
On Bitcoin Cash’s Target Recalculation Functions

Juan Garay
Department of Computer Science and Engineering

Texas A&M University
garay@tamu.edu

Yu Shen∗

School of Informatics
University of Edinburgh

yu.shen@ed.ac.uk

ABSTRACT

Bitcoin Cash, created in 2017, is a “hard fork” from Bitcoin respond-

ing to the need for allowing a higher transaction volume. This is

achieved by a larger block size, as well as a new di�culty adjust-

ment (target recalculation) function that acts more frequently (as

opposed to Bitcoin’s di�culty adjustment happening about every

two weeks), resulting in a potentially di�erent target for each block.

While seemingly achieving its goal in practice, to our knowledge

there is no formal analysis to back this proposal up.

In this paper we provide the �rst formal cryptographic analysis

of Bitcoin Cash’s target recalculation functions—both ASERT and

SMA (current and former recalculation functions, respectively)—

against all possible adversaries. The main distinction with respect

to Bitcoin’s is that they are no longer epoch-based, and as such

previous analyses fail to hold. We overcome this technical obstacle

by introducing a new set of analytical tools focusing on the “cal-

ibration” of blocks’ timestamps in sliding windows, which yield

a measure of closeness to the initial block generation rate. With

that measure, we then follow the analytical approach developed in

the Bitcoin backbone protocol [Eurocrypt 2015 and follow-ups] to

�rst establish the basic properties of the blockchain data structure,

from which the properties of a robust transaction ledger (namely,

Consistency and Liveness) can be derived.

We compare our analytical results with data from the Bitcoin

Cash network, and conclude that in order to satisfy security (namely,

properties satis�ed except with negligible probability in the security

parameter) considerably larger parameter values should be used

with respect to the ones used in practice.

ACM Reference format:

Juan Garay and Yu Shen. 2021. On Bitcoin Cash’s Target Recalculation

Functions. In Proceedings of 3rd ACM Conference on Advances in Financial

Technologies, Arlington, VA, USA, September 26–28, 2021 (AFT ’21), 13 pages.

https://doi.org/10.1145/3479722.3480998

1 INTRODUCTION

While opening up a new era in the area of cryptocurrencies, Nakamoto’s

Bitcoin protocol [11, 12] has been critized for its heavy use of the

computational resources needed by its underlying proof of work

(PoW) mechanism as well as its relatively long settlement time of

transactions. As a consequence, a number of alternative cryptocur-

rencies have been proposed with the purpose of ameliorating the

above issues. One such proposal is Bitcoin Cash (BCH)1, created

in August 2017 as a “hard fork” of Bitcoin, with the original mo-

tivation of increasing the size of blocks, and thus allowing more

transactions to be processed.

∗Work done while the author was at Texas A&M University.
1https://www.bitcoincash.org/.

Due to lesser prominence and popularity, the computational

“investment” on these alternate cryptocurrencies is relatively low

(for example, the hashing power invested on Bitcoin Cash is ap-

proximately 5% of that on Bitcoin). Moreover, miners are able to

evaluate their expected reward and rapidly switch among di�erent

blockchains in order to achieve a higher pro�t, giving rise to an

environment where the number of participating miners on these

minor blockchains may �uctuate wildly, which in turn has a direct

e�ect on suitable di�culty (of PoWs’) recalculation mechanisms2.

The above two aspects—desired higher transaction throughput

and higher participation variation—are the motivation for this work.

We focus on Bitcoin Cash as a representative of a newly proposed

target recalculation function, and perform a formal analysis of the

protocol’s security under such dynamic environment. The impor-

tance of an adequate target recalculation mechanism has already

been pointed out in [5], where it is observed that if it is removed,

the blockchain protocol becomes insecure in the dynamic setting

even if all parties behave honestly, resulting in a blockchain that

will diverge substantially (i.e., spawning “forks”) as the number

of miners keeps increasing, thus becoming vulnerable to many

known cryptographic attacks. Furthermore, an inadequate target

recalculation function may break the balance between miners’ in-

vested hashing power and reward, thus reducing their con�dence

in the system and leading them to quit the mining pool, arguably a

situation that should be avoided.

Bitcoin Cash’s target recalculation algorithm has gone through

three stages.When created, the recalculationmechanismwas a com-

bination of Bitcoin’s target recalculation function and an emergency

di�culty adjustment (EDA) mechanism, which would suddenly en-

large targets by 25% (i.e., decrease mining di�culty by 20%) if the

block generating interval of 6 blocks exceeds 12 hours.

In November 2017, this initial function was replaced by a new

function called SMA (for Simple Moving Average, or “cw-144”). At

a high level, SMA is analogous to Bitcoin’s recalculation function

in the sense that it determines the next target based on an “epoch”

of blocks, except that in the new algorithm the target value is re-

calculated more frequently—in fact, the target for each block varies.

Moreover, the epoch of blocks changes with every block in a “sliding

window” fashion. Generally speaking, the SMA function calculates

target for the next block based on the length of the epoch and the

average target of the blocks in the epoch.

Finally, the recent (November 2020) update introduces a control-

theory-inspired recalculation function called ASERT (for Absolutely

Scheduled Exponentially Rising Targets) [15]), which is completely

di�erent from previous recalculation functions. ASERT is not epoch-

based, and adjusts the di�culty level of each block simply based

on its timestamp and height di�erence with the “anchor” block.

2As a reference, Bitcoin adjusts the PoWs’ di�culty level every 2016 blocks – approxi-
mately every two weeks.

192

AFT ’21, September 26–28, 2021, Arlington, VA, USA Juan Garay and Yu Shen

Speci�cally, once an anchor block is chosen, a timestamp can be

computed for all the subsequent blocks according to its height

and ideal block generating interval. The di�cult adjustment is an

exponential function of the block’s timestamp deviation from its

scheduled timestamp. the target changes is controlled by a “smooth-

ing factor” <, which we will show is a crucial parameter in our

analysis.

Overview of our results. Our main contribution is establishing

under what conditions regarding party �uctuation Bitcoin Cash’s

target recalculation functions (both ASERT and SMA) achieve a

steady and close to ideal block generation rate, given that they are

not epoch-based, and the recalculation mechanism is invoked for

every block—and further, in the case of ASERT, that it is “memory-

less,” meaning that the target for one block is only decided by

the current timestamp and the block’s height. As such, previous

analyses based on the duration of an epoch no longer hold, and

new analytical tools are needed.

As in prior work on dynamic environments, bounds on the ways

that miners come in and drop out of the computation are necessary

for things to work. We suggest a new methodology to capture how

the number of parties can �uctuate. In a nutshell, our de�nition

is comprised of two parts concerning both short-term and long-

term participation. In such context, we �rst (Section 3) perform a

preliminary analysis of the ASERT function to establish whether

in a suitable respecting environment, the blocks in chains created

according to the function will have blocks with timestamps to

make the probability of producing the next blocks close to the

ideal block generation rate (we will call such timestamps “good”).

Through a closeness measure based on “calibrated timestamps” and

probabilitic analysis we conclude that they do.

Our conclusions then serve as a crucial part of the complete

security analysis (Section 4), where, following [4, 5], we present an

abstraction of the protocol we term the Bitcoin Cash backbone, and

follow the “template” of establishing two main properties of the

blockchain data structure—“common pre�x” and “chain quality”—

which serve as an intermediate step to build a robust transaction

ledger. As a result, (our abstraction of) the Bitcoin Cash protocol

with chains of variable di�cult using the ASERT function running

in a bounded-delay network and suitably parameterized, satis�es,

with overwhelming probability, the properties of consistency and

liveness.

In addition (Section 5), we also provide a description and high-

level analysis of Bitcoin Cash’s previous target recalculation func-

tion SMA. Even though the function has now been deprecated, it

provides insights and elements of comparison against ASERT with

regard to party �uctuation.

Finally (Section 6), we compare our results with data from the

Bitcoin Cash network, from which we extract the actual party

�uctuation rate and network delay. Our main conclusion is that in

order to satisfy security (namely, properties satis�ed except with

negligible probability) increased parameter values should be used

with respect to the ones used in practice—speci�cally, a larger

value of< (the smoothing factor in ASERT and epoch length in

SMA)–concretely,< = 432, compared to the value< = 288 that

is being used in ASERT (which in turn corresponds to 2 days)—

should be adopted. In addition, regarding the SMA function, a

larger dampening �lter g = 8 in the SMA function should be used,

instead of g = 2, which is the value that was last used. Lastly, our

comparison with the existing Bitcoin Cash network shows that the

ASERT function performs better than the SMA function under a

pronounced party �uctuation.

Due to space limitations, some of the proofs, detailed protocol

descriptions, and other complementary material are presented in

the full version of this paper [7].

2 PRELIMINARIES

In this section we present the network model where we analyze

Bitcoin Cash’s target recalculation functions as well as the Bitcoin

Cash protocol abstraction, as well as some basic blockchain notation.

These notions and terminology follow closely [5, 6], and therefore

the presentation here is succinct, except for the extension of the

notion of respecting environments with respect to [6]. More formal

details about the model are presented in the full version [7].

Model. We describe our protocol in the bounded-delay (aka “par-

tially synchronous”) network model considered in [6, 13], where

there is an upper bound � in the delay (measured in number of

rounds) that the adversarymay in�ict to the delivery of anymessage.

The precise value of � will be unknown to the protocol. “Rounds”

still exist in the model, but now these are not synchronization

rounds where messages are supposed to be delivered to honest par-

ties (“miners”). At any given time (round), a fraction of the parties

may be “corrupted” and controlled by an adversary A, directing

them to behave in an arbitrary and potentially malicious manner.

The underlying communication graph is not fully connected and

messages are delivered through a “di�usion” mechanism.

