
MACcelerator: Approximate Arithmetic Unit for
Computational Acceleration

Alice Sokolova∗‡, Mohsen Imani†, Andrew Huang∗, Ricardo Garcia∗, Justin Morris∗‡, Tajana Rosing∗,
and Baris Aksanli‡

∗Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093
†Department of Computer Science, University of California Irvine, Irvine, CA 92697

‡Department of Electrical and Computer Engineering, San Diego State University, San Diego, CA 92182

{aasokolo, anh162, rag023, j1morris, tajana}@ucsd.edu; m.imani@uci.edu; baksanli@sdsu.edu

Abstract—As computationally expensive applications such as
neural networks gain popularity, approximate computing has
emerged as a solution for significantly reducing the energy
and latency costs of extensive computational workloads. In this
paper, we propose a highly accurate approximate floating point
Multiply-and-Accumulate (MAC) unit for GPUs which signifi-
cantly decreases power and delay costs of a MAC operation. We
propose an intelligent input analysis scheme to approximate the
addition stage of a MAC operation and an efficient Approximate
Multiplier to simplify the multiplication stage. Our design has
tunable accuracy, offering the flexibility of exchanging accuracy
for increased efficiency. We evaluated our proposed design over
a range of multimedia and machine learning applications. Our
design offers up to 2.18× and 3.21× Energy-Delay Product
improvement for machine learning and multimedia applications
respectively while providing comparable quality to an exact GPU.

Index Terms—Approximate computing, Energy Efficiency,
Multiply-accumulator, Machine learning acceleration

I. INTRODUCTION & RELATED WORK

Machine learning tools, such as Deep Neural Networks
(DNNs), are a powerful tool for many complex applications,
but their beneficial capabilities are offset by their latency and
power consumption, which stifle the growth of many practical
DNN applications. Due to the inherent robustness of machine
learning algorithms, approximate computing has emerged as a
promising approach for accelerating and decreasing the power
consumption of DNNs.

Typical approximate computing approaches include dy-
namic voltage scaling, imprecise gate-level logic units, and
approximation algorithms. Voltage over-scaling, a technique
for under-powering digital circuitry, causes an increasing num-
ber of timing errors, limiting the extent to which it can be
practically applied [1]. Works such as [2] and [3] redesign
logic blocks at the transistor level to simplify arithmetic at
the expense of accuracy. A number of algorithms have been
developed to approximate multiplication. Some designs, such
as DRUM [4], use intelligent truncation. Others, such as
CFPU[5] and RMAC [6], are non-conventional algorithmic
approaches to approximate multiplication. These designs will
be further discussed and compared with our proposed design in
Section V. Other designs, such as [7] and [8], are specifically
tailored for DNNs. However, we strive to create a design which
can be used for a wider, more general set of applications.

Fig. 1. Overview of the Maccelerator operation flow.

This paper proposes a delay and energy efficient floating-
point MAC unit, Maccelerator, which approximates error-
tolerant computations, such as machine learning algorithms
and image processing. Maccelerator performs an evaluation of
the input arguments and determines an optimal approximation
scheme to provide minimal error with reduced computational
costs. Depending on the inputs to the MAC unit, Maccelera-
tor approximates either the addition stage, the multiplication
stage, or both. The approximation accuracy of Maccelerator is
adjustable, offering a trade-off between power and computa-
tional accuracy. The contributions of our paper include:

1) Dominant Term Approximation: A methodology for de-
termining the presence of a dominant term affecting
the solution of a MAC operation. If a dominant term
is identified, all other terms can be omitted with an
acceptable degree of known error. Our Dominant Term
Approximation algorithm has adjustable accuracy and can
provide computations with error of 1% and lower.

2) Approximate Multiplier: An algorithm for approximating
the product of two floating point inputs. Our design
performs low energy and latency multiplication with a
maximum error of 1.57% and near-zero average error.

