
MAT: Processing In-Memory Acceleration for
Long-Sequence Attention

Minxuan Zhou
University of California, San Diego

miz087@ucsd.edu

Yunhui Guo
University of California, San Diego

yug185@ucsd.edu

Weihong Xu
University of California, San Diego

wexu@ucsd.edu

Bin Li
University of Wisconsin-Madison

bli346@wisc.edu

Kevin W. Eliceiri
University of Wisconsin-Madison

eliceiri@wisc.edu

Tajana Rosing
University of California, San Diego

tajana@ucsd.edu

Abstract—Attention-based machine learning is used to model
long-term dependencies in sequential data. Processing these
models on long sequences can be prohibitively costly because
of the large memory consumption. In this work, we propose
MAT, a processing in-memory (PIM) framework, to accelerate
long-sequence attention models. MAT adopts a memory-efficient
processing flow for attention models to process sub-sequences in
a pipeline with much smaller memory footprint. MAT utilizes
a reuse-driven data layout and an optimal sample scheduling
to optimize the performance of PIM attention. We evaluate the
efficiency of MAT on two emerging long-sequence tasks including
natural language processing and medical image processing. Our
experiments show that MAT is 2.7× faster and 3.4× more energy
efficient than the state-of-the-art PIM acceleration. As compared
to TPU and GPU, MAT is 5.1× and 16.4× faster while consuming
27.5× and 41.0× less energy.

I. INTRODUCTION

Self-attention has emerged as a very powerful tool to model

long-term dependencies in sequential data, such as language

modeling [19]. The recently proposed transformer architecture

[19] has been considered as a better substitute for recurrent

neural networks (RNN) [16] and demonstrated the state-of-

the-art performance for natural language processing (NLP)

applications. Self-attention has also been applied to image

analysis as the form of a non-local layer which is beneficial for

its ability to capture relations of image features that span the

whole input image [20]. Recently, the transformer architecture

has also been applied to computer vision tasks for image

classification and object detection [2], [3] where the input

images are cropped into patches and assumed dependencies

like sequences. For language modeling, self-attention differs

from RNN in that all the words in the sentence are examined

at once and long-term dependencies are captured regardless

of the distance between the words. Similarly, for vision tasks,

in contrast to convolution which involves the operation of a

convolution kernel on each local position, self-attention operates

on the whole image and models the feature relations in all the

positions across the image. Similar attention mechanisms have

also been used in multiple instance learning (MIL) problem for

weakly supervised object detection [9], [14].

One major difference between self-attention and convolution

as well as RNN is that self-attention models the interactions

of all words, and requires the whole sequence to be observed

at once. Typically, an embedding phase is utilized to generate

embedding vector for each word in the sequence and then all

the embedding vectors are used as input for self-attention model

for computing pair-wise score matrix. A significant challenge

to accelerate attention models is the prohibitive memory cost

due to the need to store the score matrix in the case of long

sequences. Though generally being more memory-efficient as

compared to RNNs, the memory footprint increases quadratically

with the sequence length in self-attention models. As compared

to other popular models like convolutional neural networks

(CNNs), the attention models are more memory-bound because

of the low compute density in terms of the large amount of

weights. Therefore, conventional accelerators optimized for

convolution layers and fully-connected layers may not perform

well for attention models. Our evaluation on a memory-efficient

PyTorch implementation on GPU [13] shows that the GPU

memory cannot fit an attention layer with a sequence length of

60K. Furthermore, the memory-efficient implementation only

processes a portion of attention at a time to reduce the memory

footprint. Its performance is much slower than the original

implementation because of frequent data loading.

PIM is a good way to accelerate attention models, since

they are memory-bound but with a large amount of parallel

operations. Even though there are many PIM-based accelerators

for machine learning models, most of them are designed for

CNNs [4], [10], [15], [18] which have good data reuse rate to

schedule parallel operation with moderate loading cost. However,

for the attention model, the data flow used by previous PIM

accelerators may be prohibitively costly. In this paper, we

propose, MAT, a new processing paradigm based on digital

PIM (DPIM) technology to accelerate long-sequence attention

models. MAT adopts a iterative tiled processing scheme based

on a modified computation order in the attention layer. The

iterative tiled processing scheme enables us to adjust different

amount of computations to achieve better memory utilization.