As in [6], we assume a dual hash function/network functionality

that is available to all parties running the protocol and the adversary,

and which abstracts the access of the parties to the hash function

and the network. The hash function aspect relates to the parties

attempting to solve “proofs of work” (PoW) [3] during the execution

of the protocol, and is modeled as parties having access to the

oracle � (·). In our analysis, each honest party %8 is allowed to ask

one query to the oracle in each round, but unlimited queries for

veri�cation. The adversary A, on the other hand, is given at each

round A a number of queries that cannot exceed CA . The “di�usion”

aspect of the communication allows the order of messages to be

controlled by A. Furthermore, the adversary is allowed to spoof

the source information on every message (i.e., communication is

not authenticated).

Garay et al. [6] refer to the setting de�ned by the two series

n = {=A }A 2N and t = {CA }A 2N, representing the number of “ready”

honest parties and the bound on corrupted parties that may be

activated at each round A , with the above bounded access to the

random oracle functionality, as the dynamic setting. As pointed

out in [5], protocol’s properties cannot be satis�ed under arbitrary

sequences of parties, and restrictions are in order. In our model,

one important di�erence with respect to [5, 6] is the bound on

the short-term variation of the number of parties, in addition to

the long-term bound, which results in the following de�nition of

accepted variation terms on the number of parties3:

3De�nition 2.1 is consistent with the notion introduced in [5], except that there the
party �uctuation is expressed with respect to the number of honest parties. Note that

193

On Bitcoin Cash’s Target Recalculation Functions AFT ’21, September 26–28, 2021, Arlington, VA, USA

De�nition 2.1. For W, � 2 R+, we call a sequence (=A)A 2N (hW,fi,

h�, ⌃i)-respecting if it holds that in a sequence of rounds (with

|(|  ⌃ rounds,maxA 2(=A  � ·minA 2(=A and for any consecutive

sub-sequence rounds (0 4 (with |(0 |  f rounds, maxA 2(0 =A 

W ·minA 2(0 =A .

Blockchain notation. A block is a quadruple of the form ⌫ =

hA , BC, G, 2CA i with BC 2 {0, 1}^ , G 2 {0, 1}⇤ and A , 2CA 2 N. They sat-

isfy the predicate validblock)@ (⌫) de�ned as (� (2CA ,⌧ (A , BC, G)) <

)) ^ (2CA  @) where ⌧ (·),� (·) are cryptographic hash functions

with output in {0, 1}^ . A blockchain is a sequence of blocks. The

rightmost block is the head of the block denoted head(C). Note

that the empty string Y is also a chain and head(Y) = Y. A chain

Cwith head(C) can be extended by appending a valid block ⌫ =

hA 0, BC 0, G 0, 2CA 0i that satis�es (BC 0 = � (2CA ,⌧ (A , BC, G))) ^ (A 0 > A).

By convention, any valid block may extend the chain C = Y. The

length of a chain len(C) is its number of blocks. Consider a chain C

of length ✓ and any nonnegative integer : , we denote by C d: the

chain resulting from “pruning” the : rightmost blocks. Note that

for : � len(C), C d: = Y. If C1 is a pre�x of C2 we write C1 4 C2.

For chains C1 and C2, de�ne C1 \ C2 to be the chain formed by

their common pre�x.

3 BITCOIN CASH

A salient distinction of Bitcoin Cash (in addition to the size of blocks)

with respect to Bitcoin is its target recalculation function—ASERT.

Intriguingly, and in contrast to SMA, this function is “memory-

less,” so one thing we would like to �nd out right away is whether

such a function is able to maintain, under the conditions allowed

by our model, a steady block generation rate. If that’s the case,

we will then proceed with the protocol abstraction and analysis

to establish under what values of parameters the blockchain and

ledger properties (cf. Section 4) can be satis�ed. (The latter is also

required for the SMA analysis.)

3.1 The ASERT Target Recalculation Function

The November 2020 Bitcoin Cash update introduced a new di�culty

adjustment algorithm, called ASERT (for “Absolutely Scheduled

Exponentially Rising Targets”), aimed at achieving a stable block

generation interval and transaction con�rmation time as well as

reducing the advantage of non-steady mining strategies. The new

algorithm is derived from the control theory literature, and, specif-

ically, from the notion of Exponentially Moving Average (EMA), a

type of moving average that places greater weight on the most

recent data points, in contrast, to Simple Moving Average (SMA,

the previous target recalculation function), which applies an equal

weight to all the observations in the period. For additional details,

refer to [15], where a mathematical derivation of this function based

on exponential smoothing, a common technique for removing noise

from time series data, is provided.

ASERT adjusts the target based on the anchor block, i.e., a block

whose target is denoted by)0, and is used as a reference for all

subsequent blocks. We use 5 2 (0, 1) to denote the ideal block

generation rate (and thus 1/5 represents the ideal block generation

the two �uctuations are related by a constant (concretely, 2 � X ; see Table 1). As it
turns out, expressing statements in terms of honest-party �uctuation will considerably
simplify them.

interval). At a high level, for a given block, ASERT compares its

timestamp with the scheduled timestamp, which is a product of

the ideal block generating interval and the block’s height di�erence

(e.g., for the 8-th block, it is (8 � 1)/5). If the block’s timestamp

is ahead of the scheduled time, which means that the number of

miners is larger than that corresponding to the anchor block, ASERT

decreases the target (i.e., raises the di�culty of generating a block);

if it falls behind the scheduled time, then the target is increased

(i.e., the di�culty is reduced).

The amount by which the target is changed is based on a value<,

the decay or smoothing factor. Speci�cally, the target is adjusted ex-

ponentially based on the ratio of time di�erence and the smoothing

time (i.e.,</5). For example, if the smoothing time is 2 days, then

a block with a timestamp 2 days ahead of the scheduled timestamp

would have a target whose value is half of the anchor target’s.

Formally, ASERT is de�ned as follows. (Note that we assume the

anchor block to be the �rst block and timestamps start at 0.)

De�nition 3.1 (ASERT). For �xed constants<,)0, the target cal-

culation function ⇡ASERT : Z⇤ ! R is de�ned as

⇡ASERT (Y) =)0 and ⇡ASERT (A1, . . . , AE) =)0 · 2
(AE�(E�1)/5)/(</5)

,

(1)

where (A1, . . . , AE) corresponds to a chain of E blocks with A8 the

timestamp of the 8-th block.

Note that, as opposed to Bitcoin’s target recalculation algo-

rithm [5] and also to Bitcoin Cash’s recalculation function (SMA,

Section 5), ASERT is not epoch based. Moreover, and as mentioned

earlier, ASERT is memoryless—i.e., the target for one block is only

decided by the current timestamp and the block’s height. No matter

what timestamps the previous blocks have, theywould not in�uence

the current block’s target value.

Removing the function’s “dampening” �lter raises the question

of whether it would su�er from Bahack’s raising di�culty attack

[1]. It turns out that it does not, since Equation (1) intrinsically

prevents the di�culty from a sudden sharp increase. Concretely, as-

suming monotonically increasing timestamps, even if the adversary

produces< blocks with the same timestamp, he can only double

the di�culty value.

3.2 ASERT: Preliminary Analysis

We now provide a preliminary analysis of the ASERT function to

establish whether in a suitable environment, the blocks in chains

created according to the function will have blocks with timestamps

to make the probability of producing the next blocks close to the

ideal block generating rate. (With foresight, we will call such times-

tamps “good.”) Our preliminary conclusions will then serve as a

crucial part of the complete security analysis, after we introduce

the Bitcoin Cash protocol abstraction.

Our security parameter is hash function length ^ , and we let the

smoothing factor< = polylog(^). Our probability space is over all

executions of length at most some polynomial in ^ . We will denote

by Pr the probability measure of this space.

We use =A to denote the total number of parties at round A ([5, 6]

uses =A to denote the number of honest parties), and CA to denote the

number of corrupted parties. Thus, the number of honest parties at

round A is =A � CA . For simplicity, we use ⌘A = =A � CA . This follows

194

AFT ’21, September 26–28, 2021, Arlington, VA, USA Juan Garay and Yu Shen

the tradition in the secure multiparty computation literature and

the notation in [4].

Recall that in our model, each party’s query bound to the random

oracle (RO) per round is @ = 1. Now suppose that at round A exactly

= parties query the RO with a target) . Then the probability that at

least one of them will succeed is

5 () ,⌘) = 1 � (1 � ?))⌘  ?⌘) , where ? = 1/2^ .

We let 50 = 5 ()0,⌘0), where)0 and ⌘0 are the initial target and

estimate of number of honest parties, respectively. The objective

of the target recalculation mechanism is to maintain a target) for

each party such that 5 () ,⌘A) ⇡ 50 for all rounds A . For notational

simplicity, we will drop the subscript from 50, and will always

specify the two arguments of 5 (·, ·) to avoid confusion.

We say round A is a target-recalculation point of a valid chain

C, if there is a block with timestamp A . Recall that our goal is to

show that all the target recalculation points on a chain using the

ASERT function are “good.” How close should the corresponding

generation rate (namely, ?⌘A)) be?

Intuitively, the block generation rate should satisfy 5 /�  ?⌘A) 

�5 , when considered in a respecting environment with long-term

party �uctuation ratio � (recall De�nition 2.1). Moreover, adver-

sarial parties can choose to keep silent, hence decelerate the block

production process. One might consider adding an honest-party

advantage, say, X to the lower bound—i.e., 5 /(2 � X)�  ?⌘A)  �.

As we shall see, it turns out that this modi�cation is not su�cient

for a satisfactory security analysis, and is inadequate to absorb all

the errors in our model. I.e., the adversary would be able to wait for

an appropriate moment to act and then disturb the regular block

production. Consequently, we need a looser bound to compensate

for adversarial behavior as well as for errors introduced by the

(peer-to-peer and dynamic) network. Taking this into account, we

proceed to de�ne a “good” target-recalculation point:

De�nition 3.2 (Goodness). A target-recalculation point A is good if

the target) for the next block satis�es 5 /2(2�X)�3  ?⌘A)  2�3 5 .

