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Abstract—Brain-inspired Hyperdimensional (HD) computing
is a novel computing paradigm emulating the neuron’s activity
in high-dimensional space. The first step in HD computing is to
map each data point into high-dimensional space (e.g., 10,000).
This poses several problems. For instance, the size of the data can
explode and all subsequent operations need to be performed in
parallel in D = 10,000 dimensions. Prior work alleviated this issue
with model quantization. The HVs could then be stored in less
space than the original data and lower bitwidth operations can be
used to save energy. However, prior work quantized all samples
to the same bitwidth. We propose, AdaptBit-HD, an Adaptive
Model Bitwidth Architecture for accelerating HD Computing.
AdaptBit-HD operates on the bits of the quantized model one
bit at a time to save energy when fewer bits can be used to
find the correct class. With AdaptBit-HD, we can achieve both
high accuracy by utilizing all the bits when necessary and high
energy efficiency by terminating execution at lower bits when our
design is confident in the output. We additionally design an end-
to-end FPGA accelerator for AdaptBit-HD. Compared to 16-bit
models, AdaptBit-HD is 14 X more energy efficient and compared
to binary models, AdaptBit-HD is 1.1% more accurate, which
is comparable in accuracy to 16-bit models. This demonstrates
that AdaptBit-HD is able to achieve the accuracy of full precision
models, with the energy efficiency of binary models.

[. INTRODUCTION

Brain-inspired Hyperdimensional computing has been pro-
posed as a light-weight algorithm to perform cognitive tasks
at significantly less computational complexity than Neural
Networks (NN). Inspired by research from neuroscience, HD
computing represents data as points in a high dimensional
space. Past research utilized high dimension vectors (D (Di-
mensionality) > 10,000), called hypervectors (HV), to repre-
sent neural activity in the brain [1]. There are several nearly
orthogonal HVs in a high-dimensional space [2]. This enables
HD to combine HVs with well-defined vector operations,
while preserving most of the information from each individual
HV to create a model for inference. The number of operations
during inference in HD is in the order of 10° [3]. This is
significantly less compared to DNNs, with the amount of
operations in inference reaching over 10° [4]. HD Computing
also learns fast, only needing a few passes over the training
data, compared to DNNs, which need hundreds or thousands
of retraining iterations [5]. These properties of HD make it
suitable for small, resource limited devices.

In HD computing, training data points are combined into a
set of hypervectors, called an HD model, through light-weight

computation steps. Each hypervector in the model represents a
class of the target classification problem. Most of the proposed
HD computing work exploits binarized hypervectors to reduce
the computational/memory intensity in HD computing [6],
[7]. Although binary hypervectors lead to significantly more
energy efficient models, there is an accuracy cost for moving
to the binary domain. To alleviate this, there has also been
work on quantizing HD models to different bitwidths [8].
However, the existing HD computing quantization methods
have two main challenges: (i) the trade-off between accuracy
and energy efficiency has to be decided before training the
model, and the model would have to be retrained from scratch
to change bitwidths if the accuracy and energy efficiency
trade-off requirements change. (ii) Existing model quantization
techniques ignore that not all samples need to be quantized
with the same value. Some samples can be classified with
simple binary representations, while others require higher
bitwidths for accurate classification. In other words, there
exists no adaptive bitwidth quantization for HD Computing.
Adaptive bitwidth quantization adds another level of tuning for
systems balancing the accuracy and energy efficiency trade-off.

