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Abstract—Digital processing in-memory (DPIM) provides very
low overhead, highly parallel computation in conventional mem-
ory, which significantly accelerates data-intensive workloads like
deep neural networks (DNNs). DPIM-based DNN accelerators
require that data be properly laid out to make the best use
of the available in-memory operations. However, existing DPIM
accelerators tend to optimize for a particular DNN dataflow,
neglecting the large design space of data layout. This work
systematically investigates the data layout for DPIM DNN ac-
celeration. We propose a mapping framework to represent the
whole design space of DPIM data layout for general DNN
models. Our investigation shows that an exhaustive exploration
on the whole design space for mapping a DNN application to
DPIM architecture is not computationally tractable. Therefore,
we propose a compiler-level optimization, PIM-DL, that finds
highly efficient data layouts for DPIM DNN acceleration using a
two-level dynamic programming algorithm and a heuristic-based
search. Our experiments show that DNN DPIM solutions created
by our PIM-DL provide 3.7× and 4.3× better performance and
energy efficiency as compared to the state of the art under the
same hardware constraints.

I. INTRODUCTION

Deep neural networks (DNNs) have been used in various

application domains, ranging from natural language process-

ing [1], [2], speech recognition [3], [4], to image object

detection [5]–[9]. The size of emerging DNNs has become

extremely large due to the need for high accuracy, posing

significant challenges to conventional architectures because of

limited parallelism and memory wall issues [1], [2], [10]–[13].

Processing In-Memory (PIM) is a promising non-

conventional technology to accelerate emerging data-intensive

applications by not only reducing the data movement but also

increasing computing parallelism. Researchers have used PIM

to accelerate neural networks [14]–[19] and other applications

from a wide range of fields [13], [20]–[27]. Many PIM-

based DNN accelerators rely on the analog domain of resistive

memory (ReRAM) [14], [15], [19]. Although such accelerators

provide significant improvement in both energy efficiency and

performance, they are very inefficient area-wise due to costly

peripherals needed for data conversion, have no floating-point

support, and face scaling difficulty due to unstable multi-bit

cells [14].

Digital PIM (DPIM), enables in-situ computations in con-

ventional digital memory including ReRAM [28], [29],

DRAM [30], [31], and SRAM [32], [33]. Since DPIM

can directly work on digital data, it does not require costly

peripherals for data conversion needed by analog PIM [14],

[15], [19]. Several works have shown promising performance

and scalability of DPIM-based DNN accelerators [16]–[18].

DPIM acceleration has strict requirements on how data

should be placed in memory. Such data layout determines

the degree of parallelism as well as other critical factors

including memory utilization, and data throughput. The data

layout problem in DPIM architectures is different from that in

other types of spatial accelerators, which assume hierarchical

architecture with separate storage components and processing

elements. DPIM architecture only has a large digital memory

which combines both computing and storage functionality.

DPIM accelerators usually have thousands of large basic

components (e.g., 1Mb digital memory block), leading to a

large design space for optimization of application data and

operation placement.

Most state-of-the-art DPIM DNN accelerators [16]–[18] use

an output-parallel layout which allocates separate memory

rows for computations of different output elements. Such

layout requires significant data duplication because different

outputs usually share a lot of input and filter data. As reported

in NeuralCache [17], input loading and filter loading may con-

tribute to 61% latency during the DNN inference. If we simply

reorganize the layout to combine every two computations with

a shared operand in the memory, we can approximately reduce

25% of data loading at a cost of double computation time. This

shows there is a trade-off between computation parallelism and

memory usage for DPIM data layout. There have been several

work [34], [35] systematically investigated the design space of

mapping one DNN layer to conventional DNN accelerators.

However, this has not been done in the DPIM scenario. The

design space of DPIM data layout becomes even larger for a
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category of PIM-based DNN accelerators [14], [15], [18], [19],

which pre-allocate memory resources for different program

regions (usually layers). These accelerators, which we call

static accelerators, introduce additional design dimensions for

memory allocation. In this work, we show that the combination

of conventional per-layer mapping and the DPIM-specific

memory allocation forms an extremely large design space in

DPIM architecture.

To fully explore the design space of DPIM DNN accel-

eration, we propose a new mapping framework of data lay-

out. Unlike the state-of-the-art mapping framework [34], [35]

for conventional DNN accelerators, the proposed framework

considers both general and DPIM-specific dimensions of the

design space. The decision of each dimension has an impact

on multiple aspects of acceleration including computation cost,

memory usage, and data movement pattern. All these aspects

determine the overall efficiency of DPIM acceleration. With

our framework, we can formulate the design space of data

layout problem in DPIM DNN acceleration, which has an

exponential complexity with the number of DNN layers and

the number of available memory components (e.g., block) in

the DPIM system.

The complexity of the design space makes it impossible

for an exhaustive exploration using an efficient algorithm.

Therefore, we further propose PIM-DL, a data layout op-

timization framework, to accelerate DPIM DNN inference.

PIM-DL utilizes a two-level dynamic programming algorithm

and a genetic algorithm based on heuristic search to efficiently

find a good data layout based on application and hardware

information, that performs better than previous methods. We

evaluate PIM-DL on DPIM acceleration for several widely-

used DNNs by an open-sourced DNN compiler and a cycle-

accurate simulator. Our experiments show that PIM-DL can

improve the performance of DPIM DNN acceleration under

various architecture configurations by up to 1.9× while using

30% less memory without any hardware change. Furthermore,

we apply PIM-DL to several state-of-the-art DPIM DNN

accelerators and observe a 2.5× speedup on average. We

also explore the design space of hardware-software co-design,

inspired by our data layout experiments, and compare several

customized systems with PIM-DL to state-of-the-art DPIM

DNN accelerators varying in memory technologies and accel-

eration modes. Our experiment shows our software-hardware

co-design systems provide 3.7× and 4.3× better performance

and energy efficiency than corresponding baselines under the

same hardware constraints.

