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Abstract—Today’s applications are using machine learning
algorithms to analyze the data collected from a swarm of
devices on the Internet of Things (IoT). However, most existing
learning algorithms are overcomplex to enable real-time learning
on IoT devices with limited resources and computing power.
Recently, Hyperdimensional computing (HDC) is introduced as
an alternative computing paradigm for enabling efficient and
robust learning. HDC emulates the cognitive task by representing
the values as patterns of neural activity in high-dimensional space.
HDC first encodes all data points to high-dimensional vectors. It
then efficiently performs the learning task using a well-defined set
of operations. Existing HDC solutions have two main issues that
hinder their deployments on low-power embedded devices: (i) the
encoding module is costly, dominating 80% of the entire training
performance, (ii) the HDC model size and the computation cost
grow significantly with the number of classes in online inference.

In this paper, we proposed a novel architecture, LookHD,
which enables real-time HDC learning on low-power edge devices.
LookHD exploits computation reuse to memorize the encoding
module and simplify its computation with single memory access.
LookHD also address the inference scalability by exploiting
HDC governing mathematics that compresses the HDC trained
model into a single hypervector. We present how the proposed
architecture can be implemented on the existing low power
architectures: ARM processor and FPGA design. We evaluate
the efficiency of the proposed approach on a wide range of
practical classification problems such as activity recognition, face
recognition, and speech recognition. Our evaluations show that
LookHD can achieve, on average, 28.3x faster and 97.4x more
energy-efficient training as compared to the state-of-the-art HDC
implemented on the FPGA. Similarly, in the inference, LookHD
is 2.2x faster, 4.1 x more energy-efficient, and has 6.3x smaller
model size than the same state-of-the-art algorithms.

Index Terms—HyprDimensional computing, Brain-inspired
computing, Machine learning, Real-time learning, FPGA

I. INTRODUCTION

With the emergence of the Internet of Things (IoT), many
applications run machine learning algorithms to perform
cognitive tasks. The learning algorithms have been shown
effectiveness for many tasks, e.g., object tracking [1], speech
recognition [2], [3], image classification [4], [5], etc. However,
the high computational complexity and memory requirement
of existing deep learning algorithms hinder usability to a
wide variety of real-life embedded applications where the
device resources and power budget is limited [6], [7], [8],
[9]. Therefore, we need alternative learning methods that can

train on the less-powerful IoT devices, while providing good
enough classification accuracy.

To achieve real-time performance with high energy efficiency,
we need to rethink not only how we accelerate machine
learning algorithms in hardware, but also to redesign the
algorithms themselves using strategies that more closely model
the ultimate efficient learning machine: the human brain.
Hyperdimensional computing (HDC) is one such strategy
developed by interdisciplinary research [10]. It is based on a
short-term human memory model, Sparse distributed memory,
emerged from theoretical neuroscience [11]. HDC is motivated
by the understanding that the human brain operates on high-
dimensional representations of data originating from the large
size of brain circuits [12]. It thereby models the human memory
using points of a high-dimensional space, that is, with hyper-
vectors. The hyperspace typically refers to tens of thousand
dimensions. HDC incorporates learning capability along with
typical memory functions of storing/loading information. It
mimics several essential functionalities of the human memory
model with vector operations, which are computationally
tractable and mathematically rigorous in describing human
cognition.

HDC is well suited to address learning tasks for IoT
systems as: (i) HDC models are computationally efficient
(highly parallel at heart) to train and amenable to hardware
level optimization [13], (ii) HDC offers an intuitive and
human-interpretable model [14], [15], [16], (iii) it offers a
computational paradigm that can be applied to cognitive as
well as learning problems [14], [17], [18], [19], [20], (iv)
it provides strong robustness to noise — a key strength for
IoT systems, and (v) HDC can naturally enable secure and
light-weight learning. These features make HDC a promising
solution for today’s embedded devices with limited storage,
battery, and resources, as well as future computing systems in
deep nano-scaled technology, where devices may have high
noise and variability [13], [21], [22], [23].

Recently, several companies started exploiting the HDC ca-
pability to enable general intelligence in IoT devices, including
WebFeet [24], Vicarious [25], Numenta [26], [27], IBM [28],
and Google [29]. Most existing researches are focused on
exploiting the HDC robustness to design approximate analog
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accelerator [21], [22], [23]. However, to make the HDC
practical, we need to exploit the HDC robustness on the
existing embedded platforms, e.g., CPU and FPGA. As prior
work showed, the existing digital platforms can get limited
benefit from hardware approximation [30], [31], [32]. The key
motivation of our work is to significantly speedup the HDC
learning on embedded platforms by redesigning algorithm-
hardware that accelerates crucial HDC functionalities.

HDC performs the learning task after encoding all data
points to high-dimensional space. This encoding requires to
compute thousands (e.g., 10,000) operations for each element
of data in the original domain, e.g., performing permuta-
tion (rotational shift) and addition of randomly generated
bipolar/binary hypervectors [10], [33], [34]. This makes the
encoding computationally expensive. Our experiments on
several practical applications show that the encoding takes about
80% of the total training’s execution time. During inference,
HDC uses the same encoding module to map a test data
point to high-dimensional space (query hypervector). Then,
HDC checks the similarity of the query hypervector with all
pre-trained class hypervectors. This similarity check takes a
major cost of the HDC during the inference, i.e., 83% average
performance for all tested applications, as it involves many
multiplications that grow with the number of classes [21], [35].
This degrades the scalability of the HDC model and increases
the computation cost of applications with many classes.

In this paper, we propose LookHD, an architectural solution
that accelerates HDC in both training and inference, making
it significantly efficient for today’s embedded processors.
LookHD exploits computational reuse to eliminate the costly
encoding from the HDC training while addressing the scalabil-
ity issue of the HDC inference by compressing the model size
and reducing the computation costs. The followings summarize
the main contributions of the paper:

« We propose a lookup-based approach that eliminates the
costly encoding operations from the HDC. LookHD pre-
stores all possible encoded values and replaces the costly
encoding module with single memory access. Unlike existing
HDC algorithms [14], [33], [36] that needs to combine all the
encoded hypervectors, LookHD only counts the number of
patterns repeated in the pre-stored hypervectors and generates
the hypervector model once at the end of the training. This
results in eliminating the encoding module, significantly
accelerating the HDC training.

LookHD addresses the scalability issue of the inference phase
due to the model size. In contrast to conventional HDC
approaches that use multiple hypervectors corresponding to
each class, LookHD compresses them into a single hyper-
vector. The combined hypervector stores the information
of all classes in significantly lower-sized memory, which
makes it suitable for embedded devices with limited resources.
This approach also significantly accelerates the inference by
reducing the number of computations, e.g., multiplications.
We present two architecture options to implement LookHD
on embedded devices (with less than 10W power budget).
Along with a software framework design for low-power
ARM processors, we propose an FPGA implementation that
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Fig. 1. (a) HDC classification Overview, (b) HDC encoding functionality.

performs both training and inference. The FPGA design
utilizes a fully pipelined structure in order to maximize the
throughput and FPGA resource utilization. All proposed
optimizations are general and can be implemented on any
digital processor, including an ASIC chip.

