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Abstract—The sensitivity to blockages at millimeter-wave (mm-
wave) frequencies is very different from that at sub-6 GHz
frequencies. The blockages affect the user-to-base station (BS)
associations and the resulting association regions of the BSs in
the network. This in turn alters the load, i.e., the total number
of users associated to a BS. In this paper, we use a stochastic
blockage model to analyze such effects. We characterize the
variation in the load as a function of the blockage environment
in a stochastic geometric setting. Our analysis indicates that in
the extreme cases of total blocking and no blocking, the mean
load on the tagged mm-wave BS is identical to that of a sub-
6 GHz BS for a given BS and user density. For intermediate
blockage environments, the mean load on the tagged mm-wave
BS is found to be less than that on a sub-6 GHz BS. Using
Monte-Carlo simulations, we establish that the existing analytical
models for load characterization in mm-wave networks result in
overestimation of the load per BS and underestimation of the
achievable rate.

Index Terms—Load, blockage, LOS probability, Poisson-
Voronoi, rate.

I. INTRODUCTION

One of the key techniques to increase the capacity of future
cellular systems is the use of millimeter-wave (mm-wave)
frequency bands [1]. The recent interest of the academic and
industry circles towards the mm-wave frequency bands is
driven by the fact that these bands can offer high amounts
of unused bandwidth as compared to the currently used sub-6
GHz bands [2].

To harness the potential of mm-wave bands, it is necessary
to understand the inherent challenges associated with the
propagation of such high frequency waves and to establish
the similarities and differences of mm-wave systems with
their sub-6 GHz counterparts. Such a comparison entails a
thorough and deep understanding of the issues that are specific
to the modeling of mm-wave systems from an architectural
and mathematical perspective. It also facilitates the system
level performance analysis of mm-wave networks. Over the
last decade or so, the field of stochastic geometry has been
used extensively to model and analyze cellular and ad-hoc
networks. It allows to capture the randomness of the network
in a tractable form [3].

An important distinction between the mm-wave and sub-6
GHz frequencies is the former’s sensitivity to blockages in
the propagation environment [4]. Such a characteristic renders
the path-loss model to be different than that used for lower
frequencies. The effects of blockage on the signal-to-noise

ratio (SNR) and signal-to-interference-plus-noise ratio (SINR)
of mm-wave systems have been studied in great detail by many
authors. However, to the best of our knowledge, no existing
work explores how the blockage affects the load distribution
for a mm-wave BS. The load represents those users that are
served by the same BS. Characterization of the load enables
analysis of the achievable rate in the network [5].

In [2], closed-form mathematical expressions were provided
for an approximate distribution of the load and its mean value
in a Poisson distributed mm-wave cellular network. However,
those expressions were adopted from sub-6 GHz networks
and depended only the BS and user densities without any
explicit consideration of the blockage effects. Also, the same
expressions have been adopted in many later works (e.g., [3],
[6], [7]) to study different aspects of mm-wave networks.

In this paper, we investigate how a change in the blockage
environment alters the load on a mm-wave BS and establish
that the existing analytical model fails to capture such an
effect. We first describe the details of the existing analytical
model for the load. Then, we examine the variations in the
load as the blockage environment changes. Based on these
variations, we demonstrate that the existing analytical model
provides an exaggerated value of the load which results in low
data rates.

II. SYSTEM MODEL

In this paper, we consider a mm-wave network where the BS
locations are modeled in R2 as a homogeneous Poisson point
process (PPP) ΦB of intensity λB . All the BSs transmit at a
constant power level Pd. Moreover, the users are distributed
as an independent homogeneous PPP Φu with intensity λu.
As per the standard practice in stochastic geometric analysis,
a typical user is assumed to be located at the origin, O.
According to Slivnyak’s theorem, the addition of this typical
user does not disturb the overall statistics of the network [8].
The analysis is performed on the typical user because the
performance metrics obtained for it are representative of the
overall aggregate network performance [1]. The BS serving
the typical user is termed as the tagged BS.