In this paper, we propose AdaptBit-HD, which, to the best
of our knowledge, is the the first Adaptive Model Bitwidth
Architecture for accelerating HD computing. AdaptBit-HD
does not change the bitwidth of the representation of the
data, but operates on the bits of the quantized model one
bit at a time to save energy when fewer bits can be used
to find the correct class. AdaptBit-HD can achieve both high
accuracy by utilizing all bits when necessary and high energy
efficiency and faster execution time by terminating execution
at lower bits when our design is confident in the output.
AdaptBit-HD achieves this by performing a hamming distance
operation on the query HV and class HVs one bit at a
time. We check after each bit if we are confident enough in
our current answer to terminate execution early. To achieve
this, we completely redesign the HD computing algorithm
including training, retraining, and inference. We accordingly
design an end-to-end HD FPGA accelerator for AdaptBit-HD
and compare with a state-of-the-art binary quantization FPGA
accelerator for HD [9] as well as a 16-bit static quantization
method. Compared to binary quantization AdaptBit-HD is
1.1% more accurate at the cost of just 10% more energy
consumption and 7% more execution time. Compared to 16-
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bit models, AdaptBit-HD is 14 x more energy efficient at the
cost of 0.1% accuracy.

II. RELATED WORK

Model quantization is a widely used technique in machine
learning to improve energy efficiency. For instance, Google’s
TPU for performing inference on DNNs utilizes reduced bit
representations [10]. Model quantization has also been used to
reduce the memory requirement for a more efficient hardware
design [11]. Other methods such as model compression have
also been used to improve the energy efficiency of neural
networks [12]. Model quantization has also been widely used
to accelerate and improve the energy consumption of HD
computing [8], [13]. Although model quantization has im-
proved other machine learning methods such as DNNG, light-
weight models such as HD Computing continue to be more
energy efficient and for applications where energy efficiency is
paramount, light-weight models should continue to be utilized.
Work has also been done to adaptively change the precision
of the model to reduce the accuracy loss online [14]. [15]
proposes a method to use multiple precision levels during
inference to achieve a balance between efficiency and accuracy
loss. [16] tries to alleviate accuracy loss from quantization by
compensating for computational errors.

Prior work on HD Computing has also shown that quantiz-
ing the class hypervectors can provide significant energy and
speedup improvements at the cost of accuracy [13], [17]. Work
in [8] extended the idea of binarizing the class HV weights to
using a ternary model to achieve higher accuracies. However,
all of the existing work on HD Computing for model quan-
tization is static. This poses a few problems. For instance, if
accuracy and energy efficiency needs change, the model needs
to be completely retrained to change bitwidths. Additionally,
by being static, one has to choose where they land on the
accuracy and energy trade-off curve at a macro level. This
often leads to leaning towards one end of the spectrum, either
highly energy efficient with accuracy loss, or highly accurate
with high energy consumption. This problem is exaggerated
for applications with varying precision needs based on the
incoming data. However, in this paper, we propose an adaptive
bitwidth quantization method that chooses the best bitwidth
per sample to achieve a confident classification with minimal
energy usage. This leads to an overall design that achieves
both high accuracy and high energy efficiency.

III. ADAPTBIT-HD

We propose AdaptBit-HD, the first Adaptive Model
Bitwidth Architecture for accelerating HD computing. HD
computing consists of three main modules shown in Figure 1:
encoding, training, and inference. The encoding module maps
each data point to high-dimensional space. The HD model
accumulates every encoded training hypervector (HV) to cre-
ate an integer model. This integer model is then used to
create a quantized model. During inference, HD computing
then chooses the most similar class to the query HV as
the output class. AdaptBit-HD fundamentally changes the
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Fig. 1. Overview of creating an HD model and performing inference.

inference phase by operating on the bits of the quantized model
one bit at a time to save energy when fewer bits can be used
to find the correct class. We check after each bit if we are
confident enough in our current answer to terminate execution
early based on a threshold of similarity. By operating with
this new inference technique, AdaptBit-HD is able to achieve
the energy efficiency of binary models, while maintaining
the accuracy of full precision models. To further support our
proposed inference design, AdaptBit-HD accordingly proposes
a training approach that trains the model to create quantized
HVs and tunes the model to improve the confidence of the
threshold we utilize to determine if we can terminate execution
early. In the following section, we explain the details of the
baseline HD functionality and AdaptBit-HD.