We evaluate the efficiency of the proposed approach on a
wide range of practical learning problems, including speech
recognition, activity recognition, and face recognition. FPGA-
based LookHD is implemented on Kintex-7 FPGA KC705. Our
evaluation shows that LookHD achieves, on average 28.3 x
faster and 97.4 x higher energy efficient training, as compared
to the state-of-the-art HDC solution [37], [38] implemented
on the FPGA. For the inference tasks, LookHD is 2.2x faster,
4.1x more energy-efficient, and has 6.3 smaller model size.

II. HDC: FUNCTIONALITY & CHALLENGES

Figure la shows an overview of HDC performing the
classification task on high-dimensional space. The first step
of HDC is to map/encode data points from original into high-
dimensional space. The encoded hypervectors are combined
during training in order to create a single hypervector repre-
senting each class. In the inference, a test data is encoded
to high-dimensional space using the same encoding module
used for training. The classification is performed by finding a
pre-stored class hypervector, which has the highest similarity
with the test hypervector. In the following, we explain the
details of the HDC functionality.

A. HD Encoding

Figure 1b shows an overview of the HDC encoding module.

Let us assume a feature vector F = {f1, f2,..., fu}, with n
features (f; € N). The goal of encoding is to map a feature
vector to a high-dimensional vector, H = {h;, ha,..., hp}

with D dimensions (#; € N), where D is in order of thousands,
e.g., 10,000 [21], [33], [34]. The encoding keeps the main
information of original data as a pattern of values in high-
dimensional space. HDC represents the feature values as
patterns of bitstreams in HDC space and combines them to
preserve the position of each pattern [34].

Alphabets Generation: Instead of representing the features
using their value, HDC represents them using a set of hypervec-
tors where their patterns determine their values. First, we find
the maximum and minimum feature values, { finin, finax}> and
then quantize that range into ¢ discrete levels, {f{, f3,---, fd}.
Then, we assign a single hypervector to each quantized level
{Ly,Lo,...,Lg}, where Ly, and L, are corresponding to fyi
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and f,.x values respectively. The level hypervectors are bipolar
with D dimensions, L; € {—1,1}P. The level hypervectors
need to preserve the same similarity distance as the quantized
values in the original space. To this end, we randomly generate
the first level hypervector (representing f,i,). The other level
hypervectors are generated by filliping D /g random dimensions
of the previous level hypervector. Using this method, the L,
hypervector corresponding to f;,,x Will be nearly orthogonal to
L;, while the neighbor levels will have high pattern similarity.

Preserve Position: In the feature vector, the information
is stored as a pattern of features in different indices. The
encoding needs to keep the information of both feature values
and their corresponding position. HD preserves each index
position by assigning a fixed permutation to it. Based on HDC
theory [10], any permutation of a random hypervector will be
nearly orthogonal with the original hypervector:

S(LpLy~0 (0<i<n)
where the similarity metric, 8, is a cosine between the two
hypervectors, and p(i>L is the i-bit rotational shift of L.
The orthogonality of a hypervector and its permutation (i.e.
circular bitwise rotation) is ensured as long as the hypervector
dimensionality is large enough compared to the number of
features in the original data point (D >> n). As Figure 1 shows,
the aggregation of the n binary hypervectors is computed as
follows:
H=L + pL+... + p" L, (1)

where, H is the (non-binary) aggregation and L; is the (binary)
hypervector corresponding to the i-th feature of vector F.

B. HD Initial Training & Retraining

In HDC, the training is performed by the element-wise
addition of all encoded hypervectors in each existing class.
The result of training will be k hypervectors with D dimensions,
where k is the number of classes. For example, i’ class
hypervector can be computed as: Ci = Yyjcciass, Hj After
the initial training, HDC revisit the trained model for a few
iterations. We call this iterative process as refraining. During a
single iteration of the retraining, HDC checks the similarity of
all training data points, say H, with the trained model. If a data
is wrongly classified by the model, HDC updates the model
by (i) adding the data hypervector to a class that it belongs
to (Ceorrect = Ceorrect 1L H), and (ii) subtracting it from a class
which it is wrongly matched with (C*"?"* = C""*"8 —H). The
retraining needs to be continued for a few iterations until the
HDC accuracy stabilized over the validation data, which is a
part of the training dataset.

C. HD Inference

In the inference, HDC uses the same encoding module as the
training module to map a test data point to a query hypervector.
In HDC space, the classification task is performed by checking
the similarity of the query with all class hypervectors. Each
data point is assigned to a class that has the highest similarity
with it. Since HDC information is stored as the pattern of
non-binary values, the cosine is suitable for similarity check.
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Fig. 2. Breakdown of the encoding, training and associative search execution
time during training and inference.

D. HDC Challenges

Training Challenges: As a light-weight classifier, HDC
often needs to be trained and tested on embedded devices
with limited resources. However, we observe that HDC can be
computationally costly when it processes the practical classifi-
cation applications. Figure 2 shows the normalized execution
time of HDC during training and inference on five practical
applications including: speech recognition (SPEECH) [39],
activity recognition (ACTIVITY) [40], physical monitoring
(PHYSICAL) [41], face recognition (FACE) [42], and position
recognition using extra sensory (EXTRA) [43]. All evaluations
are performed on ARM Cortex A53 CPU using C++ imple-
mentation of HDC. The details of each application, such as
the number of features (n) and the number of classes (k) are
explained in Section VI-A. Our results show that for practical
classification applications with large feature sizes, the encoding
module dominates the training execution time. For example,
for speech recognition with n =617 features, the encoding can
take 90% of total training time. This reduces the advantage
of HDC as a light-weight classifier. In this paper, we propose
a novel approach that significantly reduces the encoding cost.
Our design ignores performing the encoding operations by
pre-storing all possible encoding results. The details of the
proposed approach are explained in Section III.

Inference Challenges: Figure 2 also shows the breakdown
of the HDC execution time during the inference. As our results
show, in the inference, the associative search takes the majority
of the HDC cost. For five tested applications, the associative
search takes about 83% of the total inference execution. This
is because the cosine similarity involves a large number of
multiplications between a query and class hypervectors. In
addition, in existing HDC approaches [21], [33], [44], the
model size and the computation cost increase linearly with the
number of classes. For example, speech recognition with k =26
classes has 13.0x larger model size and 5.2 slower inference
computation as compared to face detection with k =2 classes.
Since embedded devices often do not have enough memory
and computing resources, processing HDC applications with a
large number of classes will result in huge computation cost.

In this paper, we propose a novel approach to addresses
the HDC inference scalability. Our solution combines all
classes into a single hypervector (regardless of the number
of classes) by utilizing the orthogonality of high-dimensional
vectors. This method not only reduces the HDC model size
but also accelerates the inference by removing the majority
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TABLE I
THE CHARACTERISTIC OF FIVE PRACTICAL APPLICATIONS PROVIDING
MAXIMUM ACCURACY.

