
HyDREA: Towards More Robust and Efficient
Machine Learning Systems with Hyperdimensional

Computing

Justin Morris∗†, Kazim Ergun∗, Behnam Khaleghi∗, Mohsen Imani‡, Baris Aksanli†, and Tajana Rosing∗
∗University of California San Diego, La Jolla, CA 92093, USA

†San Diego State University, San Diego, CA 92182, USA
‡University of California Irvine, Irvine, CA 92697, USA

{justinmorris, kerguna, bkhalegha}@ucsd.edu, m.imani@uci.edu, baksanli@sdsu.edu, tajana@ucsd.edu

Abstract—Today’s systems, especially in the age of federated
learning, rely on sending all the data to the cloud, and then
use complex algorithms, such as Deep Neural Networks, which
require billions of parameters and many hours to train a model.
In contrast, the human brain can do much of this learning
effortlessly. Hyperdimensional (HD) Computing aims to mimic
the behavior of the human brain by utilizing high dimensional
representations. This leads to various desirable properties that
other Machine Learning (ML) algorithms lack such as: ro-
bustness to noise in the system and simple, highly parallel
operations. In this paper, we propose HyDREA, a HD computing
system that is Robust, Efficient, and Accurate. To evaluate
the feasibility of HyDREA in a federated learning environment
with wireless communication noise, we utilize NS-3, a popular
network simulator that models a real world environment with
wireless communication noise. We found that HyDREA is 48×

more robust to noise than other comparable ML algorithms. We
additionally propose a Processing-in-Memory (PIM) architecture
that adaptively changes the bitwidth of the model based on the
signal to noise ratio (SNR) of the incoming sample to maintain the
robustness of the HD model while achieving high accuracy and
energy efficiency. Our results indicate that our proposed system
loses less than 1% classification accuracy, even in scenarios with
an SNR of 6.64. Our PIM architecture is also able to achieve
255× better energy efficiency and speed up execution time by
28× compared to the baseline PIM architecture.

I. INTRODUCTION

“Federated learning” [1] is a popular model for distributed

model training in which a centralized model stored on a server

is “cloned” to some set of devices which all collect the same

features. Each device then updates its local copy of the model

and periodically transmits weights to the server, which are

used to update the global model via an averaging operation.

Intuitively, federated learning reduces communication costs by

transmitting only model weights instead of raw training data.

In “Federated learning”, Hyperdimensional (HD) computing

offers three benefits [2]. First, an HD “model” is simply a

collection of bitvectors which may be less burdensome for

communication than other state-of-the-art methods (especially

deep neural networks) where the weights are typically floating

point values and are non-negligible in size [3], [4]. While a line

of deep neural networks research tries to reduce the parameters

of these models [5], its is still higher than HD. Second,

local training of the HD model is extremely simple and more

energy efficient than many existing ML techniques [6]. Third,

transmitting faulty model weights in classical ML algorithms

may lead to slower training or convergence to a worse local

optimum compared to HD.

The third point is particularly helpful for “Federated learn-

ing”. Transmitting model parameters to the central learning

system is done mostly through wireless communication. The

noise in a wireless channel can incur bit-level errors in the

transmitted signal and without error correction, could lead to

faulty models due to the noisy data. This is especially true in

urban areas where distance is not the only factor adding noise

to the wireless channel, but also large buildings and multiple

obstacles in the way that degrade the wireless signal.

We additionally take advantage of the simple and highly

parallelizable operations in HD to create an analog PIM

accelerator with adaptable model bitwidths to achieve the

best energy and execution time, while maintaining high ac-

curacy based on the SNR of the wireless channel. This

characteristic has made HD the target of various hardware

acceleration frameworks, particularly FPGAs [7], and PIM

architectures [8], [6], [9]. Although GPUs and FPGAs provide

a suitable degree of parallelism that makes them amenable to

machine learning algorithms such as deep neural network [10],

the complexity of their resources, e.g., floating point units or

DSP blocks, is by far beyond the HD requirements, making

such devices inefficient for HD. Analog PIM architectures

tackle this problem as they comprise memresistive arrays with

intrinsically non-complex computational capability, which is

sufficient for HD operations. Besides block-level parallelism,

another remarkable feature of PIM is eliminating the high cost

data movement in the traditional von Neumann architectures

as, in PIM, data resides where computation is performed.