We evaluated the impact of Maccelerator on two ma-
chine learning topologies, Neural Nets (DNNs) and Hyper-
dimensional Computing (HD), as well as a number of mul-
timedia applications. Our evaluations show that Maccelerator
can offer up 1.78× and 2.18× Energy-Delay Product (EDP)
improvement for DNNs and HD respectively with low quality
losses. In more accurate configurations, Maccelerator offers
up to 1.64× and 1.83× EDP improvement for DNNs and HD
respectively with 0% classification accuracy loss. Maccelerator
also offers up to 3.21× EDP improvement for multimedia
applications with uncompromised visual quality.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:27:05 UTC from IEEE Xplore. Restrictions apply.

II. DOMINANT TERM APPROXIMATION

A. Overview
Whenever two numbers are summed together, it is possible

for one of the additives to dominate the output. In such a case,
the non-dominant input has little influence on the final sum.
Thus, if we can identify the presence of a dominant term, the
addition operation can simply be omitted, and the dominant
term can replace the sum. Let A and B be the multiplicands
of a MAC operation, and let C be the additive term. We can
define three distinct input combinations and their respective
outputs, as shown in Figure 1:

1) if |C| � |A×B| : Y = C
2) if |A×B| � |C| : Y = A×B
3) if |A×B| ≈ |C| : Y = A×B + C

It is evident that the first scenario is most efficient, since
no multiplication or addition is required. However, the second
and third scenarios require multiplication, which is known to
be one of the slowest and costliest arithmetic operations. We
address this apparent drawback by proposing an Approximate
Multiplier as part of Maccelerator. As such, Maccelerator
can be summarized as an approximation algorithm with three
modes of operation, where approximation can be applied both
at the summation and multiplication stages.

B. Identifying the dominant term
Recall that in floating point format, a number is stored as

the product of a sign, two raised to the power of an exponent,
and a significand lying between ’one’ and ’two’. It is important
to note that only the fractional portion of significand is stored
explicitly. The fractional portion of the significand is generally
called the mantissa, and its value lies between zero and one.

The presence of a dominant term is easily determined by
comparing the exponents of A × B and C. The exponent of
A × B is quickly determined by adding the exponent of A
to the exponent of B. If the exponent of either A × B or C
sufficiently exceeds that of the other, the term will dominate
the output. As the difference between the exponents of A ×
B and C increases, the influence of the non-dominant term
decreases, meaning Dominant Term Approximation accuracy
is a function of the difference of exponents.

Let A×B and C be rewritten below, where X and Y are
the significands of the two floating point numbers:

A×B = ±2M ×X and C = ±2N × Y (1)

Approximating the sum of A × B and C with either
A × B or C will result in approximation error. Suppose
C � A × B, which is the first scenario described earlier.
Then the expression for relative error is:

error =
A×B

A×B + C
=

±2M ×X

±2M ×X ± 2N × Y
(2)

We are interested in identifying the maximum absolute
value of the error, which is found when the denominator is
minimized and the numerator is maximized. The denominator
of Equation 2 is minimized when the terms 2M×X and 2N×Y
have opposite signs. Since we are examining the first scenario,
we know that N > M and the maximum error becomes:

TABLE I
MAXIMUM AND AVERAGE ERROR OF DOMINANT TERM APPROXIMATION

AT VARIOUS VALUES OF DELTA

Delta 2 3 4 5 6 7 8 9 10

Max. Error (%) 100 33.33 14.29 6.67 3.23 1.59 0.79 0.39 0.20
Avg. Error (%) 0.45 0.21 0.11 0.053 0.026 0.013 0.007 0.003 0.002

Fig. 2. The three scenarios of Dominant Term Approximation relative to the
input exponents at different values of Delta.

max(error) =
±2M ×X

±|2N × Y − 2M ×X|
= ± | 2M ×X

2N × Y − 2M ×X
|

(3)

Recalling that a significand of a floating point number lies
between one and two, the absolute value of Expression 3 is
greatest when X is equal to two, and Y is equal to one,
regardless of the values of M and N . This is easily proven
by finding the partial derivatives of Expression 3 with respect
to X and Y . (Proof omitted for space.)

| max(error) |= 2M × 2

2N × 1− 2M × 2
=

2M+1

2N − 2M+1

=
2M+1

2M+1(2N−M−1 − 1)
=

1

2N−M−1 − 1

(4)

This important result provides us with an expression for
absolute error as a function of the difference between N and
M . In other words, this expression determines the extent to
which one term in the MAC unit must dominate over the other
to provide a highly accurate approximation.