Furthermore, we propose two optimization techniques, reuse-

driven data layout and scheduling optimization, to optimize the

978­1­6654­3274­0/21/$31.00�©2021�IEEE 25

20
21
�5
8t
h�
A
C
M
/IE
EE

�D
es
ig
n�
A
ut
om
at
io
n�
C
on
fe
re
nc
e�
(D
A
C
)�|
�9
78
­1
­6
65
4­
32
74
­0
/2
1/
$3
1.
00
�©
20
21
�IE
EE

�|�
D
O
I:�
10
.1
10
9/
D
A
C
18
07
4.
20
21
.9
58
62
12

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:52:26 UTC from IEEE Xplore. Restrictions apply.

N V

Q

KEmbedding Matrix

N

Score Matrix

N

SA

N

N

Softmax

Fig. 1. Operations in an attention layer.

performance of DPIM-based attention.

We demonstrate the efficacy of MAT on two common

applications of self-attention models — sentence-to-sentence

translation and weakly supervised tumor detection in whole slide

images [7]. We compare the performance of MAT with various

state-of-the-art systems including TPU, GPU, and existing PIM

accelerators. Our experiments show that MAT is 2.7× faster

and 3.4× more energy efficient than the state-of-the-art PIM

acceleration. As compared to TPU and GPU, MAT is 5.1× and

16.4× faster while consuming 27.5× and 41.0× less energy.

II. BACKGROUND AND MOTIVATION

A. Long-sequence Attention Model

Attention-based models typically consist of an encoder and a

decoder [19]. Both the encoder and the decoder are constructed

by stacking multiple self-attention layers. The key operation

in a self-attention layer is the scaled dot-product attention as

shown in Fig. 1. For each piece of data (word) in the input

sequence, we generate an embedding vector of dimension de.

For a sequence of length N , all the embedding vectors can be

regarded as an embedding matrix of dimension de×N . For each

word we generate a query vector Q of dimension dq and a key

vector K of dimension dk, and a value vector V of dimension

dv by multiplying the embedding vector with different weight

matrices. One typical value of dk, dq and dv is 512. The Q
vectors, K vectors and V vectors of all the words in the input

sequence can be stacked together as matrices Q, K and V .

In the scaled dot-product attention, the dependencies between

words can be captured via the following equation:

Self-attention(Q,K,V) = Softmax(
QKT

√
dk

)V , (1)

where Softmax(·) denotes the Softmax function. The QKT

√
dk

is

defined as the score matrix S that measures how much focus

to put on various parts of the input sequence. We use SA to

denote the output of the attention layer.

To achieve higher accuracy and performance, the training

of large attention models is conducted on long sequences [9],

[13], [14]. The long sequences pose a severe challenge for

accelerating attention models due to the prohibitive memory

cost. The attention layer requires O(N2) memory space to fully

parallelize the computation and store intermediate results, where

N is the sequence length. In this case, the memory footprint

increases quadratically with the sequence length. Concretely,

the bottleneck in self-attention is the computation of the score

matrix S = QKT

√
dk

in Equation 1, where S has a size of N ×N .

Cube

Cube

Cube

Cube

Cube

Cube

Cube

Cube

Cube

Cube

Cube

Cube

Cube

Cube

Cube

Cube

Memory Layers
Vault
0

Logic Layer
Crossbar

Ctrl.
0

Vault
1

Ctrl.
1

Vault
32

Ctrl.
32

…

…

DRAM
Sub-Arrays

Send memory/PIM
commands

TSVs

Attention
Model

Iterative Tiled Processing

Pipeline
Execution

Tile Sample
Scheduling

Reuse-driven
Data Layout

Fig. 2. Overview of MAT on a DPIM-enabled HMC System.

