On Bitcoin Cash’s Target Recalculation Functions

Juan Garay
Department of Computer Science and Engineering
Texas A&M University
garay@tamu.edu

ABSTRACT

Bitcoin Cash, created in 2017, is a “hard fork” from Bitcoin respond-
ing to the need for allowing a higher transaction volume. This is
achieved by a larger block size, as well as a new difficulty adjust-
ment (target recalculation) function that acts more frequently (as
opposed to Bitcoin’s difficulty adjustment happening about every
two weeks), resulting in a potentially different target for each block.
While seemingly achieving its goal in practice, to our knowledge
there is no formal analysis to back this proposal up.

In this paper we provide the first formal cryptographic analysis
of Bitcoin Cash’s target recalculation functions—both ASERT and
SMA (current and former recalculation functions, respectively)—
against all possible adversaries. The main distinction with respect
to Bitcoin’s is that they are no longer epoch-based, and as such
previous analyses fail to hold. We overcome this technical obstacle
by introducing a new set of analytical tools focusing on the “cal-
ibration” of blocks’ timestamps in sliding windows, which yield
a measure of closeness to the initial block generation rate. With
that measure, we then follow the analytical approach developed in
the Bitcoin backbone protocol [Eurocrypt 2015 and follow-ups] to
first establish the basic properties of the blockchain data structure,
from which the properties of a robust transaction ledger (namely,
Consistency and Liveness) can be derived.

We compare our analytical results with data from the Bitcoin
Cash network, and conclude that in order to satisfy security (namely,
properties satisfied except with negligible probability in the security
parameter) considerably larger parameter values should be used
with respect to the ones used in practice.

ACM Reference format:

Juan Garay and Yu Shen. 2021. On Bitcoin Cash’s Target Recalculation
Functions. In Proceedings of 3rd ACM Conference on Advances in Financial
Technologies, Arlington, VA, USA, September 26-28, 2021 (AFT °21), 13 pages.
https://doi.org/10.1145/3479722.3480998

1 INTRODUCTION

While opening up a new era in the area of cryptocurrencies, Nakamoto’s

Bitcoin protocol [11, 12] has been critized for its heavy use of the
computational resources needed by its underlying proof of work
(PoW) mechanism as well as its relatively long settlement time of
transactions. As a consequence, a number of alternative cryptocur-
rencies have been proposed with the purpose of ameliorating the
above issues. One such proposal is Bitcoin Cash (BCH)!, created
in August 2017 as a “hard fork” of Bitcoin, with the original mo-
tivation of increasing the size of blocks, and thus allowing more
transactions to be processed.

“Work done while the author was at Texas A&M University.
!https://www.bitcoincash.org/.

192

Yu Shen*

School of Informatics
University of Edinburgh
yu.shen@ed.ac.uk

Due to lesser prominence and popularity, the computational
“investment” on these alternate cryptocurrencies is relatively low
(for example, the hashing power invested on Bitcoin Cash is ap-
proximately 5% of that on Bitcoin). Moreover, miners are able to
evaluate their expected reward and rapidly switch among different
blockchains in order to achieve a higher profit, giving rise to an
environment where the number of participating miners on these
minor blockchains may fluctuate wildly, which in turn has a direct
effect on suitable difficulty (of PoWs’) recalculation mechanisms?.

The above two aspects—desired higher transaction throughput
and higher participation variation—are the motivation for this work.
We focus on Bitcoin Cash as a representative of a newly proposed
target recalculation function, and perform a formal analysis of the
protocol’s security under such dynamic environment. The impor-
tance of an adequate target recalculation mechanism has already
been pointed out in [5], where it is observed that if it is removed,
the blockchain protocol becomes insecure in the dynamic setting
even if all parties behave honestly, resulting in a blockchain that
will diverge substantially (i.e., spawning “forks”) as the number
of miners keeps increasing, thus becoming vulnerable to many
known cryptographic attacks. Furthermore, an inadequate target
recalculation function may break the balance between miners’ in-
vested hashing power and reward, thus reducing their confidence
in the system and leading them to quit the mining pool, arguably a
situation that should be avoided.

Bitcoin Cash’s target recalculation algorithm has gone through
three stages. When created, the recalculation mechanism was a com-
bination of Bitcoin’s target recalculation function and an emergency
difficulty adjustment (EDA) mechanism, which would suddenly en-
large targets by 25% (i.e., decrease mining difficulty by 20%) if the
block generating interval of 6 blocks exceeds 12 hours.

In November 2017, this initial function was replaced by a new
function called SMA (for Simple Moving Average, or “cw-144"). At
a high level, SMA is analogous to Bitcoin’s recalculation function
in the sense that it determines the next target based on an “epoch”
of blocks, except that in the new algorithm the target value is re-
calculated more frequently—in fact, the target for each block varies.
Moreover, the epoch of blocks changes with every block in a “sliding
window” fashion. Generally speaking, the SMA function calculates
target for the next block based on the length of the epoch and the
average target of the blocks in the epoch.

Finally, the recent (November 2020) update introduces a control-
theory-inspired recalculation function called ASERT (for Absolutely
Scheduled Exponentially Rising Targets) [15]), which is completely
different from previous recalculation functions. ASERT is not epoch-
based, and adjusts the difficulty level of each block simply based
on its timestamp and height difference with the “anchor” block.

2 As a reference, Bitcoin adjusts the PoWs’ difficulty level every 2016 blocks — approxi-
mately every two weeks.

AFT ’21, September 26-28, 2021, Arlington, VA, USA

Specifically, once an anchor block is chosen, a timestamp can be
computed for all the subsequent blocks according to its height
and ideal block generating interval. The difficult adjustment is an
exponential function of the block’s timestamp deviation from its
scheduled timestamp. the target changes is controlled by a “smooth-
ing factor” m, which we will show is a crucial parameter in our
analysis.

Overview of our results. Our main contribution is establishing
under what conditions regarding party fluctuation Bitcoin Cash’s
target recalculation functions (both ASERT and SMA) achieve a
steady and close to ideal block generation rate, given that they are
not epoch-based, and the recalculation mechanism is invoked for
every block—and further, in the case of ASERT, that it is “memory-
less,” meaning that the target for one block is only decided by
the current timestamp and the block’s height. As such, previous
analyses based on the duration of an epoch no longer hold, and
new analytical tools are needed.

As in prior work on dynamic environments, bounds on the ways
that miners come in and drop out of the computation are necessary
for things to work. We suggest a new methodology to capture how
the number of parties can fluctuate. In a nutshell, our definition
is comprised of two parts concerning both short-term and long-
term participation. In such context, we first (Section 3) perform a
preliminary analysis of the ASERT function to establish whether
in a suitable respecting environment, the blocks in chains created
according to the function will have blocks with timestamps to
make the probability of producing the next blocks close to the
ideal block generation rate (we will call such timestamps “good”).
Through a closeness measure based on “calibrated timestamps” and
probabilitic analysis we conclude that they do.

Our conclusions then serve as a crucial part of the complete
security analysis (Section 4), where, following [4, 5], we present an
abstraction of the protocol we term the Bitcoin Cash backbone, and
follow the “template” of establishing two main properties of the
blockchain data structure—“common prefix” and “chain quality”—
which serve as an intermediate step to build a robust transaction
ledger. As a result, (our abstraction of) the Bitcoin Cash protocol
with chains of variable difficult using the ASERT function running
in a bounded-delay network and suitably parameterized, satisfies,
with overwhelming probability, the properties of consistency and
liveness.

In addition (Section 5), we also provide a description and high-
level analysis of Bitcoin Cash’s previous target recalculation func-
tion SMA. Even though the function has now been deprecated, it
provides insights and elements of comparison against ASERT with
regard to party fluctuation.

Finally (Section 6), we compare our results with data from the
Bitcoin Cash network, from which we extract the actual party
fluctuation rate and network delay. Our main conclusion is that in
order to satisfy security (namely, properties satisfied except with
negligible probability) increased parameter values should be used
with respect to the ones used in practice—specifically, a larger
value of m (the smoothing factor in ASERT and epoch length in
SMA)-concretely, m = 432, compared to the value m = 288 that
is being used in ASERT (which in turn corresponds to 2 days)—
should be adopted. In addition, regarding the SMA function, a

193

Juan Garay and Yu Shen

larger dampening filter r = 8 in the SMA function should be used,
instead of 7 = 2, which is the value that was last used. Lastly, our
comparison with the existing Bitcoin Cash network shows that the
ASERT function performs better than the SMA function under a
pronounced party fluctuation.

Due to space limitations, some of the proofs, detailed protocol
descriptions, and other complementary material are presented in
the full version of this paper [7].

2 PRELIMINARIES

In this section we present the network model where we analyze
Bitcoin Cash’s target recalculation functions as well as the Bitcoin
Cash protocol abstraction, as well as some basic blockchain notation.
These notions and terminology follow closely [5, 6], and therefore
the presentation here is succinct, except for the extension of the
notion of respecting environments with respect to [6]. More formal
details about the model are presented in the full version [7].