As mentioned above, ASERT not being epoch-based means that

previous analyses regarding the “goodness” of recalculation points

for Bitcoin [6] (as well as for SMA—Section 5) do not hold.

We start our analysis by presenting some basic observations

regarding the ASERT function. Note that the target for the next

block is merely related to the block’s timestamp and height. For

the 8-th block with timestamp A and corresponding number of

honest parties ⌘A , it is not hard to see that if A = (8 � 1)/5 +

(</5) log(⌘0/⌘A), the 8-th block would have block generation rate

exactly 5 . We call this timestamp A the calibrated timestamp for

block ⌫8 . In addition, A is a good target recalculation point if it

satis�es

8 � 1

5
+
<

5
log(2(2�X)�3 ·

⌘0

⌘A
)  A 

8 � 1

5
+
<

5
log(2�3 ·

⌘0

⌘A
). (2)

We now de�ne a new random variable to describe the deviation

of timestamps: We use -8 to express by how much the 8-th block

deviates from its calibrated timestamp. For the 8-th block with

timestamp A8 and number of honest parties ⌘8 ,

-1 = 0 and -8+1 = -8 + (A8+1 � A8) �
1

5
�
<

5
log

⌘8+1

⌘8
for 8 � 0.

The three parts in the de�nition of -8+1 are as follows: (1) (A8+1 �

A8) represents the di�erence between their timestamps, (2) 1/5 is

the ideal block interval, and (3) (</5) log(⌘8+1/⌘8) is the di�er-

ence between the respective number of honest parties. For “good”

blocks, variable -8 should satisfy �(</5) log 2(2 � X)�3  -8 

(</5) log 2�3.

As de�ned, -8 is sensitive to the �uctuation of number of par-

ties. Since we can only bound the �uctuation rate during a �xed

number of rounds, -8 is not suitable for the analysis. To over-

come this, we consider a new random variable,8 within a (hW, ✓ +

2∆i, h�, 4(</5) log �i)-respecting environment, and then show that

if this new random variable satis�es certain conditions, then -8
presented above satis�es the ideal bound (2).

In more detail, we consider the calibrated timestamp A = (8 �

1)/5 + (</5) log(⌘0/⌘A), and a sliding window of 4(</5) log �

rounds starting with block ⌫D and number of honest parties ⌘D .

For each subsequent block in this window, we replace ⌘A with ⌘D
and call A 0 = (8 � 1)/5 + (</5) log(⌘0/⌘D) the relatively calibrated

timestamp with respect to ⌫D for 8-th block ⌫8 , 8 � D. We can now

de�ne a new random variable,8 expressing by how much the 8-th

block deviates from its relatively calibrated timestamp (wrt ⌫D).

That is, for 8-th block with timestamp A8 ,

,D = -D and,8+1 =,8 + (A8+1 � A8) �
1

5
for 8 � D .

Now the de�nition of the random variable only consists of two

parts: The di�erence between their timestamps, and the ideal block

interval. For good target recalculation points,,8 should satisfy

�
<

5
log 2(2 � X)�2 ,8 

<

5
log 2�2 .

Next, we de�ne seven states based on values of the random

variable,8 . Studying the possible transitions between them allows

us to establish that target recalculation points are good. Refer to

Figure 1. Let⌘max,⌘min denote themaximum andminimumnumber

of parties during the sliding window, respectively.

HotLe�i ,,8 < �
<

5
log 2(2 � X)�2

VolatileLe�Outeri , �
<

5
log 2(2 � X)�2 ,8 < �

<

5
log 2(2 � X)�

VolatileLe�Inneri , �
<

5
log 2(2 � X)� ,8 < �

<

5
log

2(2 � X)⌘max

⌘D

Cold8 , �
<

5
log

2(2 � X)⌘max

⌘D
,8 

<

5
log

2⌘D

⌘min

VolatileRightInneri ,
<

5
log

2⌘D

⌘min
<,8 

<

5
log 2�

VolatileRightOuter ,
<

5
log 2� <,8 

<

5
log 2�2

HotRighti ,,8 >
<

5
log 2�2

States VolatileLe�Outer and VolatileRightOuter are of �xed

length (</5) log �, while states VolatileLe�Inner and VolatileRight

Inner are of length at most (</5) log �. These lengths will play a

signi�cant role in the following analysis of the ASERT function.

195

On Bitcoin Cash’s Target Recalculation Functions AFT ’21, September 26–28, 2021, Arlington, VA, USA

Figure 1: The states based on the values of random variable,8 .

HotLeft VolLeftOuter VolLeftInner Cold VolRightInner VolRightOuter HotRight

m

f
log

m

f
log

m

f
log

m

f
log

m

f
log 2(2) 2

m

f
log 2 20

m

f
log 2(2)

m

f
log 2

We aim to show that for blocks ⌫D , . . . ,⌫E generated in an inter-

val of length 4(</5) log � rounds, the following holds:

ñ For a block ⌫8 , 8 > D with,8 (w.r.t. ⌫D) in state Cold, we can

construct a new 4(</5) log �-round sliding window with,8

(w.r.t. ⌫8) in state VolatileLe�Inner, VolatileRightInner or Cold.

ñ If,D is in state VolatileLe�Inner, VolatileRightInner or Cold,

the probability of,8 , 8 > D reaching HotLe� or HotRight is

negligible.

ñ If,D is in state VolatileLe�Inner,VolatileRightInner or Cold,

,8 , 8 > D will return to Cold with overwhelming probability.

Lemma 3.3 below follows from the de�nition of each state and

party �uctuation; Lemma 3.4 establishes a basic property the volatile

states satisfy.

L���� 3.3. For a block ⌫E , if,E w.r.t. ⌫D is in state Cold, then

,E w.r.t. ⌫E is in state VolatileLe�Inner,VolatileRightInner or Cold.

P����. Consider ,E w.r.t. ⌫D , -E = ,E + (</5) log(⌘E/⌘D).

Combining it with ColdE as well as ⌘max  � ·⌘E,⌘E  � ·⌘min, we

get

�
<

5
log 2(2 � X)�  �

<

5
log

2(2 � X)⌘max

⌘D
+
<

5
log

⌘E

⌘D

 -E =,E +
<

5
log

⌘E

⌘D


<

5
log

2⌘D

⌘min
+
<

5
log

⌘E

⌘D


<

5
log 2�.

By the de�nition of,E w.r.t. ⌫E ,,E = -E , therefore in state Volatile

Le�Inner, VolatileRightInner or Cold. ⇤

L���� 3.4. Until the next block is produced, if ,8 is in state

VolatileLe�Outer or VolatileLe�Inner, the block generation rate is

always below 5 /2; if,8 is in state VolatileRightInner or Volatile

RightOuter, the block generation rate is always above 25 .

P����. For the �rst part, our goal is to show that even if the

adversary and the honest parties join force, they cannot achieve a

block generation rate over 5 /2. Suppose the 8-th block has times-

tamp A and number of honest parties ⌘A . If,8 < �(</5) log[2(2 �

X)⌘max/⌘D], the target of ⌫8 satis�es

)A <)0 · 2
(8�15 +<

5 log
⌘0
⌘D
�<

5 log
2(2�X)⌘max

⌘D
� 8�1

5)/(</5)

=

)0

2
·

⌘0

(2 � X)⌘max

)0

2
·

⌘0

(2 � X)⌘A
.

Therefore, the block generating rate at round A is ?)A⌘A <

5 /[2(2 � X)]. Note that ?)A⌘max < 5 /[2(2 � X)] as well, which

implies that while the number of honest parties may raise during

the rounds till the next block will be produced, the block gener-

ating rate will never exceed 5 /[2(2 � X)]. Moreover, the adver-

sary may join force to accelerate the block production. Recall that

8A , CA  (1 � X)⌘A , after the adversary joins, the block production

rate is still below 5 /2.

For the second part, we prove that the block generation rate

will not fall below 25 when the honest parties keep working by

themselves. Similarly, assuming the 8-th block has timestamp A and

number of honest parties ⌘A as well as,8 � (</5) log(2⌘D/⌘min).

Thus, the corresponding target

)A >)0·2
(8�15 +<

5 log
⌘0
⌘D

+<
5 log 2⌘D

⌘min
� 8�1

5)/(</5)
= 2)0·

⌘0

⌘min
� 2)0·

⌘0

⌘A
.

This implies ?)A⌘min > 25 . Thus, we get that the block generation

rate is always above 25 . ⇤

We are now ready to establish the probability of “escaping” from

a volatile state to a hot state.

L���� 3.5. Consider blocks ⌫D , . . . ,⌫E with timestamps AE �AD 

4(</5) log � in a (hW, ✓ + 2∆i, h�, 4(</5) log �i)-respecting envi-

ronment. If,D is in state VolatileLe�Inner,VolatileRightInner or

Cold, the probability of,8 , 8 > D, reaching HotLe� or HotRight is

negligible.

P����. Regarding the probability of escaping from VolatileLe�

Outer, by Lemma 3.4, at every round it will succeed producing a

block with probability at most 5 /2. We view the number of blocks

produced as a binomial distribution with success probability 5 /2.

And, for worst case,,8 begins at the leftmost point in VolatileRight

Inner, it has to go leftwards for (</5) log � in order to reach Hot

Le�.

Since,8+1 =,8 + (A8+1 � A8) � 1/5 , we get,E =,D + AE � AD �

(D � E)/5 . Assume now,D = �(</5) log 2(2� X)�, if,E is in Hot

Le�, AE � AD � (D � E)/5 < �(</5) log �. Obviously, this will never

happen in the �rst (</5) log � rounds. For the rounds with index in

{(</5) log � + 1, . . . , 4(</5) log �}, split them into segments with

length 1/5 . For A in 8-th segment with index {(</5) log � + (8 �

1)/5 + 1, . . . , (</5) log � + 8/5 }, suppose we produce a block ⌫E ,

in expectation, parties will succeed for b(< log � + 8 � 1)/2c times

in these rounds. If they succeed for more than (< log � + 8) times,

then AE � AD � (D � E)/5 < �(</5) log �, thus reach HotLe�.