A similar expression can be derived for Case 2, except that
the variables N and M are swapped. The maximum error
depends only on the absolute difference between the exponents
of A×B and C, hence referred to as Delta (Δ).

Table I lists maximum Dominant Term Approximation error
for various values of Delta. Figure 2 shows a comparison
between two different values of Delta. For plotting purposes,
only exponents between -60 and 60 are shown. Even for large
values of Delta, only a small portion of computations need to
perform both addition and multiplication. Table II shows the
exact percentage of all calculations falling into each of the
three Maccelerator modes for various values of Delta.

The efficiency of Dominant Term Approximation also ben-
efits from the fact that the maximum error only occurs at the
boundaries of the three modes, as shown in Figure 3 (zoomed
in on exponents between -10 and 10 for visibility). For areas

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:27:05 UTC from IEEE Xplore. Restrictions apply.

TABLE II
THE DISTRIBUTION OF ALL POSSIBLE MAC CALCULATIONS AMONG THE

THREE MODES OF MACCELERATOR AS A FUNCTION OF DELTA (%)

Delta 3 4 5 6 7 8 9 10

Y=A*B+C 2.37 3.16 3.95 4.74 5.53 6.32 7.11 7.91

Y=A*B 48.81 48.42 48.02 47.63 47.23 46.84 46.44 46.05

Y=C 48.81 48.42 48.02 47.63 47.23 46.84 46.44 46.05

Fig. 3. Error distribution of Dominant Term Approximation.

Fig. 4. Overview of Multiplication Approximation operation flow.

further from the boundary region, the error approaches zero.
The majority of possible MAC calculations have near-zero
Dominant Term Approximation error. The average computa-
tional error for different values of Δ is also shown in Table I.

III. MULTIPLICATION APPROXIMATION

In order to accelerate multiplication computations, we pro-
pose a highly accurate Approximate Multiplier, derived from
RMAC [6]. RMAC can approximate multiplication with very
low latency and energy, but has an error range up to 11%,
leading to reduced efficiency when higher accuracy is desired.
We have designed an improved multiplication algorithm which
retains the excellent speedup and energy efficiency of RMAC
while reducing maximum multiplication error to 1.57%.

Essentially, RMAC is a two-case algorithm. Similarly to
standard floating point multiplication, the sign bits of floating
point inputs A and B are XORed and the exponents are added.
However, instead of multiplying the mantissa bits, the bits are
summed together. If the sum results in a carry bit, it is added
to the result of the exponent. Recall that the mantissa bits of a
floating point number store only the fractional portion of the
full significand lying between one and two. Let a and b be
the values stored in the mantissa bits of A and B respectively.
Then the mathematical expression for RMAC is written as:

ifa+ b < 1 : Y = ±2expA+expB × (1 + a+ b)

ifa+ b ≥ 1 : Y = ±2expA+expB × 2× (a+ b)
(5)

Fig. 5. (a) Error distribution of RMAC and (b) Error distribution of the
Maccelerator Approximate Multiplier as functions of input mantissas.

Fig. 6. Error range/distribution of the Maccelerator Approximate Multiplier

The error of RMAC is represented by the heatmap in Fig-
ure 5a. We have significantly reduced this error by partitioning
RMAC into regions and applying error compensation to each
region so that the maximum value does not exceed 1.57%.
The error heatmap of our design is shown in Figure 5b. Our
design adds a few steps to RMAC to achieve this accuracy
improvement. Figure 4 shows the flow of the algorithm.

1) After the sign bits are XORed and the exponent bits are
added, the mantissas a and b are added, and the presence
of a carry bit is identified.

2) Depending on whether a carry bit is present or absent,
the algorithm accesses one of two look-up tables which
accept a and b as inputs. Each entry of the look-up tables
contains a constant C and an integer value n.

3) The final error-corrected mantissa is found by summing
three values: the sum of a and b, the sum of a and b
shifted right by n, and the constant C.

4) Similarly to conventional floating-point multiplication,
the mantissa may need to be normalized so that is
lies between one and two, which involves shifting the
mantissa and adjusting the exponent accordingly.