Model. We describe our protocol in the bounded-delay (aka “par-
tially synchronous”) network model considered in [6, 13], where
there is an upper bound A in the delay (measured in number of
rounds) that the adversary may inflict to the delivery of any message.
The precise value of A will be unknown to the protocol. “Rounds”
still exist in the model, but now these are not synchronization
rounds where messages are supposed to be delivered to honest par-
ties (“miners”). At any given time (round), a fraction of the parties
may be “corrupted” and controlled by an adversary A, directing
them to behave in an arbitrary and potentially malicious manner.
The underlying communication graph is not fully connected and
messages are delivered through a “diffusion” mechanism.

As in [6], we assume a dual hash function/network functionality
that is available to all parties running the protocol and the adversary,
and which abstracts the access of the parties to the hash function
and the network. The hash function aspect relates to the parties
attempting to solve “proofs of work” (PoW) [3] during the execution
of the protocol, and is modeled as parties having access to the
oracle H(-). In our analysis, each honest party P; is allowed to ask
one query to the oracle in each round, but unlimited queries for
verification. The adversary A, on the other hand, is given at each
round r a number of queries that cannot exceed ¢,. The “diffusion”
aspect of the communication allows the order of messages to be
controlled by A. Furthermore, the adversary is allowed to spoof
the source information on every message (i.e., communication is
not authenticated).

Garay et al. [6] refer to the setting defined by the two series
n = {n,},en and t = {t; }, e, representing the number of “ready”
honest parties and the bound on corrupted parties that may be
activated at each round r, with the above bounded access to the
random oracle functionality, as the dynamic setting. As pointed
out in [5], protocol’s properties cannot be satisfied under arbitrary
sequences of parties, and restrictions are in order. In our model,
one important difference with respect to [5, 6] is the bound on
the short-term variation of the number of parties, in addition to
the long-term bound, which results in the following definition of
accepted variation terms on the number of parties:

3Definition 2.1 is consistent with the notion introduced in [5], except that there the
party fluctuation is expressed with respect to the number of honest parties. Note that

On Bitcoin Cash’s Target Recalculation Functions

Definition 2.1. For y,T € R*, we call a sequence (n,)ren (7, 0),
(T, =))-respecting if it holds that in a sequence of rounds S with
|S| < X rounds, max,¢g n, < I'-min,¢gs n, and for any consecutive
sub-sequence rounds §” < S with |S’| < ¢ rounds, max,cg ny <
Yy - mingcg ny.

Blockchain notation. A block is a quadruple of the form B =
(r,st, x, ctr) with st € {0,1}*,x € {0,1}* and r, ctr € N. They sat-
isfy the predicate validblockg (B) defined as (H(ctr, G(r, st,x)) <
T) A (ctr < q) where G(-), H(+) are cryptographic hash functions
with output in {0, 1}*. A blockchain is a sequence of blocks. The
rightmost block is the head of the block denoted head(C). Note
that the empty string ¢ is also a chain and head(¢) = ¢. A chain
Cwith head(C) can be extended by appending a valid block B =
(r’,st’,x’, ctr’) that satisfies (st = H(ctr,G(r,st,x))) A (r’ > r).
By convention, any valid block may extend the chain C = ¢. The
length of a chain len(C) is its number of blocks. Consider a chain C
of length ¢ and any nonnegative integer k, we denote by C 'k the
chain resulting from “pruning” the k rightmost blocks. Note that
fork > len(C), CT¥ = e. If Gy is a prefix of C; we write C; < Ca.
For chains C; and Cy, define C; N C» to be the chain formed by
their common prefix.

3 BITCOIN CASH

A salient distinction of Bitcoin Cash (in addition to the size of blocks)
with respect to Bitcoin is its target recalculation function—ASERT.
Intriguingly, and in contrast to SMA, this function is “memory-
less,” so one thing we would like to find out right away is whether
such a function is able to maintain, under the conditions allowed
by our model, a steady block generation rate. If that’s the case,
we will then proceed with the protocol abstraction and analysis
to establish under what values of parameters the blockchain and
ledger properties (cf. Section 4) can be satisfied. (The latter is also
required for the SMA analysis.)

3.1 The ASERT Target Recalculation Function

The November 2020 Bitcoin Cash update introduced a new difficulty
adjustment algorithm, called ASERT (for “Absolutely Scheduled
Exponentially Rising Targets”), aimed at achieving a stable block
generation interval and transaction confirmation time as well as
reducing the advantage of non-steady mining strategies. The new
algorithm is derived from the control theory literature, and, specif-
ically, from the notion of Exponentially Moving Average (EMA), a
type of moving average that places greater weight on the most
recent data points, in contrast, to Simple Moving Average (SMA,
the previous target recalculation function), which applies an equal
weight to all the observations in the period. For additional details,
refer to [15], where a mathematical derivation of this function based
on exponential smoothing, a common technique for removing noise
from time series data, is provided.

ASERT adjusts the target based on the anchor block, i.e., a block
whose target is denoted by Ty, and is used as a reference for all
subsequent blocks. We use f € (0,1) to denote the ideal block
generation rate (and thus 1/f represents the ideal block generation

the two fluctuations are related by a constant (concretely, 2 — §; see Table 1). As it
turns out, expressing statements in terms of honest-party fluctuation will considerably
simplify them.

194

AFT ’21, September 26-28, 2021, Arlington, VA, USA

interval). At a high level, for a given block, ASERT compares its
timestamp with the scheduled timestamp, which is a product of
the ideal block generating interval and the block’s height difference
(e.g., for the i-th block, it is (i — 1)/f). If the block’s timestamp
is ahead of the scheduled time, which means that the number of
miners is larger than that corresponding to the anchor block, ASERT
decreases the target (i.e., raises the difficulty of generating a block);
if it falls behind the scheduled time, then the target is increased
(i.e., the difficulty is reduced).

The amount by which the target is changed is based on a value m,
the decay or smoothing factor. Specifically, the target is adjusted ex-
ponentially based on the ratio of time difference and the smoothing
time (i.e., m/f). For example, if the smoothing time is 2 days, then
a block with a timestamp 2 days ahead of the scheduled timestamp
would have a target whose value is half of the anchor target’s.

Formally, ASERT is defined as follows. (Note that we assume the
anchor block to be the first block and timestamps start at 0.)

Definition 3.1 (ASERT). For fixed constants m, Ty, the target cal-

culation function Dasgrr : Z* — R is defined as
Ty - 2(re=(@=D/H)/ (m[f)
(1)

where (r1,...,rp) corresponds to a chain of v blocks with r; the
timestamp of the i-th block.

Dasgrt(€) = To and DASgRT (71, - - -5 70) =

Note that, as opposed to Bitcoin’s target recalculation algo-
rithm [5] and also to Bitcoin Cash’s recalculation function (SMA,
Section 5), ASERT is not epoch based. Moreover, and as mentioned
earlier, ASERT is memoryless—i.e., the target for one block is only
decided by the current timestamp and the block’s height. No matter
what timestamps the previous blocks have, they would not influence
the current block’s target value.

Removing the function’s “dampening” filter raises the question
of whether it would suffer from Bahack’s raising difficulty attack
[1]. It turns out that it does not, since Equation (1) intrinsically
prevents the difficulty from a sudden sharp increase. Concretely, as-
suming monotonically increasing timestamps, even if the adversary
produces m blocks with the same timestamp, he can only double
the difficulty value.

3.2 ASERT: Preliminary Analysis

We now provide a preliminary analysis of the ASERT function to
establish whether in a suitable environment, the blocks in chains
created according to the function will have blocks with timestamps
to make the probability of producing the next blocks close to the
ideal block generating rate. (With foresight, we will call such times-
tamps “good”) Our preliminary conclusions will then serve as a
crucial part of the complete security analysis, after we introduce
the Bitcoin Cash protocol abstraction.

Our security parameter is hash function length x, and we let the
smoothing factor m = polylog(x). Our probability space is over all
executions of length at most some polynomial in x. We will denote
by Pr the probability measure of this space.

We use n, to denote the total number of parties at round r ([5, 6]
uses n, to denote the number of honest parties), and t, to denote the
number of corrupted parties. Thus, the number of honest parties at
round r is n, — t,. For simplicity, we use h, = n, — t,. This follows

AFT ’21, September 26-28, 2021, Arlington, VA, USA

the tradition in the secure multiparty computation literature and
the notation in [4].

Recall that in our model, each party’s query bound to the random
oracle (RO) per round is g = 1. Now suppose that at round r exactly
n parties query the RO with a target T. Then the probability that at
least one of them will succeed is

f(T,h)y=1-(1 —pT)h < phT, where p = 1/2".

We let fo = f(To, ho), where Ty and hg are the initial target and
estimate of number of honest parties, respectively. The objective
of the target recalculation mechanism is to maintain a target T for
each party such that f(T, h;) = fp for all rounds r. For notational
simplicity, we will drop the subscript from fy, and will always
specify the two arguments of f(-,) to avoid confusion.

We say round r is a target-recalculation point of a valid chain
C, if there is a block with timestamp r. Recall that our goal is to
show that all the target recalculation points on a chain using the
ASERT function are “good” How close should the corresponding
generation rate (namely, ph,T) be?