Overall, we make the following contributions in this work:

• This is the first work that comprehensively and systemati-

cally investigates the data layout problem in DPIM DNN

acceleration. We generalize the data layout problem in

DPIM using a DNN mapping framework for customized

accelerators including DPIM-specific design dimensions

which have not been investigated.

• We design compiler-level optimizations for a generic

DPIM architecture to generate efficient data layout for

(b) An array of blocks in a tile(a) Tile-based DPIM architecture
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Fig. 1. Generic DPIM architecture model.
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Fig. 2. Operations in a ReRAM-based DPIM.

DNN inference and dramatically boost performance and

memory utilization of general DPIM DNN acceleration.

• Inspired by our experiments on data layout, we exploit the

hardware-software co-design to build several customized

systems which significantly improve the performance and

energy efficiency of state-of-the-art.

II. BACKGROUND AND MOTIVATION

In this section, we elaborate important preliminaries for

DPIM-based DNN acceleration.

A. DPIM Architecture

This work targets a general DPIM architecture model which

is shown in Figure 1. The DPIM architecture consists of

multiple tiles, where tiles are connected to each other through

an inter-tile network. Each tile contains several DPIM blocks

and uses an inter-block interconnect to handle data movements

between different blocks. We can configure this model to

emulate state-of-the-art DPIM architectures by customizing

hardware characteristics like operation latency and memory

structure.

Several recent works have implemented DPIM functionality

in various digital memory technologies including SRAM [17],

[32], DRAM [16], [31], and ReRAM [18], [28], [36]. The

common backbone of various DPIM technologies is row-

parallel bit-serial operation, which exploits the shared bit-line

circuits in digital memory block to process all rows in a bit-

line using a single step. When using an universal bit operation,
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DPIM-enabled memory can support custom computations by

sequentially executing multiple bit-line steps. We take an

example of DPIM-enabled ReRAM block to illustrate basic

DPIM operations. Figure 2(a) shows a memory block which

includes a crossbar of ReRAM cells and peripheral circuits

for driving bit-lines and word-lines. By applying specific

voltage to the bit-lines, the value stored in a resistive cell

may change. This operation can take effect on all word-

lines (rows) enabling highly parallel operations. Figure 2(b)

shows an example of computing NOR operation, a universal

operation that can be used to implement custom functions.

Figure 2(c) shows a NOR-based 1-bit full adder that takes 12

NOR steps.

We can exploit this 1-bit full adder to support multi-bit

operations. Figure 2(d) shows an example of addition for

two vectors with 4 n-bit values. The memory sequentially

applies the full addition to each bit of computations by

reusing the carrier. In addition to the carriers, we also need to

reserve several bit-lines (12 in this case) to store intermediate

values like (A + B)′. These intermediate bit-lines can be

shared across computations. This scheme can process an n-

bit vector addition in 12n + 1 steps for all elements. When

processing long vectors, this brings a significant performance

benefit because of the extremely high degree of parallelism.

Other than addition, we can also implement different custom

functions including multiplication, subtraction, and division. In

addition to integer values, DPIM also supports floating point

by separately computing exponent and sign bits [18].

We should note that different memory technologies have

different schemes for DPIM operations. For example, Com-

puteCache [32] and NeuralCache [17] proposed to exploit the

sense amplifier in SRAM to sense shared bit-lines between

two activated rows. ComputeDRAM [31] utilized specialized

sequences of DRAM commands (e.g., row activation and pre-

charge) to implement DPIM operations in commodity DRAM

chips by only slightly modifying the memory controller. The

high-level computing scheme of different DPIM technologies

is still row-parallel bit-serial operation, so that we can design

several general strategies, including the data layout, for most

DPIM accelerators. We refer readers to previous works for

more details on the circuit-level design and implementation

for different DPIM technologies [16]–[18], [31], [32].

B. DPIM-based DNN Accelerators

DPIM architecture can emulate a large group of SIMD

processing units, which is promising to accelerate DNN appli-

cations. We can categorize DPIM DNN accelerators into two

groups, dynamic and static, based on the acceleration mode as

shown in Figure 3(a). On the one hand, dynamic DPIM DNN

accelerators allocate all memory resources to process one

DNN layer at a time. The weights and inputs of the layer need

to be loaded to the memory before computation. After the layer

is done with computation, its results are reorganized in the

memory to compute the next layer. Even though the dynamic

accelerator fully utilizes memory resource for computations, it

has a couple of drawbacks. First, weight loading for each layer

Input[0:8] Filter[0:8] Output[1]

Input[1:9] Filter[0:8] Output[2]

… Filter[0:8] Output[3]

… … …

(c) Output-parallel layout in one memory block
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(d) One way to reduce the memory usage
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Fig. 3. DPIM DNN accelerators and data layout.

would consume significant amount of time and energy due to

data loading from external memory [17]. Second, processing

one layer at a time cannot support pipelined execution between

different layers for more throughput. On the other hand, the

static acceleration mode stores weights for the whole DNN

model statically and has been widely adopted in many types of

PIM DNN accelerations, like analog PIM (e.g., Pipelayer [19],

ISAAC [14], Prime [15], etc.) and near data processing

(e.g., Tetris [37]). In the static acceleration, a portion of the

memory handles computations for a specific layer, and sends

results to another portion of the memory handling the next

layer. Even though static accelerators require more memory,

it avoids weight loading during the runtime and can pipeline

the execution of different layers to improve the throughput.

Since dynamic acceleration can be represented as a special

case of static acceleration, this work focus on the static DPIM

acceleration and provide results to both dynamic and static

acceleration in Section VI.

State-of-the-art DPIM DNN accelerators, both dynamic and

static, use the fully output-parallel mapping for all DNN

workloads. Figure 3(c) shows an example of 1D convolution

with a 1*9 filter using the fully output-parallel layout used

by NeuralCache [17], which allocates the computation for

each output element in a memory row, exploiting row-parallel

operations to process all outputs in parallel. However, such

output-parallel mapping introduces data duplication that may

significantly increase the memory usage. In dynamic acceler-

ators, large memory usage may require the system loads data

several times for a layer since that cannot fit all data. This

introduces large overheads due to data loading and computing

sub-parts sequentially. For static accelerators, this data layout

may significantly increase the memory requirement for DNN

workloads. To reduce the memory usage, Figure 3(d) shows

one method that combines each two computations, sharing

an operand, to one memory row. This method reduces the

memory usage by almost 2× at the cost of 2× more row-

parallel operations. There are other design dimensions that we

can fine-tune the data layout to achieve better performance by

comprehensive exploration.