Note that< log � + 8 � 2 · b(< log � + 8 � 1)/2c always holds.

By Theorem A.1, let /8 , . . . ,/) () = A) be independent variables

with E[/8] = 5 /2 and /8 2 {0, 1}. Let / =

Õ)
8=1 /8 , ` =

Õ)
8=1 5 /2 =

196

AFT ’21, September 26–28, 2021, Arlington, VA, USA Juan Garay and Yu Shen

E[/] = b(< log � + 8 � 1)/2c � < log �. Then, for Λ = 1, we get

Pr[/ � (1 + Λ)`]  exp
h
�

Λ
2

2 + Λ
·< log �

i
 2�⌦ (<)

.

Eventually, this may happen for 3(</5) log � times, thus we get

the negligible escape probability

1 � (1 � 2�⌦ (<))
3<5 log �

� 3
<

5
log � · 2�⌦ (<)

= 2�⌦ (polylog(^))
.

Consider the probability of escaping from VolatileRightOuter, by

Lemma 3.4, at every round it will succeed producing a block with

probability at least 25 . We view the number of blocks produced as

a binomial distribution with success probability 25 . And, for worst

case,,8 begins at the rightmost point in VolatileRightInner, it has

to go rightwards for (</5) log � in order to reach HotRight.

Since,8+1 = ,8 + (A8+1 � A8) � 1/5 , we get,E = ,D + AE �

AD � (D � E)/5 . Assume now,D = (</5) log 2�, if,E is in Hot

Right, AE � AD � (D � E)/5 > (</5) log �. Again, this will never

happen in the �rst (</5) log � rounds. For the rounds with index in

{(</5) log � + 1, . . . , 4(</5) log �}, split them into segments with

length 1/5 . For A in 8-th segment with index {(</5) log � + (8 �

1)/5 + 1, . . . , (</5) log � + 8/5 } suppose we produce a block ⌫E , in

expectation, parties will succeed for 2(< log �+ 8 �1) times in these

rounds. If they succeed for less than 8 times, then AE�AD�(D�E)/5 >

(</5) log �, thus reach HotRight.

Note that 8  (1/2) · 2(< log � + 8 � 1) always holds. By The-

orem A.1, let /8 , . . . ,/) () = A) be independent variables with

E[/8] = 25 and /8 2 {0, 1}. Let / =

Õ)
8=1 /8 , ` =

Õ)
8=1 25 = E[/] =

2(< log � + 8 � 1) � 2 log �. Then, for Λ = 1/2, we get

Pr[/  (1 � Λ)`]  exp
h
�

Λ
2

2 + Λ
· 2< log �

i
 2�⌦ (<)

.

Eventually, this may happen for 3(</5) log � times, and the �nal

escape probability

1 � (1 � 2�⌦ (<))
3<5 log �

� 3
<

5
log � · 2�⌦ (<)

= 2�⌦ (polylog(^))

is still negligible. ⇤

Next, we focus on the “return” probability. Since,8 will travel

far away from the relatively calibrated timestamp (i.e., HotLe� or

HotRight) only with negligible probability, and once it reachesCold

we are done, we consider the following two bad events:

ñ During 4(</5) log � rounds, beginning at �(</5) log 2(2�X)�

(the leftmost point of VolatileLe�Inner),,8 stays in state Volatile

Le�Outer and VolatileLe�Inner.

ñ During 4(</5) log � rounds, beginning at (</5) log 2� (the

rightmost point of VolatileRightInner), ,8 stays in the state

VolatileRightInner and VolatileRightOuter.

We show that by the concentration of the binomial distribution,

these two bad events happen only with negligible probability. Note

that our results are achieved considering the largest distance,8

needs to travel and with worst success probability. For those events

that start closer to the relatively calibrated timestamp, the events’

probability will be much lower.

L���� 3.6. Consider blocks⌫D , . . . ,⌫E with AE�AD  4(</5) log �

in a (hW, ✓ + 2∆i, h�, 4(</5) log �i)-respecting environment. If,D is

in state VolatileLe�Inner,VolatileRightInner or Cold,,8 , 8 > D will

return to Cold with overwhelming probability.

P����. We consider the two bad events that makes,8 fail to

return Cold.

For the �rst event of staying in the left-side states, Lemma 3.4

shows that at every round it will succeed producing a block with

probability at most 5 /2. We view the number of blocks produced as

a binomial distribution with success probability 5 /2. And, since we

assume it begins at the leftmost point in VolatileLe�Inner, it has to

go rightwards for at most (</5) log � in order to reach Cold.

Consider the �rst (4</5) log � rounds with blocks {⌫D , . . . ,⌫E}.

Since,8+1 = ,8 + (A8+1 � A8) � 1/5 , we get,E = ,D + AE � AD �

(D � E)/5 . Assume now,D = �(</5) log 2(2 � X)�, if,E is in

Cold, AE � AD � (D � E)/5 > (</5) log �. In expectation, parties will

succeed for (2< log �) times in (4</5) log � rounds. If they succeed

for more than (3< log �) times, it cannot satisfy AE�AD� (D�E)/5 >

(</5) log �, thus fails to reach Cold, i.e.,,8 still falls in Volatile

Le�Inner.

By Theorem A.1, let /8 , . . . ,/) () = (4</5) log �) be indepen-

dent variables with E[/8] = 5 /2 and /8 2 {0, 1}. Let / =

Õ)
8=1 /8

and ` =

Õ)
8=1 5 /2 = E[/] = 2< log �. Then, for ∆ = 1/2, we get

Pr[/ � (1 + Λ)`]  exp
⇣
�

Λ
2

2 + Λ
· 2< log �

⌘
= 2�⌦ (<)

.

For the second event of staying in the right-side states, Lemma 3.4

shows that at every round it will succeed producing a block with

probability at least 25 . We view the number of blocks produced as

a binomial distribution with success probability 25 . And, since we

assume it begins at the rightmost of VolatileRightInner, it has to go

leftwards for at most (</5) log � in order to reach Cold.

Consider the �rst (2</5) log � rounds with blocks {⌫D , . . . ,⌫E}.

Since,8+1 = ,8 + (A8+1 � A8) � 1/5 , we get,E = ,D + AE � AD �

(D � E)/5 . Assume now,D = (</5) log 2�, if,E is in Cold, AE �

AD � (D � E)/5 < �(</5) log �. In expectation, parties will succeed

for (4< log �) times in (2</5) log � rounds. If they succeed for

less than (3< log �) times, it cannot satisfy AE � AD � (D � E)/5 >

�(</5) log �, thus fail to reach Cold, i.e.,,8 still falls in Volatile

RightInner.

By Theorem A.1, let /8 , . . . ,/) () = (2</5) log �) be indepen-

dent variables with E[/8] = 25 and /8 2 {0, 1}. Let / =

Õ)
8=1 /8

and ` =

Õ)
8=1 25 = E[/] = 4< log �. Then, for ∆ = 1/4, we get

Pr[/  (1 � Λ)`]  exp
⇣
�

Λ
2

2 + Λ
· 4< log �

⌘
= 2�⌦ (<)

.

Therefore, the return probability is 1 � 2�⌦ (polylog(^)) . ⇤

Lemma 3.5 guarantees “goodness” in a sliding windowwith �xed

length and ideal start state, while Lemma 3.6 states the desired

probability of �nding the next ideal start block in such a sliding

window. Therefore, we are able to extend our analysis from the

�rst 4(</5) log � rounds to the whole execution. Formally:

T������ 3.7. All the target recalculation points on a chain in a

(hW, ✓ + 2∆i, h�, 4(</5) log �i)-respecting environment are good.

P����. We show that “goodness” is maintained for all target

recalculation points in a sliding window of length 4(</5) log �, and

that it can be extended from the �rst round to the whole execution.

Note that in our assumption, the �rst block satis�es ?)1=A1 = 5 (i.e.,

the state is Cold), thus, we can establish the �rst sliding window

197

On Bitcoin Cash’s Target Recalculation Functions AFT ’21, September 26–28, 2021, Arlington, VA, USA

starting from ⌫1. The iteration works as follows: We choose the last

block with state Cold in the sliding window, and then establish a

new sliding window starting from it. According to Lemma 3.6, such

block always exists. For blocks in each sliding window, Lemma 3.5

ensures that all the target recalculation points are good (i.e., never

go into the state HotLe� or HotRight). ⇤

We note that if we consider a respecting environment that al-

lows more time for the same party �uctuation, then the goodness

parameter—i.e., the upper bound and lower bound of the target

recalculation point—can be closer to 5 . For example, the good

target recalculation parameter can be changed to (1 + �
3) 5 and

5 /[(2 � X) (1 + �
3)], with sliding window length 2�3 (</5) log �.

In the analysis, this is a trade-o�. For simplicity, the presentation

in this section chooses the more intuitive values (25 and 5 /2).

4 FULL SECURITY ANALYSIS

So a memoryless target recalculation function, under certain con-

ditions, is able to maintain a steady block generation rate. Can

this be used by a protocol to satisfy the desired blockchain and

ledger properties, as formulated in [4, 5]? That’s what this section

demonstrates, by providing the relevant protocol abstraction and

following their analytical approach, albeit with di�erent parameters

and proofs.