Intuitively, the block generation rate should satisty f/T’ < ph, T <
T'f, when considered in a respecting environment with long-term
party fluctuation ratio I' (recall Definition 2.1). Moreover, adver-
sarial parties can choose to keep silent, hence decelerate the block
production process. One might consider adding an honest-party
advantage, say, 0 to the lower bound—i.e., /(2 - §)T < ph,T <T.
As we shall see, it turns out that this modification is not sufficient
for a satisfactory security analysis, and is inadequate to absorb all
the errors in our model. Le., the adversary would be able to wait for
an appropriate moment to act and then disturb the regular block
production. Consequently, we need a looser bound to compensate
for adversarial behavior as well as for errors introduced by the
(peer-to-peer and dynamic) network. Taking this into account, we
proceed to define a “good” target-recalculation point:

Definition 3.2 (Goodness). A target-recalculation point r is good if
the target T for the next block satisfies f/2(2—8)T* < ph,T < 2I3f.

As mentioned above, ASERT not being epoch-based means that
previous analyses regarding the “goodness” of recalculation points
for Bitcoin [6] (as well as for SMA—Section 5) do not hold.

We start our analysis by presenting some basic observations
regarding the ASERT function. Note that the target for the next
block is merely related to the block’s timestamp and height. For
the i-th block with timestamp r and corresponding number of
honest parties hy, it is not hard to see that if r = (i — 1)/f +
(m/f)log(ho/hy), the i-th block would have block generation rate
exactly f. We call this timestamp r the calibrated timestamp for
block B;. In addition, r is a good target recalculation point if it
satisfies

3 ho 3
f f log(2(2 oHIr’- r) <r<i - f + 7 1o g(2r”-) (2)
We now define a new random variable to describe the deviation
of timestamps: We use X; to express by how much the i-th block
deviates from its calibrated timestamp. For the i-th block with
timestamp r; and number of honest parties h;,

1
= Xi + (rins i) — 7 — = log

X; = 0 and Xj4q
ff

Juan Garay and Yu Shen

The three parts in the definition of Xj4 are as follows: (1) (rit+1 —
r;) represents the difference between their timestamps, (2) 1/f is
the ideal block interval, and (3) (m/f) log(hit+1/hi) is the differ-
ence between the respective number of honest parties. For “good”
blocks, variable X; should satisfy —(m/f)log2(2 — §)I® < X; <
(m/f)log2r3.

As defined, X; is sensitive to the fluctuation of number of par-
ties. Since we can only bound the fluctuation rate during a fixed
number of rounds, X; is not suitable for the analysis. To over-
come this, we consider a new random variable W; within a ({y, ¢ +
2A), (T, 4(m/f)logT'))-respecting environment, and then show that
if this new random variable satisfies certain conditions, then X;
presented above satisfies the ideal bound (2).

In more detail, we consider the calibrated timestamp r = (i —
1)/f + (m/f)log(ho/hy), and a sliding window of 4(m/f)logT
rounds starting with block B, and number of honest parties h;,.
For each subsequent block in this window, we replace h, with hy,
and call ¥’ = (i = 1)/f + (m/f) log(ho/hy) the relatively calibrated
timestamp with respect to B, for i-th block B;,i > u. We can now
define a new random variable W; expressing by how much the i-th
block deviates from its relatively calibrated timestamp (wrt By,).
That is, for i-th block with timestamp r;,

W, =Xy and Wiz = W; + (riqg —ri)—%foriz u.
Now the definition of the random variable only consists of two
parts: The difference between their timestamps, and the ideal block
interval. For good target recalculation points, W; should satisfy

m m
——log2(2 - 8)I'? < W; < — log 2l
f T

Next, we define seven states based on values of the random
variable W;. Studying the possible transitions between them allows
us to establish that target recalculation points are good. Refer to
Figure 1. Let hmax, hmin denote the maximum and minimum number
of parties during the sliding window, respectively.

HotLeft; £ W; < —% log2(2 — §)I

VolatileLeftOuter; 2 —% log2(2 - OT% < W; < —? log 2(2 — 8)T

VolatileLeftInner; = —? log2(2-8)T < W; < _% log 2(2 — 8) hmax

hy
m 2(2 = 6)hmax m 2hy,
Coldj £ ——log—————— <W; < —log —
CTE T 7% B
m 2hy, m
VolatileRightlnner; £ — lo <W; < —log2l
ghtinner; = % log =+ < Wi < 7 log

VolatileRightOuter = ?log 2l <W; < ?log 2r?

HotRight; = W; > %log 212

States VolatileLeftOuter and VolatileRightOuter are of fixed
length (m/f) log T, while states VolatileLeftlnner and VolatileRight
Inner are of length at most (m/f) logI. These lengths will play a
significant role in the following analysis of the ASERT function.

On Bitcoin Cash’s Target Recalculation Functions

AFT ’21, September 26-28, 2021, Arlington, VA, USA

Figure 1: The states based on the values of random variable W;.

logl

ml r <m
T8 =7

Y.

HotLeft : VolLeftOuter ' VolLeftInner

. '
! ¢ e
¢ e
I I
1 1
1 1
1 1
1 |
| |

Cold

m
—logl’

<Dlogr
_Tog £

< > >
- P P

--X--

HotRight

VolRightInner | VolRightOuter

m
——log2(2 — §)r?

D iog2(2 — 8)r
T 7 log2()

We aim to show that for blocks By, . .., B, generated in an inter-
val of length 4(m/f) log I rounds, the following holds:

— For a block B, i > u with W; (w.r.t. By) in state Cold, we can
construct a new 4(m/f) log I'-round sliding window with W;
(w.r.t. B;) in state VolatileLeftInner, VolatileRightInner or Cold.

— If W, is in state VolatileLeftInner, VolatileRightlnner or Cold,
the probability of W;, i > u reaching HotLeft or HotRight is
negligible.

— If W, is in state VolatileLeftInner, VolatileRightlnner or Cold,
Wi, i > u will return to Cold with overwhelming probability.

Lemma 3.3 below follows from the definition of each state and
party fluctuation; Lemma 3.4 establishes a basic property the volatile
states satisfy.

LEMMA 3.3. For a block By, if W, w.r.t. By, is in state Cold, then
Wy wr.t. By is in state VolatileLeftInner, VolatileRightInner or Cold.

Proor. Consider W, w.r.t. By, Xy = Wy + (m/f) log(hy/hy).
Combining it with Cold, as well as Amax < T hy, hy < T - Apin, we
get

m

m m
~Zlog2(2-8l < -—1o
7o 78

—lo
f g

log

2(2 - 5)hmax +
hy
2hy

hmin

ho
hy
m

hy m m hy

<= —log = <
hy = f f"h " f
By the definition of W, w.r.t. By, W, = Xy, therefore in state Volatile
LeftInner, VolatileRightInner or Cold. O

< Xp=Wy+ % log log + log 2T.

LEMMA 3.4. Until the next block is produced, if W; is in state
VolatileLeftOuter or VolatileLeftInner, the block generation rate is
always below f[2; if W; is in state VolatileRightInner or Volatile
RightOuter, the block generation rate is always above 2f.

Proor. For the first part, our goal is to show that even if the
adversary and the honest parties join force, they cannot achieve a
block generation rate over f/2. Suppose the i-th block has times-
tamp r and number of honest parties h,. If W; < —(m/f) log[2(2 —
&)hmax/hy], the target of B; satisfies

I < Ty o7 o A= og Lm0y)
) ho < Ty ho
T2 (2-8hmax 2 (2-06)h

Therefore, the block generating rate at round r is pT -h, <
f/12(2 —)]. Note that pTrhmax < f/[2(2 —)] as well, which
implies that while the number of honest parties may raise during

196

m
—log 212

ml 2r
og i

f

the rounds till the next block will be produced, the block gener-
ating rate will never exceed f/[2(2 — §)]. Moreover, the adver-
sary may join force to accelerate the block production. Recall that
Vr, tr < (1 — 8)hy, after the adversary joins, the block production
rate is still below f/2.

For the second part, we prove that the block generation rate
will not fall below 2f when the honest parties keep working by
themselves. Similarly, assuming the i-th block has timestamp r and
number of honest parties h, as well as W; > (m/f) log(2hy /Amin)-
Thus, the corresponding target

2hy
lOg Amin

m

=1y mos o
T, > Tp2 7 77 8T

=
7P _op. P05 op B0

min hy
This implies pT,-hmin > 2f. Thus, we get that the block generation
rate is always above 2f. O

We are now ready to establish the probability of “escaping” from
a volatile state to a hot state.

LEmMA 3.5. Consider blocks By, . . ., By with timestamps ry —ry <
4(m/f)logT in a ({y.£ + 2A),(T,4(m/f)logT))-respecting envi-
ronment. If Wy, is in state VolatileLeftInner, VolatileRightInner or
Cold, the probability of W;, i > u, reaching HotLeft or HotRight is
negligible.

Proor. Regarding the probability of escaping from VolatileLeft
Outer, by Lemma 3.4, at every round it will succeed producing a
block with probability at most f/2. We view the number of blocks
produced as a binomial distribution with success probability f/2.
And, for worst case, W; begins at the leftmost point in VolatileRight
Inner, it has to go leftwards for (m/f) logT in order to reach Hot
Left.

Since Wiy1 = Wi+ (rig1 —ri) —1/f, we get Wy = Wy, +ry —ry —
(u—0)/f. Assume now Wy, = —(m/f) log2(2 - d)T, if W, is in Hot
Left, ry —ry — (u—0)/f < —(m/f)logT. Obviously, this will never
happen in the first (m/f) log I rounds. For the rounds with index in
{(m/f)logT +1,...,4(m/f)logT}, split them into segments with
length 1/f. For r in i-th segment with index {(m/f)logI + (i —
)/f+1,....,(m/f)logT +i/f}, suppose we produce a block B,
in expectation, parties will succeed for | (mlogT +i — 1)/2] times
in these rounds. If they succeed for more than (mlogT + i) times,
thenry —ry, — (u—0)/f < —(m/f)logT, thus reach HotLeft.