Recent DNN mapping frameworks, such as Timeloop [35]

and Interstellar [34], explore a relatively limited design space
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# Mapping for channels
for m = [0, M):

for n = [0, N):
# Mapping for operations
for f = [0, F):

for o = [0, O):
Output[m][o] += Filter[m][n][f]

* Input[n][o+f]

(b) An example 1D-Conv layer for mapping. 

Fig. 4. (a) The architectural abstraction of DPIM accelerator using conven-
tional DNN accelerator model [34], [35]. (b) An example of 1D convolution
layer.

of DNN application mapping, with focus on a basic nested

loops and primitives such as loop splitting and loop reordering.

We refer to them as conventional frameworks. Even though

the DPIM architecture is similar to single-level distributed

processors (e.g., memory rows), the conventional frameworks

cannot fully explore the design of data layout in DPIM

architectures for three reasons. First, the DPIM architecture

has a single type of component that acts as both a compute and

a storage unit. However, the conventional framework does not

consider the data layout for different computation mappings.

Second, the conventional framework only explores the design

space of a single layer, which cannot support static DPIM

accelerators. DPIM accelerators require a holistic framework

that consider the global constrains of the architecture when

mapping all the layers. Third, the locations of the memory

partitions allocated to different layers also have an impact

on the overall system performance because of the inter-layer

data movements. For example, we may need to move the

output of the preceding layer to the input of the succeeding

layer. Most accelerators have a non-uniform communication

network for all processing units (e.g., memory blocks or rows

in DPIM architectures), so the overhead of data movement

varies as a function of the allocation scheme. In this work, we

propose a novel mapping framework for DNN data layout on

DPIM architecture (Section III), and an efficient data layout

optimization that finds a good data layout in the large design

space (Section IV).

III. PIM-DL DATA LAYOUT FRAMEWORK

We formulate the data layout of a DNN model with n
layers in DPIM architectures using two sets: global layout

strategy L = {li, i ∈ {1...n}}, and memory allocation

M = {mi, i ∈ {1...n}}. Specifically, li is the data layout

strategy for layer i. In Section III, we introduce a way to use

the conventional DNN mapping framework to represent the

layer layout in DPIM. Furthermore, mi is a set of memory

resources allocated for layer i using the layout li. As compared

to the conventional framework, the data layout of DNN model

in DPIM architecture has a significantly larger design space.

Assuming the size of design space of conventional framework

is S, the design space of L has a size of Sn. For each global

layout strategy L, the number of possible memory allocations

is Nm(Nm − 1)...(Nm − k + 1), where Nm is the number

of memory resources in the DPIM architecture and k is the

number of memory resources required for L. In this work, we
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Fig. 5. Data layouts of different 1D-Conv mappings.

# === DPIM Mapping for 1D-Conv ===
# First-level mapping
parallel_for f1 = [0, F1):

parallel_for o1 = [0, O1):
# Second-level mapping
parallel_for o0 = [0, O0):

for f0 = [0, F0):
o = o1*O0 + o0
f = f1 * F0 + f0
Output[o] += Filter[f] * Input[f+o]

Filter[0] Input[0] Filter[1] Input[1] Output[0]
Filter[0] Input[1] Filter[1] Input[2] Output[1]

Filter[0] Input[2] Filter[1] Input[3] Output[2]
Filter[0] Input[3] Filter[1] Input[4] Output[3]

2 vector MACs
1 vector Add

5*n bit-lines
4 word-lines

Area Cost Computation Cost

Fig. 6. Loop tiling with an additional level.

use the memory block as the granularity of memory resource

allocation.

Our mapping framework for DNN applications enables

optimization across the full design space of DNN data layout

on DPIM architectures. This section illustrates all design

dimensions of the framework which impact different aspects

of DPIM DNN acceleration including computing parallelism,

memory utilization, and data transfer pattern. We investigate

data layouts and corresponding cost models of different DNN

mappings through the example 1D-conv layer as shown in

Figure 4(b). The example convolution has N input channels

and M output channels. The filter size is F and the convolution

generate O outputs for each output channel. We select con-

volution as the main example because it is the most complex

and time-consuming in a wide range of emerging DNNs. We

should note that our analysis is applicable to other layers

like fully-connected layer, which can also be represented as a

nested loop.

A. Operation Layout

We first investigate the detailed data layout of mapping

a single 1D convolution. Figure 5 shows layouts and cost

models of 4 basic mappings. We use parallel for, used

in Timeloop [35], to indicate a spatial parallel for a loop

in the mapping. As mentioned before, the basic hardware

components for resource allocation is memory rows, so that a

parallel for places all operands for each item in a row and

aligns computations for all items in the same bit-lines. In this

case, DPIM can process all these items in parallel using row-

parallel bit-serial operations. In addition, a normal for places

computations for items in a row, requiring sequential execu-

tion. The most parallel mapping is Mapping 1 (Figure 5) which

4
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Fig. 7. Two channel-parallel data layout schemes for convolutions of two
input/output channels.

parallelizes all computations. However, such straightforward

layout requires data duplication to maximize the parallelism.

Furthermore, Mapping-1 needs to re-align partial sums to

generate final outputs, requiring extra data movements.

One way to reduce the data size is to combine rows with

shared elements by folding the loop. For example, Mapping-

2 folds computations of 2 outputs in one row for each filter

replica, saving memory space for 2 elements. However, such

mappings introduce extra vector MACs. We can also avoid

data movements by changing the order of the loop as shown

in Mapping-3 and Mapping-4. We can further enlarge the

design space by add another level of loop in the operation,

as shown in Figure 6. The example shows we can control the

number of parallel computation outputs by adopting different

parallel schemes in two levels. According to the data size and

architecture configurations, the most efficient mapping might

be different. Furthermore, the memory requirement (including

the dimension of bit-lines and word-lines) is also important

since it influences the constraints for other design dimensions.

