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Abstract—Brain-inspired Hyperdimensional (HD) computing
is a novel computing paradigm emulating the neuron’s activity
in high-dimensional space. The first step in HD computing is to
map each data point into high-dimensional space (e.g., 10,000).
This poses several problems. For instance, the size of the data can
explode and all subsequent operations need to be performed in
parallel in D = 10,000 dimensions. Prior work alleviated this issue
with model quantization. The HVs could then be stored in less
space than the original data and lower bitwidth operations can be
used to save energy. However, prior work quantized all samples
to the same bitwidth. We propose, AdaptBit-HD, an Adaptive
Model Bitwidth Architecture for accelerating HD Computing.
AdaptBit-HD operates on the bits of the quantized model one
bit at a time to save energy when fewer bits can be used to
find the correct class. With AdaptBit-HD, we can achieve both
high accuracy by utilizing all the bits when necessary and high
energy efficiency by terminating execution at lower bits when our
design is confident in the output. We additionally design an end-
to-end FPGA accelerator for AdaptBit-HD. Compared to 16-bit
models, AdaptBit-HD is 14× more energy efficient and compared
to binary models, AdaptBit-HD is 1.1% more accurate, which
is comparable in accuracy to 16-bit models. This demonstrates
that AdaptBit-HD is able to achieve the accuracy of full precision
models, with the energy efficiency of binary models.

I. INTRODUCTION

Brain-inspired Hyperdimensional computing has been pro-

posed as a light-weight algorithm to perform cognitive tasks

at significantly less computational complexity than Neural

Networks (NN). Inspired by research from neuroscience, HD

computing represents data as points in a high dimensional

space. Past research utilized high dimension vectors (D (Di-

mensionality) ≥ 10,000), called hypervectors (HV), to repre-

sent neural activity in the brain [1]. There are several nearly

orthogonal HVs in a high-dimensional space [2]. This enables

HD to combine HVs with well-defined vector operations,

while preserving most of the information from each individual

HV to create a model for inference. The number of operations

during inference in HD is in the order of 105 [3]. This is

significantly less compared to DNNs, with the amount of

operations in inference reaching over 109 [4]. HD Computing

also learns fast, only needing a few passes over the training

data, compared to DNNs, which need hundreds or thousands

of retraining iterations [5]. These properties of HD make it

suitable for small, resource limited devices.

In HD computing, training data points are combined into a

set of hypervectors, called an HD model, through light-weight

computation steps. Each hypervector in the model represents a

class of the target classification problem. Most of the proposed

HD computing work exploits binarized hypervectors to reduce

the computational/memory intensity in HD computing [6],

[7]. Although binary hypervectors lead to significantly more

energy efficient models, there is an accuracy cost for moving

to the binary domain. To alleviate this, there has also been

work on quantizing HD models to different bitwidths [8].

However, the existing HD computing quantization methods

have two main challenges: (i) the trade-off between accuracy

and energy efficiency has to be decided before training the

model, and the model would have to be retrained from scratch

to change bitwidths if the accuracy and energy efficiency

trade-off requirements change. (ii) Existing model quantization

techniques ignore that not all samples need to be quantized

with the same value. Some samples can be classified with

simple binary representations, while others require higher

bitwidths for accurate classification. In other words, there

exists no adaptive bitwidth quantization for HD Computing.

Adaptive bitwidth quantization adds another level of tuning for

systems balancing the accuracy and energy efficiency trade-off.

In this paper, we propose AdaptBit-HD, which, to the best

of our knowledge, is the the first Adaptive Model Bitwidth

Architecture for accelerating HD computing. AdaptBit-HD

does not change the bitwidth of the representation of the

data, but operates on the bits of the quantized model one

bit at a time to save energy when fewer bits can be used

to find the correct class. AdaptBit-HD can achieve both high

accuracy by utilizing all bits when necessary and high energy

efficiency and faster execution time by terminating execution

at lower bits when our design is confident in the output.

