A) = N . Hence, x1 = x2. It is straightforward to verify that Ad + An − Ap

is a Laplacian matrix, and thus x1 = x2 ∈ span{1}. Therefore, we know rank(Ã) =
2N − 1, which implies that Laplacian matrix Ã is irreducible.

Appendix D. High-contrast coefficients for VC-Poisson. One instance
of the random coefficients constructed in (5.2) is shown in Figure 6.

Appendix E. Results of parallel sparse triangular solve. Table 9 shows
parallel timing results of the parallel sparse triangular solve. The Cholesky factor G

D
o

w
n
lo

ad
ed

 0
4
/2

7
/2

2
 t

o
 1

7
4
.2

4
6
.1

9
8
.1

1
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C436 CHAO CHEN, TIANYU LIANG, AND GEORGE BIROS

Table 9

Parallel sparse triangular solve (per iteration) on an Intel Cascade Lake that has 112 cores on
four sockets. The matrices are from discretizing Poisson’s equation on a 3D regular grid with the
standard 7-point stencil.

p
N = 1283 N = 2563 N = 5123

tlower tupper nit tlower tupper nit tlower tupper nit

1 0.0400 0.0430 50 0.409 0.409 57 5.59 4.49 64
2 0.0499 0.0536 50 0.333 0.348 57 2.93 2.69 67
4 0.0423 0.0446 50 0.199 0.197 58 1.51 1.31 65
8 0.0280 0.0301 53 0.157 0.161 54 0.962 0.814 64
16 0.0177 0.0200 49 0.136 0.136 59 0.730 0.536 65
32 0.0123 0.0140 49 0.113 0.121 55 0.603 0.404 64
64 0.0126 0.0107 50 0.104 0.104 57 0.653 0.429 67

was stored in the compressed sparse column format. Therefore, the upper triangular
solve involving G⊤ was implemented in a straightforward way by a preorder traversal
of the tree data structure used in rchol; see section 4. The lower triangular solve was
implemented using a postorder traversal of our tree data structure. We implemented
the parallel lower solve using an asynchronous approach, where the two child nodes
updates the data owned by their parent asynchronously following ideas in [7, 14].
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