
HyGraph: Accelerating Graph Processing with

Hybrid Memory-centric Computing

Minxuan Zhou, Muzhou Li, Mohsen Imani∗ and Tajana Rosing

Department of Computer Science and Engineering, University of California, San Diego
∗Department of Computer Science, University of California, Irvine

miz087@ucsd.edu, mul023@ucsd.edu, m.imani@uci.edu, tajana@ucsd.edu

Abstract—Graph applications are challenging to run efficiently
on conventional systems because of their large and irregular data.
Several works have exploited near-data processing (NDP) based
on emerging 3D-stacked memory to accelerate graph processing
applications by offloading computations to massively parallel cores
in the memory chip. Even though NDP can efficiently support
parallel operations in a memory scalable way, it still requires
data movement between memory and near-memory cores. Such
data movement introduces large overhead because of the random
data pattern in graph workloads. Furthermore, the parallelism
provided by NDP systems is still insufficient for graph applications
because of the limited number of processing cores. In this work, we
tackle these challenges by integrating processing in-memory (PIM)
technology in the NDP-based accelerator. We propose HyGraph, a
software-hardware co-design for graph acceleration that exploits
hybrid memory-centric computing technologies, including NDP
and PIM. The design of HyGraph includes an optimization
algorithm for hybrid memory layout, a run-time system combining
both NDP and PIM processing flows, and customized hardware
for efficiently enabling PIM functionality in NDP systems. Our
experimental results show that HyGraph is up to 1.9× faster and
2.4× more energy-efficient than state-of-the-art memory-centric
graph accelerators on several widely used graph algorithms with
various real-world graphs.

I. INTRODUCTION

Processing large real-world graph workloads may lead to long

execution time because of limited parallelism, low data locality,

and inefficient data communication [1], [5], [16]. Memory-

centric processing is a promising technology to meet the

requirements of parallelism, scalability, and data movement

efficiency for graph processing applications [1], [12], [15]–[17].

One popular memory-centric technology is near-data processing

(NDP), which utilizes emerging 3D-stacked memories (e.g.,

Hybrid Memory Cube [10]) with the support of massively

parallel processing cores in the memory chip. Such NDP

accelerators significantly improve the performance of parallel

graph processing on extremely large data by simultaneously

scaling the memory and computing parallelism [1]. However,

NDP systems still separate the processing cores and the memory

device, keeping the same data movements that may cause

significant performance degradation because real-world graphs

are usually random. In addition to the data movement issue, the

parallelism of the NDP system is limited by the small number of

NDP cores, which is insufficient for parallel graph applications.

Processing in-memory (PIM) is another memory-centric

technology that directly processes data in the circuit level of

various memory technologies including DRAM [4], SRAM [3],

and non-volatile memory [6], [8], [9], [18]. PIM supports

highly parallel operations by re-purposing the memory as a

large SIMD processor, which processes a large volume of data

appropriately placed in the memory. As compared to NDP, PIM

can support a much higher degree of parallelism while reducing

data movement between the memory and processing cores.

However, PIM acceleration only achieves its full efficiency when

processing large and uniform data, which randomly happens

in graph applications. In this case, the previous PIM-based

graph accelerators [15], [17] are highly specialized and have

low memory utilization.

In this work, we propose HyGraph, a software-hardware co-

design that exploits the emerging NDP-enabled hybrid memory

cube (HMC) [10] and PIM-enabled DRAM technology [4]

to accelerate graph processing applications by fully utilizing

the advantage of each technology. HyGraph includes three key

components, 1) a layout optimizer, 2) a run-time system, and

3) a custom hardware to enable an efficient acceleration in

such hybrid memory-centric computing. Specifically, the layout

optimizer finds an efficient data layout and the corresponding

processing strategy, either NDP or PIM, for different parts

of graph applications. We propose a graph-aware dynamic

programming algorithm that explores this large design space.

The optimized data layout is then used by the run-time system,

which executes graph processing applications through a hybrid

processing scheme - adopting different processing flows for

NDP and PIM operations. In addition to the software-level

support, we propose several custom hardware components in

NDP architectures to efficiently support PIM functionality,

including the PIM command execution and PIM data transfer.