This procedure is described by the equations below:

ifa+ b < 1 : Y = ±2expA+expB × (a+ b+
a+ b

2n
+ C)

ifa+ b ≥ 1 : Y = ±2expA+expB × (2(a+ b) +
a+ b

2n
+ C)

(6)

1) Look-up Table: Inspection of the error of RMAC shown
in Figure 5a reveals that there is a geometric pattern in
the error distribution. To target each region individually, we
partitioned the plane into a 16×16 grid and derived an optimal
compensation function for each region. A finer grid would

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:27:05 UTC from IEEE Xplore. Restrictions apply.

increase approximation accuracy, but also complexity. We have
concluded that a 16× 16 grid strikes an optimal balance.

2) Compensation Functions: Since n is an integer, the divi-
sion by 2n becomes a right shift by n bits. We experimentally
determined the values of n and C by sweeping all possible
values of n and C for each region. The error yielded by
our Approximate Multiplier can be either positive or negative,
and the histogram of error distribution is shown in Figure 6.
Our multiplication approximation algorithm yields a maximum
absolute error of 1.57%, an average signed error of -0.21%,
and an absolute average error of 0.47%.

3) Computational Reuse: An important feature of our algo-
rithm is computational reuse. The sum of a and b is used both
as the branching criterion and function input. Every calculation
consists of only three addition operations, and up to two
bitwise shift operations. Our algorithm makes use of a look-
up table, but the look-up table is of a small dimension, and
therefore does not hinder computational acceleration.

IV. MAC SYSTEM

1) System Accuracy: Maccelerator has two stages of ap-
proximation: Dominant Term Approximation and Approxi-
mate Multiplication. The yellow region in Figure 3 experi-
ences only Dominant Term Approximation error, the purple
region experiences only Approximate Multiplication error,
but in the teal region, error depends on both. Dominant
Term Approximation always yields negative error, but since
the error of Approximate Multiplication can be positive or
negative, the sum may lead to either error cancellation or error
accumulation. Figure 7 illustrates three possible scenarios.

1) Multiplication Approximation error is near zero, and error
is only introduced by Dominant Term Approximation.

2) Multiplication Approximation error and Dominant Term
Approximation error have opposite signs such that the
former is canceled out by the latter. We demonstrate
this by setting multiplication approximation error to its
maximum value, 1.57%, in Figure 7b.

3) Multiplication Approximation error and Dominant Term
Approximation error have the same sign. In this case,
the error from both stages accumulates. We demonstrate
this by setting multiplication approximation error to its
minimum value, -1.57%, in Figure 7c. This scenario has
the greatest possible error. As such, we can identify the
worst possible error which can occur in the Maccelerator
system for every value of Delta, shown in Table III.

The average error is, however, much lower than the max-
imum possible error. Firstly, Multiplication Approximation
error tapers toward the positive and negative extremes as
seen in Figure 6, and secondly, as seen from Figure 7,
Dominant Term Approximation only induces error in a very
narrow boundary region. We can calculate the average error of
Maccelerator by averaging both Multiplication and Dominant
Term Approximation error. The results are found in Table III.

2) System Efficiency: The efficiency of Maccelerator (the
latency and energy cost of a computation) is also a function
of Delta. The distribution percentages shown in Table II are
also the probabilities of a single calculation occurring in each

Fig. 7. Various error distribution patterns of Maccelerator for different input
combinations (Δ = 7).

TABLE III
MAXIMUM AND AVERAGE ERROR OF THE MACCELERATOR SYSTEM AT

VARIOUS VALUES OF DELTA

Delta 3 4 5 6 7 8 9 10

Max. Error (%) 34.90 15.86 8.24 4.80 3.16 2.358 1.96 1.77
Avg. Error (%) 0.29 0.19 0.15 0.12 0.11 0.108 0.106 0.106