AdaptBit-HD achieves this by performing a hamming distance

operation on the query HV and class HVs one bit at a

time. We check after each bit if we are confident enough in

our current answer to terminate execution early. To achieve

this, we completely redesign the HD computing algorithm

including training, retraining, and inference. We accordingly

design an end-to-end HD FPGA accelerator for AdaptBit-HD

and compare with a state-of-the-art binary quantization FPGA

accelerator for HD [9] as well as a 16-bit static quantization

method. Compared to binary quantization AdaptBit-HD is

1.1% more accurate at the cost of just 10% more energy

consumption and 7% more execution time. Compared to 16-
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bit models, AdaptBit-HD is 14× more energy efficient at the

cost of 0.1% accuracy.

II. RELATED WORK

Model quantization is a widely used technique in machine

learning to improve energy efficiency. For instance, Google’s

TPU for performing inference on DNNs utilizes reduced bit

representations [10]. Model quantization has also been used to

reduce the memory requirement for a more efficient hardware

design [11]. Other methods such as model compression have

also been used to improve the energy efficiency of neural

networks [12]. Model quantization has also been widely used

to accelerate and improve the energy consumption of HD

computing [8], [13]. Although model quantization has im-

proved other machine learning methods such as DNNs, light-

weight models such as HD Computing continue to be more

energy efficient and for applications where energy efficiency is

paramount, light-weight models should continue to be utilized.

Work has also been done to adaptively change the precision

of the model to reduce the accuracy loss online [14]. [15]

proposes a method to use multiple precision levels during

inference to achieve a balance between efficiency and accuracy

loss. [16] tries to alleviate accuracy loss from quantization by

compensating for computational errors.

Prior work on HD Computing has also shown that quantiz-

ing the class hypervectors can provide significant energy and

speedup improvements at the cost of accuracy [13], [17]. Work

in [8] extended the idea of binarizing the class HV weights to

using a ternary model to achieve higher accuracies. However,

all of the existing work on HD Computing for model quan-

tization is static. This poses a few problems. For instance, if

accuracy and energy efficiency needs change, the model needs

to be completely retrained to change bitwidths. Additionally,

by being static, one has to choose where they land on the

accuracy and energy trade-off curve at a macro level. This

often leads to leaning towards one end of the spectrum, either

highly energy efficient with accuracy loss, or highly accurate

with high energy consumption. This problem is exaggerated

for applications with varying precision needs based on the

incoming data. However, in this paper, we propose an adaptive

bitwidth quantization method that chooses the best bitwidth

per sample to achieve a confident classification with minimal

energy usage. This leads to an overall design that achieves

both high accuracy and high energy efficiency.

III. ADAPTBIT-HD

We propose AdaptBit-HD, the first Adaptive Model

Bitwidth Architecture for accelerating HD computing. HD

computing consists of three main modules shown in Figure 1:

encoding, training, and inference. The encoding module maps

each data point to high-dimensional space. The HD model

accumulates every encoded training hypervector (HV) to cre-

ate an integer model. This integer model is then used to

create a quantized model. During inference, HD computing

then chooses the most similar class to the query HV as

the output class. AdaptBit-HD fundamentally changes the
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Fig. 1. Overview of creating an HD model and performing inference.

inference phase by operating on the bits of the quantized model

one bit at a time to save energy when fewer bits can be used

to find the correct class. We check after each bit if we are

confident enough in our current answer to terminate execution

early based on a threshold of similarity. By operating with

this new inference technique, AdaptBit-HD is able to achieve

the energy efficiency of binary models, while maintaining

the accuracy of full precision models. To further support our

proposed inference design, AdaptBit-HD accordingly proposes

a training approach that trains the model to create quantized

HVs and tunes the model to improve the confidence of the

threshold we utilize to determine if we can terminate execution

early. In the following section, we explain the details of the

baseline HD functionality and AdaptBit-HD.