A. Baseline Encoding

The encoding first replicates the feature vector, F, extending
it to D dimensions, the same as our desired high-dimensional
vector. For example, to encode a feature vector with n = 500
features to D = 4,000 dimensions, we need to concatenate
8 copies of a feature vector together. Then, it generates a
random D dimensional projection vector, P. To compute the
dimensions of the high-dimensional vector, we take the dot
product of the extended feature vector with each projection
vector in an N-gram window. The first N-gram is the dot
product of the first N features and N projection vector
elements:

hi = sign(fi*p1 + fo*pa+ ... + [n *DN)

Similarly, the N-gram window shifts by a single position
to generate the next feature values. So, we can compute the
i*" dimension of an encoded hypervector using:

hi = sign(fi * pi + fit1 * piv1 + . + fir N * DirnN)
B. Baseline Training and Retraining

HD computing supports efficient one-pass training. To
build a one-pass model, the encoder maps all training data
to training HVs (H). For all training HVs within a class
({H}, H?,...,H!}), HD computing adds them together to
create a single class HV (C;).
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Once this is done for every class, we have an HD model
that can be used for inference. However, we can significantly
improve the accuracy of our HD model with retraining [18].
We retrain the HD model by inputting each training data
point through the HD model as a query hypervector (Q);
() if the query is correctly classified by the current model,
our design does not change the model. (ii) If it is incorrectly
matched with the i*h class hypervector (C;), when it actually
belongs to j'h class (C;), the retraining procedure subtracts
the query hypervector from the i'h class and adds it to j'h
class hypervector: C; = C; — Q and C; = C; + Q.

C. Training with AdaptBit-HD

This section explains how we achieve this adaptive model
quantization with HD computing. Figure 2 demonstrates the
idea that not all samples need the same bitwidth to be
accurately labeled. For instance, in the figure, we can see that
HD computing is able to achieve an average of 95.7% accuracy
with binary values. Additionally, by moving to a 5 — bit
representation, HD is able to improve in accuracy by 1.16%
on average. Comparing the 5 — bit representations with full
precision, we can see that the 16-bit precision model is only
able to achieve 0.42% more accuracy than the 5 — bit models.
This demonstrates that for most samples, we can get away
with aggressive model quantization. However, there are some
samples that require more bits to separate the data properly to
maintain high accuracy. Rather then using high precision for
all of the samples to achieve high accuracy, we can adaptively
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select the bitwidth we need for the sample during inference to
balance both accuracy and energy efficiency.

Initial Training: The initial training for AdaptBit-HD first
builds the full bitwidth model by combining all samples as
described in III-C. The training process for model quantization
diverges from that of past work after the initial training. As
Figure 3 shows, we first normalize all class HVs such that all
of the dimensions are in the range [-1,1], but we still keep
the non-normalized vectors. We then quantize the normalized
vectors to the nearest power of 2 in a list of quantized values.

The list of powers of two is defined by two parameters:
n, the number of bits, and o, the offset of the powers of
two. The offset is to control where in the range of values
(—1,1) we want to have a higher resolution of representation.
Higher offsets lead to better quantization near 0. We first set
aside one bit for representing 0. Then the rest of the 2("~1)
representations are as follows: 2(r=0) where r = -1, -2, ...,
—(2(»=2)) and o is the offset. We iterate r 2("~2) times
because we additionally represent the same powers of two
on the negative side. Each power of two representation is then
assigned a unique n — bit binary string. For example, if n = 3
and o = 0, we would be able to represent the following powers
of 2 in our model quantization: (—2~%, —272, 0, 271, 272),
where each one of these values is assigned a unique 3 — bit
sequence of Os and 1s. Once we set each dimension to the
closest power of two we can represent, we then have an HD
model where each dimension is an n — bit value.

To encode our weights to unique n — bit values, we assign
the first bit to indicate if the value is negative or positive. This
ensures that the first bit hamming distance is equivalent to how
binary models are created for HD. We reserve the second bit to
indicate if the value is zero or not. Thus, the calculation of the
hamming distance for the second bit is equivalent to counting
the number of matching zeros. For the rest of the bits, because
we use hamming distance as our similarity metric (which
is explained in Section III-E) on the binary representation
of our values instead of the cosine similarity of the values
themselves, it is important that values near each other have a
small hamming distance score between each other. To achieve
this, we use a grey code encoding to assign the last bits of the
binary strings to each power of 2.