We evaluate the proposed ideas on three popular graph

algorithms with seven real-world graph datasets. We compare

HyGraph to several state-of-the-art memory-centric graph ac-

celerators, including both NDP and PIM systems. Based on

our experimental results, HyGraph can provide up to 1.9×

speedup and 2.4× more energy efficiency. These results show

that HyGraph can effectively utilize the advantages of NDP and

PIM to accelerate a wide range of graph applications.

II. BACKGROUND AND RELATED WORK

A. NDP Graph Processing

Figure 1 shows an NDP system, which is built upon a hybrid

memory cube (HMC) system [1], [16]. The key component of

the NDP system is the 3D-stacked memory cube, which has

330978-3-9819263-5-4/DATE21/ c©2021 EDAA

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:55:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The overview of memory-centric computing.

Algorithm 1: One iteration in vertex program [16].

1 /* Process phase: Generate temporary property (update) for each vertex. */

2 for v : active vertices do

3 for e : InComingEdges(v) do

4 process(&TempProp[v], v, e);

5 /* Apply phase: Update vertex properties. */

6 for v : V do

7 apply(&Prop[v], TempProp[v], v);

8 if Prop[v] is changed then

9 active vertices.add(v);

a logic layer with multiple memory layers. The stack divides

the memory vertically into several vaults and uses through-

silicon-vias (TSVs) to transfer data. Each vault has a dedicated

memory controller and a processing core. NDP cores can work

independently to provide high degree parallelism.

Existing NDP graph accelerators [1], [16] handle graph

applications based on a widely used general framework - vertex

programming model, as shown in Algorithm 1. The vertex

program model abstracts graph applications as an iterative

process for updating application-specific vertex properties. Each

iteration first generates temporary properties for vertices by

an application-specific process function on a working set of

vertices (active vertices). Next, it uses temporary properties to

updated vertex properties with an apply function and generates

active vertices for the next iteration. This framework can

implement different graph algorithms by customizing process

and apply functions.

To process a vertex program in NDP systems, vertices are

allocated to different memory locations. Each processing core

can independently handle computations of vertices allocated to

the corresponding vault, providing massive parallelism which

scales with the data. However, such NDP graph acceleration

has several issues. First, computations still require time and

energy-consuming data movement between the memory and

processing cores. Furthermore, the number of processing cores

(e.g., 32 per cube) is insufficient for the parallelism available

in graph processing (e.g., millions of vertices).

B. PIM Acceleration

PIM is a promising technology to solve the above issues

in NDP graph acceleration. In PIM, the memory supports in-

memory computations by applying specialized signals (e.g.,

voltage) to directly change the states of memory cells. We

can implement various bit logic operations, including AND,

Fig. 2. The overview of HyGraph.

XOR, and NOR, which can be further used to realize custom

functions (e.g., addition) by executing serials of bit logic

operations (bit-serial), as shown in Figure 1(b). Such PIM

operations can achieve high degree parallelism by processing

all bit-lines in multiple rows simultaneously (row-parallel). In

Figure 1, we can process all five elements in the vector addition

S = A+B in parallel. This is also applicable to computations on

multi-bit values by serializing computations for each bit. Such

PIM functionality has been implemented in various memory

technologies including SRAM [3], non-volatile memory [6], [7],

and DRAM [4], [13].

A recent study has shown that we can transform computations

of vertex properties into very long vector/matrix operations

that can fit into PIM to achieve better performance and

energy efficiency [15], [17]. However, such PIM accelerators

adopt a highly specialized memory architecture that can only

efficiently support PIM operations under heavy and costly

hardware modification. In this work, we directly exploit the PIM

capability of commodity DRAM technologies in the existing

HMC architecture. Such design is more general and practical

than previous PIM-based accelerators. Furthermore, this work

exploits the advantages of NDP and PIM for accelerating

different portions of the graph application and shows several

significant benefits over the NDP-only or PIM-only solutions.