For typical natural language processing tasks, the score matrix

consumes 16GB of memory when the sequence length N is

64K and using 32-bit floating-point precision. When further

scaling the sequence length, the memory footprint is beyond

the capacity of most commodity GPUs.

B. Digital Processing in-Memory Acceleration

Digital processing in-memory (DPIM) technology is used to

accelerate memory-bound applications. Logic operations (e.g.,

NOT, AND, OR, NOR, NAND, etc.) between memory cells in

two different memory rows are basic PIM operations. Several

previous works have implemented these DPIM operations

in various memory technologies, including DRAM [6], [15],

SRAM [4], and ReRAM [8]. For example, ComputeDRAM [6]

shows how to enable DPIM operations in the off-the-shelf

DRAMs by charge sharing when executing a sequence of

ACTIVATE and PRECHARGE commands without idle cycles.

FELIX proposes several single-cycle logical operations in

resistive memory crossbar without changing sense amplifiers [8].

Such single-bit logical operations can be used to implement

arbitrary computations in multiple computation steps (bit-serial)

including multi-bit addition and multiplication. A single DPIM

computation can simultaneously affect all values in a memory

rows (row-parallel). These bit-serial row-parallel operations can

achieve massive parallelism because all memory blocks can

execute DPIM operations in parallel.

There have been several existing DPIM-based accelerators to

accelerate machine learning models [4], [10], [15]. Although

they can be directly applied to compute attention models,

most of them are designed for Convolutional Neural Networks

(CNNs), which have tremendous data reuse opportunities and

are computation-intensive. However, attention models have a

lower computational intensity compared to CNNs. Computing

the attention requires a large amount of memory to store the

weights and the inference of attention models is dominated

by memory accesses instead of computation. The memory and

computation imbalance between attention models and DPIM

accelerators results in low hardware efficiency and utilization

due to the frequent data loading.

III. MAT DESIGN

In this work, we propose, MAT, a processing paradigm

of DPIM acceleration based on emerging hybrid memory

26

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:52:26 UTC from IEEE Xplore. Restrictions apply.

0%

20%

40%

60%

80%

100%

128 256 512 1024 2048 4096 8192 16384 32768

M
em

or
y

U
sa

ge
 (%

)

Sequence Length

Q K V SA Score

Fig. 3. Memory usage breakdown under various sequence lengths.

N V

Q

KEmbedding Matrix

N

Score Matrix

N

Exponential

N
Exp Sum

N

N

ni

ni

ni

ni

ni

ni

ni+1

ni+1

ni+1

ni+1

ni+1

ni+1

Fig. 4. Iterative tiled processing flow with late softmax update.

cube (HMC) architecture for attention models to address the

aforementioned challenges.

A. System Overview

Fig. 2 shows the underlying architecture used by MAT,

which is a DPIM-enabled DRAM system based on HMC

architecture [6], [11]. An HMC system consists of multiple

memory cubes that are connected by high-speed serial links

in an interconnect network. Each memory cube consists of

3D-stacked memory layers with one logic layer. The logic

layer has multiple controllers, each of which control a vertical

partition of memory (vault) containing many memory sub-arrays.

Memory controllers transfer data from memory layers with

through silicon vias (TSVs). We adopt the DRAM-based DPIM

technology validated in off-the-shelf DRAM [6] which only

requires moderate modifications in the memory controller to

send DPIM commands to the sub-arrays. Detailed architectural

parameters used for our evaluation are discussed in Section IV.

MAT adopts an iterative tiled processing flow which pro-

cesses different parts of the computation through all layers to

improve the memory and hardware utilization. The iterative

tiled processing is scheduled in a pipelined execution which

adopts two optimization techniques, reuse-driven data layout

and optimal sample scheduling, to further improve the efficiency

of processing flows.

B. Iterative Tiled Processing Flow

It is costly to load and process the entire input embeddings

since the intermediate matrices would consume huge amount of

memory space. We plot the memory usage breakdown for five

types of matrices for attention models in Fig. 3. It shows that the

score matrix S accounts for the majority of total memory usage

as the sequence length is greater than 1024. Hence, reducing

the memory requirement of score matrix is a key design factor.