Note that mlogT +i > 2 - [(mlogT +i — 1)/2] always holds.
By Theorem A.1, let Z;, ..., Z (T = r) be independent variables
withE[Z;] = f/2and Z; € {0,1}. Let Z = XL, Zi, u= 3L f/2=

AFT ’21, September 26-28, 2021, Arlington, VA, USA

E[Z] = |(mlogT +i—1)/2] > mlogT. Then, for A = 1, we get
2

A
Pr[Z > (1+A)u] <exp| - oA -mlogT| < 2= Q(m),

Eventually, this may happen for 3(m/f) logT times, thus we get
the negligible escape probability

1— (1 — Z—Q(m))3% logT’ > 3% logl" . Z—Q(m) = Z_Q(POIYIOE(K)).

Consider the probability of escaping from VolatileRightOuter, by
Lemma 3.4, at every round it will succeed producing a block with
probability at least 2f. We view the number of blocks produced as
a binomial distribution with success probability 2f. And, for worst
case, W; begins at the rightmost point in VolatileRightInner, it has
to go rightwards for (m/f) logT in order to reach HotRight.

Since Wiy1 = Wi + (rig1 — 1) — 1/f, we get Wy = Wy, +ry —
ry — (u —0)/f. Assume now Wy, = (m/f)log2T, if W, is in Hot
Right, ry, — ry — (u —0)/f > (m/f)logT. Again, this will never
happen in the first (m/f) log I rounds. For the rounds with index in
{(m/f)logT +1,...,4(m/f)logT}, split them into segments with
length 1/f. For r in i-th segment with index {(m/f)logT + (i —
)/f+1,...,(m/f)logT +i/f} suppose we produce a block By, in
expectation, parties will succeed for 2(mlogT'+i—1) times in these
rounds. If they succeed for less than i times, then r,—ry, —(u—v) /f >
(m/f)logT, thus reach HotRight.

Note that i < (1/2) - 2(mlogT + i — 1) always holds. By The-
orem A.1, let Z;,...,Z7 (T = r) be independent variables with
E[Z] =2fand Z; € {0,1}.LetZ= YL Z;, y=3I 2f =E[Z] =
2(mlogT +i—1) > 2logT. Then, for A = 1/2, we get

AZ
- —— 2mlogT| < 2~ %(m)
2+A

Eventually, this may happen for 3(m/f) logT times, and the final
escape probability

Pr[Z < (1-A)p] <exp [

1 (1= 27 %0m)37 logl 5 3? logT - 2-2(m) — 9=Q(polylog(x)

is still negligible. O

Next, we focus on the “return” probability. Since W; will travel
far away from the relatively calibrated timestamp (i.e., HotLeft or
HotRight) only with negligible probability, and once it reaches Cold
we are done, we consider the following two bad events:

— During 4(m/f) logT rounds, beginning at —(m/f) log2(2 -)T
(the leftmost point of VolatileLeftInner), W; stays in state Volatile
LeftOuter and VolatileLeftInner.

— During 4(m/f)logI rounds, beginning at (m/f)log 2T (the
rightmost point of VolatileRightlnner), W; stays in the state
VolatileRightlnner and VolatileRightOuter.

We show that by the concentration of the binomial distribution,
these two bad events happen only with negligible probability. Note
that our results are achieved considering the largest distance W;
needs to travel and with worst success probability. For those events
that start closer to the relatively calibrated timestamp, the events’
probability will be much lower.

LEMMA 3.6. Consider blocks By, . .., By withry—ry < 4(m/f)logT
ina ({y, £ +24),(T,4(m/f) logT'))-respecting environment. If Wy, is
in state VolatileLeftInner, VolatileRightlnner or Cold, W;, i > u will
return to Cold with overwhelming probability.

197

Juan Garay and Yu Shen

Proor. We consider the two bad events that makes W; fail to
return Cold.

For the first event of staying in the left-side states, Lemma 3.4
shows that at every round it will succeed producing a block with
probability at most f/2. We view the number of blocks produced as
a binomial distribution with success probability /2. And, since we
assume it begins at the leftmost point in VolatileLeftInner, it has to
go rightwards for at most (m/f) logT in order to reach Cold.

Consider the first (4m/f) logT rounds with blocks {By, ..., By}.
Since Wiy1 = Wi+ (rig1 —1ri) — 1/f, we get Wy = Wy +ry — 1y —
(u —0)/f. Assume now W,, = —(m/f)log2(2 — §)T, if W, is in
Cold, ry —ry — (u—0)/f > (m/f) logT. In expectation, parties will
succeed for (2mlogT') timesin (4m/f) log I’ rounds. If they succeed
for more than (3mlogI') times, it cannot satisfy r, —ry, —(u—v) /f >
(m/f)logT, thus fails to reach Cold, i.e., W; still falls in Volatile
LeftInner.

By Theorem A.1, let Z;, ..., Zp(T = (4m/f)logT) be indepen-
dent variables with E[Z;] = f/2 and Z; € {0,1}. Let Z = ZiTzl Zi
and p = 2,—21 f/2=E[Z] =2mlogT. Then, for A = 1/2, we get

A2
Pr[Z > (1+A)yu] < exp (ey -2mlogf) = Q(m),

For the second event of staying in the right-side states, Lemma 3.4
shows that at every round it will succeed producing a block with
probability at least 2f. We view the number of blocks produced as
a binomial distribution with success probability 2f. And, since we
assume it begins at the rightmost of VolatileRightInner, it has to go
leftwards for at most (m/f) logT in order to reach Cold.

Consider the first (2m/f) log T’ rounds with blocks {By, ..., By}.
Since Wiy1 = Wi+ (rig1 —1ri) — 1/f, we get Wy = Wy, +ry — 1y —
(u—0)/f. Assume now Wy, = (m/f)log 2T, if W, is in Cold, ry, —
ry —(u—v)/f < —(m/f)logT.In expectation, parties will succeed
for (4mlogT) times in (2m/f)logT rounds. If they succeed for
less than (3mlogT') times, it cannot satisfy ry, — ry, — (u —v)/f >
—(m/f)logT, thus fail to reach Cold, i.e., W; still falls in Volatile
Rightlnner.

By Theorem A.1, let Z;, ..., Zp(T = (2m/f) logT) be indepen-
dent variables with E[Z;] = 2f and Z; € {0,1}. Let Z = ZiTzl Zi
and p = ZiTzl 2f =E[Z] = 4mlogT. Then, for A = 1/4, we get

A2
- 4m10g1") = 279m)
24+ A

Therefore, the return probability is 1 — 22 (polylog(x))

Pr(Z < (1-A)p] < exp(
]

Lemma 3.5 guarantees “goodness” in a sliding window with fixed
length and ideal start state, while Lemma 3.6 states the desired
probability of finding the next ideal start block in such a sliding
window. Therefore, we are able to extend our analysis from the
first 4(m/f) log T rounds to the whole execution. Formally:

THEOREM 3.7. All the target recalculation points on a chain in a
(y, £ +2A), (T, 4(m/f) logT'))-respecting environment are good.

Proor. We show that “goodness” is maintained for all target
recalculation points in a sliding window of length 4(m/f) log T, and
that it can be extended from the first round to the whole execution.
Note that in our assumption, the first block satisfies pTin,, = f (i.e.,
the state is Cold), thus, we can establish the first sliding window

On Bitcoin Cash’s Target Recalculation Functions

starting from Bj. The iteration works as follows: We choose the last
block with state Cold in the sliding window, and then establish a
new sliding window starting from it. According to Lemma 3.6, such
block always exists. For blocks in each sliding window, Lemma 3.5
ensures that all the target recalculation points are good (i.e., never
go into the state HotLeft or HotRight). O

We note that if we consider a respecting environment that al-
lows more time for the same party fluctuation, then the goodness
parameter—i.e., the upper bound and lower bound of the target
recalculation point—can be closer to f. For example, the good
target recalculation parameter can be changed to (1 + I'®) f and
/12 - 8)(1 +T3)], with sliding window length 2I'3(m/f) logT.
In the analysis, this is a trade-off. For simplicity, the presentation
in this section chooses the more intuitive values (2f and f/2).

4 FULL SECURITY ANALYSIS

So a memoryless target recalculation function, under certain con-
ditions, is able to maintain a steady block generation rate. Can
this be used by a protocol to satisfy the desired blockchain and
ledger properties, as formulated in [4, 5]? That’s what this section
demonstrates, by providing the relevant protocol abstraction and
following their analytical approach, albeit with different parameters
and proofs.

4.1 The Bitcoin Cash Backbone Protocol

The main changes introduced by Bitcoin Cash’s hard fork from Bit-
coin were an increase of the block size, replacement of the difficulty
adjustment algorithm, and modification of the transaction rules; the
protocol structure remained unchanged. For the analysis, we adopt
the protocol abstraction presented in [4] (and follow-ups), consist-
ing of the main algorithm (Algorithm 1), which at the beginning
of a round receives input (new transactions as well as chains sent
by other miners); validates them and compares them (according
to their accumulated difficulty) against the miner’s current chain,
adopting the one with highest difficulty (it could be the party’s
own); and attempts to extend the adopted chain by generating a
PoW with the current round’s difficulty value. Before turning to
the protocol description, we first review the desired properties the
protocol should satisfy.