The mm-wave propagation is modeled using the two-state
statistical link model wherein a link can either be in a line of
sight (LOS) state or a non-LOS (NLOS) state [2]. The path-
loss for the two states is defined separately [9]. For simplicity
of notation, the LOS and NLOS channel states are denoted



as “L” and “N” respectively. We adopt the floating-intercept
model to quantify the path-loss [10]. If the length of a link is
r and the link belongs to the kth channel state for k ∈ {L,N},
then the path-loss associated with that link is expressed as

Lk (r) = Ckr
αk , (1)

where αk is the slope of the best linear fit to the empirical
data and Ck is the corresponding floating intercept.

To model the blockage effects and the statistical link proba-
bilities, we use the generalized LOS ball blockage model [2].
According to this blockage model, the LOS region around a
BS/user is characterized by a ball of a specific fixed radius
RB . Within this ball, there is a certain probability, PL, for
a link to be LOS. Outside the ball, every link is considered
to be non-LOS (NLOS). The term PL is referred to as the
average LOS fractional area in the network and RB represents
the maximum range of a LOS link. The values of RB and
PL depend on the geographic area in which the network is
deployed and are obtained empirically. The LOS ball model
is an analytical approximation with a relatively simple form,
yet it provides SINR statistics that match very well with the
SINR obtained in the presence of actual blockages [4]. Fig. 1
shows a snapshot of the network with the ball model.

Fig. 1. Generalized LOS ball blockage model from the perspective of the
typical user.

The values of different system parameters used in this paper
are given in Table I. All these parameters, except λB , are
adopted from [3].

III. LOAD MODELING

The load, N , is defined as the number of total users sharing
the available time-frequency resources of a BS. In a Poisson
distributed network, the load is a random variable (RV) and
dictates what fraction of the resources is available to the typical
user [5]. The load depends on the user-to-BS association
strategy adopted in the network [11]. The association strategy,
in turn, specifies the association regions of respective BSs.
To analytically characterize the load, the size/area of a BS’s

TABLE I
NOTATION AND DEFAULT SYSTEM PARAMETERS

Notation Description Value
λB BS density 50/km2

λu User density 200/km2

Pd Downlink transmit power 30 dBm
fc Carrier frequency 28 GHz
W Bandwidth 1 GHz
αL, αN LOS/NLOS path-loss slope

respectively
2, 2.92

CL, CN LOS/NLOS path-loss inter-
cepts respectively

−61.4 dB, −72 dB

RB LOS ball radius 200 m

association region is required, which itself is a RV. In this
paper, each UE is assumed to be served by the BS that offers
the maximum average received power (MARP).

In the following, we first describe how the load is analyti-
cally modeled in sub-6 GHz networks and then relate it to a
mm-wave network.

A. Sub-6 GHz Networks

In a homogeneous PPP distributed sub-6 GHz network, the
MARP-based association becomes the same as the nearest
BS association. Such an association scheme gives rise to
association regions which form a perfect Poisson-Voronoi
tessellation where each user is served by its nearest BS [12].
For Poisson-Voronoi cells, the distribution of the cell area does
not exist in a closed-form, however, it can be approximated
fairly accurately by a gamma distribution. Using such an
approximation, an approximate load distribution was derived
in [13] for a homogeneous sub-6 GHz network.