B. Layer Layout

Emerging DNNs usually apply operations on multi-channel

data to capture comprehensive features. The result of each

output channel is a function of different input channels with

corresponding filters. Such channel-level parallelism provides

another dimension of the design space for data layout. In the

conventional mapping framework, we can explore the layer

layout by changing the order of loop. Figure 7 shows two

example mappings of layer layout to illustrate the cost models

in the layer-level.

1) Output-parallel Data Layout: We can parallelize a

convolution layer along the dimension of output channel

because computations of output channels are independent.

Figure 7(a) shows an output-parallel mapping which schedules

a parallel for for the output channel in the outer loop. This

example mapping further apply parallel for for all inner

loops to fully parallelize convolutions for all output elements.

Because of such spatial parallelism, we need extra data

movements to reduce partial sums to generate final outputs.

For example, we align Input1[1, 2, 4, 5] and Input2[1, 2, 4, 5]

in the first two memory rows in Figure 7(a), and compute

partial results of O1[1] by convolution with Filter1,1 and

Filter2,1 respectively. We should reorganize partial results of

each output element in the memory to compute the output

element by additions. We can take log2N steps to complete

such reduction, by moving and adding half of partial sums

at each step. Reduction in each memory block can happen in

parallel because a typical memory block (e.g., 1K rows) can

fit all convolution data for an output element which requires

N rows where N is less than 1024 for most current CNNs.

Such output-parallel layout achieves high parallelism while

it may require too many memory blocks to fit N ∗M ∗O rows.

To solve such issues, we can adopt more sequential operations

for the operation layout to reduce the number of rows by

combining multiple convolutions in the same row. In this case,

we can change the inner-loops for operation layout to fold

computations inside each channel. Furthermore, we can break

the channel-level loops into more levels and fold computations

across channels. Such computation folding comes at the cost

of using more bit-lines and sacrificing parallelism.

2) Input-parallel Data Layout: Another way to parallelize

a convolution layer is to schedule computations of different

input channels in parallel. DPIM architecture can implement

this strategy by aligning the computations in different input

channels for a specific output element, as shown in Figure 7(b).

In the input-parallel layout, computations of each input chan-

nel generate partial results that need to be summed up with

partial results in other input channels to calculate the output

results. Since partial results for a specific output channel

distribute vertically, we cannot accumulate them directly by

PIM operations, requiring data movements to realign them

(right part of Figure 7(b)).

The input-parallel layout requires less number of word-lines

(rows) than the output-parallel layout - N ∗ O as compared

to N ∗ M ∗ O. However, it requires a large number of bit-

lines, which is equal to M ∗ F ∗ b, to fit all M filters for an

input channel to compute partial results in b-bit precision. For

example, in a common 3*3 convolution with 8-bit fixed point

values, each filter requires 72 bit-lines in the memory; this

means a memory block with 1024 bit-lines can only fit 13

filters. If the number of output channels is larger than 13, we

have to distribute all filters for an input channel across multiple

blocks, causing extra inter-block data movements during the

sequential execution. A trade-off we can adopt to improve the

parallelism is storing a copy of input in each block so that

all blocks can process convolutions and reductions in parallel.

Similar to output-parallel layout, we can fine-tune the input

parallel layout by changing the loop structure.

3) Other Design Dimensions: The basic difference between

output-parallel and input-parallel layout is the order of loops

for input and output channels. As introduced before, we

can break these two loops into more loop levels to change

the data layout in DPIM. Two examples shown in Figure 7

assume loops of operation mapping always in the inner loops.

With the conventional framework, it is possible to explore

more mappings by shuffling the order of these four loops
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Fig. 8. Memory allocation and global layout.

which can change the order of partial sums aligned in the

memory. However, the cost model of layout layer depends on

the relative order between input-channel and output-channel

loops which determines the layout for partial sums. Therefore,

we can customize any layer layout based on the two basic

mappings introduced in this section.

C. Memory Allocation

After determining the detailed layout for one layer, the next

step is to allocate memory resource (e.g., memory blocks) for

the layer. Considering the DPIM system usually contains a

large number of memory blocks, the memory allocation for a

layer also adds a dimension in the design space which indicates

the memory blocks we want to allocate for a layer with a given

layout. Therefore, we add an alloc configuration in the DPIM

mapping framework which gets in an ordered set of memory

blocks (memory set), as shown in Figure 8(a). With the de-

tailed layer layout, we evenly divide all parallel computations

to the ordered memory blocks. The figure shows an example of

allocating three blocks in the order of (3,1,2) to a layer using

output-parallel layout. Based on the mapping shown in the

left side of Figure 8(a), the layout parallelizes computations

of all output channels, where each output channel parallelizes

computations using all input channels as shown in the right

side of Figure 8(a). Inside each output-input computation, the

detailed operation layout is defined by the two inner loops

in the mapping. Then, the memory allocation for set (3,1,2)

evenly divides these computations into three segments, and

allocate the first, the second, and the third segment to block

3, 1, 2 respectively.

In static DPIM DNN accelerators, we need to distribute

layers across the global memory, introducing the problem

of global layout. The global layout can be represented by

allocating different sets of memory to all layers. The number of

required blocks for each layout depends on its layout strategy

(including both operation and layer layout). The global layout

introduces various data movements. The first type of data

Algorithm 1: Tile-level optimization

Data: Layers[N ]
Result: Layout[N ][N ]
Function optimizeLayerGroup(group: layer[n], nBlk: int)

f [: N ][: N ] = inf ; f [0, : N ] = 0;
decision[: N, : N ] = null;
for i← 1 to n do

foreach layout t for group[i] do
rb = MemoryCost(i, t);
for j ← req blk to nBlk do

if f [i][j] > f [i− 1][j − rb] + PerfCost(i, t) then
f [i][j] = f [i− 1][j − rb] + PerfCost(i, t);
decision[i][j] = t;

/*Generate the optimized layout for each layer group based on decision*/

movement is intra-layer, which happens during the layer com-

putation. Both channel-parallel data layouts would cause intra-

layer data movements when accumulating partial results. As

analyzed in Section III-B, output-parallel layout accumulates

partial sums in the same memory block since it aligns all input

data for a specific output element in consecutive rows; and

input-parallel layout reserves a specific set of blocks to reduce

all partial results distributed across different blocks. As shown

in Figure 8, intra-layer movements of output-parallel layers

(L1 and L4) happen inside each block, while those of input-

parallel layers (L2 and L3) use the inter-block interconnect.