A. Baseline Encoding

The encoding first replicates the feature vector, F, extending

it to D dimensions, the same as our desired high-dimensional

vector. For example, to encode a feature vector with n = 500
features to D = 4, 000 dimensions, we need to concatenate

8 copies of a feature vector together. Then, it generates a

random D dimensional projection vector, P . To compute the

dimensions of the high-dimensional vector, we take the dot

product of the extended feature vector with each projection

vector in an N -gram window. The first N -gram is the dot

product of the first N features and N projection vector

elements:

h1 = sign(f1 ∗ p1 + f2 ∗ p2 + ...+ fN ∗ pN )

Similarly, the N -gram window shifts by a single position

to generate the next feature values. So, we can compute the

ith dimension of an encoded hypervector using:

hi = sign(fi ∗ pi + fi+1 ∗ pi+1 + ...+ fi+N ∗ pi+N )

B. Baseline Training and Retraining

HD computing supports efficient one-pass training. To

build a one-pass model, the encoder maps all training data

to training HVs (H). For all training HVs within a class

({H1
i , H2

i , . . . ,Hj
i}), HD computing adds them together to

create a single class HV (Ci).

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 27,2022 at 17:23:04 UTC from IEEE Xplore.  Restrictions apply.



ISOLET UCIHAR CARDIO FACE IoT
Datasets

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Binary 5-Bit 16-Bit

Fig. 2. Difference in Accuracy with Various HD Bitwidth Representations
for HD Computing

Fig. 3. Overview of Creating a AdaptBit-HD Model During Retraining

Ci = H1
i + H2

i + . . . + Hj
i

Once this is done for every class, we have an HD model

that can be used for inference. However, we can significantly

improve the accuracy of our HD model with retraining [18].

We retrain the HD model by inputting each training data

point through the HD model as a query hypervector (Q);

(i) if the query is correctly classified by the current model,

our design does not change the model. (ii) If it is incorrectly

matched with the ith class hypervector (Ci), when it actually

belongs to jth class (Cj), the retraining procedure subtracts

the query hypervector from the ith class and adds it to jth
class hypervector: Ci = Ci −Q and Cj = Cj +Q.

C. Training with AdaptBit-HD

This section explains how we achieve this adaptive model

quantization with HD computing. Figure 2 demonstrates the

idea that not all samples need the same bitwidth to be

accurately labeled. For instance, in the figure, we can see that

HD computing is able to achieve an average of 95.7% accuracy

with binary values. Additionally, by moving to a 5 − bit
representation, HD is able to improve in accuracy by 1.16%
on average. Comparing the 5 − bit representations with full

precision, we can see that the 16-bit precision model is only

able to achieve 0.42% more accuracy than the 5− bit models.

This demonstrates that for most samples, we can get away

with aggressive model quantization. However, there are some

samples that require more bits to separate the data properly to

maintain high accuracy. Rather then using high precision for

all of the samples to achieve high accuracy, we can adaptively

select the bitwidth we need for the sample during inference to

balance both accuracy and energy efficiency.

Initial Training: The initial training for AdaptBit-HD first

builds the full bitwidth model by combining all samples as

described in III-C. The training process for model quantization

diverges from that of past work after the initial training. As

Figure 3 shows, we first normalize all class HVs such that all

of the dimensions are in the range [-1,1], but we still keep

the non-normalized vectors. We then quantize the normalized

vectors to the nearest power of 2 in a list of quantized values.

The list of powers of two is defined by two parameters:

n, the number of bits, and o, the offset of the powers of

two. The offset is to control where in the range of values

(−1, 1) we want to have a higher resolution of representation.

Higher offsets lead to better quantization near 0. We first set

aside one bit for representing 0. Then the rest of the 2(n−1)

representations are as follows: 2(r−o) where r = -1, -2, ...,

−(2(n−2)) and o is the offset. We iterate r 2(n−2) times

because we additionally represent the same powers of two

on the negative side. Each power of two representation is then

assigned a unique n− bit binary string. For example, if n = 3
and o = 0, we would be able to represent the following powers

of 2 in our model quantization: (−2−1, −2−2, 0, 2−1, 2−2),

where each one of these values is assigned a unique 3 − bit
sequence of 0s and 1s. Once we set each dimension to the

closest power of two we can represent, we then have an HD

model where each dimension is an n− bit value.

To encode our weights to unique n− bit values, we assign

the first bit to indicate if the value is negative or positive. This

ensures that the first bit hamming distance is equivalent to how

binary models are created for HD. We reserve the second bit to

indicate if the value is zero or not. Thus, the calculation of the

hamming distance for the second bit is equivalent to counting

the number of matching zeros. For the rest of the bits, because

we use hamming distance as our similarity metric (which

is explained in Section III-E) on the binary representation

of our values instead of the cosine similarity of the values

themselves, it is important that values near each other have a

small hamming distance score between each other. To achieve

this, we use a grey code encoding to assign the last bits of the

binary strings to each power of 2.