III. NDP-PIM HYBRID GRAPH ACCELERATION

This section introduces the proposed hybrid NDP-PIM design

for graph processing. The target architecture is an HMC-based

NDP system with the support of PIM functionality in the

memory layers. Figure 2 shows the overall design of HyGraph,

consisting of three key components: layout optimizer, NDP-PIM

run-time, and PIM-enabled NDP hardware.

The layout optimizer determines the data layout strategies,

either PIM or NDP layout, used for different vertices based

on both software and hardware configurations. As shown in

Figure 2, the PIM data layout places data of the vertex program

in a row-parallel way, while the NDP data layout allocates

contiguous memory space for data and utilizes the NDP cores

to process computations. The layout optimizer adopts a graph-

aware optimization algorithm based on dynamic programming

to find an efficient data layout strategy. The data layout strategy

Design, Automation and Test in Europe Conference (DATE 2021) 331

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:55:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Hybrid source-cut vertex allocation.

also determines the operations required for processing the vertex

program. For example, vertex data using the PIM layout requires

bit-serial row-parallel PIM operations. However, it is hard to

efficiently process PIM operations using the NDP execution

flow which only exploits the parallelism across NDP cores,

ignoring the PIM parallelism inside each core. Therefore, we

propose a run-time system using a hybrid scheduling process to

handle PIM and NDP data in separate flows. Furthermore, to

efficiently support PIM functionality, HyGraph adopts several

customized hardware components, including a PIM-enabled

memory controller with the support for PIM commands, and a

PIM data transfer unit which uses a batching-based method for

transferring PIM data. In the following sections, we introduce

the detailed design for each key component in HyGraph.

A. Graph-aware Layout Optimization

As introduced in Section II, parallel PIM operations can only

process data organized in a row-parallel way, which is different

from the data layout in conventional memory. The HyGraph

layout optimizer determines the data layout for all application

data before the run-time of hybrid graph processing so that the

system knows the correct data address to schedule both NDP

and PIM operations.

1) Hybrid Layout for Source-cut Allocation: The optimiza-

tion works with the source-cut vertex allocation, which has

been used in the state-of-the-art NDP graph processing system

to improve the inter-cube communication efficiency [16]. With

the source-cut strategy, vertex properties are partitioned across

different memory cubes based on source vertices of all edges.

Each cube stores properties of local vertices (vertices allocated

to this cube) and a replica for the property of each remote source

vertex connecting to a local vertex through an edge. Unlike the

original source-cut algorithm, which focuses on the cube-level

vertex allocation, the source-cut allocation used in this work

considers the vault-level allocation to explore the fine-grained

hybrid layout inside each cube.

Figure 3 shows details of the vault-level source-cut hybrid

layout. Each vault has a specific type of layout, either in-core

or in-memory. Each in-core vault simply stores properties of all

local vertices and replicas of remote vertices with conventional

memory allocation. For an in-memory vault, we align the

properties of all local vertices in the row-parallel layout to

exploit PIM functionality for processing these properties in

parallel. For each local vertex, we allocate memory rows for

computing with vertices connecting to it. If a remote vertex

connects to multiple local vertices in a vault, we allocate multiple

replicas in this vault to enable parallel PIM computations.

Algorithm 2: Dynamic programming based optimization

framework for hybrid layout.

1 for m ← 1 to #vaults do

2 for i ← 1 to |V | do

3 for j ← 1 to i do

4 if f [m][i] > f [m − 1][j − 1] + CoreCost(j, i) and

CoreLayout(j, i) fit in one vault then

5 f [m][i] = f [m − 1][j − 1] + CoreCost(j, i));

6 decision[m][i] = InCore(j, i);

7 if f [m][i] > f [m − 1][j − 1] + MemCost(j, i)) and

MemLayout(j, i) fit in one vault then

8 f [m][i] = f [m − 1][j − 1] + MemCost(j, i));

9 decision[m][i] = InMemory(j, i);

The computation efficiency of each in-memory vault depends

on the maximum number of in-coming active vertices among

all local vertices. As shown in Figure 3, vault N needs to

sequentially issue 2 PIM operations because vertex 3 has 2

in-coming vertices (vertex 2 and vertex 4). However, each of

the other vertices in this vault only has one incoming message,

resulting in imbalanced computations. Because PIM operation

takes much more cycles than in-core computation, the PIM

layout may not be efficient to process only a few vertexes

with high in-degrees. Instead, we can process such vertices in

the NDP cores or simultaneously process many high in-degree

vertices for PIM operations to achieve better performance.