To avoid buffering the whole score matrix, we propose an

iterative tiled processing flow through modifying the compu-

tation order and dataflow of an attention layer. Fig. 4 shows

details of the iterative tiled processing for attention models. The

basic idea is to divide data into small portions, therefore saving

the space required to store the memory-consuming score matrix.

Specifically, the PIM system pre-allocates the memory resources

for the attention block, including Q, K, V , the score matrix

S, the exponential matrix, the exponential sum, and the self-

attention output SA. At the i-th iteration, the input embeddings

with sequence length N are partitioned into tiles with a shorter

length ni. Then the length-ni tile of input embeddings is fed

into the PIM accelerator and used to generate its corresponding

tiles of V , Q, and K matrices. The tiled score matrix S is

computed using all the tiles of Q and K. 2i−1 new tiles of the

score matrix are generated at the i-th iteration. Then the point-

wise exponential of the score matrix eSi,j is computed and the

tiled point-wise exponential matrix is multiplied with the tiled

V matrix, yielding the partial sum of the self-attention matrix.

Finally, the aggregation of self-attention matrix is divided by

the exponential sum to normalize the values into probability

domain and generate the final self-attention results. The details

are introduced in Section III-C. Each input tile is processed

sequentially in a pipelined manner to improve the memory

utilization, which is explained in Section III-D.

C. Late Softmax Update

The naive attention dataflow does not support the iterative

tiled processing scheme because there is an all-to-one data

dependence between the outputs of score matrix and Softmax.

Specifically, the results of Softmax in Eq. (1) can only be

calculated after obtaining all the results of the score matrix

S since the denominator of Softmax is the summation of all

elements in a row of S. In order to relax this data dependency,

we propose a “late softmax update” mechanism which postpones

the denominator calculation of Softmax. The element of SA
matrix in the i-th row and j-th column, SAi,j , is calculated as:

SAi,j =

N∑

k=1

eSi,k

∑N
l=1 e

Si,l

Vk,j =
1

∑N
l=1 e

Si,l

N∑

k=1

eSi,kVk,j ,

(2)

where the computation order of the denominator is put on the

outermost. The exponential value of Si,k is first multiplied with

the corresponding element of V matrix without knowing the

summation of denominator.

To support the late softmax update, we change the original

Softmax layer to an exponential layer and an exponential sum

layer as shown in Fig. 4. Specifically, the exponential layer

calculates the exponential value of each element in the score

matrix. The exponential computation is approximated as ex =
1+ x

1! +
x2

2! +
x3

3! ... using the Taylor Series Expansion, allowing

the PIM architecture to compute exponential values in parallel

with acceptable accuracy. The exponential sum layer stores and

updates partial sums of each normalization term across iterations.

Then the accumulated sums are used to normalize the output

SA matrix at the end of the last iteration.

D. Pipelined Operation Scheduling

In DPIM acceleration, we allocate exclusive memory

resources for different layers in the attention models. During

one iteration for a tile, only a portion of V , Q, and K matrices

27

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:52:26 UTC from IEEE Xplore. Restrictions apply.

Input Embeddings

V/Q/K Matrices

Score Matrix

Exponential

Exponential Sum

Self-attention Matrix

Timeline

t1
t1

t1
t1

t1
t1

t2
t2

t2
t2

t2
t2

t3
t3

t3 …

Data Movement

Memory Resource

Fig. 5. The pipeline of tiled processing flow.

Tiled
Score Matrix

Tiled
Input Embeddings

[0:)
([] [])

[][]

[:)
[][]

([] []) ([] []) ([] [])

[:)
[][]

([] []) ([] [])([] []) ([] []) ([] [])

Reuse []

Iteration 3

Iteration 2

Iteration 1

Fig. 6. An example of data reuse between three iterations.

are activated. In this case, the iterative tiled processing enables

a pipelined execution to improve the memory utilization.