Retraining: To retrain AdaptBit-HD, we store both a full
precision model and an n — bit representation model of the
class HVs. We retrain the quantized model by iterating through
the training set. In a single iteration of model adjustment,
AdaptBit-HD checks the similarity of all training data points,
say H, with the class HVs in the quantized model. If the
datapoint is correctly classified, normally, no model update
is needed. However, in Section III-E, we modify this to
support adaptively stopping the similarity check in a bit-
serial manner. If a data point is incorrectly classified by the
model, HD updates the model by (i) adding the incorrectly
classified HV to the class the input data point belongs to
(Ceorreet = Ceorrect 4 H), and (i) subtracting it from the
class to which it is wrongly matched (C*"°""9 = C*"°"9 —H).
These changes are made to the full precision model saved from
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training because adding to and subtracting from the quantized
model would drastically change the model. To update the
quantized model, the updated class HV from the integer model
are quantized via the same process described in Section III-C.

D. Baseline Inference

Upon inference, the encoder first maps the input data into
a query HV (Q), using the same encoding to train the HD
model. A similarity metric is used to determine the strength
of a match between the query HV and each class HV. The most
common metric used in HD computing is cosine similarity, but
other metrics (e.g. Hamming distance) could be appropriate
depending on the problem [3]. After the similarity is computed
between the query HV and each class HV in the classifier, the
class with the highest similarity is chosen as the output class.

E. Inference with AdaptBit-HD

To support our new hamming distance check, the query is
quantized the same way as the class HVs. Then, AdaptBit-HD
calculates the hamming distance between the first bit of the
class HVs and the query HV across all the dimensions. We
then check to see if the class with the highest similarity passes
a threshold value. If the similarity threshold is passed, then
execution can stop prematurely and output the current highest
similarity class. However, if the threshold is not passed,
then computation continues to the next bit and the hamming
distances are accumulated. We then check the if the similarity
threshold is met again and if it is not, we continue the process.
If the similarity threshold is not met and we are on the last
bit, the most similar class is the output.

Thresholding: In order to support the one bit at a time
hamming distance, we need to create a threshold for the
termination condition. To do this, after the initial training,
for the first iteration of retraining, we collect the hamming
distance for all samples and the class HVs. As hamming
distance calculates the number of mismatches, the incorrect
samples should be clustered with higher hamming distance
values and the correct samples should be clustered in a lower
distribution. We then get the mean and standard deviation
of all samples where our model was correct as well as the
mean and standard deviation of all samples where our model
was incorrect. We next set the threshold to be the average
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between the mean - standard deviation of the incorrect
distribution and the mean + standard deviation of the
correct distribution. This heuristic makes sense to use because
averaging in this way gives us a good initial threshold that
separates the two distributions. We do this process per class
as the distribution of similarity values differs on a per class
basis, thus, we need a different threshold for each class.

Figure 4 shows the distribution of hamming distances for
all samples for a single class. The graph on the left shows
our initial threshold, where the initial distributions are not
completely separated by the threshold. To fix this, we modified
the retraining algorithm to actively create a greater separation
in order to minimize outputting the incorrect class when the
threshold is met. To do this we made the following change: if
the datapoint is correctly classified, rather than doing nothing,
because we are correct, we additionally check if the similarity
threshold was met. If the threshold is met with an additional
10% guard-band, we do nothing. However, if this is not met,
we add the query hypervector to the class the input data point
belongs to (Ceorrect = Ceorrect + H). As Figure 4 shows
on the graph to the right, after retraining the distribution
of incorrectly classified and correctly classified samples are
further separated leading to more accurate classification when
we terminate the hamming distance operation early.