of the three design modes. For example, at Delta equal to 10,
there is a 46.05% chance that both multiplication and addition
can be omitted, and only a 7.11% chance that both must be
performed. The smaller the value of Delta, the more likely one
or both operations can be omitted, increasing the efficiency.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We integrated Maccelerator into the floating point units of
the AMD Southern Island Radeon HD 7970 GPU. To evaluate
the functionality of Maccelerator, we modified Multi2sim, a
cycle accurate CPU-GPU simulator [9] to model the three
main floating point operations in GPU architecture: multiplica-
tion, multiplication-accumulation (MAC), and multiplication-
addition (MAD). We analyzed the execution time and energy
consumption of Maccelerator by performing a circuit-level
simulation using HSPICE in 45nm technology. We calcu-
lated the energy consumption of conventional FPUs using the
FloPoCo [10] library and synthesized them using Synopsys
Design Compiler in 45-nm ASIC flow [11]. We used Synopsys
Prime Time to optimize the FPU’s power consumption. We
evaluated the efficiency and accuracy of Maccelerator on
general multimedia applications and various machine learning
algorithms. Roughly 85% of the floating point operations in
these applications involve multiplication or MAC operations,
which can be approximated using Maccelerator.

B. Acceleration Performance

Multimedia: We tested our Approximate Multiplier on six
general OpenCL applications, including BoxSharpen, Sobel,
Prewitt, Roberts, JPEG Compression, and Gaussian Blur from
AMD APP SDK v2.5 [12] using images from the Caltech 101
dataset [13]. We used Peak Signal to Noise Ratio (PSNR) as
a metric for accuracy. Similarly to prior work, computations
with a PSNR value of 30dB and higher are considered to be
of acceptable quality for the human eye [4], [6].

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:27:05 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
PSNR (DB) OF MULTIMEDIA APPLICATIONS RUNNING ON

MACCELERATOR

Applications
Images BoxSharp Sobel Prewitt Robert JPEG GaussBlur

Lichtenstein 33.10 36.85 40.78 42.47 50.82 47.89
Baboon 33.63 34.92 39.09 39.41 48.77 46.07
Camera 32.09 36.08 39.99 41.37 52.53 49.87

Lena 32.53 35.13 39.36 40.78 49.94 45.77

EDP Improv. 2.38× 1.93× 3.21× 2.14× 2.76× 2.41×

Fig. 8. A comparison between images generated using exact arithmetic and
images generated by Maccelerator for the application Sobel.

TABLE V
DATASETS (n: FEATURE SIZE, K : NUMBER OF CLASSES)

n K
Data
Size

DNN
Accuracy

HD
Accuracy Description

ISOLET 617 26 19MB 96.3% 96.1% Speech Recognition [16]
UCIHAR 561 12 10MB 97.3% 98.1% Activity Recognition[17]
PAMAP 75 5 240MB 95.8% 92.9% Physical Monitoring[18]
FACE 608 2 1.3GB 96.1% 96.5% Face Recognition[19]

Accuracy: Table IV shows the PSNR values obtained by
running six applications on four different benchmark images
using Maccelerator, none of which show a PSNR value less
than 30dB. Figure 8 compares images processed through Sobel
using exact arithmetic and our Approximate Multiplier.

Efficiency: Table IV also shows the average Energy-Delay
Product (EDP) improvement of Maccelerator running 500
randomly chosen images from the Caltech 101 database on
each of the six applications. Since multimedia applications
utilize multiplication operations but not MAC operations,
efficiency is not a function of Delta.

Machine Learning: We evaluated the efficiency of proposed
Maccelerator on four popular neural network applications,
listed in Table V. We also evaluated the efficiency of Mac-
celerator on another machine learning topology – Brain-
inspired Hyperdimensional Computing (HD). HD [14], [15] is
a new computing paradigm which emulates cognition tasks by
exploiting long-sized vectors instead of working with numeric
values used in contemporary processors. The baseline accuracy
of HD on four applications is also shown in Table V.

Accuracy: We ran two tests to evaluate the performance
of Maccelerator on machine learning applications: 1) Ap-
proximating only the inference stage using a GPU enhanced
with Maccelerator, and 2) Approximating both training and

Fig. 9. Quality loss of NNs and HD computing as a function of Delta.