Blockchain properties. We review the two main properties to be
satisfied by a PoW-based blockchain protocol.

— Common Prefix Qcp (Parameterized by k € N): For any two
players Py, P2 holding chains Cy, Cz at rounds ry, ro, with ry < 1,
it holds that C/* < C;.

Chain Quality Qq (Parameterized by p € R and ¢ € N): For
any party P with chain C in VIEwy 4 7, and any segment of
that chain of difficulty d such that the timestamp of the first
block of the segment is at least £ smaller than the timestamp of
the last block, the blocks the adversary has contributed in the
segment have a total difficulty that is at most y - d.

Transaction ledger. Similarly to Bitcoin, the main application
of the Bitcoin Cash protocol is a robust transaction ledger, aimed
at maintaining a serialized transaction sequence organized in the

198

AFT ’21, September 26-28, 2021, Arlington, VA, USA

form of a blockchain, satisfying the following two properties. Let
L denote such ledger.

— Consistency: For any two honest parties Py, Py, reporting L1, L2
at rounds 1 < rg, resp., it holds that .£; is a prefix of .Zg.

— Liveness (Parameterized by u € N, the “wait time” parameter):
If a transaction tx is provided to all honest parties for u consec-
utive rounds, then it holds that for any player P, tx will be in
L.

Protocol description. As in [4], in our description of the protocol
we intentionally avoid specifying the type of values/content that
miners try to insert in the chain, the type of chain validation they
perform (beyond checking for its structural properties with respect
to the hash functions G(-), H(-), and the way they interpret the
chain. These checks and operations are handled by the external
functions V(-), I(:) and R(-) (the content validation function, the
input contribution function and the chain reading function, resp.)
which are specified by the application that runs “on top” of the
backbone protocol. The Bitcoin Cash protocol in the dynamic set-
ting comprises three algorithms chain validation, chain comparison
and proof of work. Refer to [7] for their full specification.

Chain validation. The validate algorithm performs a validation
of the structural properties of a given chain C. It is given as input
the value g, as well as hash functions H(-), G(-). It is parameterized
by the content validation predicate predicate V(-) as well as by
D(-), the target calculation function (see Section 3.1). For each block
of the chain, the algorithm checks that the proof of work is properly
solved (with a target that is suitable as determined by the target
calculation function), and that the counter ctr does not exceed g.
Furthermore it collects the inputs from all blocks, x¢, and tests
them via the predicate V(x¢). Chains that fail these validation
procedure are rejected.

Chain Comparison. The objective of the second algorithm, called
maxvalid, is to find the “best possible” chain when given a set
of chains. The algorithm is straightforward and is parameterized
by a max(-) function that applies some ordering in the space of
chains. The most important aspect is the chains’ difficulty in which
case max(Cy, Cz) will return the most difficult of the two. In case
diff (C1) = diff (C2), some other characteristic can be used to break
the tie. In our case, max(+, -) will always return the first operand to
reflect the fact that parties adopt the first chain they obtain from
the network.

Proof of work. The third algorithm, called pow, is the proof of
work-finding procedure. It takes as input a chain and attempts to
extend it via solving a proof of work. This algorithm is parame-
terized by two hash functions H(-), G(-). Moreover, the algorithm
calls the target calculation function D(-) in order to determine the
value T that will be used for the proof of work. The procedure,
given a chain C and a value x to be inserted in the chain, hashes
these values to obtain h and initializes a counter ctr. Subsequently,
it increments ctr and checks to see whether H(ctr, h) < T; in case
a suitable ctr is found then the algorithm succeeds in solving the
POW and extends chain C by one block.

Bitcoin Cash backbone protocol. The core of the Bitcoin Cash
backbone protocol with variable difficulty is similar to that in [5],

AFT ’21, September 26-28, 2021, Arlington, VA, USA

with several important distinctions. First is the procedure to follow
when the parties become active. Parties check the ready flag they
possess, which is false if and only if they have been inactive in
the previous round. In case the ready flag is false, they diffuse a
special message ‘Join’ to request the most recent version of the
blockchain(s). Similarly, parties that receive the special request
message in their RECEIVE() tape broadcast their chains. As before
parties, run “indefinitely” (our security analysis will apply when
the total running time is polynomial in x). The input contribution
function I(-) and the chain reading function R(-) are applied to the
values stored in the chain. Parties check their communication tape
RECEIVE() to see whether any necessary update of their local chain

is due; then they attempt to extend it via the POW algorithm pow.

The function I(-) determines the input to be added in the chain
given the party’s state st, the current chain C, the contents of the
party’s input tape INPUT() and communication tape RECEIVE(). The
input tape contains two types of symbols, READ and (INSERT, value);
other inputs are ignored. In case the local chain C is extended the
new chain is diffused to the other parties. Finally, in case a READ
symbol is present in the communication tape, the protocol applies
function R(-) to its current chain and writes the result onto the
output tape OuTPUT(). The pseudocode of the backbone protocol
is presented in Algorithm 1.

Algorithm 1 The Bitcoin Cash backbone protocol in the dynamic
setting at round “round” on local state (st, C) parameterized by the

input contribution function I(-) and the chain reading function R(-).

The ready flag is false if and only if the party was inactive in the
previous round.

1: if ready = true then

2 DirrUse(‘ready’)

3 C — maxvalid(C all chains C’ found in Rece1vE())

4: (st,x) « I(st, C, round, InpUT(), RECEIVE())

5: Chew < pow(round, x, 5)

6: if (C # Chew) V (‘Join’ € ReCeVE()) then

7: C < Chew

8: D1rruse(C) » chain is diffused when it is updated or
when someone wants to join.

9 end if

10: if INPUT() contains READ then

11: write R(x¢) to OutpuT()

12: D1rrusi(RoundComplete)

13: end if

14: else

15: ready « true

16: Di1rrusk(Join, RoundComplete)

17: end if

4.2 ASERT: Full Analysis

Table 1 summarizes the parameters that will be used in our analysis,
some of which have already been introduced. Note that our security
parameter is k, and ¢ = ©(m) = polylog(x). Moreover, we consider
the fluctuation of the total number of parties (cf. Definition 2.1 and
Fact 1).

199

Juan Garay and Yu Shen

Table 1: Summary of parameters (ASERT).

d: Advantage of honest parties, Vr(t,/hy < 1-9).

v, 0, T, 2: Determine how the number of parties fluctuates
across rounds in a period (cf. Definition 2.1 and Fact 1).

f: Probability that at least one honest party succeeds gen-
erating a PoW in a round assuming hg parties and target Ty
(the protocol’s initialization parameters).

m: Smoothing factor (cf. Definition 3.1).

7: Parameter that regulates the target that the adversary could
query the PoW with.

€: Quality of concentration of random variables (cf. Definition
4.4).

k: The length of the hash function output.

¢: Related to the properties of the protocol.

L: The total number of rounds in the execution of the protocol.

During a round r of an execution E, the honest parties might
be split and work on different chains, and thus might query the
random oracle on different targets. Denote by T/™™ and T2 the
minimum and maximum of these targets, respectively.

Next, we extend the definition of “goodness” from Section 3.2 to
apply rounds and chains, in addition to recalculation points, and
following [5], we define a property called accuracy, which we will
then show most executions satisfy, and which will help achieve the
desired application’s properties.

Definition 4.1 (Goodness). A target-recalculation point r is good if
the target T for the next block satisfies f/2(2—8)I'3 < ph,T < 2T3f.
Round r is good if f/2y(2—8)I® < ph, ™" and ph, TP < 2yT3f.
A chain is good if all its target-recalculation points are good.

Definition 4.2 (Accuracy). A block created at round u is accurate
if it has a timestamp o such that |u —v| < £+ 2A. A chain is accurate
if all its blocks are accurate. A chain is stale, if for some u > £ + 2A,
it does not contain an honest block with timestamp v > u — £ — 2A.

For a given round r, we let S, denote the set of chains that
belong, or could potentially belong to an honest party. Being explicit
about this set of chains will help in the formulation of a number of
predicates (see below). Specifically, S, includes?:

— Chain C that belongs to an honest party;

— chain C with diff (C) > diff (C”) for some chain C’ of an honest
party; and

— chain C with diff (C) = diff (C”) for some chain C’ of an honest
party and head(C) was computed no later than head(C”).

Random variables. We are interested in estimating the difficulty
acquired by honest parties during a sequence of rounds. For a given
round r, the following real-valued random variables are defined
in [6]:

— D;: Sum of the difficulties of all blocks computed by honest
parties.

— Y;: Maximum difficulty among all blocks computed by honest
parties.

#Note that these chains should exist and be valid at round r.

On Bitcoin Cash’s Target Recalculation Functions

— Qr:Equal to Y, when D, = Oforallr < u <r+Aand0
otherwise.

A round r such that D, > 0 is called successful and one where
Qr > 0 isolated-successful.