2) Graph-aware Layout Optimization: The key problem

of the hybrid layout is to determine an efficient strategy that

utilizes NDP and PIM to accelerate different portions of vertex

programming. We propose a graph-aware optimization that

holistically optimizes this problem. Algorithm 2 shows the

algorithm of proposed optimization, which is based on dynamic

programming. The dynamic programming algorithm explores

the design space of allocating different groups of vertices in

memory vaults with either in-core or in-memory layout. The

algorithm iterates over the number of vaults used for vertex

allocation. For each iteration m, the algorithm checks the costs

of allocating each possible group of continuous vertices in the

mth vault based on the minimum costs using m− 1 vaults.

To allocate a group of vertices in a vault, the algorithm

compares the costs of in-core and in-memory layouts and

whether this vertex group can fit in a vault with each layout

strategy. Based on this scheme, the algorithm can find the

allocation and layout strategy with minimum cost for allocating

different numbers of vertices in different numbers of vaults.

The efficiency of the optimization algorithm significantly de-

pends on the accuracy of cost estimation based on the operations

required for applications and the hardware characteristics of

different operations. We can accurately estimate the hardware

characteristics of different operations using validated hard-

ware simulation and publicly available product specifications.

Section IV introduces the detailed simulation infrastructure

used in this work. However, it is hard to know the required

operations during application run-time because the layout phase

happens in the offline stage. Therefore, we can only estimate

the required operations based on the static graph structure and

graph algorithm. We adopt an upper-bound estimation that uses

332 Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:55:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Processing flow of the hybrid run-time.

the in-degree as the maximum number of operations required

for each vertex. Based on this, we can estimate the maximum

execution cost of processing a group of vertices using each

layout.

B. Hybrid Graph Processing Run-Time

PIM operations can provide performance improvement only

if we process a lot of computations at the same time. In the

NDP-only graph acceleration, the vertex program parallelizes

computations for different vertices across NDP cores, and each

NDP core sequentially processes all in-coming edges for each

vertex. However, this processing flow is not suitable for the

PIM data layout, which can exploit the parallelism inside a

vault with row-parallel operations. To schedule parallel PIM

operations, we propose a graph processing run-time which uses

different flows to process in-core and in-memory operations.

Figure 4 shows a flowchart of the hybrid run-time, which

processes all active vertices in an iteration of the vertex program.

To process an in-core vertex, the run-time system sequentially

calls the process function for all in-coming edges of the vertex

on the corresponding NDP core and exploits the parallelism

of NDP cores to process multiple vertices at the same time.

To exploit the advantages of parallel PIM operations, the run-

time uses a batching scheme to process in-memory vertices.

Instead of processing up-coming operations for in-memory

vertex properties immediately, the run-time buffers these vertex

operations (related to in-coming edges) in a queue and then

schedules parallel PIM computations to process a batch of

buffered operations.

During the scheduling period, the run-time system selects one

edge for each buffered vertex to create the processing batch. To

avoid scheduling few operations each time, the run-time only

schedules PIM operations when the batch size is larger than a

threshold and then sets up the PIM operations, including data

movement commands to align operands in the memory. Such

data movements only involve the data that is specific to the

in-coming edges (e.g., vertex properties and edge weights). In

this case, we can avoid setting up all constants every time we

issue PIM operations. In Section III-C, we further improve the

performance of setting up PIM data by hardware modification.

After aligning operands in the memory for computing a PIM

batch, the run-time issues PIM commands in corresponding

memory components to process the vertex program function.

Fig. 5. Hardware support for PIM functionality.

Section III-C introduces the detailed format of PIM commands

handled by the hybrid system, which ensures the flexibility and

the parallelism of PIM operations.

C. Hardware Support

HyGraph contains two customized hardware components,

including a PIM-enabled memory controller and a PIM data

transfer unit, to effectively and efficiently process graph appli-

cations on the NDP-PIM hybrid system, as shown in Figure 5.