Other than intra-layer data movements, data dependency also

happens between different layers. Such dependency results

in inter-layer data movements which may use inter-block

interconnect or inter-tile interconnect.

To ensure the generality of memory allocation, we can

define any memory set with blocks that have not been allocated

for other layers. However, allocating memory blocks that have

long distance with each other (e.g., in different memory tiles)

to a layer may introduce large data movement overhead if the

layer layout requires inter-block data transfer for some oper-

ations (e.g., reduction). Furthermore, allocating long distance

memory blocks to layers with data-dependency will also cause

large data movement overhead. Since different data movement

patterns take various latency (e.g., inter-tile movements are

usually slower than inter-block movements), it is important

to carefully design the global layout based on both the DNN

structure and the architecture configuration. In Section IV, we

propose a holistic data layout optimization for general DPIM

DNN acceleration.

IV. PIM-DL OPTIMIZATION

The PIM-DL framework shows DPIM DNN acceleration

has a large design space which is usually too large to be ex-

haustively searched for an optimal data layout. In this section,

we introduce an optimization algorithm which holistically op-

timizes data layout for general DPIM DNN acceleration. PIM-

DL optimization includes three steps, tile-level optimization,

global optimization, and block allocation, to efficiently find an

efficient data layout.
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A. Tile-level Optimization

The goal of the tile-level optimization is to find the opti-

mized data layout for allocating a layer group in a tile,

where a layer group denotes a group of DNN layers

allocated to the same tile. However, the number of possible

combinations of DNN layers is too large to be efficiently

explored. Therefore, we limit the exploration of single-tile data

layout to consecutive DNN layers in the network based on the

fact that the bandwidth of intra-tile data bus is much higher

than the inter-tile interconnect, making it more efficient to

process consecutive layers in a tile. The tile-level optimization

searches for the best layout strategy for each set of consecutive

layers that fit them in the same tile.

Algorithm 1 outlines the steps of optimizing a layer group

with consecutive DNN layers, which is based on dynamic

programming [38]. Each state f [i][j] stores the minimum cost

of allocating the first i DNN layers using j memory blocks. To

calculate each f [i][j], the algorithm considers all possible data

layout strategies for each layer by exploring the PIM-DL data

layout framework introduced in Section III. For each layout

strategy t, we can calculate the number of required memory

blocks (rb). We can estimate the cost for adopting layout t for

layer i by adding f [i−1][j−rb] and the estimated performance

cost of the layout, which includes data loading, computation,

intra-layer data movement, and inter-layer data movement.

The data loading cost and the computation cost can be

accurately calculated for each layer with a specific layout.

These costs mainly change as a function of data dimensions of

the DNN layer. For the intra-layer data movement, we cannot

directly calculate it because we do not know which memory

blocks we allocate to each layer at this point. We approximate

this cost by assuming the system has a uniform data bus (e.g.,

shared bus or fully-connected interconnect) inside each tile so

that the intra-layer data movement cost is a function as the size

of moved data. In Section IV-C, we introduce a way to reduce

the estimation error for intra-layer data movement cost by a

block allocation method which uses a genetic algorithm to find

an efficient block allocation for a specific layer which has a

similar intra-layer data movement cost as our ideal assumption.

The inter-layer data movement cost is calculated based on

the average bandwidth of inter-block network if the input

data comes from a layer in the same layer group; otherwise,

it is calculated based on the average bandwidth of inter-tile

network. Our cost estimation is based on hardware simulation,

which is introduced in Section V.

The dynamic programming algorithm runs with all layer

groups of consecutive DNN layers (N(N + 1)/2 in total)

and generates the optimized layout strategy for each possible

layer group. The exploration results are used by the global

optimization algorithm which finds the best allocation for the

whole network in the multi-tile architecture.

B. Global Optimization

The tile-level optimization finds the optimized layout for a

specific layer group in a single tile, which can give the optimal

layout if the whole DNN can fit in a tile. However, current

Algorithm 2: Global optimization

Data: Layout[N ][N ], tiles[nT ]
Result: TileLayout[nT ]
f [0 : nT ][0 : N ] = inf ; f [0][0] = 0;
decision[0 : nT ][0 : N ] = null;
for t← 1 to nT do

for i← 1 to N do
for j ← 0 to i− 1 do

if f [t][i] > f [t− 1][j] + Cost(Layout[j + 1][i]) then
f [t][i] = f [t− 1][j] + Cost(Layout[j + 1][i]);
decision[t][i] = j;

/*Generate tile allocation for all layers based on decision*/;
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Layer A
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1-hop 2-hops
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(a) Block requirement and data transfer pattern

(b) Two block allocations in a mesh interconnect

Fig. 9. Block allocations in a mesh interconnect.

DNNs for real-world applications are usually large and deep,

which may require multiple tiles in static DPIM accelerators.

Therefore, we propose a cost-aware algorithm for dividing a

large DNN into multiple tiles while minimizing the overall cost

considering inter-tile data movements. Algorithm 2 shows the

process of global optimization which is also based on dynamic

programming. Each state f [t][i] denotes the minimum cost of

allocating layer 0 − i in t tiles. The algorithm calculates the

minimum cost from a single tile to nT tiles. For each tile t,
the algorithm iterates over all layers in a topologically sorted

order to calculate f [t][i]. For each f [t][i], the algorithm checks

all possible continuous layer group j− i and updates f [t][i] if

f [t− 1][j− 1]+ cost(j, i) is less than f [t][i]. The cost(j, i) is

the minimized cost of allocating layer j to i in a tile, which

has been calculated in the tile-level optimization phase. We

record layout decisions during the execution, and generate the

best layout we found by backtracking from f [nT ][N ].