4.1 The Bitcoin Cash Backbone Protocol

The main changes introduced by Bitcoin Cash’s hard fork from Bit-

coin were an increase of the block size, replacement of the di�culty

adjustment algorithm, and modi�cation of the transaction rules; the

protocol structure remained unchanged. For the analysis, we adopt

the protocol abstraction presented in [4] (and follow-ups), consist-

ing of the main algorithm (Algorithm 1), which at the beginning

of a round receives input (new transactions as well as chains sent

by other miners); validates them and compares them (according

to their accumulated di�culty) against the miner’s current chain,

adopting the one with highest di�culty (it could be the party’s

own); and attempts to extend the adopted chain by generating a

PoW with the current round’s di�culty value. Before turning to

the protocol description, we �rst review the desired properties the

protocol should satisfy.

Blockchain properties. We review the two main properties to be

satis�ed by a PoW-based blockchain protocol.

ñ Common Pre�x &cp (Parameterized by : 2 N): For any two

players %1, %2 holding chains C1, C2 at rounds A1, A2, with A1  A2,

it holds that C
d:
1 � C2.

ñ Chain Quality &cq (Parameterized by ` 2 R and ✓ 2 N): For

any party % with chain C in ����⇧,A,Z , and any segment of

that chain of di�culty 3 such that the timestamp of the �rst

block of the segment is at least ✓ smaller than the timestamp of

the last block, the blocks the adversary has contributed in the

segment have a total di�culty that is at most ` · 3 .

Transaction ledger. Similarly to Bitcoin, the main application

of the Bitcoin Cash protocol is a robust transaction ledger, aimed

at maintaining a serialized transaction sequence organized in the

form of a blockchain, satisfying the following two properties. Let

L denote such ledger.

ñ Consistency: For any two honest parties %1, %2, reportingL1,L2

at rounds A1  A2, resp., it holds that L1 is a pre�x of eL2.

ñ Liveness (Parameterized by D 2 N, the “wait time” parameter):

If a transaction CG is provided to all honest parties for D consec-

utive rounds, then it holds that for any player % , CG will be in

L.

Protocol description. As in [4], in our description of the protocol

we intentionally avoid specifying the type of values/content that

miners try to insert in the chain, the type of chain validation they

perform (beyond checking for its structural properties with respect

to the hash functions ⌧ (·),� (·), and the way they interpret the

chain. These checks and operations are handled by the external

functions + (·), � (·) and '(·) (the content validation function, the

input contribution function and the chain reading function, resp.)

which are speci�ed by the application that runs “on top” of the

backbone protocol. The Bitcoin Cash protocol in the dynamic set-

ting comprises three algorithms chain validation, chain comparison

and proof of work. Refer to [7] for their full speci�cation.

Chain validation. The validate algorithm performs a validation

of the structural properties of a given chain C. It is given as input

the value @, as well as hash functions � (·),⌧ (·). It is parameterized

by the content validation predicate predicate + (·) as well as by

⇡ (·), the target calculation function (see Section 3.1). For each block

of the chain, the algorithm checks that the proof of work is properly

solved (with a target that is suitable as determined by the target

calculation function), and that the counter 2CA does not exceed @.

Furthermore it collects the inputs from all blocks, GC , and tests

them via the predicate + (xC). Chains that fail these validation

procedure are rejected.

Chain Comparison. The objective of the second algorithm, called

maxvalid, is to �nd the “best possible” chain when given a set

of chains. The algorithm is straightforward and is parameterized

by a max(·) function that applies some ordering in the space of

chains. The most important aspect is the chains’ di�culty in which

case max(C1, C2) will return the most di�cult of the two. In case

di� (C1) = di� (C2), some other characteristic can be used to break

the tie. In our case, max(·, ·) will always return the �rst operand to

re�ect the fact that parties adopt the �rst chain they obtain from

the network.

Proof of work. The third algorithm, called pow, is the proof of

work-�nding procedure. It takes as input a chain and attempts to

extend it via solving a proof of work. This algorithm is parame-

terized by two hash functions � (·),⌧ (·). Moreover, the algorithm

calls the target calculation function ⇡ (·) in order to determine the

value) that will be used for the proof of work. The procedure,

given a chain C and a value G to be inserted in the chain, hashes

these values to obtain ⌘ and initializes a counter 2CA . Subsequently,

it increments 2CA and checks to see whether � (2CA ,⌘) <) ; in case

a suitable 2CA is found then the algorithm succeeds in solving the

POW and extends chain C by one block.

Bitcoin Cash backbone protocol. The core of the Bitcoin Cash

backbone protocol with variable di�culty is similar to that in [5],

198

AFT ’21, September 26–28, 2021, Arlington, VA, USA Juan Garay and Yu Shen

with several important distinctions. First is the procedure to follow

when the parties become active. Parties check the ready �ag they

possess, which is false if and only if they have been inactive in

the previous round. In case the ready �ag is false, they di�use a

special message ‘Join’ to request the most recent version of the

blockchain(s). Similarly, parties that receive the special request

message in their R������() tape broadcast their chains. As before

parties, run “inde�nitely” (our security analysis will apply when

the total running time is polynomial in ^). The input contribution

function � (·) and the chain reading function '(·) are applied to the

values stored in the chain. Parties check their communication tape

R������() to see whether any necessary update of their local chain

is due; then they attempt to extend it via the POW algorithm pow.

The function � (·) determines the input to be added in the chain

given the party’s state BC , the current chain C, the contents of the

party’s input tape I����() and communication tape R������(). The

input tape contains two types of symbols, R��� and (I�����, value);

other inputs are ignored. In case the local chain C is extended the

new chain is di�used to the other parties. Finally, in case a R���

symbol is present in the communication tape, the protocol applies

function '(·) to its current chain and writes the result onto the

output tape O�����(). The pseudocode of the backbone protocol

is presented in Algorithm 1.

Algorithm 1 The Bitcoin Cash backbone protocol in the dynamic

setting at round “round” on local state (BC, C) parameterized by the

input contribution function � (·) and the chain reading function '(·).

The ready �ag is false if and only if the party was inactive in the

previous round.

1: if ready = true then

2: D������(‘ready’)

3: eC maxvalid(C all chains C0 found in R������())

4: hBC, Gi � (BC, eC, round, I����(), R������())
5: Cnew pow(round, G, eC)
6: if (C < Cnew) _ (‘Join’ 2 R������()) then

7: C Cnew
8: D������(C) ù chain is di�used when it is updated or

when someone wants to join.

9: end if

10: if I����() contains R��� then

11: write '(xC) to O�����()

12: D������(RoundComplete)

13: end if

14: else

15: ready true

16: D������(Join,RoundComplete)

17: end if

4.2 ASERT: Full Analysis

Table 1 summarizes the parameters that will be used in our analysis,

some of which have already been introduced. Note that our security

parameter is ^ , and i = ⇥(<) = polylog(^). Moreover, we consider

the �uctuation of the total number of parties (cf. De�nition 2.1 and

Fact 1).

Table 1: Summary of parameters (ASERT).

ñ X : Advantage of honest parties, 8A (CA /⌘A < 1 � X).

ñ W,f, �, ⌃: Determine how the number of parties �uctuates

across rounds in a period (cf. De�nition 2.1 and Fact 1).

ñ 5 : Probability that at least one honest party succeeds gen-

erating a PoW in a round assuming ⌘0 parties and target)0
(the protocol’s initialization parameters).

ñ <: Smoothing factor (cf. De�nition 3.1).

ñ g : Parameter that regulates the target that the adversary could

query the PoW with.

ñ n : Quality of concentration of random variables (cf. De�nition

4.4).

ñ ^: The length of the hash function output.

ñ i : Related to the properties of the protocol.

ñ !: The total number of rounds in the execution of the protocol.

During a round A of an execution ⇢, the honest parties might

be split and work on di�erent chains, and thus might query the

random oracle on di�erent targets. Denote by)min
A and)max

A the

minimum and maximum of these targets, respectively.

Next, we extend the de�nition of “goodness” from Section 3.2 to

apply rounds and chains, in addition to recalculation points, and

following [5], we de�ne a property called accuracy, which we will

then show most executions satisfy, and which will help achieve the

desired application’s properties.

De�nition 4.1 (Goodness). A target-recalculation point A is good if

the target) for the next block satis�es 5 /2(2�X)�3  ?⌘A)  2�3 5 .

Round A is good if 5 /2W (2�X)�3  ?⌘A)
min
A and ?⌘A)

max
A  2W�3 5 .

A chain is good if all its target-recalculation points are good.

De�nition 4.2 (Accuracy). A block created at round D is accurate

if it has a timestamp E such that |D � E |  ✓ + 2∆. A chain is accurate

if all its blocks are accurate. A chain is stale, if for some D � ✓ + 2∆,

it does not contain an honest block with timestamp E � D � ✓ � 2∆.

For a given round A , we let SA denote the set of chains that

belong, or could potentially belong to an honest party. Being explicit

about this set of chains will help in the formulation of a number of

predicates (see below). Speci�cally, SA includes
4:

ñ Chain C that belongs to an honest party;

ñ chain C with di� (C) > di� (C0) for some chain C0 of an honest

party; and

ñ chain C with di� (C) = di� (C0) for some chain C0 of an honest

party and head(C) was computed no later than head(C0).

Random variables. We are interested in estimating the di�culty

acquired by honest parties during a sequence of rounds. For a given

round A , the following real-valued random variables are de�ned

in [6]:

ñ ⇡A : Sum of the di�culties of all blocks computed by honest

parties.

ñ .A : Maximum di�culty among all blocks computed by honest

parties.

4Note that these chains should exist and be valid at round A .

199

On Bitcoin Cash’s Target Recalculation Functions AFT ’21, September 26–28, 2021, Arlington, VA, USA

ñ &A : Equal to .A when ⇡D = 0 for all A < D < A + ∆ and 0

otherwise.

A round A such that ⇡A > 0 is called successful and one where

&A > 0 isolated-successful.