The 10% guard-band is to help ensure we push the distri-
bution of correct samples past the threshold value. This leads
to a more accurate model when terminating early based on
the threshold. As Figure 4 shows, when the hamming distance
passes the threshold, we can be confident that it is the correct
class.

Figure 5 shows the impact of using different offsets and
bitwidths for AdaptBit-HD on the ISOLET dataset, however,
the results are similar for all datasets tested. As the figure
shows, there is a balance between having too high and too
low of an offset. This is because with too low of an offset, we
have less quantization resolution near 0. However, with too
high of an offset, we again will not have enough resolution
at the ends of our distribution ([—1, 1]). The figure shows that
generally, an offset of 3 gives the best balance in quantizing
the range of values. The exception is when using 2 bits as
with so few bits, we can only choose to have good resolution
at either the ends of the distribution or near 0. It turns out
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that having higher resolution near 0 is more important leading
to higher accuracies with higher offsets when only using 2
bits. Additionally, we saw that accuracy becomes saturated at
5 bits, and is comparable to a model with no quantization in
Figure 2. This stayed consistent across all datasets tested.

F. FPGA Acceleration

AdaptBit-HD can be accelerated on different platforms such
as CPU, GPU, FPGA, or ASIC. FPGA is one of the best
options as AdaptBit-HD computation involves bitwise opera-
tions among long vector sizes, e.g., encoding and associative
search. Additionally, unlike ASICs or PIM implementations,
FPGAs offer reprogramability and faster design times. General
strategies of optimizing the performance of AdaptBit-HD are
(i) using a pipeline and partial unrolling on a low level
(dimension level) to speed up each task and (ii) using dataflow
design on a high level (task level) to build a stream processing
architecture that lets different tasks run concurrently. In the
following, we explain the functionality of AdaptBit-HD in
encoding, training, retraining, and inference phases.

Encoding Implementation: As in Section III-A, we used
the locality-based random projection encoding to implement
the encoding module. Due to the sequential and predictable
memory access patterns as well as the abundance of binary
operations, this encoding approach can be implemented ef-
ficiently on an FPGA. In the hardware implementation, we
represent all {—1,+1} values with {0, 1} respectively. This
enables us to represent each element of the projection vector
using a single bit. Figure 6a shows the hardware implementa-
tion of the AdaptBit-HD encoding module. Calculating the
inner product of a feature vector and a projection vector,
P € {1,-1}, can be implemented with no multiplications.
Each element of the projection vector decides the sign of each
dimension of the feature vector in the accumulation of the
dot product. Thus, the dot product can be simplified to the
addition/subtraction of the feature vector elements. We use
Look Up Tables (LUTs) and Flip Flops (FFs) resources of the
FPGA to implement the encoding module, rather than DSPs
for this addition, which leads to better energy efficiency.

Initial Training: Like previously, initial training for
AdaptBit-HD with model quantization is a single-pass process
through the training dataset. The training module accesses the
encoded hypervectors and accumulates them in order to create
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a hypervector representing each class. We exploit data-flow
design implementing the encoding and initial training modules
in a pipeline structure. When the training module accumulates
the encoded hypervector to one of the class hypervectors,
the encoding module maps the next training data into high-
dimensional space, improving data throughput by increasing
resource utilization. This improves FPGA throughput by max-
imizing resource utilization as well as hides the latency of
the encoding. After going through all of the training data,
our implementation creates an n-bit quantized representation
of the model. This process is described in s described in
Section III-C. The quantized n-bit model is stored in the
BRAM blocks to be used for inference or retraining.

We first normalize all of the class HVs such that all of
the dimensions are in the range [-1,1], but we still keep the
non-normalized class HVs for use during retraining. We then
quantize the normalized vectors to the nearest power of 2 in a
list of quantized values as described in Section III-C. Finally,
the quantized n-bit model is stored in the BRAM blocks to
be used for inference or retraining. Since the generating and
writing are done only once during the entire training process,
they do not impact the performance of the training phase.
Thus, these two parts are not fully optimized, allowing our
design to saves some resources for the retraining phase, which
is more critical to the overall performance.