Fig. 10. EDP Improvement of NNs and HD computing based on quality loss.

inference. (For training, approximation is only used during the
feed-forward phase, while back-propagation is still performed
using exact arithmetic.) Figure 9 shows that quality losses
decrease and approach zero as the value of Delta increases.
Due to the machine learning algorithms’ inherent ability to
adapt to consistent patterns, quality loss decreases when both
training and inference is performed using Maccelerator, which
is advantageous for decreasing the extensive time and energy
resources required for training.

Efficiency: We evaluated the EDP improvement of Mac-
celerator over exact GPU hardware as a function of quality
loss by running Maccelerator at whichever Delta value was
necessary to achieve the given accuracy level. Figure 10 shows
that different applications provide varying levels of efficiency
depending on their robustness to approximation. Maccelerator
offers best results when the input data has a large range of
values, which maximizes the efficiency of Dominant Term
Approximation. Maccelerator provides on average 1.42× and
1.67× EDP improvement for NNs and HD, respectively, with
less than 1% quality loss as compared to baseline GPU.

C. Comparison with Prior Work
To our knowledge, no other approximate standalone floating

point MAC units have yet been proposed. Thus, we compare
Maccelerator with approximate multipliers integrated into a
conventional MAC unit. State-of-the-art approximate multipli-
ers include Kulkarni [20], ESSM [21], DRUM [4], CFPU [5],
and RMAC [6]. Kulkarni [20] modifies the logical struc-
ture of a partial product generator to induce approximation;

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:27:05 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
A COMPARISON OF STATE-OF-THE-ART APPROXIMATE MULTIPLIERS.

Kulkarni[20] ESSM8[21] DRUM6[4] CFPU[5] RMAC[6] Maccelerator

Max. Error 22.2% 11.1% 6.3% 6.3% 6.3% 1.57%
EDP (pJs) 10 1.2 1.04 0.44 0.08 0.07
Delay (ns) 3.5 2.1 1.9 1.6 0.52 0.58

Energy (pJ) 2.9 0.58 0.55 0.27 0.15 0.12

Fig. 11. A comparison of EDP improvement between different approximate
computing designs.

ESSM [21] intelligently truncates multiplicands; DRUM [4]
expands the concept of intelligent truncation to floating point
arithmetic; CFPU [5] and RMAC [6] are hybrid approximate-
and-exact designs with runtime-configurable error which re-
duce multiplication to a set of simpler arithmetic operations.
We compare these designs with Maccelerator. Table VI shows
the maximum error, energy, delay, and EDP offered by these
designs in their most accurate configurations Maccelerator’s
Approximate Multiplier offers the lowest approximation error
and lowest energy-delay product.

CFPU [5] and RMAC [6] are run-time configurable, which
means they offer a trade-off between approximation accuracy
and energy consumption. We compare Maccelerator to CFPU
and RMAC by evaluating the EDP improvement of each
design as a function of accuracy for multiplication and MAC
operations, as compared with baseline GPU.

1) Multiplication: RMAC offers very high EDP improve-
ment for multiplication operations within an error threshold of
8% or greater. Due to its hybrid exact-and-approximate hard-
ware design, the EDP improvement plummets for accuracies
of 5% or less. The Maccelerator Multiplier, on the other hand,
offers greater EDP improvement at higher accuracy thresholds.

2) Multiply-and-Accumulate: The advantages of Macceler-
ator are most prevalent for MAC operations. It offers at least
5.1× and up to 9.3× EDP improvement for a single MAC
operation, greatly exceeding that of conventional MAC units,
with approximate multipliers such as CFPU or RMAC.

D. Overhead

Maccelerator is a configurable MAC unit offering computa-
tional acceleration and power reduction with known precision.
However, certain applications may require full precision. We
propose Maccelerator as an enhancement to GPU cores such
that an application has access both to exact FPU hardware and
approximate hardware. Maccelerator requires the use of some
macro blocks, which include three adders, a logic unit, one
comparator, one shifter, six multiplexers, and a small amount
of memory storage to hold the two look-up tables. The area

overhead of Maccelerator is 6.7mm2, which is less than 1.4%
of the entire GPU area (471mm2).