1) Pipeline Execution: Fig. 5 shows a timeline for pipelining

computations of different tiles across iterations. In each iteration,

the DPIM system sequentially processes layers based on the

data dependency. Such dependency requires data movement

between the memory resources allocated to consecutive layers.

For example, we need to send the output of Q, and K vectors to

Score matrix. When a module (e.g. compute V matrix) finishes

all computations for the current tile, it can start processing the

next tile after loading new inputs or weights.

When processing a new tile, each layer needs to load the data

required for computations in the memory. Such data may be

the input samples for feature extraction, the trained weights in

fully-connected layers, and the output of previous layers. The

input samples and the trained weights are stored in the separate

memory area as the normal data in conventional memories.

The output results from the previous layers are stored in the

memory area allocated for those layers. The pipeline execution

can effectively hide the overhead of data loading.

The required memory space is reduced after adopting the tiled

processing dataflow. The original attention dataflow requires

O(N2) memory space to buffer and process the score matrix.

In comparison, MAT only consumes O(n2
i) space, where ni

denotes the tile size and is much smaller than N . The memory

consumption is adjustable across iterations by selecting different

tile sizes. The optimal scheduling of samples is determined by

the optimization framework in Section III-D3.

2) Reuse-Driven Data Layout: After completing computa-

tions for a layer in one iteration, new data needs to be loaded

into the memory for the next iteration. Such data includes

weights for the new tile and outputs from the previous layer.

Loading data may take a significant portion of time because

of the large data size of attention models. Furthermore, the

Algorithm 1: Dynamic programming based optimization

framework for sample scheduling.

1 Input: n samples, pim system
2 f = array(n samples);
3 step = array(n samples);
4 f [0] = 0;
5 for i ← 1 to n samples do
6 for j ← 1 to i do
7 if can process(j, i, pim system) then
8 if f [i − j] + process(j, i, pim system) < f [i] then
9 f [i] = f [i − 1] + process(j, i, pim system);

10 step[i] = j;

data size required for each iteration increases over time and the

repeated data loading degrades the efficiency and becomes a

performance bottleneck due to the waste of memory bandwidth.

To exploit the reuse opportunities, we propose a reuse-driven

data layout to reduce the overhead of data loading. Fig. 6 shows

the proposed reuse-driven data layout for feature extraction layer

and self-attention layer over three consecutive iterations. In the

first iteration, DPIM system allocates two memory segments

for feature extraction and self-attention. The output of feature

extraction (Q and K) is loaded to the self-attention memory. In

the second iteration, the feature extraction memory generates Q
and K for new tile (ni+1). The self-attention memory, instead

of loading all data, can reuse the memory segment in the first

iteration without loading the existing data (Q[ni]). Similarly, in

the third iteration, we can reuse data in three memory segments

of the second iteration. Therefore, there are only two memory

segments that have to load completely new data in each iteration,

significantly reducing the overhead of data loading.

3) Optimal Sample Scheduling: There remains one key design

in the MAT execution model - the input sample scheduling,

which selects different numbers of samples to be processed

in each iteration. We introduce optimization techniques for

both aspects that can significantly improve the efficiency of

DPIM acceleration. As mentioned in Section III, we need

to schedule the samples processed in each iteration. If we

use a fixed number of samples, PIM system would either

waste most of its computing throughput or may not meet the

hardware constraints. Therefore, we propose a optimization

algorithm based on dynamic programming that can find the

optimal sample scheduling within the hardware constraints.

Algorithm 1 shows the steps of the proposed algorithm. The

inputs of the algorithm are the number of total samples

(sequence length) and the hardware configuration of PIM

system. We define a state function f with n samples element,

where f [i] represents the lowest cost of processing the first

i samples. For each f [i], the lowest cost is calculated by

min(f [i−j]+process(j, i, pim system), where j is a number

from 1 to i and process(j, i, pim system) is the performance

cost of processing j samples in one iteration with i total samples.

The performance cost is estimated from a hardware configurable

cycle-accurate simulation which is introduced in Section IV.

We use a step array to record the optimal step for each i to get

the optimal schedule.

28

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:52:26 UTC from IEEE Xplore. Restrictions apply.