Retraining: Retraining is implemented separately from
training, since the final result of initial training, the n-bit
model, will be used in retraining, so they are performed se-
quentially. The retraining phase first sequentially reads already
encoded training hypervectors from the off-chip memory in
batches to help hide the latency of reading from the off-chip
memory. This is necessary as each read has a latency of about
15ns, which would slow down the retraining process. Next, we
check the hamming distance similarity of each data point with
all trained class hypervectors. As mentioned in Section III-E,
this is performed in a bit serial fashion. To support this in
hardware we split the hamming distance calculation into its
own pipeline stage. If the threshold is met, then the pipeline
continues. However, if the threshold is not met and we need
to go to the next bit, the pipeline is stalled and the next bit
is calculated. This process continues until the threshold is
met or we are out of bits to process. This may look like a
large performance impact by stalling the pipeline, however, as
the experimental results section demonstrates, over 90% of all
samples terminate at just one bit, so we do not need to stall
the pipeline often. At the end, each data point gets a tag of
the class in which it has the highest Hamming distance.

The Hamming distance similarity check is implemented
using an XOR array which compares the bit similarity between
two hypervectors. Counter blocks, shown in Figure 6b, cal-
culate the number of mismatches of each class hypervector
with the query data point. Finally, a tree-based comparator
block finds the class with the lowest counter value. In the case
of misclassification, AdaptBit-HD needs to update the model
by adding and subtracting a data hypervector with two class
hypervectors as defined before. Like encoding, all retraining
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processes can be implemented using LUTs and FFs blocks.

The uniqueness of the retraining implementation in our
design is that we have two different models in similarity check
and updating. This avoids the situation of similarity check
and updating access to the same model simultaneously, which
makes the dataflow design in a single iteration possible. After
certain batch size iterations, the process stream is stopped for
a while and the model in similarity check will be refreshed by
the model in updating. This design will bring 2x better speed
and little influence on the result of retraining.

Inference Implementation: After the retraining, the quan-
tized AdaptBit-HD model has a stable model that can be used
in the inference phase. The encoding module is integrated with
the similarity check module used during retraining as the entire
inference part. Each test data point is first encoded to high-
dimensional space using the same encoding block explained in
Section III-F. Next, the quantized AdaptBit-HD model checks
the Hamming distance similarity of the data point with all
pre-stored class HVs, in a bit serial manner, in order to find
a class with the highest similarity.

IV. EVALUATION

A. Experimental Setup

We implemented AdaptBit-HD training, retraining, and
inference in both software and hardware. In software, we
implemented AdaptBit-HD with Python. In hardware, we fully
implemented AdaptBit-HD using Verilog. We verify the timing
and the functionality of the models by synthesizing them using
Xilinx Vivado Design Suite [19]. The synthesis code has been
implemented on the Kintex-7 FPGA KC705 Evaluation Kit
and we used the Vivado XPower tool to estimate the device
power [20]. We compare AdaptBit-HD with baseline HD,
an FPGA implementation of [9] using a binary model. We
additionally compare to a static 5-bit HD computing design.
For all of our experiments, we use D = 4,000, a bitwidth of
5, and offset of 3 as these parameters experimentally showed
the best performance across all datasets.

We evaluated the efficiency of AdaptBit-HD on four prac-
tical classification problems listed below: Speech Recognition
(ISOLET) [21], Activity Recognition (UCIHAR) [22], Face
Detection (FACE) [23], Cardiotocography (CARDIO) [24],
and Attack Detection in IoT systems (IoT) [25].
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TABLE I
COMPARISON OF THE AVERAGE ACCURACY OF DIFFERENT BIT
REPRESENTATIONS VS ADAPTBIT-HD

Dimensionality ‘ 4,000 2,000 1,000 800 500
Binary 95.70%  95.64% 94.60%  93.14%  89.13%
5-bit Static 96.86%  96.73%  95.83% 94.12%  90.14%
16-bit 97.28%  9691% 9584% 94.37%  90.24%
AdaptBit-HD 96.76%  96.68%  95.68%  93.63%  90.10%