Adding a PIM accelerator for HD computing to perform

cognitive tasks provides significant speed up over utilizing the

on-board CPU and saves energy with analog computations and

less data movement.

In this paper, we propose HyDREA, a HD computing

system that is Robust, Efficient, and Accurate. We evaluate the

feasibility of HyDREA in a “Federated learning” environment,

by utilizing a popular network simulator – NS-3 [11] –

to model the communication between devices and simulate

wireless noise. We compared HyDREA with other light-weight

ML algorithms in the same noisy environment. Our results

demonstrate that HyDREA is 48× more robust to noise than

723978-3-9819263-5-4/DATE21/ c©2021 EDAA

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 27,2022 at 18:01:55 UTC from IEEE Xplore.  Restrictions apply.



other comparable ML algorithms. We additionally propose a

PIM architecture that adaptively changes the bitwidth of the

model based on the SNR of the incoming sample to maintain

the robustness of the HD model while achieving high accuracy

and energy efficiency. Our results indicate that our proposed

system loses less than 1% classification accuracy, even in

scenarios with an SNR under 7dB. Our PIM architecture is

also able to achieve 255× better energy efficiency and speed

up execution time by 28× compared to the baseline PIM

architecture.

II. PRELIMINARY

In this section, we first explain the procedures involved

in HD algorithm and then review the related work on HD

acceleration and HD robustness to noise.

A. Hyperdimensional Computing

Without loss of generality, we explain the steps of HD

computing for classification tasks, though other algorithms,

e.g., clustering, follow the same procedure, as well.

(1) Encoding: Let us assume a feature vector F =

{f1, f2, . . . , fn}, with n features (fi ∈ N) in original

domain. The goal of encoding is to map this feature vector to

a D dimensional space vector: H = {h1, h2, . . . , hD}. The

encoding first generates D dense bipolar vectors with the same

dimensionality as original domain, P = {p1,p2, . . . ,pD},

where pi ∈ {−1, 1}n. The inner product of a feature vector

with each randomly generated vector gives us a single dimen-

sion of a hypervector in high-dimensional space. For example,

we can compute the i− th dimension of the encoded data as:

hi = sign(pi · F)

where sign is a sign function which maps the result of the

dot product to +1 or -1. Thus, to encode a feature vector

into a hypervector, we perform a matrix vector multiplication

between the projection matrix and the feature vector using:

H = sign(PF)

(2) Training: The simplicity of HD training makes it

distinguished from conventional learning algorithms. Consider

hypervector Hi as the encoded hypervector of input i with the

procedure explained above, which required the inner-product

of D bit hypervectors followed by dimension-wise addition

of n 1 bit values, where n is the number of features. Each

input i belongs to a class j, so we further annotate Hj
i to

show the class j of input i, as well. HD training simply

adds all hypervectors of the same class to generate the final

model hypervector. Therefore, the class hypervector of label

j, denoted by Cj , is:

Cj
= Hj

0
+Hj

1
+ · · · =

∑

k

Hj (1)

Meaning that we simply accumulate the encoded hypervectors

for which their original input belongs to class j.

Another advantage of HD over DNNs is HD supports

efficient one-pass training, i.e., visiting each input just once

and adding the His to create the model yields acceptable

accuracy, while DNN training requires hundreds of iterations

over the whole data set to converge to the final accuracy.

HD accuracy can also be improved by retraining the model.