C. Block Allocation

After global layout optimization, we generate data layout

strategy and tile allocation for all DNN layers. However,

the previous two steps do not consider locations of blocks

allocated to each layer (memory set). For an architecture

with a uniform-latency data transfer network in each tile

(e.g., shared bus), the block allocation would not impact the

overall performance since all inter-block data transfers have

the same latency. However, DNN accelerators usually have
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Fig. 10. The genetic algorithm for block allocation.

customized data links with non-uniform latency. For example,

FloatPIM [18] adopts a latch-based linear data link which can

efficiently handle data movements between consecutive DNN

layers. In architectures that use non-uniform data links, differ-

ent block allocations may exhibit very different performance

results. Figure 9 shows two block allocation schemes for two

connected layers, each of which requires 4 blocks based on

the layout. We assume a simple mesh network for inter-block

connection. The figure shows the data transfer from A1 to A4

can be directly handled in the mesh interconnect for the first

allocation, while requiring 3 hops in the second one.

For a given interconnect structure, the only way to find

the optimal block allocation for a layer group is exhaustive

search which is not computational tractable since a tile usually

contains hundreds of memory blocks. In order to generate effi-

cient block allocation for general DPIM architectures, we use

a heuristic search based on genetic algorithm [39], as shown in

Figure 10. Specifically, we first encode all blocks allocated to

each layer and use a vector as the genetic representation. If a

tile is not fully used, we also encode empty blocks (e.g., E1 in

Figure 10) to keep the length of vector the same as the number

of blocks in a tile. During the initialization (Figure 10(a)),

we first generate allocations that group blocks for each layer

together and shuffle the order between different layers. For

each generation, we define the fitness as the execution time

based on hardware simulation (Figure 10(b)). Specifically, our

simulator estimates the execution time by taking in the block

allocation, the layout strategy, and the hardware configuration.

For each generation, the mutation operation randomly swaps

two blocks in the same layer and the crossover operation swaps

the same position in two allocations (Figure 10(c)). We run the

genetic algorithm for 3000 generations to find the near-optimal

block allocation within reasonable time.

V. METHODOLOGY

Compiler Implementation. We implement PIM-DL in

Glow, an open-source machine learning compiler for hetero-

geneous architectures [40]. We instrument the graph lowering

engine of Glow for the data layout optimization. We add a new

back-end of DPIM in Glow, which generates DPIM operation

trace based on the optimized data layout. We then use an in-

house cycle-accurate simulator for evaluation.

TABLE I
HARDWARE PARAMETERS FOR RERAM DEVICE.

kon koff αon, αoff VT,ON VT,OFF xon

−216.2m/s 0.091m/s 4 −1.5V 0.3V 0

xoff RON ROFF Eset Ereset ENOR

3nm 10KΩ 10MΩ 23.8fJ 0.32fJ 0.29fJ

Esearch TNOR Tsearch TSwitch VRESET VSET

5.34pJ 1.1ns 1.5ns 1ns 1V 2V

TABLE II
ARCHITECTURAL PARAMETERS.

Memory Block

Organization #bit-lines (columns) 1024
#word-lines (rows) 1024

Tile

Block array #blocks 256
Dimension 16*16 by default

DPIM System

Organization #tiles 32
Dimension 1*32 linked by chain

Serial links
(Inter-tile)

Bandwidth 160GB/s
Latency 8-cycle

DPIM Simulation. Our simulation adopts a two-step

method which has been widely used in several previous works

on emerging architectures [14], [19], [41]. We first model tim-

ing and energy parameters for operations on different hardware

components using validated circuit-level simulators; and then

use these numbers in the simulator to estimate the performance

of different architecture configurations. We investigate three

widely used memory technologies for DPIM acceleration

including ReRAM [18], DRAM [16], and SRAM [17], [32].

The basic ReRAM technology used in this work is the

Voltage ThrEshold Adaptive Memristor (VTEAM) model [42]

with ION/IOFF ratio of 103. The detailed parameters, in-

cluding both energy and timing, of the VTEAM model is

listed in Table I. We use HSPICE design tool for circuit level

simulations to provide timing and energy results for ReRAM

operations. The DRAM specification used in this work is

extracted from a published datasheet from the industry [43].

We model all CMOS components (including buffers and inter-

connects) in Cacti [44] at 32nm technology. The interconnect

is modeled by Orion 3.0 [45] in 45nm technology, and we

scale the results to 32nm technology.

Hardware Configurations. Our experiments cover a wide

range of hardware configurations, which will be detailed in

corresponding sections. However, the high-level organization

of tile-based architecture is shown in Table II, which has 32

tiles, and each tile has 256 memory blocks. Each memory

block contains 1024 bit-lines and 1024 word-lines, providing

a total size of 8Gb. We investigate three different memory

technologies in the baseline architecture model, and show the

cross-technology results in Section VI-C. We model the on-

chip NoC (inter-block interconnect) with 128-bit channels and

assume 3 cycles for router and 1 cycle for wire as the zero-

load delay [37]. We simulate different structures for inter-block

NoC and show the performance comparison in Section VI-A3.

The inter-tile network is modeled as SerDes link used by HMC
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TABLE III
TESTED DNN MODELS.

Network Depth Width #MACs #Para.
AlexNet [5] 7 1 7.27G 60.97M
DenseNet [8] 120 1 4.87G 25.56M
GoogleNet [7] 21 4 16.04G 7M
InceptionV2 [47] 33 4 12.27G 72.56M
MobileNet [48] 53 1 573.78M 4.23M
ResNet50 [6] 49 2 3.87G 46.72M
Vgg19 [49] 18 1 196.32G 314.12M
SqueezeNet [50] 17 2 861.34M 12.58M

R
ou

te
r

Router

(a) Multi-channel Bus (b) Mesh (c) Forward Broadcast

Fig. 11. Interconnect structures used in our experiments.

with an average 160GB/s bandwidth [46].