B. Energy Efficiency, Execution Time,
AdaptBit-HD vs State-of-the-Art

Figure 7 shows the impact of AdaptBit-HD on accuracy
and compares AdaptBit-HD with both a baseline of binary
quantization and comparison with a 16-bits model. The graph
clearly shows that AdaptBit-HD achieves comparable accuracy
with 16-bit model. AdaptBit-HD loses only 0.1% accuracy
when compared to a 16-bit models on average and AdaptBit-
HD is 1% more accurate than binary models on average.
Additionally, Table I compares the impact of dimensionality
on accuracy across various bit representations in HD. As the
results show, across all representations, accuracy does not drop
significantly until reaching D = 1,000. This is expected, as
prior work has shown that the higher dimensionality of HD
primarily provides robustness [26]. Furthermore, the results
show that simply reducing dimensionality by the same factor
of reduction in bitwidth does not result in the same accu-
racy. Therefore, utilizing different quantization techniques like
AdaptBit-HD are beneficial to gaining energy efficiency and
faster execution time while maintaining higher accuracy.

Figure 8 compares the energy efficiency of AdaptBit-HD
normalized to a 16-bit quantized model as a 16-bit model is
able to achieve the same accuracy as full precision models
with significantly less energy consumption. The figure also
compares AdaptBit-HD with a binary quantized design which
is the current state-of-the-art quantization for HD computing to
achieve the best energy efficiency [9]. Figure 8 demonstrates
that AdaptBit-HD is able to achieve energy efficiency close to
that of the binary quantized model, where we define energy ef-
ficiency as the relative amount of overall energy consumption
over the entire dataset. AdaptBit-HD is only 10% less energy
efficient than the binary model. This is because AdaptBit-HD
is able to terminate the hamming distance operation at the
first bit the majority of the time, just like a binary model.
This is demonstrated by the color coding of the stacked
bar. The color coding of the different bits for AdaptBit-HD
show the proportion of energy consumption spent on each bit.
For example, the proportion of the bar that is colored blue
is the proportion of energy spent on the first bit, which is
approximately 90%. This is because, 90% of the time, only the
first bit is used. This leads to approximately the same energy
consumption as a binary model 90% of the time. Figure 9
additionally compares the execution time of AdaptBit-HD
with a binary model and 16-bit model. The y-axis shows
the speedup of AdaptBit-HD and binary models relative to
a 16-bit model. As the graph demonstrates, we see a similar
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comparison with execution time as energy efficiency. This is
because the two are closely related and we accordingly see a
similar speedup as well as energy efficiency improvement.

AdaptBit-HD is able to achieve 1.1% more accuracy than
the binary model. Overall, AdaptBit-HD is comparable in
energy efficiency and execution time to the binary model, but
more accurate. Compared to the 16-bit model, AdaptBit-HD is
14.4x more energy efficient at the cost of just 0.1% accuracy.
This demonstrates that with an adaptive one bit at a time
operation, AdaptBit-HD is able to achieve energy efficiency
and execution time close the the binary model while maintain-
ing accuracy comparable to full precision models. Therefore,
AdaptBit-HD offers another point to the accuracy and energy
efficiency trade-off curve that aims to suit application where
energy efficiency and accuracy are more equally important.
We can further see where AdaptBit-HD fits in the design
space when we compare design with a 2-bit quantized model.
A 2-bit quantized model achieves just 0.3% more accuracy
than the binary model, while AdaptBit-HD is able to achieve
1.1% more accuracy than the binary model. Additionally, the
2-bit quantized model costs approximately 85% more energy
consumption and is 1.81x slower than the binary model. On
the other hand, AdaptBit-HD is able to achieve just 10%
more energy consumption and 1.07x more execution time
than binary models. This is because AdaptBit-HD is able to
adaptively stop execution bit by bit for each sample, whereas
the 2-bit quantization model needs to perform execution on 2x
the number of bits as the binary model for every sample. This
makes AdaptBit-HD compelling for applications where both
energy efficiency, execution time, and accuracy are equally
important.