Regarding the adversary, in order to overcome the fact that he can
query the oracle for arbitrarily low targets and thus obtain blocks
of arbitrarily high difficulty, we would like to upper-bound the
difficulty he can acquire during a set J of queries. This is achieved
by associating a set of consecutive adversarial queries J with the
target of its first query. We denote this target T(J), and say that
T(J) is associated with J. We then define A(J) and B(J) to be
equal to the sum of the difficulties of all blocks computed by the
adversary during queries in J for target at least T(J)/7 and T(J),
respectively—-i.e., queries in J for targets less than T(J)/7 (resp.
T(J)) do not contribute to A(J) (resp. B(J)).

For simplicity, we write h(S) =)., ¢s hy for a set of rounds S and
queries J (similarly, ¢(S), D(S), Y(S), Q(S), A(J) and B())).

We also define the random variable & taking values on our prob-
ability space and with a distribution induced by the random coins of
all entities (adversary, environment, parties) and the random oracle.
Let &,-1 fix the execution just before round r. In particular, a value
E,_1 of E,_1 determines the adversarial strategy and so determines
the targets against which every party will query the oracle at round
r and the number of parties h, and ¢, but it does not determine D,
or Q. For an adversarial query j we will use, slightly overloading

)

1 to denote the execution just before this query.

notation, EJ(.]
The following fact is a consequence of Definition 2.1 (respecting
environments):

Fact 1. Let S be a set of at most X consecutive rounds in a ({y, o),

(T, 2))-respecting environment and U C S.

(a) IfU < S and |U| < o,
hs _ h(S) h(U)
— < —><T-hsan — <
r S| U]

where hg € {hy :r € S} and hyy € {h, : r € U}.
(b)

h(S) < (1+

at o

Y- hu,

LIS\U|
U]

)h(U) and |S])" (phr)* < T phr)*.
res res
In order to obtain meaningful concentration of random variables,
we have to consider a sufficiently long sequence with a number of
rounds at least
_4(2-9)(1+3¢)
-2y]
We will assume that £ is appropriately small compared to the length
m of a sliding interval/window. Specifically,
em
2yT3 f°
In addition, we would like the advantage § of the honest parties
over adversarial parties to be large enough to absorb error factors.
Thus, we require the following inequalities:

[1-2yT3f]* >1—-eande < 5/8 < 1/8.

-max{A, 7} - yT* - o. 3)

20+ 6A < (C1)

(C2)

Next, we show a chain-growth lemma referring to accumulated
difficulty (cf. [6]), as opposed to number of blocks in the original
formulations [4, 8].

200

AFT ’21, September 26-28, 2021, Arlington, VA, USA

LEMMA 4.3 (CHAIN GROWTH). Suppose that at round u of an
execution E an honest party diffuses a chain of difficulty d. Then, by
round v, every honest party has received a chain of difficulty at least
d+Q(S), whereS={r:u+A<r<ov-A}.

Typical executions. The notion of typical executions was intro-
duced in the analysis framework we are following [4] in order to
capture situations where an execution E’s progress does not deviate
too much from its expected (desired) progress. Since executions
consist of rounds, and within rounds parties perform Bernoulli
trials, we can calculate the expected progress when given the cor-
responding probabilities. On this basis, if the difference between
the real execution and its expectation is reasonable, E is declared
“typical” Note that besides expectation, the variance should also
be taken into consideration. We will later show (applying Theo-
rem A.3—martingale inequality) that either the variance is too high
with respect to a set of rounds, or the parties have made progress
during these rounds as expected.

In addition to the behavior of the random variables described
above, bad events may occur related to the underlying hash function
H(-), which is modeled as a random oracle and used to obtain
PoWs. The bad events are insertion (of a block in between two
consecutive blocks), copy (same block exists in two different position
of the blockchain), and prediction (a block extends one with an
earlier creation time). Refer to [6] for a precise definition. A typical
execution will rule out these bad events as well.

We are now ready to specify what is a typical execution in our
setting (compare with [6]’s).

Definition 4.4 (Typical execution). An execution E is typical if the
following hold:

(a) For any set S of at least ¢ consecutive good rounds,

(1-e)[1-2yT3f14ph(S) < Q(S) < D(S) < (1 +€)ph(S).
(b) For any set J indexing a set of consecutive adversarial queries
and a()) = 2(¢ +)0/T(),

A(J) < plJl+max{ep|J|, za(])} and B(J) < p|J|+max{ep|J|, a(])}.

(c) No insertions, no copies, and no predictions occurred in E.

The next proposition is a simple application of Definition 4.4
and the honest-majority assumption.

PROPOSITION 4.5. Let E be a typical execution in a ({y, o), (T, Z))-
respecting environment. Let S={r | (u < r <v)A(v—u =)} bea
set of consecutive good rounds and] the set of adversarial queries in
U={r|u—-A<r<uv+A}. Then the following inequalities hold:

(@) (1+e)plJI < Q(S) <D(U) < (1+56)Q(S).

(b) If w is a good round such that |w —r| < X for anyr € S,
then Q(S) > (1 + €)[1 — 2yT3f14|S|phy,/T. If, in addition,
T(J) = THn then A(J) < (1 -8 +3€)Q(S).

We are now able to show that almost all Bitcoin Cash backbone
protocol executions polynomially bounded (in k) are typical (the
proof is presented in [7]) . Formally:

THEOREM 4.6. Assuming the Bitcoin Cash backbone protocol runs

for L rounds, the event “E is not typical” is bounded by poly(L) -
e~ Q(polylog(x)) .

AFT ’21, September 26-28, 2021, Arlington, VA, USA

Accuracy and goodness. Next, we consider accuracy and good-
ness over the space of typical executions in a ({y, £+24), (I', 4(m/f)
log I'))-respecting environment, as well as implications between
the two. We assume that all the requirements for the initialization
parameters hg and Ty are satisfied.

LEMMA 4.7. Let E be a typical execution in a ({y,t + 2A), (T,
4(m/f)logT))-respecting environment. If E,_; is good, then there
are no stale chains in S;.

COROLLARY 4.8. Let E be a typical execution in a ({y, £ + 2A), (T,
4(m/f)logT))-respecting environment. IfE,_1 is good, then all chains
in S, are accurate.

THEOREM 4.9. A typical execution in a ({y, € + 2A),(T,4(m/f)
logT'))-respecting environment is accurate and good.

Blockchain and ledger properties. We now show that the Bitcoin
Cash backbone protocol satisfies the two properties common prefix
and chain quality (Section 4.1) for a suitable respecting environment.
First, a preliminary lemma:

LEMMA 4.10. For any round r of a typical execution in a ((y, € +
2A), (T, 4(m/ f) logT'))-respecting environment and any two chains
C and C’ in Sy, the timestamp of head(C N C’) is at least r — 20 — 4A.

THEOREM 4.11 (COMMON-PREFIX). For a typical execution in a
((y, £+2A),(T,4(m/ f) logT'))-respecting environment, the common-
prefix property holds for parameter em.

THEOREM 4.12 (CHAIN-QUALITY). For a typical execution in a
((y, € + 2A),(T,4(m/f) logT'))-respecting environment, the chain-
quality property holds with parameters £ + 2A and p = § — 3e.

We conclude by showing that a typical execution of the Bit-
coin Cash backbone protocol in a ({y, £ + 2A), (T, 4(m/f) logT))-
respecting environment, satisfies the two properties of a robust
transaction ledger presented in Section 2. They are the direct con-
sequence of the blockchain properties shown above, following the
approach in [5, 6].

THEOREM 4.13 (CONSISTENCY). For a typical execution in a ({y, £+
2A), (T, 4(m/f) logT'))-respecting environment, Consistency is satis-
fied by setting the settled transactions to be those reported more than
em blocks deep.

THEOREM 4.14 (LIVENESS). For a typical execution in a ({y, ¢ +
2A), (T, 4(m/f) logT'))-respecting environment, Liveness is satisfied
for depth em with wait-time (4T* + 1)em/f.

5 THE SMA TARGET RECALCULATION
FUNCTION

For completeness, here we present a brief description and analysis of
Bitcoin Cash’s previous target recalculation function. Even though
this function has now been deprecated, it provides some insights
and elements of comparison against ASERT based on actual party
fluctuation. The full analysis of SMA is presented in the full version
of this paper [7].

Recall that the target calculation function D(-) aims at maintain-
ing the block production rate constant. The probability f(T, n) with
which n parties produce a new block with target T is approximated
by f(T,n) ~ qTn/2¥. As in the case of Bitcoin, to achieve the

201

Juan Garay and Yu Shen

above goal Bitcoin Cash tries to keep qTn/2* close to f. To that
end, the SMA function watches an epoch of m previous blocks, and
based on their difficulty as well as on how fast these blocks were
generated, it computes the next target. More specifically, say the
last m blocks of a chain C with targets {T;};¢[,] were produced
in A rounds. For every block in the epoch and n participants, it
holds that f(T;,n) ~ qT;n/2*. For m consecutive blocks, the av-
erage block generating rate f* = qn Yc[n,) Ti/(m - 2), and the
entire generating time A = m/f* = m? - 25/ (qn Zie[m] T)-

Consider the case where a number of parties attempt to pro-
duce m blocks of target {T;};c[] in A rounds (in expectation).
Such number of players can be estimated as n(T3, ..., Ty, A) = m2 -
2°/(qA X ie[m) Ti); then the next target T' is set so that n(Ty, . . ., Trm,
A) players would need 1/f rounds in expectation to produce the
next block of target T”. Therefore, it makes sense to set

because if the number of players is indeed n(Ty,..., Ty, A) and
remains unchanged, it will take them 1/f rounds in expectation to
produce next block. If the estimate of the initial number of parties
is ng, we will assume Ty is appropriately set so that f = qTyng/2"
and then T’ = ngTy/n(Ty, ..., Tn, A).