VI. CONCLUSION

We proposed Maccelerator, a configurable approximate
MAC unit with tunable accuracy. Based on intelligent input
analysis, our design uses two approximation schemes, Dom-
inant Term Approximation, and Approximate Multiplication.
Maccelerator produces calculations with a near-zero average
error, and as low as 1.57% maximum error. Maccelerator offers
up to 9.3× EDP improvement per MAC operation, up to 1.78×
and 2.18× EDP improvement on Neural Network and HD
machine learning applications respectively, and up to 3.21×
EDP improvement on image processing applications. For
machine learning algorithms, Maccelerator offers 0% quality
loss in highly accurate configurations, and up to 2.3% quality
loss in the least accurate configuration. The area overhead of
Maccelerator is 1.4% when integrated into a GPU core.

ACKNOWLEDGMENTS

This work was supported in part by SRC-Global Re-
search Collaboration Task No. 2988.001 and also NSF grants
1527034, 1730158, 1826967, 1830331, 1911095, 2003277,
and 2003279.

REFERENCES

[1] K. He et al., “Circuit-level timing-error acceptance for design of energy-
efficient dct/idct-based systems,” TCSVT, vol. 23, no. 6, pp. 961–974,
2013.

[2] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi, “Approximate
xor/xnor-based adders for inexact computing,” in 13th IEEE Interna-
tional Conference on Nanotechnology, pp. 690–693, 2013.

[3] C. Liu et al., “A low-power, high-performance approximate multiplier
with configurable partial error recovery,” in IEEE/ACM DATE, 2014.

[4] S. Hashemi et al., “tldrum: A dynamic range unbiased multiplier for
approximate applications,” in ICCAD, pp. 418–425, IEEE Press, 2015.

[5] M. Imani et al., “Cfpu: Configurable floating point multiplier for energy-
efficient computing,” in IEEE/ACM DAC, pp. 1–6, IEEE, 2017.

[6] M. Imani et al., “Rmac: Runtime configurable floating point multiplier
for approximate computing,” in ISLPED, p. 12, ACM, 2018.

[7] H. Tann et al., “Runtime configurable deep neural networks for energy-
accuracy trade-off,” in 11th IEEE/ACM/IFIP CODES+ISSS, 2016.

[8] B. Moons, B. De Brabandere, L. Van Gool, and M. Verhelst, “Energy-
efficient convnets through approximate computing,” in IEEE Winter
Conference on Applications of Computer Vision, 2016.

[9] R. Ubal et al., “Multi2sim: a simulation framework for cpu-gpu com-
puting,” in PACT, pp. 335–344, ACM, 2012.

[10] “Aflopoco [online]. available:http://flopoco.gforge.inria.fr/,”
[11] D. Compiler, “Synopsys inc,” 2000.
[12] “Amd app sdk v2.5 [online]. available: http://www.amd.com/stream,”
[13] “Caltech 101 [online]. http://www.vision.caltech.edu/image datasets/caltech101/,”
[14] P. Kanerva, “Hyperdimensional computing: An introduction to comput-

ing in distributed representation with high-dimensional random vectors,”
Cognitive Computation, vol. 1, no. 2, pp. 139–159, 2009.

[15] A. Rahimi et al., “A robust and energy-efficient classifier using brain-
inspired hyperdimensional computing,” in ISLPED, pp. 64–69, 2016.

[16] “Uci ML repository.” http://archive.ics.uci.edu/ml/datasets/ISOLET.
[17] D. Anguita et al., “Human activity recognition on smartphones using

a multiclass hardware-friendly support vector machine,” in IWAAL,
pp. 216–223, Springer, 2012.

[18] A. Reiss et al., “Introducing a new benchmarked dataset for activity
monitoring,” in ISWC, pp. 108–109, IEEE, 2012.

[19] Y. Kim et al., “Orchard: Visual object recognition accelerator based on
approximate in-memory processing,” in IEEE/ACM ICCAD, 2017.

[20] P. Kulkarni et al., “Trading accuracy for power with an underdesigned
multiplier architecture,” in IVLSI, pp. 346–351, IEEE, 2011.

[21] S. Narayanamoorthy et al., “Energy-efficient approximate multiplication
for digital signal processing and classification applications,” TVLSI,
vol. 23, no. 6, pp. 1180–1184, 2015.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:27:05 UTC from IEEE Xplore. Restrictions apply.