During retraining, the encoded hypervector of each input

is created again, and its similarity with the existing class

(model) hypervectors is checked (see step 3). If a misprediction

is observed, say that encoded Hj belonging to class Cj is

predicted as class Ck, the model is updated as follows, which

means the information of Hj causing (mis)-similarity to Ck is

discarded.
Cj

= Cj
+Hj

Ck
= Ck −Hj

(2)

(3) Similarity checking: The inference step as well as the

retraining step need to find out the most similar class hypervec-

tor to the encoded one. Most commonly, this is performed by

cosine similarity while other metrics (e.g. Hamming distance)

could be appropriate depending on the problem.

cos( �H, �Cj
) =

�H·�Cj

‖ �H‖·‖�Cj‖
(3)

Equation (3) shows the similarity checking of encoded hyper-

vector H with class hypervector Cj . Since classes are constant,

‖�Cj‖ can be pre-calculated. ‖ �H‖ can be factored out as it

is common for all candidate classes to be compared with

H. Hence, cosine similarity reduces to a simple dot-product

between H and Cjs. These vectors are not in binary, they are

the results of accumulating several other binary vectors.

B. Related Work

HD computing is light-weight enough to run with acceptable

performance on CPUs [12]. However, utilizing a parallel

architecture can significantly speed up HD execution time.

Imani et al. showed two orders of magnitude speed up when

HD runs on GPU [6]. Salamat et al. proposed a framework that

facilitates fast implementation of HD algorithms on FPGA [7].

Due to the bit-level operations in HD, which is more suitable

for FPGAs than GPUs, they claimed up to 12× energy and

1.7× speed up over GPUs. HD requires much less memory

than DNNs, but the required memory capacity is still beyond

the local cache of many devices. Thus, an excessive amount of

energy and time is spent moving data between these devices

and their main memory (off-chip memory in the case of

FPGAs).

To resolve this, prior work used PIM architectures, where

processing occurs in memory, eliminating the time and energy

of data movement [13], [14], [15]. In FELIX [8], a digital PIM

architecture was proposed. However, digital PIM operations

are significantly slower than equivalent analog PIM operations.

Prior work accelerated the inference phase of HD computing

in analog PIM with an associative memory [6]. However, the

associative memory only stored the trained class hypervectors,

so the input data needed to be encoded elsewhere and then

moved into the associative memory, negating the benefit of less

data movement. Also, the associative memory only supports

inference in HD.

Several works claimed that HD signal representations are

inherently robust to various forms of noise [16], [17], [18],

[19]. Work in [17] investigated the robustness of HD to RTL

level errors (e.g. bit-flips) during computation and found an

HD-based approach tolerating an 8.8× higher probability of

bit-level errors. Similar results are reported in [20].

724 Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 27,2022 at 18:01:55 UTC from IEEE Xplore.  Restrictions apply.



Work in [17] presented preliminary evidence showing that

HD delivered superior performance to conventional data repre-

sentations in the presence of bit-level errors during processing.

Similarly, bit-level errors occur during data transmission as a

result of channel noise and interference from multiple users.

To the best of our knowledge, there has been no systematic

empirical (or theoretical) evaluation of HD as an avenue for

achieving robust learning when data must be communicated

over noisy channels. This paper compares HD computing with

a “Federated learning” approach for training other ML models

and proposes a new analog PIM architecture to accelerate the

whole HD computing algorithm from training to inference.

III. HyDREA ANALOG PIM ARCHITECTURE

Combining the energy savings by eliminating data move-

ment and a parallel architecture suitable for dimension-wise

parallelism of HD algorithms, analog PIM, with its simple

arithmetic support, appears as a promising solution for HD

computing. A PIM architecture needs to support three classes

of in-memory operations; (1) dot-product for the matrix mul-

tiplication in encoding and the similarity metric in inference,

i.e., the �H · �Cj part in Equation 3 in which each dimension of

H and Cj is fixed-point (results of binary vector additions),

(2) addition and subtraction for training and retraining where,

as explained by Equation 1, we add Hj
i s to produce Cj which

denotes the final class hypervector of inputs with label j, and

(3) search operation to find the best matched class in inference,

by finding the maximum of cosine similarity scores between

the encoded query H and all class hypervectors.