Applications n q k HD Accuracy Lo((;k:(?wg)lze
Speech Recognition | 617 16 26 94.1% 2236
Activity Recognition 561 8 6 94.6% 21,683
Physical Monitoring 52 8 12 91.3% 2156

Face Recognition 608 16 2 94.1% 2283

Extra Sensory 225 16 4 70.6% 2900

of multiplication operations from the cosine similarity. In
Section IV, we explain the details of the proposed model
compression method.

[1I. LookKHD ENCODING AND TRAINING

In HDC, all training and testing (inference) computations hap-
pen on the encoded data in high-dimensional space. Therefore,
HDC needs to pay the cost of encoding for all available data
points. Practical classification problems are working with data
points with hundreds/thousands of features. This significantly
increases the cost of the encoding module.

When encoding a data point with n features, as shown in
Equation 1, each feature index gets a unique permutation, and
each feature value gets one of the possible ¢ quantized levels.
Looking at all possible combinations, we can see that the
encoded hypervector can get ¢" different possibilities. In order
to avoid the costly encoding operations, one solution is to
pre-store all ¢" possible hypervectors in a memory block. This
enables computation reuse as we can simplify the encoding
operation to a single lookup table search. Here we look at the
feasibility of this approach for HDC. Table I shows the number
of features for five practical applications. In addition, for each
application, Table I lists the minimum number of quantized
levels, which results in maximum classification accuracy. Our
evaluation shows that in practical applications, the number of
features, n, and the number of quantized levels, ¢, are much
higher than a range that can be stored in reasonable memory
size. For an example of speech recognition, each feature vector
can be encoded to ¢" = 16°!7 different possible D-dimensional
hypervectors. To make the lookup-based encoding feasible, in
this section, we propose LookHD, which significantly reduces
the number of features and the number of quantized levels.
LookHD reduces the number of feature values by splitting
the feature vector into small chunks, where all chunks can
be encoded using the same encoding module. LookHD also
proposes a novel quantization approach that enables HDC to
provide the maximum classification accuracy using much lower
quantization. In the following, we explain the details of the
proposed approach.

A. Splitting Features

Here, we propose a novel approach which enables HDC to en-
code a feature vector which has been split into the small chunks.
Assume a data point with n features, F = {fi, f2,---, fu}, our
approach splits the feature vector into m equal sequential
chunks, F = {F' F2 ... F"}, where F' = {fi1, fii2,,firr}
and r = n/m. Instead of encoding all n features at once, our
approach encodes each feature chunk individually using the

224

x105_—» Region 1

o

# of Occurrence
Region 3
Region 4

# of Occurrence

& 5

0 0.2

0.4 0.6
Value

(a) Linear Quantization

0.8 1 0

0.2

0.4 0.6
Value

(b) Equalized Quantization

0.8 1
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same encoding module. The encoding in the i chunk is
performed as follows:

Hi=Li+pLy+--+p" 'L, 2
where L € {L,Ly,...,L,} are the same quantized hypervec-
tors used in conventional encoding.

To complete the encoding module, we need to combine
the encoded hypervectors through all chunks and represent
them using a single hypervector. One naive approach is to
aggregate the chunk hypervectors by simply adding them
together. Although this method keeps the information of all
chunks (i.e., the pattern of each individual encoded chunk)
in a combined hypervector, it does not preserve the order
of combination. In this paper, we exploit the mathematical
orthogonality of random vectors in high-dimensional space to
combine the chunk hypervectors. To consider the position
of each chunk on a combined hypervector, LookHD gen-
erates m random bipolar hypervectors, {P;,P,...,P,} with
D dimensions (P; € {—1, I}D). Since these hypervector are
generated randomly, they will have have nearly orthogonal
distribution [34]:

We preserve the the position of each chunk using:
H=P,«H;+P,+«H,,...,P,xH,, 3)

where the combined H hypervector stores the information of
all chunks as well as their order of combination. However,
this combination is not error-free, since the P hypervectors
are not entirely orthogonal. The combined hypervector may
lose information when we store the information of too many
chunks. In Section VI-B, we discuss the impact of the number
of chunks on the HDC classification accuracy.

B. Quantization Reduction

Although splitting the feature vector reduces the number of
pre-stored hypervectors from ¢” to ¢, the value of ¢ can still
be very large such that it makes the lookup approach infeasible.
Looking at the Table I, we can see that applications usually
require ¢ = 8 or ¢ = 16 to provide their highest accuracy.
For example, speech recognition provides the maximum
accuracy using g = 16. Using this quantization level even
with tiny chunk size (e.g., r =5), we still require to pre-
store 16> = 229 hypervectors, which is still very large for
practical implementation. To further reduce the number of
possible encoded hypervectors, we need to reduce the number
of quantized levels.

The blue line in Figure 4 shows the impact of reducing the
number of quantized levels on speech recognition accuracy.
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The results show that reducing the number of quantized levels
to ¢ =2 and g = 4 degrades the HDC classification accuracy by
3.4% and 1.5%, respectively. Thus, reducing the ¢ value comes
at the expense of a large quality loss. The second approach to
reducing the number of possible encoded hypervectors is to
use a smaller chunk size (r <<). However, this degrades the
advantage of the lookup approach by increasing the cost of
chunk aggregation.

Here, we propose a novel approach that significantly reduces
the number of quantized levels with no negative impact on
classification accuracy [45]. Figure 3a shows the distribution
of feature values, sampling 5% data points from the speech
recognition dataset. The graph indicates that the feature
values have non-uniform distribution. Therefore, increasing
the number of quantizations linearly results in generating the
levels that will be used rarely during the encoding. Instead
of linearly quantizing the feature values, our approach selects
the quantization boundaries such that all levels get a similar
number of values. Figure 3b shows how our approach quantizes
speech recognition feature values into ¢ =4 equalized levels.
Figure 4 compares the classification accuracy of LookHD
using conventional and proposed quantization. In conventional
quantization, increasing the number of levels may degrade
the classification accuracy, while the proposed quantization
approach results in similar or better accuracy using larger q.
This is because, in linear quantization, the new levels may be
assigned to a range that may not be equally used during the
classification, making the classification task more complicated.
Our results also show that the proposed quantization results in
much higher accuracy than linear quantization. For example, in
speech recognition, the proposed quantization to g = 4 levels
provide 1.2% higher classification accuracy than HDC using
g = 16 linear quantization.

LookHD learns from highly quantized input data, which is
not possible in the original space. HDC encoding is non-linear
and projects input data with a small difference to relatively
isolated data in sparse high-dimensional space. Due to the
high-dimensionality of the HDC encoding module, there are
several possibilities that each encoded value can get, thus a
small feature difference in original space can be projected to
large difference in HDC space.