Based on the above, we can now give a formal definition of
the SMA function. In the definition, parameter 7 serves as the
“dampening filter” to deal with the case ngTo /n(T?'8,A) ¢ [T/z, tT].
This mechanism is necessary given an efficient attack presented by
Bahack [1] for Bitcoin, which also applies to Bitcoin Cash.

Definition 5.1 (SMA). For fixed constants k, 7, m, ng, Ty, the target
calculation function Dgpa : Z* — R is defined as

1 T3VE if _mo-To
T n(Tae,A)
o no-To
D =Tyand D e To) =T TOVE i 00
sma (€) = Toand Dsya(r1, ..., r0) = y7- T™E, if (T8, A)
no T

where n(T3V8, A) = C;X'T%,'ig, with A = ry_1 — ry—m and T8 =

% 2 D(r1s e Tomi)-

REMARK 1. At the start of the protocol execution—the first m
blocks—parties cannot acquire enough previous blocks for target re-
calculation. While several alternate approaches exist (e.g., maintain a
static target or switch to other target recalculation function), we will
assume a “safe start,” i.e., there exist blocks with an ideal target value
prior to the first round.

5.1 SMA: Analysis Overview

The difference between SMA and Bitcoin’s target recalculation
is that the target variation (targets that the adversary can query
during a sliding window) is no longer bounded by the dampening
filter (7). This is because in SMA the target is recalculated for every
block. 7’s restriction is for a single calculation; hence, we introduce
anew parameter A to denote the target variation over a long period
of time.

< l . Tan

> 7. T8

otherwise

On Bitcoin Cash’s Target Recalculation Functions

To highlight some aspects of the proofs of security of the Bitcoin
Cash backbone protocol using SMA, we show that while the targets
in an epoch keep varying, we can still always find an appropriate
block such that the difficulty accumulated during the epoch (when
associated with this block) is well bounded. Le., even the adversary
and an honest party join force, they cannot accelerate this process
too much; and even when honest parties work independently, they
can still efficiently produce enough blocks.

Moreover, we would like to show that a good relation between
the accumulated difficulty in an epoch and its duration always holds,
and therefore the target for the next block is good and the block
generating rate is close to f. Since the SMA function employs the
average targets in the epoch, the previous argument (which only
takes into account single target value) collapses. In order to absorb
the new errors, We propose new conditions such as the following:

€em
20+ 6A < m, (C3)
m[l-(lﬁ-(S)YFf] >1-6and6£5/8§1/8 (C4)

where 4AT /(AT + 1)? (cf. Theorem A.5) helps to “revert” the dis-
crepancy between the accumulated difficulty and the next target.

We conclude that the Bitcoin Cash backbone protocol with the
SMA function satisfies Consistency and Liveness using the follow-
ing parameters:

THEOREM 5.2 (CONSISTENCY). For a typical executionina ({y/(2—
8), £+2A), (T'/(2—8),2(1+8)2m/ f))-respecting environment, Con-
sistency is satisfied by setting the settled transactions to be those
reported more than ey®m/2T blocks deep.

THEOREM 5.3 (LIVENESS). For a typical execution in a ({y/(2 —
8), £+2A), (T /(2= 5), 2(1+8)T?m/ f))-respecting environment, Live-
ness is satisfied for depth ey?m/ 2T with wait-time (y* + 1)em/f.

6 COMPARISON WITH THE BITCOIN CASH
NETWORK

Our analysis shows that for a sufficiently long execution in a some-
what idealized network environment and without severe external
disturbances, Bitcoin Cash would achieve the desired security prop-
erties (with overwhelming probability). Comparison of our analysis
with the existing Bitcoin Cash network data reveals that the ASERT
function performs better than the SMA function in an environment
where party fluctuation is large. Further, both SMA and ASERT
suffer from undersized parameters. In this section we expand on
the above comparisons.

6.1 The Bitcoin Cash Network

Party fluctuation. To perform our comparison, we need to deter-
mine the fluctuation (ratio) of the number of parties in the actual
Bitcoin Cash network. We can extract it from the public statistical
data—-the hashrate, which is the number of hash queries that all min-
ers in the network perform per second. In our model, the queries
that every party can make in one round is bounded. Thus, for the
purpose of our comparison we assume the hashrate to be identical
to the number of parties, and its fluctuation ratio also reflects the the
number of parties’. To be more precise, the available hashrate does

202

AFT ’21, September 26-28, 2021, Arlington, VA, USA

not reveal the entire Bitcoin Cash network, but instead the hashing
power invested in some well-known mining pools. Nonetheless,
since most of the computational power is concentrated in these
mining pools, this hashrate can very closely approximate the entire
network’s.

In addition, instead of the the exact fluctuation ratio with respect
to a short period of time (e.g., 10 minutes), we adopt the ratio based
on the daily average hashrate, which shows the average queries per
second in one day; this measure would correspond to parameter T
in our analysis. Since our analysis should be applied to a relatively
long execution, this measure replacement seems reasonable.?

Figure 2 shows the daily average hashrate in one month period
(Jul 18 2020 — Aug 17 2020)°, which we adopt as the representative
case of the Bitcoin Cash network execution under the SMA function.
The maximum value in this period is 3.1783EHash/s (on Aug 07
2020) and the minimum is 2.3865EHash/s (on Aug 06 2020), so it
suffices to set I' = 1.398 as the party fluctuation ratio. Regarding the
ratio during a small period of time, note that as we are discussing
the average hashrate, y = 1.057, which satisfies yLZ/UJ > T, would
be a suitable value.

We note that the assumed behavior may not hold when some
type of external disturbance occurs, such as the halving of the
block reward or sharp gains and declines in BCH’s monetary value,
which might cause a large number of miners abruptly joining or
dropping out of a mining pool in a short period of time. As it turns
out, these events do not happen very frequently (e.g., block reward
halves about every 4 years), so we are comfortable extrapolating the
execution of the Bitcoin Cash network from what Figure 2 depicts.

Figure 3 shows the daily average hashrate in one month period
(Dec 1 2020 - Dec 30 2020), after the Nov. 2020 network update
when the ASERT function was adopted. The maximum value in
this period is 1.9451EHash/s (on Dec 21 2020) and the minimum
is 1.0349EHash/s (on Dec 24 2020). Therefore, I' should be to 1.88.
This fluctuation rate is relatively high, and we speculate was caused
by two reasons: (1) the network could not return to a quiet state
soon after the update happens, and (2) the price of Bitcoin Cash
experienced substantial ups and downs during this period. We thus
set the value of y = 1.099.

Network delay. Another important aspect to validate our analysis
in a bounded-delay network environment is the actual message
delay in the network. It is shown in [2] that the delay in the Bitcoin
network mainly stems from its multi-hop broadcast (“diffuse” in
our model terminology) and block propagation mechanism (Bit-
coin Cash employs a similar mechanism to Bitcoin), which we now
expand on. As a mining node would typically maintain a limited
connections with other nodes, when the node wants to broadcast
one block after receiving and verifying it, the node will first send
an inv message containing the block hash to all its neighbors. If the
neighbors do not have the block locally, they will issue a getdata
message to the sender of inv. Then the actual block transfer be-
gins. Thus, at each hop during the broadcast the message incurs a
propagation delay consisting of the transmission time and the local

5We note that if we consider the fluctuation rate over 10-minute intervals, the overall
party fluctuation will become extremely pronounced (parameter I' will exceed 4),
making our analysis inapplicable.

®Source: https://bitinfocharts.com/comparison/hashrate-bch.html

AFT ’21, September 26-28, 2021, Arlington, VA, USA

Juan Garay and Yu Shen

Figure 2: The daily average hashrate of Bitcoin Cash from July 18 to August 16, 2020.

33
3.1
29
2.7
2.5

2.3

Hashrate (EHash/s)

18-Jul 21-Jul 24-Jul 27-Jul

30-Jul

2-Aug 5-Aug 8-Aug 11-Aug 14-Aug

Date ((Jul - Aug 2020)

Figure 3: The daily average hashrate of Bitcoin Cash from Dec 1 to Dec 30, 2020.

1.8
1.6
14
1.2

(EHash/s)

Hashrate

1-Dec 4-Dec 7-Dec 10-Dec

13-Dec

16-Dec 19-Dec 22-Dec 25-Dec 28-Dec

Date (Dec 2020)

verification of the block. Decker and Wattenhofer [2] evaluated
the distribution of the block propagation time since the first block
announcement, which shows a median time of 6.5 seconds as well
as a mean time of 12.6 seconds. For more recent data, Bitcoin Moni-
toring 7 carried out by the German Federal Ministry of Education
and Research shows that 90% of the block propagation time is be-
low 6 seconds. Thus, assuming a round duration of 6 seconds, it is
reasonable to let the delay bound (A) in our analysis approximately
equal to 1 round.