1) PIM-enabled Memory Controller: Previous research has

shown that commodity DRAM chips can support arbitrary PIM

computations by custom timing constraints of the memory

controller [4]. This work adopts such controller design in the

NDP device to enable different PIM operations through several

new memory commands handled by the memory controllers.

Figure 5(b) shows the detailed format of proposed PIM-

enabled memory commands. Each PIM command has several

fields to indicate the memory area involving in the corresponding

operation. Unlike the address in normal memory command,

which only points to a specific byte, operands in PIM command

may take effect on several rows in a memory array and process

all bits in operand rows simultaneously. We use the row address

as the operands in PIM commands for various logic operations

including AND, OR, NOR, and XOR. Each PIM computation

command stores the results of bit-wise logic computations

in a result row. In this work, we use the vault as the basic

unit of handling each PIM command to exploit the vault-level

parallelism. Therefore, all operands in a PIM command share

the same vault address, including the cube ID and vault ID.

2) PIM Data Transfer Unit: During the execution of

graph processing, we need to update the application frequently.

However, PIM operations require a cross-row layout for each

value, which is incompatible with conventional row-buffer based

DRAM design, hence under-utilizing the memory bandwidth. We

propose a PIM data transfer unit (PTU) in each vault controller

to handle PIM data transfer to solve this problem. Figure 5(c)

shows the design of PTU, which consists of a data table, a

Design, Automation and Test in Europe Conference (DATE 2021) 333

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:55:31 UTC from IEEE Xplore. Restrictions apply.

TABLE I
GRAPH WORKLOAD SUMMARY

graph amazon twitter pokec wiki ljournal uniform g500

#vertex 403K 81K 1.6M 1.8M 5.4M 2.1M 2.1M

#edge 3.4M 1.8M 30.6M 28.5M 78M 33M 32M

locality checker, and a command generator. PTU stores the

memory operations for PIM data in the data table with target

memory locations. The data table is a content addressable

memory (CAM) to support efficient searches. The locality

checker periodically checks the stored operations in the data

table to find several commands that access the same set of

memory rows. If the number of such operations is larger than a

threshold or the data table is full, the command generator selects

a set of memory rows affecting the most memory operations

stored in the table and generates corresponding row-based

memory commands to the vault controller. As shown in the

figure, PTU can reduce 4× data transfers for four 8-bit values.

IV. EXPERIMENTS

A. Experiment Setup

We implement an in-house cycle-accurate simulator in C++ to

model different architectures including basic NDP architecture

(Tesseract [1]), NDP architecture with the source-cut allocation

(GraphP [16]), and HyGraph. We also model a PIM-only

acceleration on the NDP architecture to compare HyGraph with

PIM-based accelerator under the same hardware constraints. The

parameters of NDP architectures based on HMC technologies

are calculated based on previous work [1], [4], and published

data [10]. We use the largest HMC cube, which has eight 8Gb

layers per cube, and each cube has 32 vaults. Each vault has a

dedicated memory controller and an NDP core, which is ARM

Cortex-A5 processor [1]. The memory command bus runs at

500MHz frequency [4], [10]. The system has 16 cubes linked

with eight 40 GB/s high-speed serial links per cube. We use

Cacti [14] to simulate the latency and energy consumption of the

customized hardware components at 32nm technology. We test

the performance of our proposed designs on three popular graph

applications, including breadth-first search (BFS), single-source

shortest path (SSSP), and page rank (PR). Table I lists all tested

graphs including 5 real-world graphs (amazon, twitter, pokec,

wiki, ljournal) and 2 synthetic graphs (uniform, g500) [2].

B. Comparison to State-of-the-arts

We first compare HyGraph to several state-of-the-arts NDP

and PIM graph processing systems [1], [16].