C. Lookup-based Encoding

Splitting the feature vectors along with equalized quantiza-
tion reduces the number of possible encoded hypervectors. For
an example of speech recognition, splitting the feature vector
to r =5 chunk size and using g = 4 equalized quantization

* i
| |
| Search i
| i
! i
» \ |
e ¢ 1
{Rows oee e} X |
| 2| [ Prestoreqr || |
} Pre-storeqr |
! All possible levels Encoded Encoded i
! hypervectors hypervectors }
(a) Without Codebook (b) With Codebook

Fig. 5. Encoding of each feature chunk without and with using codebook.

reduces the number of possible encoded hypervectors from
16%'7 to 4°, while ensuring the same accuracy as the baseline
HD. Figure 5 shows the overview of lookup-based encoding
in a single chunk. In the first step, we quantize each input
features into one of the possible quantization levels. Then, we
access encoding results by searching for r quantized features
in a lookup table that pre-stored all possible combinations. In
hardware, the lookup table is expensive since it involves many
compare/search operations.

To avoid costly search operation, LookHD assigns a code-
book to each quantized level, where each codebook represents
using log»q bits (Figure 5). For example, for an application
with ¢ = 4 quantization levels {f{, f¥, f7, f{}. the quantization
levels are assigned to {00,01,10,11} codebooks. This simpli-
fies the costly lookup search with simple memory access. The
concatenation of the codebooks in a chunk is a direct address
to a memory row that pre-stored the encoded hypervector. This
significantly reduces the cost of encoding in feature chunks.
To encode a complete feature vector, LookHD first accesses all
chunk hypervectors in parallel; then, it combines them using a
set of randomly generated position, P, hypervectors (explained
in Equation 3).

D. LookHD Training

Although LookHD accelerates the encoding, the main
advantage of LookHD appears in training. In conventional
HDC, training is implemented by sequentially adding the
encoded hypervectors. In contrast, LookHD pre-stores all
possible encoded hypervectors and counts the number of times
that each one occurs during the training. This simplifies the
training process to the multiplication of counter values with
pre-stored encoded hypervectors once at the end of the training.

Figure 6 shows the general structure of LookHD performing
the training. The training starts with encoding feature vectors
to high dimensional space. LookHD implement encoding
by quantizing the feature values (@). During quantization,
each feature value is assigned to the closest quantized levels.
This implements by subtracting the feature value from all
quantized levels and finding a level with the absolute minimum
distance. Depending on the selected level, each feature value
is assigned to one of the codebooks (@). The concatenation
of the codebooks in a chunk is a direct address to pre-stored
encoded hypervector (@). Instead of looking up the encoded
hypervector, LookHD assigns a counter to each chunk. The
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hypervector

size of the counter is ¢”, which is the same as the number of
pre-stored chunk hypervectors (@). Thus, each counter row
can be accessed using the same codebooks used to access
encoded hypervectors. For all data points in a class, LookHD
increments the counter values in all chunks without performing
the encoding.

After covering all data points in a class, LookHD multiplies
the counter values to pre-stored chunk hypervectors. For each
chunk, the multiplication results are accumulated to generate
the chunk hypervector (@). Next, each chunk hypervector
multiplies with its corresponding P hypervector, and the results
are accumulated over all chunks in order to generate a class
hypervector (@). The same procedure repeats for all data
points in the training dataset in order to generate a hypervector
for each existing class. This approach significantly accelerates
the HDC training, since LookHD does not need to pay the
encoding cost for each data point. In addition, factorizing the
values using the counting approach significantly reduces the
number of required additions.

IV. LoOKHD INFERENCE

During the training, HDC creates a single hypervector
representing each class. These hypervectors store as a trained
HDC model and can be used for the rest of the classification
task at inference. The main computations of the inference
are the encoding and the associative search. In the inference,
HDC uses the same encoding module to map a test data point
to a hypervector, called query hypervector, H € NP_ Then, it
computes the similarity of the query hypervector with all k class
hypervectors, {Cy,---,C,,C1}, where C; € NP, Using cosine
as a similarity metric, we measure the similarity of a query and
i"" class hypervector using: §(H, C;) = H.C;/|H||C;|, where
0 denotes the cosine similarity. Finally, each query classifies
to a class with the highest cosine similarity.

A. Similarity Metric & Model Scalability

As a light-weight classifier, HDC operations need to be
hardware friendly, meaning that the HDC model should
fit on the on-chip memory of the embedded devices. The
similarity computation can perform efficiently using limited
available resources. However, HDC uses the cosine similarity
for similarity check. Cosine calculates the inner product of a
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query and a class hypervector divided by class and query
magnitude. In practice, this involves calculating three dot
products: H.C;, H.H and C,;.C;. To reduce the cost of cosine
computation, we pre-normalize the class hypervectors to their
magnitudes, C'; = C;/|C;|, once after the training. This enables
HDC to ignore repeatedly calculating the class magnitudes for
every query. The goal of HDC inference is to find a class
hypervector with the highest similarity to a query, i.e., not
measuring the absolute cosine values. Thus, we can ignore
calculating the query magnitude, |H|, since it is common
among all classes. The above two facts simplify the cosine
similarity to calculating a dot product between the hypervectors:
6(H,C;) =H.C..

Although dot product reduces the cost of cosine similarity
by 1/3, the similarity check is still expensive due to many
multiplications involved in the dot product. For example,
for speech recognition with 26 classes and D = 10,000, a
single query search involves in 26 x 10,000 multiplications.
The model size scalability is another issue in HDC. HDC
stores a single hypervector representing each class. This results
in increasing the model size by the number of classes. For
example, speech recognition with k =26 classes has 13 x larger
model size as compared to face recognition, which has only
k =2 classes.

B. Model Compression

Here, we propose a novel approach to compress the HDC
model and address the model scalability issue. LookHD exploits
mathematical orthogonality of random hypervectors in order
to compress the HDC model and reduce the computation
cost. Instead of using k hypervectors to represent the trained
model of an application with k classes, LookHD combines all
class hypervectors and represents them using a single one.
The combined hypervector needs to store the information
of all class hypervectors. Similar to the approach used for
lookup-based encoding (explained in Section III-D), LookHD
combines the class hypervectors while preserving the infor-
mation of each individual class. LookHD generates & random
hypervectors, {P'1,P’5,--- P/t }, where P| € {~1,1}P. Since
these hypervectors are generated randomly, they will have
nearly orthogonal distribution. Using these hypervectors, we
can uniquely store the information of each existing class in a
combined hypervector as:

C:P/]*C1+P/2*C2—|—...—|—P/k*ck “4)

Figure 7 shows how LookHD creates a combined class
hypervector using the trained class hypervectors and a set of
P’ hypervectors. Regardless of the number of classes, this
approach reduces the HDC model size to a single hypervector.
In the inference, HDC checks the similarity of a query with a
combined class hypervector by calculating dot product between
them:

H.C :H.(Pll * Cy +P’2*C2+...+P/k*Ck)

Next, we can find the similarity of a query and i class
hypervector using:
argmaxj—x{8(P';* (H.C),C;)}
In LookHD, calculating the dot product of P’; with H.C does
not involve multiplication. In hardware, it can be implemented
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by changing the sign of H.C elements on the dimension that
P’; has -1 values. This significantly accelerates the LookHD
inference by reducing the number of multiplications. We explain
the details of hardware implementation in Section V-B.