Regarding the adversary, in order to overcome the fact that he can

query the oracle for arbitrarily low targets and thus obtain blocks

of arbitrarily high di�culty, we would like to upper-bound the

di�culty he can acquire during a set � of queries. This is achieved

by associating a set of consecutive adversarial queries � with the

target of its �rst query. We denote this target) (�), and say that

) (�) is associated with � . We then de�ne �(�) and ⌫(�) to be

equal to the sum of the di�culties of all blocks computed by the

adversary during queries in � for target at least) (�)/g and) (�),

respectively–i.e., queries in � for targets less than) (�)/g (resp.

) (�)) do not contribute to �(�) (resp. ⌫(�)).

For simplicity, we write ⌘(() =
Õ
A 2(⌘A for a set of rounds (and

queries � (similarly, C ((), ⇡ ((), . ((), & ((), �(�) and ⌫(�)).

We also de�ne the random variable E taking values on our prob-

ability space and with a distribution induced by the random coins of

all entities (adversary, environment, parties) and the random oracle.

Let EA�1 �x the execution just before round A . In particular, a value

⇢A�1 of EA�1 determines the adversarial strategy and so determines

the targets against which every party will query the oracle at round

A and the number of parties ⌘A and CA , but it does not determine ⇡A

or &A . For an adversarial query 9 we will use, slightly overloading

notation, ⇢
(�)
9�1 to denote the execution just before this query.

The following fact is a consequence of De�nition 2.1 (respecting

environments):

Fact 1. Let (be a set of at most ⌃ consecutive rounds in a (hW,fi,

h�, ⌃i)-respecting environment and * ✓ (.

(a) If* 4 (and |* | < f ,

⌘(

�


⌘(()

|(|
 � · ⌘(and

⌘*

W


⌘(*)

|* |
 W · ⌘* ,

where ⌘(2 {⌘A : A 2 (} and ⌘* 2 {⌘A : A 2 * }.

(b)

⌘(()  (1 +
� |(* |

|* |
)⌘(*) and |(|

’

A 2(

(?⌘A)
2  �(

’

A 2(

?⌘A)
2
.

In order to obtain meaningful concentration of random variables,

we have to consider a su�ciently long sequence with a number of

rounds at least

✓ =
4(2 � X) (1 + 3n)

n2 5 [1 � 2W�3 5]∆+1
·max{∆, g} · W�4 · i . (3)

We will assume that ✓ is appropriately small compared to the length

< of a sliding interval/window. Speci�cally,

2✓ + 6∆ 
n<

2W�3 5
. (C1)

In addition, we would like the advantage X of the honest parties

over adversarial parties to be large enough to absorb error factors.

Thus, we require the following inequalities:

[1 � 2W�3 5]∆ � 1 � n and n  X/8  1/8. (C2)

Next, we show a chain-growth lemma referring to accumulated

di�culty (cf. [6]), as opposed to number of blocks in the original

formulations [4, 8].

L���� 4.3 (C���� G�����). Suppose that at round D of an

execution ⇢ an honest party di�uses a chain of di�culty 3 . Then, by

round E , every honest party has received a chain of di�culty at least

3 +& ((), where (= {A : D + ∆  A  E � ∆}.

Typical executions. The notion of typical executions was intro-

duced in the analysis framework we are following [4] in order to

capture situations where an execution ⇢’s progress does not deviate

too much from its expected (desired) progress. Since executions

consist of rounds, and within rounds parties perform Bernoulli

trials, we can calculate the expected progress when given the cor-

responding probabilities. On this basis, if the di�erence between

the real execution and its expectation is reasonable, ⇢ is declared

“typical.” Note that besides expectation, the variance should also

be taken into consideration. We will later show (applying Theo-

rem A.3—martingale inequality) that either the variance is too high

with respect to a set of rounds, or the parties have made progress

during these rounds as expected.

In addition to the behavior of the random variables described

above, bad events may occur related to the underlying hash function

� (·), which is modeled as a random oracle and used to obtain

PoWs. The bad events are insertion (of a block in between two

consecutive blocks), copy (same block exists in two di�erent position

of the blockchain), and prediction (a block extends one with an

earlier creation time). Refer to [6] for a precise de�nition. A typical

execution will rule out these bad events as well.

We are now ready to specify what is a typical execution in our

setting (compare with [6]’s).

De�nition 4.4 (Typical execution). An execution ⇢ is typical if the

following hold:

(a) For any set (of at least ✓ consecutive good rounds,

(1 � n) [1 � 2W�3 5]∆?⌘(() < & (()  ⇡ (() < (1 + n)?⌘(() .

(b) For any set � indexing a set of consecutive adversarial queries

and U (�) = 2(1n + 1
3)i/) (�),

�(�) < ? |� |+max{n? |� |, gU (�)} and⌫(�) < ? |� |+max{n? |� |,U (�)}.

(c) No insertions, no copies, and no predictions occurred in ⇢.

The next proposition is a simple application of De�nition 4.4

and the honest-majority assumption.

P���������� 4.5. Let E be a typical execution in a (hW,fi, h�, ⌃i)-

respecting environment. Let (= {A | (D  A  E) ^ (E �D � ✓)} be a

set of consecutive good rounds and � the set of adversarial queries in

* = {A | D � ∆  A  E + ∆}. Then the following inequalities hold:

(a) (1 + n)? |� |  & (()  ⇡ (*) < (1 + 5n)& (().

(b) If F is a good round such that |F � A |  ⌃ for any A 2 (,

then & (() > (1 + n) [1 � 2W�3 5]∆ |(|?⌘F/�. If, in addition,

) (�) �)min
F , then �(�) < (1 � X + 3n)& (().

We are now able to show that almost all Bitcoin Cash backbone

protocol executions polynomially bounded (in ^) are typical (the

proof is presented in [7]) . Formally:

T������ 4.6. Assuming the Bitcoin Cash backbone protocol runs

for ! rounds, the event “⇢ is not typical” is bounded by poly(!) ·

4�⌦ (polylog(^)) .

200

AFT ’21, September 26–28, 2021, Arlington, VA, USA Juan Garay and Yu Shen

Accuracy and goodness. Next, we consider accuracy and good-

ness over the space of typical executions in a (hW, ✓+2∆i, h�, 4(</5)

log �i)-respecting environment, as well as implications between

the two. We assume that all the requirements for the initialization

parameters ⌘0 and)0 are satis�ed.

L���� 4.7. Let ⇢ be a typical execution in a (hW, ✓ + 2∆i, h�,

4(</5) log �i)-respecting environment. If ⇢A�1 is good, then there

are no stale chains in SA .

C�������� 4.8. Let ⇢ be a typical execution in a (hW, ✓ + 2∆i, h�,

4(</5) log �i)-respecting environment. If⇢A�1 is good, then all chains

in SA are accurate.

T������ 4.9. A typical execution in a (hW, ✓ + 2∆i, h�, 4(</5)

log �i)-respecting environment is accurate and good.

Blockchain and ledger properties. We now show that the Bitcoin

Cash backbone protocol satis�es the two properties common pre�x

and chain quality (Section 4.1) for a suitable respecting environment.

First, a preliminary lemma:

L���� 4.10. For any round A of a typical execution in a (hW, ✓ +

2∆i, h�, 4(</5) log �i)-respecting environment and any two chains

C and C0 in SA , the timestamp of head(C \C0) is at least A � 2✓ � 4∆.

T������ 4.11 (C������P�����). For a typical execution in a

(hW, ✓ +2∆i, h�, 4(</5) log �i)-respecting environment, the common-

pre�x property holds for parameter n<.

T������ 4.12 (C�����������). For a typical execution in a

(hW, ✓ + 2∆i, h�, 4(</5) log �i)-respecting environment, the chain-

quality property holds with parameters ✓ + 2∆ and ` = X � 3n .

We conclude by showing that a typical execution of the Bit-

coin Cash backbone protocol in a (hW, ✓ + 2∆i, h�, 4(</5) log �i)-

respecting environment, satis�es the two properties of a robust

transaction ledger presented in Section 2. They are the direct con-

sequence of the blockchain properties shown above, following the

approach in [5, 6].

T������ 4.13 (C����������). For a typical execution in a (hW, ✓+

2∆i, h�, 4(</5) log �i)-respecting environment, Consistency is satis-

�ed by setting the settled transactions to be those reported more than

n< blocks deep.

T������ 4.14 (L�������). For a typical execution in a (hW, ✓ +

2∆i, h�, 4(</5) log �i)-respecting environment, Liveness is satis�ed

for depth n< with wait-time (4�4 + 1)n</5 .

5 THE SMA TARGET RECALCULATION

FUNCTION

For completeness, herewe present a brief description and analysis of

Bitcoin Cash’s previous target recalculation function. Even though

this function has now been deprecated, it provides some insights

and elements of comparison against ASERT based on actual party

�uctuation. The full analysis of SMA is presented in the full version

of this paper [7].

Recall that the target calculation function ⇡ (·) aims at maintain-

ing the block production rate constant. The probability 5 () ,=) with

which = parties produce a new block with target) is approximated

by 5 () ,=) ⇡ @)=/2^ . As in the case of Bitcoin, to achieve the

above goal Bitcoin Cash tries to keep @)=/2^ close to 5 . To that

end, the SMA function watches an epoch of< previous blocks, and

based on their di�culty as well as on how fast these blocks were

generated, it computes the next target. More speci�cally, say the

last< blocks of a chain C with targets {)8 }82 [<] were produced

in Λ rounds. For every block in the epoch and = participants, it

holds that 5 ()8 ,=) ⇡ @)8=/2
^ . For < consecutive blocks, the av-

erage block generating rate 5 ⇤ = @=
Õ
82 [<])8/(< · 2^), and the

entire generating time Λ =</5 ⇤ =<2 · 2^/(@=
Õ
82 [<])8).

Consider the case where a number of parties attempt to pro-

duce < blocks of target {)8 }82 [<] in Λ rounds (in expectation).