Retraining: To retrain AdaptBit-HD, we store both a full

precision model and an n − bit representation model of the

class HVs. We retrain the quantized model by iterating through

the training set. In a single iteration of model adjustment,

AdaptBit-HD checks the similarity of all training data points,

say H, with the class HVs in the quantized model. If the

datapoint is correctly classified, normally, no model update

is needed. However, in Section III-E, we modify this to

support adaptively stopping the similarity check in a bit-

serial manner. If a data point is incorrectly classified by the

model, HD updates the model by (i) adding the incorrectly

classified HV to the class the input data point belongs to

(˜Ccorrect = Ccorrect + H), and (ii) subtracting it from the

class to which it is wrongly matched (˜Cwrong = Cwrong−H).

These changes are made to the full precision model saved from

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 27,2022 at 17:23:04 UTC from IEEE Xplore.  Restrictions apply.



Fig. 4. Distributions of Hamming Distance Calculations Before (left) and
After (right) Retraining

training because adding to and subtracting from the quantized

model would drastically change the model. To update the

quantized model, the updated class HV from the integer model

are quantized via the same process described in Section III-C.

D. Baseline Inference

Upon inference, the encoder first maps the input data into

a query HV (Q), using the same encoding to train the HD

model. A similarity metric is used to determine the strength

of a match between the query HV and each class HV. The most

common metric used in HD computing is cosine similarity, but

other metrics (e.g. Hamming distance) could be appropriate

depending on the problem [3]. After the similarity is computed

between the query HV and each class HV in the classifier, the

class with the highest similarity is chosen as the output class.

E. Inference with AdaptBit-HD

To support our new hamming distance check, the query is

quantized the same way as the class HVs. Then, AdaptBit-HD

calculates the hamming distance between the first bit of the

class HVs and the query HV across all the dimensions. We

then check to see if the class with the highest similarity passes

a threshold value. If the similarity threshold is passed, then

execution can stop prematurely and output the current highest

similarity class. However, if the threshold is not passed,

then computation continues to the next bit and the hamming

distances are accumulated. We then check the if the similarity

threshold is met again and if it is not, we continue the process.

If the similarity threshold is not met and we are on the last

bit, the most similar class is the output.

Thresholding: In order to support the one bit at a time

hamming distance, we need to create a threshold for the

termination condition. To do this, after the initial training,

for the first iteration of retraining, we collect the hamming

distance for all samples and the class HVs. As hamming

distance calculates the number of mismatches, the incorrect

samples should be clustered with higher hamming distance

values and the correct samples should be clustered in a lower

distribution. We then get the mean and standard deviation

of all samples where our model was correct as well as the

mean and standard deviation of all samples where our model

was incorrect. We next set the threshold to be the average
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Fig. 5. Effect of AdaptBit-HD Parameters on Accuracy

between the mean - standard deviation of the incorrect

distribution and the mean + standard deviation of the

correct distribution. This heuristic makes sense to use because

averaging in this way gives us a good initial threshold that

separates the two distributions. We do this process per class

as the distribution of similarity values differs on a per class

basis, thus, we need a different threshold for each class.

Figure 4 shows the distribution of hamming distances for

all samples for a single class. The graph on the left shows

our initial threshold, where the initial distributions are not

completely separated by the threshold. To fix this, we modified

the retraining algorithm to actively create a greater separation

in order to minimize outputting the incorrect class when the

threshold is met. To do this we made the following change: if

the datapoint is correctly classified, rather than doing nothing,

because we are correct, we additionally check if the similarity

threshold was met. If the threshold is met with an additional

10% guard-band, we do nothing. However, if this is not met,

we add the query hypervector to the class the input data point

belongs to (˜Ccorrect = Ccorrect + H). As Figure 4 shows

on the graph to the right, after retraining the distribution

of incorrectly classified and correctly classified samples are

further separated leading to more accurate classification when

we terminate the hamming distance operation early.