C. Compression Noise

Depending on the number of classes, the model compres-
sion may affect LookHD classification accuracy. Assume we
calculate the similarity of a query with i’ class:

(HC)-P;=H.Cix(P;-P)+ Y HC;x(P;-P;). (5

T Vi

Signal

where P/; - P/; is equal to D, since each ei\g)rllsl%nt of the base
hypervector is either 1 or -1, while P;-P’; is almost zero.
To quantify the quality of model compression, we defined
the signal to noise ratio as a quality metric. This metric
determines the noise in the cosine similarity of each class.
Although the noise is minimal, in HDC, the class hypervectors
are highly correlated, and even small noise may change their
ranking during the maximum similarity check. The blue bars
in Figure 8 show the distribution of the cosine similarity on
ACTIVITY [40] application. The results are reported over 1000
test data. Our result shows that class hypervectors are highly
correlated since all cosine similarities are distributed in a range
of 0.9 to 1. This increases the sensitivity of the model as a
small noise can change the ranking of the top class during the
similarity check.

Here, we develop a method that reduces the correlation
between the class hypervectors by removing the common
information from the classes. LookHD gets the average of
the trained class hypervectors (Cgpe = 1/kY jek Ci), and then
modifies each class hypervector using:

Ci=C;—Cupe-8(Ci, Cup), Vick
The red bars in Figure 8 show the cosine similarity distribution
of the modified class hypervectors. The results indicate that
the new model has much wider cosine distribution. This
significantly reduces the impact of noise coming from model
compression on the similarity measurement. In Section VI-G,
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we explore the impact of model compression on HDC
efficiency-accuracy.

D. Retraining

Retraining happens after the initial HDC training. Retraining
has a very similar procedure as the inference. As we explained
in Section II-B, the retraining needs to iteratively check the
similarity of the encoded train data with the HDC model and
accordingly updates the model. The similarity search takes
a major portion of the retraining cost. LookHD accelerates
the retraining by performing the similarity search over the
compressed model. For each mispredicted data, LookHD looks
at P’ hypervectors an incorrectly predicted class (P, on)
and a class that the query belongs to it (P’ copreer). LOOKHD
accordingly updates the compressed class hypervectors using:

C=C+ Plcorrecr *H— P,wrong *H
where P’ € {P'y,...,P/;}. LookHD performs the retraining
on the HDC model for a few iterations. Figure 9 shows the
LookHD classification accuracy during different retraining
iterations for three applications. The number of iterations
depends on the application, but it is usually about ten iterations
to ensure high enough accuracy.

V. HARDWARE ACCELERATION
A. Training Acceleration

Figure 10 shows the hardware implementation of LookHD
training consisting of four main steps:

Quantization: As we explained in Section III-D, LookHD
combines the training with the encoding module. Our approach
reads a feature vector and quantizes it by subtracting each
feature value from the quantized levels (Figure 10a). Each
feature is assigned to a quantized level, which it has the closest
absolute distance with it. Finally, each feature gets one of the
q codebooks depending on the feature value. This computation
is performed in parallel for all features using FPGA Lookup
Tables (LUTs) and Flip-Flops (FFs) resources.

Parallel Counting: For each chunk, we use a register array
with ¢" length and a single counter array to keep track of the
number of times that each pre-stored hypervector repeats during
the training (Figure 10a). The concatenation of the codebooks
in a chunk is a direct address to a counter that increments the
corresponding register. Our implementation reads the selected
register, increments it using the chunk counter, and writes the
result back to the same address. This process can perform in
parallel for all chunks.

Weighted Accumulation: After covering all data points
in a class, our implementation multiplies the counter values
with pre-stored encoded hypervectors stored in BRAM blocks.
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Fig. 10. Hardware acceleration of LookHD training.

When the size of pre-stored hypervectors is larger than BRAM
capacity, LookHD stores the hypervectors in a RAM block.
In that case, the performance of computation is limited by
the RAM bandwidth. In this paper, we select the chunk size
and the number of quantized levels small enough to ensure
that the pre-stored hypervectors can fit in BRAM. To provide
maximum data locality, our implementation is accessed to the
first d elements of all ¢ pre-stored hypervectors in BRAM,
and multiplies them with the counter values in all chunks.
This multiplication can happen using LUTs and FFs, since
each element of pre-stored hypervector has only log,r bits.
Finally, the results of multiplications in all d dimensions are
accumulated in a tree-based adder. To maximize the number
of dimensions, we use both Digital Signal Processing (DSPs)
and available LUTSs/FFs resources for this accumulation. The
number of d dimensions that can be processed in parallel
depends on the number of chunks, m, and counter size, ¢”.

Chunk Aggregation: Finally, the generated hypervectors in
all chunks need to be combined together using, P, position
hypervectors (Figure 10). Since the position hypervectors are
bipolar, they need more than a single bit for data representation.
Our approach represents the position hypervectors with binary
values, where —1 elements are replaced with 0. Instead of mul-
tiplying the position and chunk hypervectors, we use position
hypervector to change the sign of the chunk hypervectors. All
elements of a position hypervector with ’0” value flip the sign
of the chunk element, while elements with 1" value keep the
sign of the corresponding chunk element the same. Finally,
the chunk hypervectors that passed through the negation block
are accumulated using a tree-based adder. We reuse the same
hardware to generate each class.
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B. Inference Acceleration

Figure 11 shows the FPGA implementation of the LookHD
inference consisting of the encoding and associative search
modules. In order to get maximum throughput, LookHD
runs encoding and associative search in a pipeline. When
the encoding module creates the d’ dimensions of a query
hypervector, the associative search is performed on the previous
d’ dimensions generated by the encoding module. Since the
encoding and associative search are majorly using different
FPGA resources, this pipeline structure maximizes the through-
put and resource utilization. Here, we explain how to implement
encoding and associative search in FPGA.

Encoding Acceleration: Similar to the training, the first
step of encoding is to quantize each feature value to one of
the possible levels and represent it using Logyq bits codebook
(@). LookHD accesses to the encoded hypervectors in all
chunks in parallel (@). Each chunk hypervector needs to
be multiplied by the corresponding P hypervector. Similar to
the training, we store P hypervectors as binary representation
and use them as input to the negation block (@). All P
hypervector dimensions with 0" value flip the sign of the
corresponding encoded hypervector. Finally, all d dimensions
of vectors are accumulated together. Since each dimension of
encoded hypervectors only has Log»q bits, all the computation
can perform using LUT/FF blocks (@).