Such number of players can be estimated as =()1, . . . ,)<,Λ) =<2 ·

2^/(@Λ
Õ
82 [<])8); then the next target)

0 is set so that=()1, . . . ,)<,

Λ) players would need 1/5 rounds in expectation to produce the

next block of target) 0. Therefore, it makes sense to set

) 0 =
Λ

<2/5
·
’

82 [<]

)8

because if the number of players is indeed =()1, . . . ,)<,Λ) and

remains unchanged, it will take them 1/5 rounds in expectation to

produce next block. If the estimate of the initial number of parties

is =0, we will assume)0 is appropriately set so that 5 ⇡ @)0=0/2
^

and then) 0 = =0)0/=()1, . . . ,)<,Λ).

Based on the above, we can now give a formal de�nition of

the SMA function. In the de�nition, parameter g serves as the

“dampening �lter” to deal with the case=0)0/=()
avg

,Λ) 8 [) /g, g)].

This mechanism is necessary given an e�cient attack presented by

Bahack [1] for Bitcoin, which also applies to Bitcoin Cash.

De�nition 5.1 (SMA). For �xed constants ^, g,<,=0,)0, the target

calculation function ⇡SMA : Z⇤ ! R is de�ned as

⇡SMA (Y) =)0 and⇡SMA (A1, . . . , AE) =

8>>>>>>>><
>>>>>>>>:

1

g
·) avg

, if
=0 ·)0

=() avg
,Λ)

<

1

g
·) avg

g ·) avg
, if

=0 ·)0

=() avg
,Λ)

> g ·) avg

=0

() avg
,Λ)

·)0, otherwise

where =() avg
,Λ) =

< ·2^

@Λ) avg , with Λ = AE�1 � AE�< and) avg
=

1
< ·

Õ<
8=1 ⇡ (A1, ..., AE�8).

R����� 1. At the start of the protocol execution—the �rst <

blocks—parties cannot acquire enough previous blocks for target re-

calculation. While several alternate approaches exist (e.g., maintain a

static target or switch to other target recalculation function), we will

assume a “safe start,” i.e., there exist blocks with an ideal target value

prior to the �rst round.

5.1 SMA: Analysis Overview

The di�erence between SMA and Bitcoin’s target recalculation

is that the target variation (targets that the adversary can query

during a sliding window) is no longer bounded by the dampening

�lter (g). This is because in SMA the target is recalculated for every

block. g ’s restriction is for a single calculation; hence, we introduce

a new parameter _ to denote the target variation over a long period

of time.

201

On Bitcoin Cash’s Target Recalculation Functions AFT ’21, September 26–28, 2021, Arlington, VA, USA

To highlight some aspects of the proofs of security of the Bitcoin

Cash backbone protocol using SMA, we show that while the targets

in an epoch keep varying, we can still always �nd an appropriate

block such that the di�culty accumulated during the epoch (when

associated with this block) is well bounded. I.e., even the adversary

and an honest party join force, they cannot accelerate this process

too much; and even when honest parties work independently, they

can still e�ciently produce enough blocks.

Moreover, we would like to show that a good relation between

the accumulated di�culty in an epoch and its duration always holds,

and therefore the target for the next block is good and the block

generating rate is close to 5 . Since the SMA function employs the

average targets in the epoch, the previous argument (which only

takes into account single target value) collapses. In order to absorb

the new errors, We propose new conditions such as the following:

2✓ + 6∆ 
n<

2(1 + X)�2 5
, (C3)

4_�

(_� + 1)2
· [1 � (1 + X)W�5]∆ > 1 � n and n  X/8  1/8 (C4)

where 4_�/(_� + 1)2 (cf. Theorem A.5) helps to “revert” the dis-

crepancy between the accumulated di�culty and the next target.

We conclude that the Bitcoin Cash backbone protocol with the

SMA function satis�es Consistency and Liveness using the follow-

ing parameters:

T������ 5.2 (C����������). For a typical execution in a (hW/(2�

X), ✓ +2∆i, h�/(2�X), 2(1+X)�2</5 i)-respecting environment, Con-

sistency is satis�ed by setting the settled transactions to be those

reported more than nW2</2� blocks deep.

T������ 5.3 (L�������). For a typical execution in a (hW/(2 �

X), ✓ +2∆i, h�/(2�X), 2(1+X)�2</5 i)-respecting environment, Live-

ness is satis�ed for depth nW2</2� with wait-time (W2 + 1)n</5 .

6 COMPARISON WITH THE BITCOIN CASH

NETWORK

Our analysis shows that for a su�ciently long execution in a some-

what idealized network environment and without severe external

disturbances, Bitcoin Cash would achieve the desired security prop-

erties (with overwhelming probability). Comparison of our analysis

with the existing Bitcoin Cash network data reveals that the ASERT

function performs better than the SMA function in an environment

where party �uctuation is large. Further, both SMA and ASERT

su�er from undersized parameters. In this section we expand on

the above comparisons.

6.1 The Bitcoin Cash Network

Party �uctuation. To perform our comparison, we need to deter-

mine the �uctuation (ratio) of the number of parties in the actual

Bitcoin Cash network. We can extract it from the public statistical

data–the hashrate, which is the number of hash queries that all min-

ers in the network perform per second. In our model, the queries

that every party can make in one round is bounded. Thus, for the

purpose of our comparison we assume the hashrate to be identical

to the number of parties, and its �uctuation ratio also re�ects the the

number of parties’. To be more precise, the available hashrate does

not reveal the entire Bitcoin Cash network, but instead the hashing

power invested in some well-known mining pools. Nonetheless,

since most of the computational power is concentrated in these

mining pools, this hashrate can very closely approximate the entire

network’s.

In addition, instead of the the exact �uctuation ratio with respect

to a short period of time (e.g., 10 minutes), we adopt the ratio based

on the daily average hashrate, which shows the average queries per

second in one day; this measure would correspond to parameter �

in our analysis. Since our analysis should be applied to a relatively

long execution, this measure replacement seems reasonable.5

Figure 2 shows the daily average hashrate in one month period

(Jul 18 2020 – Aug 17 2020)6, which we adopt as the representative

case of the Bitcoin Cash network execution under the SMA function.

The maximum value in this period is 3.1783EHash/s (on Aug 07

2020) and the minimum is 2.3865EHash/s (on Aug 06 2020), so it

su�ces to set � = 1.398 as the party �uctuation ratio. Regarding the

ratio during a small period of time, note that as we are discussing

the average hashrate, W = 1.057, which satis�es W b⌃/f c > �, would

be a suitable value.

We note that the assumed behavior may not hold when some

type of external disturbance occurs, such as the halving of the

block reward or sharp gains and declines in BCH’s monetary value,

which might cause a large number of miners abruptly joining or

dropping out of a mining pool in a short period of time. As it turns

out, these events do not happen very frequently (e.g., block reward

halves about every 4 years), so we are comfortable extrapolating the

execution of the Bitcoin Cash network from what Figure 2 depicts.

Figure 3 shows the daily average hashrate in one month period

(Dec 1 2020 – Dec 30 2020), after the Nov. 2020 network update

when the ASERT function was adopted. The maximum value in

this period is 1.9451EHash/s (on Dec 21 2020) and the minimum

is 1.0349EHash/s (on Dec 24 2020). Therefore, � should be to 1.88.

This �uctuation rate is relatively high, and we speculate was caused

by two reasons: (1) the network could not return to a quiet state

soon after the update happens, and (2) the price of Bitcoin Cash

experienced substantial ups and downs during this period. We thus

set the value of W = 1.099.

Network delay. Another important aspect to validate our analysis

in a bounded-delay network environment is the actual message

delay in the network. It is shown in [2] that the delay in the Bitcoin

network mainly stems from its multi-hop broadcast (“di�use” in

our model terminology) and block propagation mechanism (Bit-

coin Cash employs a similar mechanism to Bitcoin), which we now

expand on. As a mining node would typically maintain a limited

connections with other nodes, when the node wants to broadcast

one block after receiving and verifying it, the node will �rst send

an inv message containing the block hash to all its neighbors. If the

neighbors do not have the block locally, they will issue a getdata

message to the sender of inv. Then the actual block transfer be-

gins. Thus, at each hop during the broadcast the message incurs a

propagation delay consisting of the transmission time and the local

5We note that if we consider the �uctuation rate over 10-minute intervals, the overall
party �uctuation will become extremely pronounced (parameter � will exceed 4),
making our analysis inapplicable.
6Source: https://bitinfocharts.com/comparison/hashrate-bch.html

202

AFT ’21, September 26–28, 2021, Arlington, VA, USA Juan Garay and Yu Shen

Figure 2: The daily average hashrate of Bitcoin Cash from July 18 to August 16, 2020.

2.3

2.5

2.7

2.9

3.1

3.3

18-Jul 21-Jul 24-Jul 27-Jul 30-Jul 2-Aug 5-Aug 8-Aug 11-Aug 14-AugH
as

h
ra

te

(E

H
as

h
/s

)

Date ((Jul - Aug 2020)

Figure 3: The daily average hashrate of Bitcoin Cash from Dec 1 to Dec 30, 2020.

1

1.2

1.4

1.6

1.8

2

1-Dec 4-Dec 7-Dec 10-Dec 13-Dec 16-Dec 19-Dec 22-Dec 25-Dec 28-DecH
as

h
ra

te

(E

H
as

h
/s

)

Date (Dec 2020)

veri�cation of the block. Decker and Wattenhofer [2] evaluated

the distribution of the block propagation time since the �rst block

announcement, which shows a median time of 6.5 seconds as well

as a mean time of 12.6 seconds. For more recent data, Bitcoin Moni-

toring 7 carried out by the German Federal Ministry of Education

and Research shows that 90% of the block propagation time is be-

low 6 seconds. Thus, assuming a round duration of 6 seconds, it is

reasonable to let the delay bound (∆) in our analysis approximately

equal to 1 round.