The 10% guard-band is to help ensure we push the distri-

bution of correct samples past the threshold value. This leads

to a more accurate model when terminating early based on

the threshold. As Figure 4 shows, when the hamming distance

passes the threshold, we can be confident that it is the correct

class.

Figure 5 shows the impact of using different offsets and

bitwidths for AdaptBit-HD on the ISOLET dataset, however,

the results are similar for all datasets tested. As the figure

shows, there is a balance between having too high and too

low of an offset. This is because with too low of an offset, we

have less quantization resolution near 0. However, with too

high of an offset, we again will not have enough resolution

at the ends of our distribution ([−1, 1]). The figure shows that

generally, an offset of 3 gives the best balance in quantizing

the range of values. The exception is when using 2 bits as

with so few bits, we can only choose to have good resolution

at either the ends of the distribution or near 0. It turns out

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 27,2022 at 17:23:04 UTC from IEEE Xplore.  Restrictions apply.
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that having higher resolution near 0 is more important leading

to higher accuracies with higher offsets when only using 2
bits. Additionally, we saw that accuracy becomes saturated at

5 bits, and is comparable to a model with no quantization in

Figure 2. This stayed consistent across all datasets tested.

F. FPGA Acceleration

AdaptBit-HD can be accelerated on different platforms such

as CPU, GPU, FPGA, or ASIC. FPGA is one of the best

options as AdaptBit-HD computation involves bitwise opera-

tions among long vector sizes, e.g., encoding and associative

search. Additionally, unlike ASICs or PIM implementations,

FPGAs offer reprogramability and faster design times. General

strategies of optimizing the performance of AdaptBit-HD are

(i) using a pipeline and partial unrolling on a low level

(dimension level) to speed up each task and (ii) using dataflow

design on a high level (task level) to build a stream processing

architecture that lets different tasks run concurrently. In the

following, we explain the functionality of AdaptBit-HD in

encoding, training, retraining, and inference phases.

Encoding Implementation: As in Section III-A, we used

the locality-based random projection encoding to implement

the encoding module. Due to the sequential and predictable

memory access patterns as well as the abundance of binary

operations, this encoding approach can be implemented ef-

ficiently on an FPGA. In the hardware implementation, we

represent all {−1,+1} values with {0, 1} respectively. This

enables us to represent each element of the projection vector

using a single bit. Figure 6a shows the hardware implementa-

tion of the AdaptBit-HD encoding module. Calculating the

inner product of a feature vector and a projection vector,

P ∈ {1,−1}D, can be implemented with no multiplications.

Each element of the projection vector decides the sign of each

dimension of the feature vector in the accumulation of the

dot product. Thus, the dot product can be simplified to the

addition/subtraction of the feature vector elements. We use

Look Up Tables (LUTs) and Flip Flops (FFs) resources of the

FPGA to implement the encoding module, rather than DSPs

for this addition, which leads to better energy efficiency.

Initial Training: Like previously, initial training for

AdaptBit-HD with model quantization is a single-pass process

through the training dataset. The training module accesses the

encoded hypervectors and accumulates them in order to create

a hypervector representing each class. We exploit data-flow

design implementing the encoding and initial training modules

in a pipeline structure. When the training module accumulates

the encoded hypervector to one of the class hypervectors,

the encoding module maps the next training data into high-

dimensional space, improving data throughput by increasing

resource utilization. This improves FPGA throughput by max-

imizing resource utilization as well as hides the latency of

the encoding. After going through all of the training data,

our implementation creates an n-bit quantized representation

of the model. This process is described in s described in

Section III-C. The quantized n-bit model is stored in the

BRAM blocks to be used for inference or retraining.

We first normalize all of the class HVs such that all of

the dimensions are in the range [-1,1], but we still keep the

non-normalized class HVs for use during retraining. We then

quantize the normalized vectors to the nearest power of 2 in a

list of quantized values as described in Section III-C. Finally,

the quantized n-bit model is stored in the BRAM blocks to

be used for inference or retraining. Since the generating and

writing are done only once during the entire training process,

they do not impact the performance of the training phase.

Thus, these two parts are not fully optimized, allowing our

design to saves some resources for the retraining phase, which

is more critical to the overall performance.