Associative Search Acceleration: The computation of
the associative search summarizes into three main steps
(Figure 11): (i) multiplying the query and class hypervectors,
(i) multiplying the product result with different position
hypervectors corresponding to each class, and (iii) accumulating
all elements for each class. Our implementation exploits
DSPs to multiply query and class hypervectors (@ ). However,
since the number of available DSPs are much lower than the
hypervector dimensions, this similarity happens serially over d
dimensional windows. The similarity check, i.e., dot product,
starts sequentially by multiplying d dimensions of a query and
compressed class hypervector. Our implementation represents
P’ hypervectors using binary values, where the -1 elements
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in bipolar vector represent O element (@). To parallelize the
associative search for all classes, our implementation reads the
first d dimensions of the position hypervector, P’, and assigns
them as control signals to DSP blocks. The P’ dimensions with
0 values configure DSPs to subtraction, while P’ elements with
1 elements configure DSP to perform an addition operation
(@). The accumulation of the product elements happens in
parallel for all classes. Finally, the results of accumulation are
written back to the same product vector (@). This operation
repeats iteratively by moving the read windows over the query
and class hypervectors until it covers all D dimensions. Finally,
the results of all d dimensions are accumulated to calculate the
result of the dot product. The size of windows d depends on the
number of classes and the number of DSPs available on FPGA.
For example, for activity recognition application with k =6
classes, our implementation can parallelize the computation on
d = 64 dimensions.

C. Retraining Acceleration

The retraining can be accelerated using the similar hardware
used for associative search. First, we check the similarity of
a query and a compressed trained model using the hardware
shown in Figure 11. When a query is misclassified, retraining
updates the HDC model by adding and subtracting the query
from two classes. This update happens once after going over
the entire training dataset. Our implementation applies all
modifications on a copy of the compressed model while
using the original model for inference tasks. Instead of
applying one addition and subtraction to update the model,
our implementation first calculates the AP’-H term and adds
it to the compressed model. The subtraction of two bipolar
AP =P correcr — Plurong can get -2, +2, 0 values. Since in
hardware we represent the P’s using binary values, we can
decide to update each query elements depending on the P’ bits.
The following equating shows how Hx 8P’ can be modeled
using negation and shift operations:

C=C+AP-H

—h >>, if (Plcorrectul),W’rong) - (050)
AP -H={h, i (P oers Porong) = (0,1) or (1,0)
h >>, if (Plcorrecluplwrong) - (17 l)

where /4 is the element of the query hypervector and >>
defines as a single right shift. Depending on the P’s elements,
each query element stays the same, shifted, or shifted and
get a filliped sign bit. This functionality can apply to a query
using LUT/FF blocks. After that, the result of the hypervector
will be added to a created copy of the compressed model.
To maximize the throughput, the similarity check and model
update modules are implemented in a pipeline structure. For
all tested applications, the number of DSPs limits retraining
throughput.

VI. EVALUATION
A. Experimental Setup

We implement LookHD training and testing on two
platforms: FPGA and CPU. For FPGA, we describe the
LookHD functionality using Verilog and synthesize it using
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Xilinx Vivado Design Suite [46]. The synthesis code has been
implemented on the Kintex-7 FPGA KC705 Evaluation Kit
using 5ns clock frequency. For CPU, the LookHD code has
been written in C++ and optimized for performance. The code
has been implemented on the ARM Cortex A53 CPU, and its
power is measured using Hioki 3334 power meter.

We compare the accuracy and efficiency of LookHD with
baseline HDC [37], [38] implemented on both CPU and FPGA.
To have a fair comparison and show the true benefits of our
lookup based approach, we considered an optimized imple-
mentation of the HDC algorithm [38] explained in Section II
as the baseline. The training is implemented by encoding the
data points to high-dimensional space and adding the encoded
hypervectors in a pipelined stage. In the inference, the baseline
runs on the same hardware as LookHD (Section V-B), but uses
the original encoding and performs similarity check over the
non-compressed model. We evaluate LookHD on benchmarks
range from relatively small datasets collected in a small [oT
network to a large dataset that includes hundreds of thousands
of face images. SPEECH.: voice recognition [39], ACTIVITY:
activity recognition using mobile device [40], PHYSICAL:
physical monitoring using IMU sensors [41], FACE: face
recognition [42], and EXTRA: phone position recognition [43].

B. LookHD Accuracy

LookHD trains the model by splitting the feature vector and
quantizing the level hypervectors to discrete levels. Figure 12
shows the impact of chunk size and the number of quantized
levels on the LookHD classification accuracy (D = 2000). We
compare LookHD accuracy with the baseline HDC algorithm
using linear quantization level [37], [47]. The baseline accuracy
of each application is listed in the sub-figure title of Figure 12.
In LookHD, increasing the chunk size generally improves the
classification accuracy. A small chunk degrades the quality of
encoding by increasing the number of required P hypervectors
to aggregate the result of different chunks. The best chunk
size depends on the distribution of the feature values. Our
evaluation shows that for most applications using r =5 is
enough to provide acceptable accuracy.

LookHD classification accuracy also depends on the levels
of quantization. The larger the number of quantization levels,
results in a higher LookHD accuracy. However, with the
proposed equalized quantization, the change in accuracy is
minor. Our results show that for most applications using
q =2 or 4 is enough to ensure acceptable classification
accuracy. In contrast, the linear quantization of the existing
HDC algorithms [33], [37], [47] results in generating several
levels which are not equally used during the classification. This
degrades the accuracy by making the classification task more
complicated. Our evaluation shows that LookHD with ¢ =2
and g = 4 achieve, on average, 2.1% and 2.4% higher accuracy
than the baseline HDC using a non-binarized model.

Table II illustrates the impact of the hypervector dimensions
on the LookHD classification accuracy using a chunk size
of r =135 for the quantization levels listed in the table. The
results indicate the robustness of LookHD to the reduction of
hypervector dimensions. For example, LookHD with D = 2000
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TABLE II

IMPACT OF DIMENSIONALITY ON LOOKHD ACCURACY.
D | ¢ | 1000 2000 4000 8000 10,000
SPEECH 4| 948% 952% 953% 95.5%  95.5%
ACTIVITY | 4 | 973% 979% 979% 98.0%  98.2%
PHYSICAL | 2 | 914% 929% 929% 93.1% 93.1%
FACE 2 1957% 96.5% 96.6% 96.7%  96.8%
EXTRA 4 | 725% 733% 133% 73.4%  13.4%

dimensions provides the similar accuracy as HDC using full
D = 10,000 dimensions, i.e., less than 0.3% quality loss. In
the rest of the paper, we show the energy/performance results
of LookHD and the baseline HDC for D = 2000 dimensions.

C. Training Acceleration

We optimize the baseline HDC implementation to maximize
training throughput. In the baseline HD, the training consists of
an encoding module, which involves several bitwise operations.
This significantly improves the efficiency of the FPGA training
as compared to the CPU implementation. Our evaluation shows
that the FPGA implementation of the baseline HDC is, on
average, 830.2x faster and 1,509.4x more energy efficient
as compared to CPU. Figure 13 shows the training efficiency
on both FPGA and CPU for different LookHD configurations,
when the feature values are quantized into g =2, 4 and 8 levels
(r=>5).