IV. EXPERIMENTS

In this section, we introduce the methodology used for our

evaluation and experimental results.

A. Experimental Setup

TABLE I
ARCHITECTURAL PARAMETERS

Configuration
HMC 8GB/cube, 500MHz bus/command frequency

32 vaults, 16MB banks, 8KB row buffer
Bandwidth: 512GB/s (internal), 320GB/s (external)

tCAS-tRCD-tRP-tRAS 7-7-7-17
tRC-tWR-tWTR-tRTP 24-8-4-7
tRRD-tFAW 5-20
PIM Operations (per bit) Row copy: 18 cycles, SHIFT: 36 cycles

AND/OR: 172 cycles, XOR: 444 cycles
ADD: 1332 cycles

1) Simulation: We use Cacti [17]), and published papers [6]

to characterize the timing and energy models for different

PIM operations. Based on these models, we implement an in-

house simulator to model the performance of PIM acceleration

for running the workloads in PyTorch. In this work, we

use DRAM [6] as the underlying technology and the hybrid

memory cube (HMC) [11] as the basic architecture. Table I

shows the parameters of PIM and HMC technology used in

this work, which are calculated based on previous work [1],

[6], and published data [11]. We use the largest HMC 2.1

configuration, which has eight 8Gb layers per cube with 32

vertically partitioned memory vaults. Each vault has a dedicated

memory controller that can schedule PIM operations in the

memory [6]. The baseline system has 16 cubes (128GB in total)

linked with eight 40 GB/s high-speed serial links per cube in a

dragon-fly interconnect [1].
2) Datasets: We use enwik8-64K [19] for natural language

processing and Camelyon16 [5] for whole slide image classifica-

tion to demonstrate the effectiveness of the proposed framework.

For natural language processing, the enwik8-64K dataset is

separated into different numbers of subsequences (from 5K to

95K tokens) which allows us to evaluate the performance of the

framework in the case of different sequence lengths. We use a

3-layer attention model to make it tractable to simulate, which

has high memory usage and performs full O(N2) attention.

For whole slide image classification, the dataset consists of

400 whole slide images with an average size of 30, 000×30, 000
pixels per image at the magnification of 20×. We use this dataset

for weakly supervised tumor detection [14]. To simulate long

sequences, we cut the image into small patches and reshape

the patches into 224× 224. These operations allow us to have

5K to 95K patches per image. The patches from an image will

be projected into 512 × 1 feature vectors using a pretrained

ResNet18 and fed into self-attention model for aggregation and

inference. In all the experiments we use dv = dk = dq = 512.
3) Baseline Systems: We use PyTorch to implement the

inference of different models running on GPU. The GPU

platform used in experiments is NVIDIA TITAN RTX. We also

implement a roofline model for TPU 1.0 based on its published

design description [12]. For the baseline PIM acceleration,

we use the processing flow used by previous DPIM CNN

0

0.5

1

1.5

2

5000 20000 35000 50000 65000 80000 95000

E
xe

cu
tio

n
Ti

m
e

(s
)

#Samples

Whole Slide Image Classification

TPU GPU MAT PIM Baseline

0

5

10

15

20

5000 20000 35000 50000 65000 80000 95000

E
xe

cu
tio

n
Ti

m
e

(s
)

#Samples

Natural Language Processing

TPU GPU MAT PIM Baseline

Fig. 7. The execution time of two models on different platforms.

0

50

100

150

200

250

5000 20000 35000 50000 65000 80000 95000

E
ne

rg
y

(J
)

#Samples

Whole Slide Image Classification

TPU GPU MAT PIM Baseline

0

500

1000

1500

2000

2500

3000

5000 20000 35000 50000 65000 80000 95000

E
ne

rg
y

(J
)

#Samples

Natural Language Processing

TPU GPU MAT PIM Baseline

Fig. 8. The energy consumption of two models on different platforms.

accelerators [4], [10], [15]. We should note that we only use

the processing flow of previous work, while adopting them

to the same DRAM architecture for a fair comparison. The

PIM baseline sequentially processes attention layers. When

processing layers with a memory footprint larger than system

capacity (e.g., attention), the PIM baseline iteratively processes

small portions to fit computation in the memory. All systems

run with 8-bit precision.