Retraining: Retraining is implemented separately from

training, since the final result of initial training, the n-bit

model, will be used in retraining, so they are performed se-

quentially. The retraining phase first sequentially reads already

encoded training hypervectors from the off-chip memory in

batches to help hide the latency of reading from the off-chip

memory. This is necessary as each read has a latency of about

15ns, which would slow down the retraining process. Next, we

check the hamming distance similarity of each data point with

all trained class hypervectors. As mentioned in Section III-E,

this is performed in a bit serial fashion. To support this in

hardware we split the hamming distance calculation into its

own pipeline stage. If the threshold is met, then the pipeline

continues. However, if the threshold is not met and we need

to go to the next bit, the pipeline is stalled and the next bit

is calculated. This process continues until the threshold is

met or we are out of bits to process. This may look like a

large performance impact by stalling the pipeline, however, as

the experimental results section demonstrates, over 90% of all

samples terminate at just one bit, so we do not need to stall

the pipeline often. At the end, each data point gets a tag of

the class in which it has the highest Hamming distance.

The Hamming distance similarity check is implemented

using an XOR array which compares the bit similarity between

two hypervectors. Counter blocks, shown in Figure 6b, cal-

culate the number of mismatches of each class hypervector

with the query data point. Finally, a tree-based comparator

block finds the class with the lowest counter value. In the case

of misclassification, AdaptBit-HD needs to update the model

by adding and subtracting a data hypervector with two class

hypervectors as defined before. Like encoding, all retraining
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Fig. 7. Comparison of the Accuracy of AdaptBit-HD to Static Model
Quantization Methods

processes can be implemented using LUTs and FFs blocks.

The uniqueness of the retraining implementation in our

design is that we have two different models in similarity check

and updating. This avoids the situation of similarity check

and updating access to the same model simultaneously, which

makes the dataflow design in a single iteration possible. After

certain batch size iterations, the process stream is stopped for

a while and the model in similarity check will be refreshed by

the model in updating. This design will bring 2× better speed

and little influence on the result of retraining.

Inference Implementation: After the retraining, the quan-

tized AdaptBit-HD model has a stable model that can be used

in the inference phase. The encoding module is integrated with

the similarity check module used during retraining as the entire

inference part. Each test data point is first encoded to high-

dimensional space using the same encoding block explained in

Section III-F. Next, the quantized AdaptBit-HD model checks

the Hamming distance similarity of the data point with all

pre-stored class HVs, in a bit serial manner, in order to find

a class with the highest similarity.

IV. EVALUATION

A. Experimental Setup

We implemented AdaptBit-HD training, retraining, and

inference in both software and hardware. In software, we

implemented AdaptBit-HD with Python. In hardware, we fully

implemented AdaptBit-HD using Verilog. We verify the timing

and the functionality of the models by synthesizing them using

Xilinx Vivado Design Suite [19]. The synthesis code has been

implemented on the Kintex-7 FPGA KC705 Evaluation Kit

and we used the Vivado XPower tool to estimate the device

power [20]. We compare AdaptBit-HD with baseline HD,

an FPGA implementation of [9] using a binary model. We

additionally compare to a static 5-bit HD computing design.

For all of our experiments, we use D = 4, 000, a bitwidth of

5, and offset of 3 as these parameters experimentally showed

the best performance across all datasets.

We evaluated the efficiency of AdaptBit-HD on four prac-

tical classification problems listed below: Speech Recognition

(ISOLET) [21], Activity Recognition (UCIHAR) [22], Face

Detection (FACE) [23], Cardiotocography (CARDIO) [24],

and Attack Detection in IoT systems (IoT) [25].

TABLE I
COMPARISON OF THE AVERAGE ACCURACY OF DIFFERENT BIT

REPRESENTATIONS VS ADAPTBIT-HD

Dimensionality 4,000 2,000 1,000 800 500

Binary 95.70% 95.64% 94.60% 93.14% 89.13%
5-bit Static 96.86% 96.73% 95.83% 94.12% 90.14%

16-bit 97.28% 96.91% 95.84% 94.37% 90.24%
AdaptBit-HD 96.76% 96.68% 95.68% 93.63% 90.10%

B. Energy Efficiency, Execution Time, and Accuracy of
AdaptBit-HD vs State-of-the-Art

Figure 7 shows the impact of AdaptBit-HD on accuracy

and compares AdaptBit-HD with both a baseline of binary

quantization and comparison with a 16-bits model. The graph

clearly shows that AdaptBit-HD achieves comparable accuracy

with 16-bit model. AdaptBit-HD loses only 0.1% accuracy

when compared to a 16-bit models on average and AdaptBit-

HD is 1% more accurate than binary models on average.