The number of quantization levels presents a tradeoff
between training efficiency and classification accuracy. The
larger quantization levels slightly improve the classification
accuracy, but they significantly degrade the training efficiency.
In addition, LookHD memory requirement for training expo-
nentially increases with the number of quantization levels. For
example, doubling the quantization levels from ¢ =2 to g =4
(r=15), increases the size of memory requirement to pre-store
the encoded hypervectors from 2% =32 to 4° = 1024 rows.
This directly affects the training cost as LookHD requires more
logic operations to calculate the counter-vector multiplications
and aggregate the chunk hypervectors. Our evaluations show
that FPGA-based (CPU-based) implementation of LookHD
using ¢ = 2 and g = 4 levels achieves, on average, 28.3x
and 97.4x (3.9x and 7.5x) faster and more energy-efficient
training as compared to the state-of-the-art HDC. Similarly,
using ¢ =4 results on average 14.1x and 48.7x (2.6x and
3.8x) faster and more energy-efficient training. This higher
efficiency comes from the capability of LookHD to simplify
the encoding operations and combine it with the training
module. LookHD learns from highly quantized input data,
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Fig. 13. Speedup and energy efficiency improvement of LookHD training
running on different platforms.

which is not possible in the original space. This is because
LookHD encoding is non-linear and projects input data with
a small difference to relatively isolated data in sparse high-
dimensional space. For example, during projection, a single
feature difference between two data points could result in
mapping them into very different hypervectors in HDC space.

D. Inference Acceleration

In the inference, HDC consists of the encoding and as-
sociative search. The encoding maps the input data to high-
dimensional space by performing several bitwise operations,
while the computation of the associative search is mostly dot
product of non-binarized hypervectors. Here, we compare the
efficiency of the LookHD and the baseline HDC algorithm [33],
[37], [47] on CPU and FPGA platforms.

LookHD enhances the encoding efficiency by pre-storing
all possible chunk hypervectors in a memory. This simplifies
the encoding module by aggregating the pre-stored chunk
hypervectors using m number of position (P) hypervectors.
Since m << n, this aggregation can happen much faster than
original encoding, where m and n are the number of chunks
and the number of features, respectively. In the associative
search, combining the class hypervectors reduces the model
size and the number of required multiplications. The small
model size further improves the computation efficiency by
(1) significantly reducing the number of multiplications, (ii)
localizing the computation to existing cores. As Figure 14a
shows, this advantage is more evident on FPGA, since it
has smaller memory and computing resources to parallelize
the computation. On average, on CPU, LookHD achieves, on
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HDC running (a) a single query in the inference (b) a single retraining iteration.

average, 1.7x faster and 2.3x more efficient computation than
the baseline HDC.

On FPGA, the LookHD encoding and associative search
blocks are working in the pipeline. As we explained in
Section V-B, when associative search checks the similarity
of the d dimensions of a query and class hypervectors,
the encoding module generates the next d dimensions. The
encoding module is implemented using LUTs and FFs, while
the associative search mostly utilizes DSPs. Since these two
modules use different resources, the value of d depends on
the resource constraints in each of the modules. Since the
number of FPGA (Kintex-7) DSPs are limited to 840, in all
tested cases, the associative search limits the d’ values. For
example, for ACTIVITY and FACE with 12 and 2 classes, the
associative search can process at most d' = 64 and d’ = 256
dimensions in parallel, respectively. The results show that
FPGA implementation of LookHD is, on average, 2.2 faster
and 4.1x more energy efficient as compared to the baseline
HD. As compared to CPU-based implementation of LookHD,
the FPGA-based implementation is, on average, 122.9x faster
and 238.6x more energy efficient.

E. Retraining

Figure 14b compares the execution time and energy con-
sumption of LookHD with the baseline HDC during a single
iteration of the retraining. Similar to inference, the retraining
uses the associative search to check the similarity of each
training data with the trained model. LookHD updates a copy
of the compressed model for each misclassified data. In our
evaluations, for each application, we consider the average
number of updates during the entire training iterations. The
results show that the efficiency of retraining depends on the
number of classes and the number of required updates. For
SPEECH with the largest number of classes, i.e., 26 classes,
LookHD provides the maximum advantage. Our results show
that LookHD retraining is, on average, 2.4x and 4.5x (1.8
and 2.3x) faster and more energy-efficient than the baseline
HDC running on FPGA (CPU), respectively.

F. LookHD vs. GPU Implementation

All proposed algorithm-hardware operations are general and
can be implemented on any platform with bit-level granular-
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TABLE III
AVERAGE LOOKHD SPEEDUP AND ENERGY EFFICIENCY OVER NVIDIA
GPU (NORMALIZED TO CPU)

LookHD  LookHD  LookHD

Platforms ‘ GPU FPGA @0% @1% @2%

,E Speedup 121.7x 79.2x 135.9x% 158.1x 169.7x

& Energy Efficiency 5.9x 131.0x 397.2x 431.5% 478.3x

2z Speedup 133.8x  112.7x 197.5x% 221.9x 239.9x
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Fig. 15. Impact of LookHD model compression on the accuracy and the
similarity noise/signal ratio. (b) LookHD scalability with the number of classes.

ity, including low-power or high-performance FPGA/ASIC.
However, we target a low-power platform as HDC provides
several features that make it promising for real-time learning
on embedded devices. For example, HDC supports single-pass
or few-pass training on devices with low on-chip memory and
computational resources. Although our goal is to run LookHD
on embedded platforms (e.g., FPGA or ARM CPU), here we
compare it with the powerful GPU architecture to better show
the efficiency of LookHD. Table III compares the speedup and
energy efficiency of LookHD with the GPU implementation
running on NVIDIA GTX 1080 GPU. We have an optimized
implementation of HDC using Tensorflow [48]. Unlike the low-
power platforms that we aim to eliminate the computation, GPU
can provide significant acceleration by enabling parallelism
over different dimensions. All results are relative to the energy
consumption and execution time of the CPU implementation.
Our evaluation shows that although GPU training and inference
are 1.5x (1.3x) faster than the FPGA implementation of the
baseline HD, LookHD provides 1.1x and 1.5x faster training
and inference than GPU. In terms of energy efficiency, LookHD
is, on average, 67.5x and 112.7x more energy-efficient than
GPU during training and inference, respectively. Table III also
shows that LookHD can further improve computation efficiency
by reducing hypervector dimensionality. For example, LookHD
losing less than 2% quality loss provides 1.21x and 1.25x
faster training and inference than LookHD using D = 2000
dimensions.

G. LookHD Inference Scalability

As a light-weight classifier, HDC is desired to provide a
small and scalable model that can be stored and processed
on embedded devices with limited resources. In the conven-
tional HDC model, each class is represented using a single
hypervector. Therefore, the HDC model size increases linearly
with the number of classes. LookHD addresses the model
size scalability issue by combining and compressing all class
patterns into a single hypervector. Figure 15 shows the tradeoff
between the LookHD classification accuracy and computation
efficiency when the number of classes increases from k=2 to 48.
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The results are reported for running 1000 queries on randomly
generated class hypervectors with Gaussian distribution, where
the classes have a similar correlation as five tested models.