1) Performance: Figure 6 shows the performance com-

parison between Tesseract [1], GraphP [16], PIM-only ac-

celeration, and HyGraph. We observe general performance

improvements across different graph algorithms, where the

speedups over Tessearct (GraphP) are 2.0×(1.4×), 1.9×(1.2×),

and 2.0×(1.3×) for BFS, SSSP, and PR respectively. As

compared with PIM-only solution, HyGraph exhibits 1.4×

better performance on average because we handle non PIM-

friendly parts in NDP cores. Such results show that we can

achieve significant performance improvements by utilizing PIM

functionality in NDP systems for different graph algorithms.

Fig. 6. Cross-system performance and energy efficiency.

Fig. 7. The time breakdown of page rank on four systems.

The performance improvements of HyGraph across different

graphs vary more significantly than improvements across

different algorithms. For example, the average speedups of

HyGraph for ljournal and g500 over three algorithms are

only 1.06× and 1.1×, as compared to GraphP. Such a gap

between different graphs is caused by the graph structure, where

most of the sub-graphs are not suitable for PIM operations. For

other graphs, the hybrid solution can utilize PIM to process the

highly parallel portion of graph processing, which cannot be

fully accelerated by NDP cores.

2) Energy Efficiency: Figure 6 also shows the results of the

energy consumption of three systems across tested workloads.

HyGraph achieves 2.4×, 1.4× and 1.6× better energy efficiency

over Tesseract, GraphP, and PIM-only respectively. As compared

to performance improvements, the energy efficiency is slightly

larger because the hybrid solution decreases energy-consuming

operations from either NDP or PIM-only acceleration. For

example, PIM operations can reduce costly data movements in

NDP systems. However, PIM operations also introduce extra

data movements because each computation requires a copy of

the operand in the memory, which may require multiple transfers

for a value. Furthermore, transferring PIM requires multiple

row transfers because of the row-parallel layout (Section III-C).

3) Operation Breakdown: The above results show the

proposed hybrid system provides significant improvements over

previous memory-centric graph accelerators. To have more

insights on such improvements, we investigate the detailed

breakdown of performance and energy consumption on three

key operations: computations, local data movement, and remote

data movement. As compared to GraphP, the results show that

HyGraph can decrease the latency of computation and local data

movement by 2.5× and 4.7×, respectively, while introducing

1.1× more latency for remote data movement. The reduction

of computation latency and local data movements mainly come

from highly parallel PIM operations. As analyzed in the previous

334 Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:55:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. The performance of different layout methods.

Fig. 9. The performance of systems w/ or w/o PTU.

section, PIM operations require more replicas to be transferred

from remote vertices, increasing the data movements between

different cubes. As compared to the PIM-only solution, HyGraph

decreases the latency of computation and remote data movement

by 35.8× 1.3×. The significant decrease in computation is

a result of avoiding extremely sequential computations when

processing high in-degree vertices.

C. Layout Strategy

We then compare the proposed layout algorithm to several

heuristic-based layout strategies that evenly divide vertices

into different vaults in the system and determine the data

layout for each vault based on some statistics of allocated

vertices. Specifically, the average (median or variance)

method determines the data layout strategies of each group

of vertices based on the average (median or variance) of in-

degree across these vertices respectively. For each heuristic,

we select the threshold with the best performance. Figure 8

shows the performance comparison of different layout strategies.

All results are normalized to the average method. Based on

our experiments, the DP-based algorithm provides 1.3×, 1.2×,

and 1.4× better performance than the average, median, and

variance-based methods, respectively. Such results show that the

proposed DP-based algorithm can effectively find an efficient

layout for different graph workloads.

The DP algorithm has a time complexity of O(V N2
) where

V and N are the numbers of vaults and vertices respectively.

For scale-out graphs, this algorithm may take a long time to

complete. However, we only need to run the algorithm once per

graph workload offline. We can also reduce the time complexity

of DP to O(V CN) by constraining the number of vertices that

can be allocated to a vault in a constant range of C.

D. Effects and Overhead of Custom Hardware

To evaluate the performance improvements provided by

hardware customization, we compare HyGraph architecture to

a PIM-enabled NDP architecture without PTU, which uses a

conventional row-buffer to transfer all data. The result shows

that PTU can effectively reduce 13.5% execution time because

of more efficient data movements for PIM data. The most area

consuming component is the data table in the PIM data transfer

unit (PTU) which uses an SRAM-based CAM technology [11]

(scaled to 32nm technology). Each data table contains 32 entries,

and each entry has 5 bytes to store the information of address

and data size. The area overhead of the data table is 0.0004mm2.