DNN Workloads. We use 8 popular DNN models in our

experiments, as shown in Table III, including AlexNet [5],

DenseNet [8], GoogleNet [7], InceptionV2 [47], Mo-

bileNet [48], ResNet50 [6], Vgg19 [49], and SqueezeNet [50].

We test all models on the inference task for ImageNet

dataset [51].

VI. EXPERIMENTS

A. Data Layout Optimization

To verify the efficiency of PIM-DL, we compare it to several

heuristic-based methods which adopt a fixed strategy for all

DNN layers. Furthermore, we conduct such experiment on

various architecture configurations to justify the generality of

PIM-DL.

1) Software and Hardware Baselines: All baseline layout

strategies are fully parallel for either input-level or output-

level. Such strategies are commonly used in previous DPIM

DNN accelerators including FloatPIM [18], Drisa [16], Neu-

ralCache [17]. We denote input-parallel and output-parallel

schemes as In and Out in all figures. For each channel

parallel method, we show results of three fine-tuned mappings

by selecting different degrees of parallelism, denoted as Max,

Mid, and Min. We adopt a sequential block allocation for

all baselines, where blocks allocated to each layer are placed

sequentially in the memory.

All baseline architectures are ReRAM-based static accel-

erators with different interconnect networks as shown in

Figure 11. We test 1 uniform interconnect, Bus, indicating

a global bus shared by all blocks in a tile. Each 8 blocks in a

tile share a channel, giving a 512 GB/s total bandwidth which

is similar to a HMC chip with 32 vaults [46].

We also test 2 non-uniform interconnects: Mesh and

Broadcast as shown in Figure 11. Specifically, Mesh is a

0.6
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Fig. 12. Performance and memory usage results of heuristic-based layout
schemes and PIM-DL with a Bus interconnect for blocks in a tile. The results
are normalized to Out-Max layout.

widely used interconnect in domain-specific accelerators [52],

[53]. Broadcast is a modified version of interconnect used

in FloatPIM [18]. The original interconnect organizes all

blocks in a chain to fit the sequential data transfer pattern of

DNN workloads. However, FloatPIM assumes each block can

process one layer which is different from the generic DPIM

acceleration as analyzed in Section III. In our experiments,

a DNN layer usually requires multiple blocks, leading to a

broadcast data transfer pattern. The Broadcast network

organizes blocks in different column and support single-

direction 1-to-N data transfer between two columns. We group

16 blocks in a column so that each tile has 16 block columns.

For the inter-tile interconnect, all baselines assume a Mesh-

like network in these experiments because our experiments

show that most widely used inter-tile connection networks,

including Mesh, Chain, and Bus, give similar results because

data transfer pattern between tiles is simple.

2) Comparison on Uniform Interconnect: To evaluate the

efficiency of different parts in our optimization, we show

the performance and memory usage on Bus (Figure 12) to

exclude the effect of block allocation optimization. As shown

in the results, the average speedups provided by the data

layout optimization is 18.8% as compared to the output-

parallel layout used in state-of-the-arts (Out-Max). Across

different tested DNNs, the data layout found by our opti-

mization framework can improve the performance by 41.0%
and 13.6% as compared to the worst and the best heuristic-

based methods on average, respectively. The results show that

a single heuristic-based data layout cannot provide the optimal

performance for all scenarios. Furthermore, the optimization

decreases 30.5% memory usage of Out-Max. The results

show that PIM-DL can always provide the best performance,

while heuristics without adaptive layout strategies lead to sub-

optimal performance and memory utilization.

3) Comparison on Non-Uniform Structures: We then com-

pare the data layout optimization with heuristic-based methods

on different interconnect structures. Figure 13 shows the

performance results of Out-Max and the optimized layout

found by our framework on three interconnect structures. All

results are normalized to Bus Out-Max.
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We first investigate the performance improvement provided

by data layout optimization on non-uniform interconnects.

As compared to the fully output-parallel layout, data layout

optimization can provide 1.20× and 1.94× speedup on Mesh
and Broadcast respectively. Such results indicate that PIM-

DL can improve the performance of DPIM DNN acceleration

across a wide range of architectures. Furthermore, PIM-DL

provides more speedup on customized architectures.

Such experiment results also show a significant benefit

provided by interconnect customization. With the data lay-

out optimization, Broadcast is 1.61× faster than Mesh.

Furthermore, Broadcast interconnect requires 81.1% less

area as compared to Mesh interconnect. Such improvements

on area efficiency come from significantly less routers, even

though each router takes larger area because of large multi-

plexer.

B. Applicability to other DPIM Accelerators

We apply PIM-DL to previous DPIM accelerators by mod-

eling costs of different operations based on the specific archi-

tecture design. We first utilize PIM-DL on FloatPIM [18] as

an example. Figure14(a) shows the percentage of layers using

different data layout schemes decided by the optimization. The

result shows that over 95% of layers can improve the per-

formance by using fine-tuned strategies. We should note that

only 1% layers keep using the original scheme of FloatPIM

(fully output-parallel). Figure 14(b) shows the normalized time
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Fig. 15. Performance and energy improvements on NeuralCache [17].
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Fig. 16. PIM-DL data layout of InceptionV2 on NeuralCache [17].

breakdown of the original FloatPIM and our optimization. The

result shows that the optimization can significantly reduce the

data movement overhead, leading to a 2.5× speedup over the

original FloatPIM.

Even though PIM-DL is mainly designed for DPIM DNN

accelerators using static computing model, we can still achieve

performance improvement by data layout optimization in

dynamic DPIM accelerators like NeuralCache [17]. Since the

dynamic DNN acceleration exploits the whole memory for

each layer, we can still explore different mappings to find

the most efficient layout for each layer. Figure 15 shows the

performance and energy efficiency improvements provided by

our exploration, which are 2.6× and 1.5× respectively.