B. Millimeter-Wave Networks

In a network consisting of mm-wave BSs only, the MARP-
based association becomes the minimum path-loss based asso-
ciation. Because of the blockage effects and the difference in
the path-loss for LOS and NLOS links, the typical user user
may connect to a far away LOS BS inside the LOS ball rather
than a nearby NLOS BS. This results in an irregular shaped
association region for a mm-wave BS, which does not conform
to a Poisson-Voronoi cell [2]. It is, therefore, extremely
complex to analytically characterize the load in such networks.
In [2], however, it was argued that the mean association areas
of a mm-wave BS and a perfect Poisson-Voronoi cell are equal
and that the approximate load distribution for homogeneous
sub-6 GHz networks can also be used to model the load in
mm-wave networks. It is important to mention here that the
mean value of the area for a Poisson-Voronoi cell is equal
to 1

λB
[14]. Based on this, the distribution of the total load

on the tagged mm-wave BS and its corresponding mean are
expressed, respectively, in [2] as

P [N = n] =
3.53.5

(n− 1)!

Γ(n+ 3.5)

Γ(3.5)

(
λu
λB

)n−1
×
(

3.5 +
λu
λB

)−(n+3.5)
(2)

E [N ] = 1 + 1.28
λu
λB

, (3)



where Γ (·) is the gamma function.
For a random BS in the network, other than the tagged

BS, the load distribution is obtained by multiplying (2) with
λu/(nλB) and its mean is given by λu/λB . The use of
the above expressions to analytically characterize the load,
however, introduces a degree of inaccuracy. This is because
the association area of a LOS/NLOS mm-wave BS is ap-
proximated by the area of a Poisson-Voronoi cell without
considering the effects LOS probability in the network. Note
that (2) and (3) depend only on (λu/λB) and not on PL.
Changing PL changes the association probabilities to LOS
and NLOS BSs. The LOS ball blockage model further adds to
the complexity as it restricts the LOS associations to a certain
radius and essentially leads to clipping of the association areas
for some of the BSs. In a recent study [14], it was shown
that the clipping of a Poisson-Voronoi cell results in the mean
area being different from 1

λB
. Also, with the generalized LOS

ball model, ΦB is sub-divided into two independent non-
homogeneous PPPs: a LOS BS PPP and a NLOS BS PPP
[1]. Such a distinction, however, is ignored while analytically
characterizing the load in (2) and (3).

Based on the above discussion, we argue that the general-
ized LOS ball blockage model exacerbates the error in the ap-
proximation of the analytical load distribution. The distribution
in (2) has been used extensively in the literature to model the
load in mm-wave networks with the generalized ball model.
However, to the best of our knowledge, no existing work
explores how the variation in PL affects the aforementioned
load distribution. To this end, we try to analyze this in the
following section.

IV. EFFECT OF LOS PROBABILITY ON LOAD
DISTRIBUTION

To study the relationship between the load on a mm-wave
BS and the LOS probability of the ball model, we compare the
distribution of the load in (2) with the empirical distribution
obtained from simulations. For this, RB is kept fixed at 200
meters and PL is varied from 0 to 1 with a step size of
0.1. The choice of RB = 200 m is motivated by [2], [3],
[6]. The Kullback-Leibler divergence (KLD) [15] is used to
quantify the difference between the simulated load distribution,
represented as Qs, and the analytical distribution Qa, in (2)
as

KLD (Qs||Qa) =
∑
n∈Q

Qs (n) log2

(
Qs (n)

Qa (n)

)
, (4)

where Q is the probability space in which both the distribu-
tions lie. It is important to note that the KLD compares the
two probability distributions over the entire probability space.
A higher value of KLD means a greater difference between
the analytical and empirical distributions.

For λB = 50/km2 and λu = 200/km2, the KLD is plotted
against different values of PL in Fig. 2 for the tagged BS and
in Fig. 3 for a BS chosen at random in the network in an
area that doesn’t include the edge cells. For each value of PL,
40000 Monte-Carlo trials have been conducted.
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Fig. 2. KLD of the load at the tagged BS as a function of LOS probability
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Fig. 3. KLD of the load at a random BS as a function of LOS probability