Additionally, Table I compares the impact of dimensionality

on accuracy across various bit representations in HD. As the

results show, across all representations, accuracy does not drop

significantly until reaching D = 1, 000. This is expected, as

prior work has shown that the higher dimensionality of HD

primarily provides robustness [26]. Furthermore, the results

show that simply reducing dimensionality by the same factor

of reduction in bitwidth does not result in the same accu-

racy. Therefore, utilizing different quantization techniques like

AdaptBit-HD are beneficial to gaining energy efficiency and

faster execution time while maintaining higher accuracy.

Figure 8 compares the energy efficiency of AdaptBit-HD

normalized to a 16-bit quantized model as a 16-bit model is

able to achieve the same accuracy as full precision models

with significantly less energy consumption. The figure also

compares AdaptBit-HD with a binary quantized design which

is the current state-of-the-art quantization for HD computing to

achieve the best energy efficiency [9]. Figure 8 demonstrates

that AdaptBit-HD is able to achieve energy efficiency close to

that of the binary quantized model, where we define energy ef-

ficiency as the relative amount of overall energy consumption

over the entire dataset. AdaptBit-HD is only 10% less energy

efficient than the binary model. This is because AdaptBit-HD

is able to terminate the hamming distance operation at the

first bit the majority of the time, just like a binary model.

This is demonstrated by the color coding of the stacked

bar. The color coding of the different bits for AdaptBit-HD

show the proportion of energy consumption spent on each bit.

For example, the proportion of the bar that is colored blue

is the proportion of energy spent on the first bit, which is

approximately 90%. This is because, 90% of the time, only the

first bit is used. This leads to approximately the same energy

consumption as a binary model 90% of the time. Figure 9

additionally compares the execution time of AdaptBit-HD

with a binary model and 16-bit model. The y-axis shows

the speedup of AdaptBit-HD and binary models relative to

a 16-bit model. As the graph demonstrates, we see a similar
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comparison with execution time as energy efficiency. This is

because the two are closely related and we accordingly see a

similar speedup as well as energy efficiency improvement.

AdaptBit-HD is able to achieve 1.1% more accuracy than

the binary model. Overall, AdaptBit-HD is comparable in

energy efficiency and execution time to the binary model, but

more accurate. Compared to the 16-bit model, AdaptBit-HD is

14.4× more energy efficient at the cost of just 0.1% accuracy.

This demonstrates that with an adaptive one bit at a time

operation, AdaptBit-HD is able to achieve energy efficiency

and execution time close the the binary model while maintain-

ing accuracy comparable to full precision models. Therefore,

AdaptBit-HD offers another point to the accuracy and energy

efficiency trade-off curve that aims to suit application where

energy efficiency and accuracy are more equally important.

We can further see where AdaptBit-HD fits in the design

space when we compare design with a 2-bit quantized model.

A 2-bit quantized model achieves just 0.3% more accuracy

than the binary model, while AdaptBit-HD is able to achieve

1.1% more accuracy than the binary model. Additionally, the

2-bit quantized model costs approximately 85% more energy

consumption and is 1.81× slower than the binary model. On

the other hand, AdaptBit-HD is able to achieve just 10%
more energy consumption and 1.07× more execution time

than binary models. This is because AdaptBit-HD is able to

adaptively stop execution bit by bit for each sample, whereas

the 2-bit quantization model needs to perform execution on 2×
the number of bits as the binary model for every sample. This

makes AdaptBit-HD compelling for applications where both

energy efficiency, execution time, and accuracy are equally

important.