Additionally, by designing an FPGA accelerator for
AdaptBit-HD, FPGAs can be reconfigured based on user
application needs and changes. If a user needs highly efficient
energy consumption and accuracy loss is not as important, they
can use the binary model we compare with. For applications on
the other side of the spectrum, they can use a higher bitwidth
static model, e.g., a 5-bit model. Then, for applications that
need to balance accuracy and energy efficiency such as running
a medical diagnosis application, similar to our CARDIO
dataset, on a mobile device with a battery, then AdaptBit-HD
would be the best suited quantization method to use over both
binary and higher bitwidth static quantization models.

C. AdaptBit-HD Area Comparison

At a glance, the most apparent drawback with our imple-
mentation of a bit-serial operation is that our design needs to
store the full 5-bit class HVs all the time. This results in the
area of our design being comparable to a 5-bit quantized model
rather than the more space efficient binary model. Figure 10
shows the area comparison of a binary model with AdaptBit-
HD relative to a 16-bit model. In this comparison we include
the area of the FPGA resources as well as the area used for
storing values on off chip DRAM. We do this because, com-
paring FPGA area only would not show much difference as, in
FPGAs, static power consumption takes up a large proportion
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Fig. 9. Speedup of AdaptBit-HD and Comparison with Static Quantization
Methods. Speedup is Shown Relative to a 16-Bit Model. Accuracy Difference
is Compared to a Binary Model.

of the total power. Therefore, to maximize energy efficiency,
designs replicate units until the FPGA is completely utilized
to achieve the fastest execution time to reduce overall energy
consumption. Therefore, almost all designs try to achieve high
utilization of the FPGA. There are two comparisons on the
figure, the first is during just inference and the other is an
end-to-end implementation of HD, which includes encoding,
training, retraining, and inference.

The figure shows, a binary design that performs inference
only uses roughly 6% of the area of a 16-bit model as most of
the area usage comes from storing the large class HVs. On the
other hand, AdaptBit-HD uses close to 33% of the area of a
16-bit model. This is because AdaptBit-HD stores 5-bit HVs.
However, if we look at an end-to-end implementation, the area
usage converges. This is because both quantization methods
need to store 16-bit precision class HVs during retraining
and the entire training dataset in off chip DDR memory for
retraining, which takes a bulk of the total area. Furthermore,
we can see that AdaptBit-HD is able to achieve less area than
a full 16-bit model end-to-end.

HD as a classification method is significantly more area
efficient than other light-weight learning models such as
SVMs. We compare with SVMs, because they offer similar
accuracy to HD computing in most datasets and are also
relatively light-weight compared to neural networks, just like
HD computing. Here we show that SVMs use 110x (3.24x)
more area during inference (end-to-end). This is because
during inference, SVMs need to store all support vectors
in their original data representation (32-bit). Similar to HD,
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SVMs also need access to all training data during training.
However, SVMs take 3.24x more space due to HD mapping
the data to high dimensional binary vectors rather than full
precision feature vectors in off chip DDR.

V. CONCLUSION

This paper proposes AdaptBit-HD, an Adaptive Model
Bitwidth Architecture for accelerating HD computing.
AdaptBit-HD operates on the bits of the quantized model
one bit at a time to save energy when fewer bits can be
used to find the correct class. With AdaptBit-HD, we achieve
both high accuracy by utilizing all the bits when necessary
and high energy efficiency by terminating execution at lower
bits when our design is confident in the output. Compared
to binary quantization AdaptBit-HD is 1.1% more accurate
at the cost of just 10% more energy consumption. Compared
to a 16-bit static model, AdaptBit-HD is 14.4x more energy
efficient and 15.1x faster at the cost of just 0.1% accuracy.
This demonstrates that with an adaptive hamming distance op-
eration, AdaptBit-HD is able to achieve energy efficiency and
execution time close the the binary model while maintaining
accuracy comparable to a 16-bit model.
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