It is observed that the divergence of the analytical load
distribution from the simulated distribution follows the same
trend for the tagged BS and any randomly chosen BS. When
the LOS probability inside the ball is 0, the network is
essentially a homogeneous network since all the BSs are
NLOS to all the users (i.e., the LOS ball blockage model does
not have any effect) and the divergence between the analytical
and empirical distributions in minimum. However, if the value
of PL is increased from 0, then the divergence also starts to
increase as the network no longer remains a homogeneous
network. Moreover, the difference between the simulated and
analytical load distributions is the greatest at around PL = 0.3
for the densities under consideration. As the value of PL is
further increased from 0.3, the irregularly shaped association
areas of the mm-wave BSs start to take on some regular shapes
ultimately becoming almost identical to Poisson-Voronoi cells
at PL = 1. This discussion based on the KLD establishes
that the load on a mm-wave BS varies with changing LOS
probability.

To further explore the relationship between the LOS prob-
ability and the load, we analyze how the mean load on
the tagged BS varies by changing PL. Fig. 4 plots such a
dependence.
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Fig. 4. Variation of the mean load on tagged BS with PL

The red vertical lines at each value of PL in Fig. 4 show
the 95% confidence intervals of the mean load obtained from
simulations. The relatively small confidence intervals illustrate
the accuracy of the trend exhibited by the simulated curve.
The green horizontal line shows the analytical mean value of
the load obtained from (3), i.e., E [N ] = 6.12 for the values
of λB and λu mentioned above. Because the analytical value
of mean load is independent of PL, it remains constant as
PL varies. It is observed that the simulated mean value of the
load is always maximum and almost identical to the analytical
mean at PL = 0 and PL = 1. For all other values of PL,
the simulated mean load is always less than the analytical
mean load. Moreover, the difference between the simulated
and analytical mean values of the load is the greatest at around
PL = 0.3 for the densities under consideration. Such a pattern
of the difference between the simulated and analytical mean
load follows the same trend as the KLD for various values of
PL. From the above results and the corresponding analysis, it
can be concluded that for all values of PL other than 0 and 1,
the approximation in (2) always overestimates the actual load
on the tagged mm-wave BS and underestimates the acheivable
rate. It is worth mentioning here that while the mean load on
the tagged BS changes with PL, the mean load on a randomly
chosen BS in the network remains constant because the users
that are dropped by the tagged BS are associated to other BSs
in the network.

V. EFFECT OF LOS PROBABILITY ON DOWNLINK RATE
COVERAGE

The performance of a wireless network is most commonly
characterized in terms of the achievable rate. The rate depends
on the link quality and the amount of available time-frequency
resources. We assume a round-robin scheduling of users where
the available resources of a BS are divided equally among the
users served by that BS. Using Shannon’s capacity formula,
the per-user rate in bits per second is expressed as

R =
W

N
log2 (1 + Ω) , (5)

where W is the total bandwidth available at a BS, N is
the total load at the BS and Ω is the SNR or SINR of
the desired link. The two RVs in (5), Ω and N , are not
independent in general, however, modeling their correlation is
highly non-trivial [5]. For the purpose of analytical tractability,
therefore, the two aforementioned RVs are assumed to be
independent [4]. Because of directional beamforming and the
effect of blockages, mm-wave networks are likely to be noise-
limited rather than interference-limited with a moderate BS
deployment [2]. In [6] and [7], it was verified that with a BS
density greater than 50/km2, the SINR is the same as the SNR.
Therefore, in this paper, we assume that our network is noise-
limited with λB = 50/km2 and use the SNR to analyze the
rate.

A widely used performance metric to analyze the achievable
rate in the network is the rate coverage probability, R, and
it represents the probability that the achievable rate at any
random user is greater than a certain threshold. It is analogous
to the fraction of users in the network which are able to meet
predefined thresholds [16]. After some algebraic operations
on (5) and utilizing the probability mass function (pmf) of the
load given in (2), the rate coverage probability for a given
threshold, ρ, is expressed as [4]

R (ρ) =
∑
n≥1

3.53.5

(n− 1)!