Target variation. Our formulation (of SMA function) bounds the

target variation by a �xed parameter _ and the parties’ �uctuation

ratio. This is a reasonable idea, since the number of parties, accumu-

lated di�culty and number of blocks (chain growth) are correlated.

In the real network, however, the hash power invested in minor

blockchains varies wildly, and as such it is unlikely that the number

of parties would stay high for a long period of time, and thus target

values would seldom vary more pronouncedly than the number of

parties. Compared with other parameters, the criteria for selecting

_ does not seem as strict. As we can cover more executions if we

set a larger value for _, we choose _ = 1.201 when applying our

analysis. As a result, when compared with previous work [5, 6], our

analysis can tolerate situations where targets vary more wildly (i.e.,

they exceed the _� bound).

7Source: https://dsn.kastel.kit.edu/bitcoin/

6.2 Conclusions

ASERT function. Based on the considerations above, for the pur-

pose of our comparison, we parameterize the real-world Bitcoin

Cash network with network bounded-delay ∆ = 1 (round), honest

advantage X = 0.99, quality of concentration n = 0.123, long term

party �uctuation ratio � = 1.88, short term party �uctuation ratio

W = 1.099 and ideal block generating rate 5 = 0.01.

On one hand, the resulting probabilities with respect to the

goodness parameters are very tight, when considered in the real

network parameters (i.e., < = 288 and � = 1.88). To be precise,

in a sliding window, the probability of the block generation rate

exceeding the goodness bound is below 10�12, and the probability

of not returning to Cold is less than 10�9. Therefore, it is safe to

conclude that the ASERT function achieves a relatively stable block

generation rate.

On the other hand, we cannot directly plug in in these parameter

values to satisfy Condition (C2), since the party �uctuation is too

pronounced, thus making it hard for the concentration parameter n

to absorb the errors. Condition (C2), however, can be satis�ed in the

following two scenarios: (1) party �uctuation ratio in a relatively

quiet environment (e.g., � = 1.398 as shown in Fig 2). Then all the

requirements are satis�ed and so does our analysis. (2) Balancing

the block generation rate bound and the sliding window length we

203

On Bitcoin Cash’s Target Recalculation Functions AFT ’21, September 26–28, 2021, Arlington, VA, USA

consider (cf. Section 3.2), then all the requirements are satis�ed if

the upper bound for goodness is (1 + �
3) 5 .

Finally, we observe that the choice of the smoothing factor (<)

is too low. While the current value< = 288 can satisfy the basic

requirements in Condition (C1), it is better to let < = 432 to in-

crease the value of ✓ , thus making it closer to the real execution.

However, we note that such value of < still fails to give a tight

typical execution probability. This is because in order to satisfy

the (desired) blockchain properties, the length of a sliding window

should be much larger (of the order of years!) so that the martingale

probability in Theorem 4.6 can be negligible.

SMA function. We consider the same network delay, honest ad-

vantage and quality of concentration as those used for the ASERT

evaluation. Afterwards, we parameterize the SMA function with

long-term party �uctuation ratio � = 1.398, short-term party �uc-

tuation ratio W = 1.057 and target �uctuation parameter _ = 1.201.

We obtain that Condition (C4) is satis�ed under these parameters.

Regarding the protocol parameters< and g in use,< = 144meets

the lowest criteria to support our analysis, g = 2 may fail in some

situations, which can be avoided by these two parameters. More

speci�cally, with regard to the epoch length<, from Condition (C3)

we get an upper bound for ✓ of about 640 seconds, which would not

be desirable as it exceeds the expected block production interval

(600s). We would like that the actual value of ✓ amounts at least to

a few blocks’ total expected generation time. Thus,setting< = 432

(almost 3 days) would yield an ideal epoch length. Regarding the

dampening �lter g , it follows from our analysis that it should hold

that g � 2(1 + X)�2 ⇡ 7.8. Thus, g = 8 would be a suitable value.

ASERT vis-à-vis SMA. The above evaluation of the SMA func-

tion reveals two shortcomings. Under some circumstances, letting

_ = 1.201 may fail to bound the target �uctuation during a sliding

window. Moreover, we can see that parameters in Condition (C4)

cannot be increased, i.e., according to our analysis the protocol

cannot be secure under a respecting environment with party �uc-

tuation ratio � > 1.4; if we consider a larger value for _, then the

party �uctuation it can tolerate is even smaller.

Compared with the ASERT function (notably, ASERT can work

well when � = 1.88), SMA performs considerably worse when party

�uctuation rate is relatively high. Thus, we conclude that ASERT is

a better choice as a target recalculation function for blockchains

with lesser hashing power.

REFERENCES
[1] Lear Bahack. 2013. Theoretical Bitcoin Attacks with less than Half of the Com-

putational Power (draft). Cryptology ePrint Archive, Report 2013/868. (2013).
https://eprint.iacr.org/2013/868.

[2] C. Decker and R. Wattenhofer. 2013. Information propagation in the Bitcoin
network. In IEEE P2P 2013 Proceedings. 1–10.

[3] Cynthia Dwork and Moni Naor. 1992. Pricing via Processing or Combatting Junk
Mail. In Advances in Cryptology — CRYPTO’ 92, Ernest F. Brickell (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 139–147.

[4] JuanA. Garay, Aggelos Kiayias, andNikos Leonardos. 2015. The Bitcoin Backbone
Protocol: Analysis and Applications. In Advances in Cryptology - EUROCRYPT
2015, Elisabeth Oswald and Marc Fischlin (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 281–310.

[5] JuanA. Garay, Aggelos Kiayias, andNikos Leonardos. 2017. The Bitcoin Backbone
Protocol with Chains of Variable Di�culty. In Advances in Cryptology – CRYPTO
2017, Jonathan Katz andHovav Shacham (Eds.). Springer International Publishing,
Cham, 291–323.

[6] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2020. Full Analysis of
Nakamoto Consensus in Bounded-Delay Networks. Cryptology ePrint Archive,
Report 2020/277. (2020). https://eprint.iacr.org/2020/277.

[7] Juan A. Garay and Yu Shen. 2021. On Bitcoin Cash’s Target Recalculation
Functions. Cryptology ePrint Archive, Report 2021/143. (2021). https://ia.cr/
2021/143.

[8] Aggelos Kiayias and Giorgos Panagiotakos. 2015. Speed-Security Tradeo�s
in Blockchain Protocols. Cryptology ePrint Archive, Report 2015/1019. (2015).
https://eprint.iacr.org/2015/1019.

[9] Colin McDiarmid. 1998. Probabilistic Methods for Algorithmic Discrete Math-
ematicss, chapter Concentration, pages 195–248. Springer Berlin Heidelberg,
Berlin, Heidelberg. (1998).

[10] Michael Mitzenmacher and Eli Upfal. 2005. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press.

[11] Satoshi Nakamoto. 2009. Bitcoin: A peer-to-peer electronic cash system. (2009).
http://www.bitcoin.org/bitcoin.pdf.

[12] Satoshi Nakamoto. 2009. Bitcoin open source implementation of p2p currency.
(Feb. 2009). http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source.

[13] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the Blockchain
Protocol in Asynchronous Networks. In Advances in Cryptology – EUROCRYPT
2017, Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.). Springer International
Publishing, Cham, 643–673.

[14] G. S. WATSON. 1955. Serial correlation in regression analysis I. Biometrika 42,
3-4 (1955), 327–341.

[15] Sam M. Werner, Dragos I. Ilie, Iain Stewart, and William J. Knottenbelt.
2020. Unstable Throughput: When the Di�culty Algorithm Breaks. (2020).
arXiv:arXiv:2006.03044

A SOME MATHEMATICAL FACTS

T������ A.1 (C������� �����). Let-8 , . . . ,-) be independent

random variables with E[-8] = ?8 and -8 2 [0, 1]. Let - =

Õ)
8=1 and

` =

Õ)
8=1 ?8 = E[-]. Then, for all Λ > 0,

Pr[- � (1 + Λ)`]  exp(�
Λ
2

2 + Λ
`),

Pr[-  (1 � Λ)`]  exp(�
Λ
2

2 + Λ
`).

De�nition A.2. [10, Chapter 12] A sequence of random variables

-0,-1, . . . is a martingale with respect to sequence .0,.1, . . ., if, for

all = � 0, (1)-= is a function of .0, . . . ,.= , (2)E[|-= |] < 1, and (3)

E[-=+1 |.0, . . . ,.=] = -= .

T������ A.3. [9, Theorem 3.15] Let -0,-1, . . . be a martin-

gale with respect to the sequence .0,.1, For = � 0, let + =Õ=
8=1 var(-8 � -8�1 |.0, . . . ,.8�1) and 1 = max18= sup(-8 � -8�1

|.0, . . . ,.8�1), where sup is taken over all possible assignments to

.0, . . . ,.8�1. Then, for any C, E � 0,

Pr[(-= � -0 + C) ^ (+  E)]  exp
n
�

C2

2E + 21C/3

o
.

Fact 2. Suppose that G1, G2, . . . , G= are positive real numbers. Then,

G1 + G2 + · · · + G=

=
�

=

1/G1 + 1/G2 + · · · + 1/G=
.

T������ A.4 (C�����’� ���������). [14] Let 0 = (01, . . . ,0=)

and 1 = (11, . . . ,1=) be two positive n-tuples with 0 < < 
0:
1:


" < 1 for each : 2 {1, . . . ,=} and constants<," . Then,

(

=’

:=1

F:0
2
:
) (

=’

:=1

F:1
2
:
) 

(" +<)2

4<"
· (

=’

:=1

F:0:1:)
2
.

T������ A.5. Suppose that G1, G2, . . . , G= are positive real num-

bers. If max82 [=] G8 < W ·min82 [=] G8 , then

G1 + G2 + · · · + G=

=


(W + 1)2

4W
·

=

1/G1 + 1/G2 + · · · + 1/G=
.

204