B. Results

1) Comparison with existing platforms: Fig. 7 shows the

execution time of two long-sequence attention models on TPU,

GPU, and PIM baseline and MAT. We should note that GPU

baseline fails to run the sequence longer than 60,000 because

of the out-of-memory errors. The results show that MAT is

5.2× and 4.9× faster than TPU for the whole slide image

classification and natural language processing respectively. As

compared to GPU, MAT provides 16.6× and 16.1× speedup

on two models. The results show that MAT can significantly

improve the performance of attention models and it has efficient

scalability as a function of the sequence length.

MAT is 2.4× and 2.9× faster than the PIM baseline. The

performance improvements of MAT becomes larger when

increasing the sequence length. This is because the PIM baseline

requires more data loading to process the large attention

matrix with longer sequences. Such data loading becomes the

performance bottleneck since the PIM baseline uses all available

memory for attention. In this case, the baseline PIM stalls

during the data loading, which significantly lowers the memory

utilization for computations.

Fig. 8 shows the energy consumption of three systems. As

compared to TPU (GPU), MAT consumes 33.8× (49.9×) and

21.2× (31.8×) less energy on two models. The energy benefits

of MAT over the conventional systems come from the faster

execution and the removal of off-memory data transfer. As

compared to PIM baseline, MAT consumes 3.2× and 3.6× less

energy because of the faster execution.

29

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:52:26 UTC from IEEE Xplore. Restrictions apply.

0

2

4

6

MAT All
Load

MAT All
Load

MAT All
Load

MAT All
Load

MAT All
Load

5000 20000 40000 65000 95000

N
or

m
al

iz
ed

 T
im

e

#Samples

Whole Slide Image Classification
Computation Data Loading

0

2

4

6

MAT All
Load

MAT All
Load

MAT All
Load

MAT All
Load

MAT All
Load

5000 20000 40000 65000 95000

N
or

m
al

iz
ed

 T
im

e

#Samples

Natural Language Processing
Computation Data Loading

Fig. 9. The effects of reuse-driven data layout.

0

0.5

1

1.5

2

2.5

3

5000 15000 25000 35000 45000 55000 65000 75000 85000 95000

E
xe

cu
tio

n
Ti

m
e

(s
)

#Samples

Partial Naïve MAT

0%

20%

40%

60%

80%

100%

16GB 32GB 64GB 128GB

A
ct

iv
e

M
em

or
y

(%
)

Partial Naïve MAT

Fig. 10. The performance and memory usage of different operation scheduling
methods.The utilization experiments are done on various system size for 60,000
long sequences. Both results are on the whole slide image classification model.

2) Effect of Reuse-Driven Data Layout: Fig. 9 shows the

effects of reuse-driven data layout. We compare MAT to a

baseline system that loads all data for computations without

any data reuse (“All Load” in Fig. 9). The experiment shows

that reuse-driven layout can reduce the latency of data loading

by 2.7× and 3.1× respectively, resulting in 1.82× and 1.94×
speedups for the whole slide image classification and the natural

language processing models respectively. Between two models,

natural language processing requires longer time for data loading

because of the large vector length for V , Q, and K. The results

show the proposed technique works better on larger models.

3) Sample Scheduling Methods: Fig. 10 shows the compari-

son between different sample scheduling methods on the whole

slide image classification model. Specifically, the partial scheme

processes the original softmax layer, and only pipelines the

layers up to the softmax layer. “Partial” scheme then uses the

whole attention matrix after the softmax to compute the output.

“Naive” schemes set a fixed number of samples processed in

each iteration. We select the maximum values that do not violate

the hardware constraints. The results show that the scheduling of

MAT is 10.6× and 18.2× faster than the “Partial” and “Naive”

schemes respectively.