Such area overhead is significantly smaller than an ARM Core,

which takes 0.68mm2 area. Considering the large area available

in the logic die of an HMC cube (e.g., 266mm2 for 8Gb DRAM

chip), the area overhead of the proposed hardware is trivial.

V. CONCLUSION

In this work, we investigate the efficiency of integrating PIM-

enabled memory layers in NDP graph accelerators. We propose

a graph-aware source-cut algorithm the generates efficient data

layout and operation scheduling in the hybrid system. We design

a run-time system and custom hardware to efficiently support

the NDP-PIM hybrid graph accelerator. Our experiment results

show that the proposed method improves the performance and

energy efficiency of state-of-the-art memory-centric systems

by up to 1.9× and 2.4×. This work shows that the NDP-PIM

hybrid system is promising for graph processing with appropriate

software-hardware co-design.

ACKNOWLEDGMENT

This work was partially supported by CRISP, one of six

centers in JUMP, an SRC program sponsored by DARPA, and

also NSF grants #1730158 and #1527034. This work was also

partially supported by SRC GRC Task No. 2988.001.

REFERENCES

[1] J. Ahn et al. A scalable processing-in-memory accelerator for parallel
graph processing. In ISCA’15. ACM/IEEE.

[2] S. Beamer et al. Locality exists in graph processing: Workload
characterization on an ivy bridge server. In IISWC’15. IEEE.

[3] Charles Eckert et al. Neural cache: Bit-serial in-cache acceleration of
deep neural networks. In ISCA’18. ACM/IEEE.

[4] Fei Gao et al. Computedram: In-memory compute using off-the-shelf
drams. In MICRO’19. ACM/IEEE.

[5] Tae Jun Ham et al. Graphicionado: A high-performance and energy-
efficient accelerator for graph analytics. In MICRO’16. ACM/IEEE.

[6] Mohsen Imani et al. Floatpim: In-memory acceleration of deep neural
network training with high precision. In ISCA’19. ACM/IEEE.

[7] Mohsen Imani et al. Digitalpim: Digital-based processing in-memory for
big data acceleration. In GLSVLSI, pages 429–434, 2019.

[8] Mohsen Imani et al. Deep learning acceleration with neuron-to-memory
transformation. In HPCA, pages 1–14. IEEE, 2020.

[9] Mohsen Imani et al. Dual: Acceleration of clustering algorithms using
digital-based processing in-memory. In MICRO, pages 356–371. IEEE,
2020.

[10] Joe Jeddeloh and Brent Keeth. Hybrid memory cube new dram architecture
increases density and performance. In VLSIT’12. IEEE.

[11] Supreet Jeloka et al. A configurable tcam/bcam/sram using 28nm push-rule
6t bit cell. In VLSI Circuits’15. IEEE.

[12] Chao Li et al. A scalable design of multi-bit ferroelectric content
addressable memory for data-centric computing. In IEDM. IEEE, 2020.

[13] Shuangchen Li et al. Drisa: A dram-based reconfigurable in-situ accelerator.
In MICRO’17. ACM/IEEE.

[14] Naveen Muralimanohar et al. Optimizing nuca organizations and wiring
alternatives for large caches with cacti 6.0. In MICRO’07. ACM/IEEE.

[15] L. Song et al. Graphr: Accelerating graph processing using reram. In
HPCA’18. IEEE.

[16] Mingxing Zhang et al. Graphp: Reducing communication for pim-based
graph processing with efficient data partition. In IEEE HPCA’18. IEEE.

[17] Minxuan Zhou et al. Gram: Graph processing in a reram-based
computational memory. In ASPDAC’19. ACM.

[18] Minxuan Zhou et al. Gas: A heterogeneous memory architecture for graph
processing. In ISLPED, pages 1–6, 2018.

Design, Automation and Test in Europe Conference (DATE 2021) 335

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 17:55:31 UTC from IEEE Xplore. Restrictions apply.