Additionally, by designing an FPGA accelerator for

AdaptBit-HD, FPGAs can be reconfigured based on user

application needs and changes. If a user needs highly efficient

energy consumption and accuracy loss is not as important, they

can use the binary model we compare with. For applications on

the other side of the spectrum, they can use a higher bitwidth

static model, e.g., a 5-bit model. Then, for applications that

need to balance accuracy and energy efficiency such as running

a medical diagnosis application, similar to our CARDIO

dataset, on a mobile device with a battery, then AdaptBit-HD

would be the best suited quantization method to use over both

binary and higher bitwidth static quantization models.

C. AdaptBit-HD Area Comparison

At a glance, the most apparent drawback with our imple-

mentation of a bit-serial operation is that our design needs to

store the full 5-bit class HVs all the time. This results in the

area of our design being comparable to a 5-bit quantized model

rather than the more space efficient binary model. Figure 10

shows the area comparison of a binary model with AdaptBit-

HD relative to a 16-bit model. In this comparison we include

the area of the FPGA resources as well as the area used for

storing values on off chip DRAM. We do this because, com-

paring FPGA area only would not show much difference as, in

FPGAs, static power consumption takes up a large proportion

Fig. 8. Energy Breakdown of AdaptBit-HD and Comparison with Static
Quantization Methods. Energy Efficiency is Shown Relative to a 16-Bit
Model. Accuracy Difference is Compared to a Binary Model. The color
coding of the different bits for AdaptBit-HD show the proportion of energy
consumption spent on each bit.

Fig. 9. Speedup of AdaptBit-HD and Comparison with Static Quantization
Methods. Speedup is Shown Relative to a 16-Bit Model. Accuracy Difference
is Compared to a Binary Model.

of the total power. Therefore, to maximize energy efficiency,

designs replicate units until the FPGA is completely utilized

to achieve the fastest execution time to reduce overall energy

consumption. Therefore, almost all designs try to achieve high

utilization of the FPGA. There are two comparisons on the

figure, the first is during just inference and the other is an

end-to-end implementation of HD, which includes encoding,

training, retraining, and inference.

The figure shows, a binary design that performs inference

only uses roughly 6% of the area of a 16-bit model as most of

the area usage comes from storing the large class HVs. On the

other hand, AdaptBit-HD uses close to 33% of the area of a

16-bit model. This is because AdaptBit-HD stores 5-bit HVs.

However, if we look at an end-to-end implementation, the area

usage converges. This is because both quantization methods

need to store 16-bit precision class HVs during retraining

and the entire training dataset in off chip DDR memory for

retraining, which takes a bulk of the total area. Furthermore,

we can see that AdaptBit-HD is able to achieve less area than

a full 16-bit model end-to-end.

HD as a classification method is significantly more area

efficient than other light-weight learning models such as

SVMs. We compare with SVMs, because they offer similar

accuracy to HD computing in most datasets and are also

relatively light-weight compared to neural networks, just like

HD computing. Here we show that SVMs use 110× (3.24×)

more area during inference (end-to-end). This is because

during inference, SVMs need to store all support vectors

in their original data representation (32-bit). Similar to HD,
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Fig. 10. Area Comparison of AdaptBit-HD, Static Quantization Methods for
HD, and SVMs. Area Used is Shown Relative to a 16-bit Static HD Model.
Including off-chip DDR for storage of data.

SVMs also need access to all training data during training.

However, SVMs take 3.24× more space due to HD mapping

the data to high dimensional binary vectors rather than full

precision feature vectors in off chip DDR.

V. CONCLUSION

This paper proposes AdaptBit-HD, an Adaptive Model

Bitwidth Architecture for accelerating HD computing.

AdaptBit-HD operates on the bits of the quantized model

one bit at a time to save energy when fewer bits can be

used to find the correct class. With AdaptBit-HD, we achieve

both high accuracy by utilizing all the bits when necessary

and high energy efficiency by terminating execution at lower

bits when our design is confident in the output. Compared

to binary quantization AdaptBit-HD is 1.1% more accurate

at the cost of just 10% more energy consumption. Compared

to a 16-bit static model, AdaptBit-HD is 14.4× more energy

efficient and 15.1× faster at the cost of just 0.1% accuracy.

This demonstrates that with an adaptive hamming distance op-

eration, AdaptBit-HD is able to achieve energy efficiency and

execution time close the the binary model while maintaining

accuracy comparable to a 16-bit model.
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