We also investigate the memory utilization of different

scheduling, where the memory utilization indicates what is the

average portion of memory are active on computation during the

execution. Fig. 10 shows average percentage of active memory of

three methods on different sized systems. To simplify the plots,

we only show the result for 60,000-long sequences computation.

The result shows that MAT improves the memory utilization

of “Partial” and “Naive” scheduling by 1.2× and 3.7× on a

16GB. When increasing the system size by 4× (128GB), MAT

has 1.6× and 4.1× better utilization than two other methods,

and increases the memory utilization from 39% to 70%. The

better utilization on larger system results from the more memory

resources for the optimization to find more efficient scheduling.

V. CONCLUSION

In this work, we propose a new processing paradigm using

PIM-enbaled HMC architecture for long-sequence attention

models. The proposed method adopts a iterative tiled processing

method to provide a memory-efficient processing to compute

different attention models. We propose several optimization

techniques to reduce the data loading overhead and find the

optimal operation scheduling. Our experiments show that MAT

is 2.7× faster and 3.4× more energy efficient than previous PIM

acceleration. As compared to TPU and GPU, MAT is 5.1× and

16.4× faster while consuming 27.5× and 41.0× less energy.

ACKNOWLEDGMENT

This work was partially supported by CRISP, one of six

centers in JUMP, an SRC program sponsored by DARPA, and

also NSF grants #1730158 and #1527034.

REFERENCES

[1] J. Ahn et al. A scalable processing-in-memory accelerator for parallel
graph processing. In ISCA’15. ACM/IEEE.

[2] Nicolas Carion et al. End-to-end object detection with transformers. arXiv
preprint arXiv:2005.12872, 2020.

[3] Alexey Dosovitskiy et al. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[4] Charles Eckert et al. Neural cache: Bit-serial in-cache acceleration of
deep neural networks. In ISCA’18. ACM/IEEE.

[5] Babak Ehteshami Bejnordi et al. Diagnostic Assessment of Deep Learning
Algorithms for Detection of Lymph Node Metastases in Women With
Breast Cancer. JAMA, 2017.

[6] Fei Gao et al. Computedram: In-memory compute using off-the-shelf
drams. In MICRO’19. ACM/IEEE.

[7] Farzad Ghaznavi et al. Digital imaging in pathology: Whole-slide imaging
and beyond. Annual Review of Pathology: Mechanisms of Disease, 2013.

[8] Saransh Gupta et al. Felix: Fast and energy-efficient logic in memory. In
ICCAD’18), pages 1–7. IEEE, 2018.

[9] Maximilian Ilse et al. Attention-based deep multiple instance learning.
ICML’18, 2018.

[10] Mohsen Imani et al. Floatpim: In-memory acceleration of deep neural
network training with high precision. In ISCA’19. ACM/IEEE.

[11] Joe Jeddeloh and Brent Keeth. Hybrid memory cube new dram architecture
increases density and performance. In VLSIT’12. IEEE.

[12] Norman P Jouppi et al. In-datacenter performance analysis of a tensor
processing unit. In ISCA’17, pages 1–12, 2017.

[13] Nikita Kitaev et al. Reformer: The efficient transformer. arXiv preprint
arXiv:2001.04451, 2020.

[14] Bin Li et al. Dual-stream multiple instance learning network for whole
slide image classification with self-supervised contrastive learning. arXiv
preprint arXiv:2011.08939, 2020.

[15] Shuangchen Li et al. Drisa: A dram-based reconfigurable in-situ accelerator.
In MICRO’17. ACM/IEEE.

[16] Zachary C Lipton et al. A critical review of recurrent neural networks
for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

[17] Naveen Muralimanohar et al. Optimizing nuca organizations and wiring
alternatives for large caches with cacti 6.0. In MICRO’07. ACM/IEEE.

[18] Ali Shafiee et al. Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars. ACM SIGARCH Computer
Architecture News, 44(3):14–26, 2016.

[19] Ashish Vaswani et al. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

[20] Xiaolong Wang et al. Non-local neural networks. In CVPR’18, 2018.

30

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:52:26 UTC from IEEE Xplore. Restrictions apply.