Target variation. Our formulation (of SMA function) bounds the
target variation by a fixed parameter A and the parties’ fluctuation
ratio. This is a reasonable idea, since the number of parties, accumu-
lated difficulty and number of blocks (chain growth) are correlated.
In the real network, however, the hash power invested in minor
blockchains varies wildly, and as such it is unlikely that the number
of parties would stay high for a long period of time, and thus target
values would seldom vary more pronouncedly than the number of
parties. Compared with other parameters, the criteria for selecting
A does not seem as strict. As we can cover more executions if we
set a larger value for A, we choose A = 1.201 when applying our
analysis. As a result, when compared with previous work [5, 6], our
analysis can tolerate situations where targets vary more wildly (i.e.,
they exceed the AT bound).

7Source: https://dsn kastel kit.edu/bitcoin/

203

6.2 Conclusions

ASERT function. Based on the considerations above, for the pur-
pose of our comparison, we parameterize the real-world Bitcoin
Cash network with network bounded-delay A = 1 (round), honest
advantage J = 0.99, quality of concentration € = 0.123, long term
party fluctuation ratio I' = 1.88, short term party fluctuation ratio
y = 1.099 and ideal block generating rate f = 0.01.

On one hand, the resulting probabilities with respect to the
goodness parameters are very tight, when considered in the real
network parameters (i.e., m = 288 and I' = 1.88). To be precise,
in a sliding window, the probability of the block generation rate
exceeding the goodness bound is below 107'2, and the probability
of not returning to Cold is less than 10~°. Therefore, it is safe to
conclude that the ASERT function achieves a relatively stable block
generation rate.

On the other hand, we cannot directly plug in in these parameter
values to satisfy Condition (C2), since the party fluctuation is too
pronounced, thus making it hard for the concentration parameter €
to absorb the errors. Condition (C2), however, can be satisfied in the
following two scenarios: (1) party fluctuation ratio in a relatively
quiet environment (e.g., I' = 1.398 as shown in Fig 2). Then all the
requirements are satisfied and so does our analysis. (2) Balancing
the block generation rate bound and the sliding window length we

On Bitcoin Cash’s Target Recalculation Functions

consider (cf. Section 3.2), then all the requirements are satisfied if
the upper bound for goodness is (1 +I'3)f.

Finally, we observe that the choice of the smoothing factor (m)
is too low. While the current value m = 288 can satisfy the basic
requirements in Condition (C1), it is better to let m = 432 to in-
crease the value of ¢, thus making it closer to the real execution.
However, we note that such value of m still fails to give a tight
typical execution probability. This is because in order to satisfy
the (desired) blockchain properties, the length of a sliding window
should be much larger (of the order of years!) so that the martingale
probability in Theorem 4.6 can be negligible.

SMA function. We consider the same network delay, honest ad-
vantage and quality of concentration as those used for the ASERT
evaluation. Afterwards, we parameterize the SMA function with
long-term party fluctuation ratio I' = 1.398, short-term party fluc-
tuation ratio y = 1.057 and target fluctuation parameter A = 1.201.
We obtain that Condition (C4) is satisfied under these parameters.

Regarding the protocol parameters m and 7 in use, m = 144 meets
the lowest criteria to support our analysis, 7 = 2 may fail in some
situations, which can be avoided by these two parameters. More
specifically, with regard to the epoch length m, from Condition (C3)
we get an upper bound for ¢ of about 640 seconds, which would not
be desirable as it exceeds the expected block production interval
(600s). We would like that the actual value of £ amounts at least to
a few blocks’ total expected generation time. Thus,setting m = 432
(almost 3 days) would yield an ideal epoch length. Regarding the
dampening filter 7, it follows from our analysis that it should hold
that 7 > 2(1 + 5)F2 ~ 7.8. Thus, 7 = 8 would be a suitable value.

ASERT vis-a-vis SMA. The above evaluation of the SMA func-
tion reveals two shortcomings. Under some circumstances, letting
A = 1.201 may fail to bound the target fluctuation during a sliding
window. Moreover, we can see that parameters in Condition (C4)
cannot be increased, i.e., according to our analysis the protocol
cannot be secure under a respecting environment with party fluc-
tuation ratio I > 1.4; if we consider a larger value for A, then the
party fluctuation it can tolerate is even smaller.

Compared with the ASERT function (notably, ASERT can work
well when T’ = 1.88), SMA performs considerably worse when party
fluctuation rate is relatively high. Thus, we conclude that ASERT is
a better choice as a target recalculation function for blockchains
with lesser hashing power.

REFERENCES

[1] Lear Bahack. 2013. Theoretical Bitcoin Attacks with less than Half of the Com-
putational Power (draft). Cryptology ePrint Archive, Report 2013/868. (2013).
https://eprint.iacr.org/2013/868.

C. Decker and R. Wattenhofer. 2013. Information propagation in the Bitcoin
network. In IEEE P2P 2013 Proceedings. 1-10.

Cynthia Dwork and Moni Naor. 1992. Pricing via Processing or Combatting Junk
Mail. In Advances in Cryptology — CRYPTO’ 92, Ernest F. Brickell (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 139-147.

Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone
Protocol: Analysis and Applications. In Advances in Cryptology - EUROCRYPT
2015, Elisabeth Oswald and Marc Fischlin (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 281-310.

Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2017. The Bitcoin Backbone
Protocol with Chains of Variable Difficulty. In Advances in Cryptology — CRYPTO
2017, Jonathan Katz and Hovav Shacham (Eds.). Springer International Publishing,
Cham, 291-323.

(2]
(3]

204

AFT ’21, September 26-28, 2021, Arlington, VA, USA

Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2020. Full Analysis of
Nakamoto Consensus in Bounded-Delay Networks. Cryptology ePrint Archive,
Report 2020/277. (2020). https://eprint.iacr.org/2020/277.

Juan A. Garay and Yu Shen. 2021. On Bitcoin Cash’s Target Recalculation
Functions. Cryptology ePrint Archive, Report 2021/143. (2021). https://ia.cr/
2021/143.

Aggelos Kiayias and Giorgos Panagiotakos. 2015. Speed-Security Tradeoffs
in Blockchain Protocols. Cryptology ePrint Archive, Report 2015/1019. (2015).
https://eprint.iacr.org/2015/1019.

Colin McDiarmid. 1998. Probabilistic Methods for Algorithmic Discrete Math-
ematicss, chapter Concentration, pages 195-248. Springer Berlin Heidelberg,
Berlin, Heidelberg. (1998).

Michael Mitzenmacher and Eli Upfal. 2005. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press.

Satoshi Nakamoto. 2009. Bitcoin: A peer-to-peer electronic cash system. (2009).
http://www.bitcoin.org/bitcoin.pdf.

Satoshi Nakamoto. 2009. Bitcoin open source implementation of p2p currency.
(Feb. 2009). http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source.
Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the Blockchain
Protocol in Asynchronous Networks. In Advances in Cryptology — EUROCRYPT
2017, Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.). Springer International
Publishing, Cham, 643-673.

G. S. WATSON. 1955. Serial correlation in regression analysis I. Biometrika 42,
3-4 (1955), 327-341.

Sam M. Werner, Dragos L Ilie, Jain Stewart, and William J. Knottenbelt.
2020. Unstable Throughput: When the Difficulty Algorithm Breaks. (2020).
arXiv:arXiv:2006.03044

(13]

A SOME MATHEMATICAL FACTS

THEOREM A.1 (CHERNOFF BOUND). LetXj, ..., X7 be independent
random variables withE[X;] = p; and X; € [0,1]. Let X = ZiTzl and
u= lel pi = E[X]. Then, forall A > 0,

AZ
eXP(—m#),
2

A
exp(=5——H)-

Pr[X = (1+A)p] <

Pr[X < (1 - A)y] <

Definition A.2. [10, Chapter 12] A sequence of random variables

Xo, X1, . .. is a martingale with respect to sequence Yy, Y3, .. ., if, for
alln > 0, (1)X;, is a function of Yy, ..., Yy, 2Q)E[|Xy|] < oo, and (3)
E[Xn+11Yo0, ..., Yu] = Xu.

THEOREM A.3. [9, Theorem 3.15] Let Xy, X1,... be a martin-
gale with respect to the sequence Yy,Y1,.... Forn > 0, let V =
:-1:1 var(Xi - Xifl |Y0, ey Yl;]) andb = maxi<i<n sup(Xi - X,;l
|Yo, ..., Yi—1), where sup is taken over all possible assignments to
Yo, ...,Yi—1. Then, for any t,v > 0,
£2
m}'

., Xn are positive real numbers. Then,

Pr[(Xp 2 Xo+t) A(V <0)] < exp{—

Fact 2. Suppose that x1, x2, ..

X1 +x2+---+Xp n
n T 1/x1+1x0+ 4+ 1 xy
THEOREM A.4 (CASSEL’S INEQUALITY). [14] Leta = (ay,...,dn)
andb = (by,...,by) be two positive n-tuples with 0 < m < Z—: <
M < oo foreach k € {1,...,n} and constants m, M. Then,
u n M+m)? &
QL mad) Yt < Wy DIETRE

THEOREM A.5. Suppose that x1,x2, . .., xp are positive real num-
bers. If max;c[p) Xi <y - Min;e[p) Xi, then
(y+ 1)2 n

1/x1+1/x3+ -+ 1/xp,

X1 +x2+---+Xp

n T 4y