Figure 16 shows detailed layout strategies for all layers

in InceptionV2 determined by our optimization. Similar to

previous experiments, In and Out indicate input-parallel and

output-parallel layouts respectively. The number from 1 to

5 denotes different fine-tuned layouts based on input-parallel

and output-parallel. For example, OUT-1 is the fully output-

parallel layout which is used by NeuralCache [17] for all

layers. The result shows none of layers adopts the original

strategy. These results indicate that PIM-DL is applicable to

dynamic DPIM DNN inference.

C. Data Layout Aware HW/SW Co-Design

Experiments in Section VI-A3 indicate the software-

hardware co-design with optimized data layouts is promising

to improve the performance of state-of-the-arts. In this section,

we utilize the Broadcast interconnect to build customized

accelerators based on three widely used DPIM memory tech-

nologies: ReRAM, DRAM, and SRAM. We adopt PIM-DL in

these customized accelerators and compare the performance

with several state-of-the-art accelerators as shown in Table IV.

For fair comparisons, we use the same memory size for each

proposed architecture (SysR, SysD, SysS) as the state-of-the-
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TABLE IV
DPIM SYSTEMS FOR COMPARISON.

Systems Technology Mode Interconnect Configuration Area (mm2)
SysR ReRAM Static Broadcast 32 tiles - 8Gb/tile 40.9
SysD DRAM Dynamic Broadcast 8Gb 31.0
SysS SRAM Dynamic Broadcast 35MB 210.3
FloatPIM [18] ReRAM Static Chain 32 tiles - 8Gb/tile 30.6
Drisa [16] DRAM Dynamic Bus 8Gb 28.5
NeuralCache [17] SRAM Dynamic Bus 35MB 189.8
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Fig. 17. Performance and energy results of different systems (averaging across
all DNNs). All results are normalized to FP and higher values are better.

art using the same memory technology. For static accelerators

that cannot fit all layers in the memory (e.g., SysD and SysR),

we use a hybrid static/dynamic acceleration and PIM-DL

supports this hybrid mode by removing the cross-tile cost in

the global optimization. All results are divided by the area of

the corresponding systems because of the diversity in system

size. All systems run DNN inference workloads with 8-bit

fixed-point values. Figure 17 shows the average results across

tested DNNs and all values are normalized to SysR.

As compared to the previous accelerator using the same

memory technology, each of our customized architectures

can provide improvements in both performance and energy

efficiency. Specifically, SysR is 3.7× faster and 2.0× more

energy-efficient than FloatPIM [18]; SysD is 2.7× faster and

4.3× more energy-efficient than Drisa [16]; SysS is 2.0× faster

and 2.8× more energy-efficient than NeuralCache [17]. These

results show that the combination of data layout optimization

and interconnect customization can significantly improve both

performance and energy-efficiency for different technologies

and acceleration modes.

We further compare the results across different memory

technologies used in our customized architectures. The nor-

malized performance/area improvements of SysR, SysD and

SysS are 3.7, 3.1, and 5.14 respectively; the normalized

improvements of energy-efficiency of SysR, SysD and SysS

are 2.0, 0.4, and 0.6 respectively. Based on such results, the

DRAM-based system (SysD) has the worst performance and

energy efficiency because of the low density and the large

overhead of PIM-enabled circuit [16]. SysS provides the best

performance result, which is 1.4× faster than SysR, but it

consumes 3.3× more energy/area. Such results indicate Non-

volatile memories, like ReRAM, would be more efficient

than conventional memory DRAM and SRAM technologies

because of its high density and energy efficiency. However,

we should note that NVM-based accelerators can only support

static acceleration mode because it would be too expensive

to frequently load weights through time-and-power-consuming

write operations.

VII. RELATED WORK

Memory-centric DNN Accelerators. There are mainly

three categories of memory-centric technologies - near-data

computing (NDC) [37], [54], APIM [14], [15], [19], [55],

and DPIM [16]–[18], which have been extensively explored

to accelerate DNN applications. For example, Tetris [37] pro-

poses a scheduling and partition algorithm for a NDC-based

DNN accelerator to efficiently map the row-stationary DNN

dataflow [41] in 3D stacked memory [46] with maximum data

reuse. PUMA [56] is a data-flow accelerator which allocates

MVM operations in DNNs on a spatial APIM architecture

based on compiler optimizations. The approach proposed by

Ji et al. [57] maps NN applications into APIM NN chips.

However, the architectures targeted in these work are similar

to conventional hierarchical spatial accelerators. As illustrated

in Section III, the data layout problem in DPIM cannot be

fully represented by such mapping convention.
Data-traffic Optimization for DNN. Because of the large

data and model size in modern DNNs, the data traffic has

become one of the major bottlenecks in various systems [58]–

[62]. HyPar [58] proposes a hierarchical dynamic program-

ming method to determine layer-wise parallelism for deep

neural network training with an array of DNN accelerators.

The cost models of HyPar are based on partitions of dif-

ferent tensors, which are mapped to the accelerator array.

AccPar [63] further supports mapping on heterogeneous accel-

erators. Tofu [59] automatically partitions DNN models across

multiple GPU devices to reduce per-GPU memory footprint as

well as the total communication cost. MEDNN [62] optimizes

the distribution of DNNs on multiple mobile devices. All these

works focus on operation-level partitioning across multiple

general-purpose processing units, without further considering

data layout. They are orthogonal to the DPIM architectures

which require more sophisticated data layout strategies.

VIII. CONCLUSION

In this work, we comprehensively investigate the data layout

issue in DPIM DNN acceleration by representing the layout

problem to a mapping framework with both DPIM-specific

design dimensions. We then propose an efficient optimization

algorithm to generate the good-performing DPIM data layout

for general DNN workloads. We conduct several experiments

to evaluate the efficiency of proposed data layout optimization

and show that PIM-DL provides 3.7× speedup and 4.3× better

energy efficiency on a wide range of DPIM DNN accelerators

as compared to existing layout strategies.
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