Γ(n+ 3.5)

Γ(3.5)

(
λu
λB

)n−1
×
(

3.5 +
λu
λB

)−(n+3.5)

C
(

2
ρn
W −1

)
,

(6)

where C (·) represents the SNR coverage probability. The
above expression shows that the rate coverage probability is
obtained from the SNR coverage probability, i.e., the CCDF
of the SNR distribution [16]. The SNR coverage probability
is another metric that is widely used to characterize the
performance of stochastic wireless networks and does not
depend on the load. A detailed discussion on SNR coverage
probability is beyond the scope of this work, therefore, we use
the corresponding analytical model and results of [17] to serve
our purpose. In [17], the SNR coverage probabilities were
obtained for a mm-wave network with perfect and imperfect
beam alignment. In this paper, we use only the SNR coverage
probability of the perfect beam alignment case considering 32
BS antennas.

The summation in (6) involves infinite terms, but as shown
in [4] and [7], fairly accurate results can be obtained by
considering a finite maximum number of terms depending on
the ratio of user to BS densities. For the densities of Table
I, it has been observed that considering the first 24 terms is
sufficient.

To corroborate our claim with regards to the underestimation
of the rate coverage probability, we study the simulated
and analytical rate coverage probabilities for two realistic
values of PL. In the discussion that follows, we compare the
difference between the simulated and analytical rate coverage
probabilities at a rate threshold value ρ = 109 for PL = 0.11
and PL = 0.2. The reason for choosing these two values of



PL is that they have been used most often in the literature for
the generalized LOS ball model. In [3], PL = 0.2 has been
used whereas [6] uses PL = 0.11.
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Fig. 5. Simulated and analytical rate coverage probabilities with different
values of PL

Fig. 5 shows the rate coverage probabilities for the above
mentioned two values of PL. The analytical curves match well
with the simulations in both the cases. However, a gap starts
to appear between them at approximately ρ = 108.5. This
value of ρ represents the rates experienced by users at the
boundary of the LOS ball. Similar gaps have been observed
in existing works on mm-wave networks, e.g. [7], but their
relation to the LOS probability has not been explored. The
difference between the analytical and simulated rate coverage
probabilities becomes quite significant for rate threshold values
around 109. This region of the curve illustrates the rates
experienced by the users that are inside the LOS ball. In
this region, the analytical curve is lower as compared to the
simulated curve for both the values of PL. Such an observation
further verifies our claim that the analytical load distribution
overestimates the load which ultimately results in underesti-
mation of the rate coverage. However, with PL = 0.11, the
analytical curve underestimates the rate coverage probability
by 5.43% whereas with PL = 0.2, it underestimates the rate
coverage by 6.64%. As the divergence between the simulated
and analytical load distributions is more for PL = 0.2 as
compared to PL = 0.11, the corresponding difference between
the simulated and analytical rate coverage probabilities is also
more for PL = 0.2. The magnitude of these differences in
the rate coverage probabilities further validates our earlier
observations that changing the value of PL alters the distri-
bution of the load on the tagged BS. Such variations in the
difference between the simulated and analytical rate coverage
probabilities might be insignificant from the perspective of
analyzing the achievable rate, but they help in establishing
the fact that the LOS probability plays an important role in
defining the association areas of the BSs and determining the
load served by the tagged BS.

VI. CONCLUSION

This paper investigates the relation between the blockage
in a mm-wave network and the load on a BS. By using the
generalized LOS ball model, we show that the load served
by the tagged BS varies as the LOS probability inside the
ball changes. The already existing analytical model for load
characterization, which is based on sub-6 GHz networks, does
not model such a relation. Our analysis illustrates that when
the LOS probability is either 0 or 1, then the empirical
distribution of the load is the same as that provided by
the analytical model. However, for other values of the LOS
probability, the existing analytical model overestimates the
load and underestimates the rate coverage probability in the
network.
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