Figure 15a shows the impact of the number of classes on
the classification accuracy and the average noise to signal
ratio of the compressed model. LookHD with more number
of classes has higher noise to signal ratio due to the error
from non-orthogonality between the P’ hypervectors (shown
in Equation 5). This noise can change the rank of the classes
during the search for maximum cosine similarity and result
in misclassification. Our result shows that LookHD does not
lose any accuracy for applications with 12 or fewer classes.
However, since the noise in classification statistically grows
with the number of classes, LookHD is likely to lose accuracy
for applications with more than 12 classes. For example, an
application with 26 classes can provide less than 0.8% quality
loss as compared to HDC with the non-compressed model. For
applications with more than 12 classes, LookHD compresses the
trained model into multiple hypervectors in order to eliminate
the quality loss. To this end, each compressed hypervector
needs to keep the information of less than 12 classes. For
example, for an application with 36 classes, LookHD can
compress the model into three hypervectors, where each is a
combination of 12 hypervectors. This ensures no quality loss
while still providing 8.7 x smaller model size.

Figure 15b reports the energy-delay product (EDP) improve-
ment of LookHD using the compressed model as compared to
the baseline HDC running on the FPGA. Figure 15b also shows
the LookHD model size reduction when LookHD compresses
the HDC model into a single hypervector. Our result shows that
LookHD can achieve 6.9x and 12.0x EDP improvement and
smaller model size while providing the same accuracy as the
non-compressed model. For applications with more classes, the
EDP improvement, and model size improve significantly with
minimal impact on the accuracy. For example, for an application
with 48 classes, LookHD can achieve 14.6x and 19.2x EDP
improvement and smaller model size with about 2% quality
loss while compressing the model into a single hypervector.
In an exact mode, LookHD compresses the model into four
hypervectors, which still results in 10.8x EDP improvement
and 8.7x model size reduction, while ensuring the same
accuracy as the non-compressed model.

H. Resource Utilization

Figure 16 shows the resource utilization of LookHD FPGA
implementation during training and inference phases. The
associative memory and encoding module utilize different
resources depending on the number of classes and the feature
size. Here, we show the resource utilization for SPEECH with
k =26 classes and n = 617 features. The resources utilized by
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TABLE IV
LOOKHD EFFICIENCY VS. MLP ON FPGA

| | SPEECH UCIHAR PAMAP2 FACE EXTRA
.5 Speedup 16.6x 19.1x 26.8x 31.7x 24.7x
& Energy Efficiency 30.4x 41.2x 48.5x 61.3% 42.8x
':m) Speedup 7.9x 10.8% 12.6x 17.3x 11.9x
= Energy Efficiency 3.7x 4.9x 5.4x 6.3x 6.0x

the encoding module mostly consists of LUTs and FFs, which
are used to count and store the pre-fetched base hypervectors.
In inference and retraining, the associative memory mostly
utilizes DSPs. However, since LookHD stores the compressed
model, the associative search also uses LUTs and FFs in order
to compute the similarity values. In addition, the model update
in LookHD further increases the BRAM and LUT utilization in
the training phase. As results in Figure 16 show, for SPEECH
inference, the FPGA performance is limited by the number of
DSPs, while in training, the LUT utilization is the performance
bottleneck. Note that depending on the number of features or
classes, applications may have different resource utilization. For
example, for FACE application with k =2 classes and n = 608
features (k << n), the LUTs are the computation bottleneck in
both training and inference phases.

1. LookHD vs Other Classifiers

Table IV also compares the training/inference efficiency
of LookHD with MLP on FPGA. We used DNNWeaver
V2.0 [49] for efficient implementation of the NN inference,
and FPDeep [50] for NN training on a single FPGA device.
FPGA implementations are optimized to maximize performance
by utilizing FPGA resources. All results listed in Table IV
are relative to MLP performance and energy efficiency. Note
that we compare the baseline MLP and LookHD, since
several existing optimizations, e.g., model binarization or
pruning [51], [52], can be applied to both methods. During
training, LookHD achieves, on average, 23.1x faster and 43.6 X
more energy-efficient computation as compared to FPGA-based
MLP implementation, respectively. The high efficiency of
LookHD in training comes from: (i) LookHD capability in
creating an initial model that significantly lowers the number
of required retraining iterations. (ii) It eliminates the costly
gradient descent for the model update. This results in a
higher LookHD efficiency, even in terms of a single training
iteration. In inference, LookHD provides 11.7x faster and
5.1x higher energy efficiency as compared to FPGA-based
MLP implementation. This higher inference efficiency comes
from LookHD ability in reducing the number of required
resources (multiply-add), on average, by 38.1x compared to the
equivalent MLP. LookHD model compression further reduces
memory footprints and provides an average 63.2x smaller
model size compared to the MLP.

VII. RELATED WORK

Since the neuroscientist P. Kanerva introduced the field of
hyperdimensional computing [10], prior research have applied
the idea into diverse cognitive tasks such as robotics [14], [53],
analogy-based reasoning [54], latent semantic analysis [44],
text classification [55], genome pattern matching [15], activity
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recognition [56], prediction from multimodal sensor fusion [17],
[57], speech recognition [58]. For example, work in [14]
showed how to use HDC mathematics to enables robots to
model the human-like memory. The work in [18], [59] showed
an HD application for feature vector classification. These
approaches assume that HDC learning tasks are performed
in the binary domain. However, working with binary vectors
provides significantly lower accuracy when running on practical
workloads (on average, 17.5% than LookHD). In contrast,
LookHD works with the non-binary model and provides sig-
nificantly higher accuracy on complex classification problems.

Several existing works have presented the hardware for
efficiently processing HDC, including both FPGA and in-
memory accelerators [21], [22], [23], [37], [60], [61], [62].
Work in [63] implemented HDC on FPGA, but it only works
with binary hypervectors with applications limited to the
classification of text and time-series signals. Work in [37],
[64] designed a new FPGA-based architecture to accelerate the
classification task. However, it requires an explicit encoding and
training process, resulting in low computation efficiency. Work
in [21] showed three digital, resistive, and analog circuits to
accelerate the computation of Hamming distance similarity
search in the HDC inference. Although these approaches
accelerate the HDC computation, the encoding still takes a
dominant part of the training procedure. Work in [22] designed
and fabricated an HDC chip accelerator using emerging memory
devices. However, this architecture only supports the binary
model, and its application is limited to the text classification.
To the best of our knowledge, LookHD is the first efficient
architecture that systematically eliminates the cost of encoding
from HDC, with no need for hardware acceleration. In addition,
LookHD addresses the model/inference scalability of all prior
HDC work by compressing the model and performing the
training and inference on the compressed model.

VIII. CONCLUSION

In this paper, we propose LookHD to address two major
issues of the HDC-based systems: the costly encoding and the
scalability of the HDC model. LookHD exploits the computa-
tion reuse by bounding the number of possible values that the
encoded hypervector can take. This eliminates the encoding
computation and simplifies the encoding to a simple memory
lookup. In the inference, LookHD uses the mathematical
orthogonality of random vectors to significantly compress the
HDC model and reduce the cost of inference. We accordingly
design an embedded architecture to accelerate LookHD on
FPGA. Our evaluations show that LookHD achieves 28.3x
speedup and 97.4x energy efficiency training as compared to
the state-of-the-art design.
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