A. Architecture

Fig. 1(a) shows the architecture HyDREA constituting of

multiple In-Situ Multiply Accumulate (IMA) blocks. In our

implementation, HyDREA comprises of 24 IMA blocks so

it can fit the largest benchmark. IMA blocks are memory

crossbars with the capability of performing analog addition

and dot-product operations. Each IMA block consists of 8

crossbar arrays, each of which contains 128 rows and 128

columns of memory cells. There are 8×128 Digital-to-Analog

(DAC) blocks per IMA, i.e., 128 per each crossbar arrays,

allocated to the rows to convert the incoming digital signal

(voltage) to analog (current) in order to perform computation.

There is also a shared Sample and Hold (S+H) block, and

shared Analog-to-Digital (ADC) blocks in each IMA. Fig.

1(b) shows an example of a crossbar memory array. Each

bitline is connected to all the wordlines through memresistive

cells, which have stored the information (e.g., values of class

dimensions) by changing the resistance level of each cell. Each

memresistive cell in our configuration is a 2 bit MLC, i.e., it

has four resistance states to be able to represent 2 bits. Storing

the HD model, i.e., the values of classes dimensions, needs to

program the NVMs, which is a slow write operation. However,

it is only done one time before beginning the inference step,

so the overhead is amortized in the entire course of inference.

B. Challenges

To perform the computation in analog, PIM needs to con-

vert the signals into analog domain. For this, it requires to

employ DAC and ADC converters at the inputs and outputs,

Fig. 1. Overview of the PIM architecture used by HyDREA

respectively. As shown in previous work, these signal domain

converters contribute to a significant overhead in the residing

architecture [21], [22], which reaches up to 89% of the system

power consumption. However, the overhead of these converters

can be significantly alleviated as it is exponentially tied in

the precision of converters. This, obviously, increases the

error as the signal levels are quantized. Fortunately, it is less

problematic in the context of HD computing thanks to its

remarkable tolerance to error, as information is spread over

all the independent and identically distributed dimensions of

vectors, so failing the computation on a certain portion of di-

mensions (bits) should not affect the overall result noticeably.

C. HyDREA: Analog PIM Architecture Optimiztions

ADC Reduction: As in Section III-B, the energy overhead

of conversion from the digital domain to the analog domain

and back dominates the energy usage of analog PIM, and this

is handled by the ADC blocks. Thus, our task to improve

the energy efficiency of analog PIM focuses on improving

the energy efficiency of the ADC blocks. We achieve this

by reducing the precision of the ADC blocks. For each

reduction in the ADC bitwidth, we expect the area and energy

consumption to halve. This is because in order to add support

for each additional bit, the amount of circuit area doubles and

therefore, the energy usage approximately doubles. Instead of

using 8 bit ADC blocks in analog PIM (i.e. full precision), if

we reduce the ADC bitwidth, we can reduce the energy usage

by half for every bit of the ADC we drop. This will save

a significant amount of energy during the analog to digital

conversion step in analog PIM. However, our computations

will lose accuracy, and as we drop more bits, our computations

will become more inaccurate as we sacrifice precision for

energy efficiency.

We can reduce our ADC blocks from 8 bits to n bits.

By doing this, we will convert the first n most significant

bits and omit the 8 − n least significant bits. For example

if we use a 6 bit ADC block to convert 167 we would lose

the last two bits and output 164 instead. This leads to good

approximate conversions with large numbers, but very poor

approximation with smaller numbers. If we use a 6 bit ADC

block to convert 7 we would get 4 which is almost 50% off.

Furthermore, we do not produce inaccurate conversions every

time. If we convert 172 with a 6 bit ADC block, we wold get

172 because the last two bits of 172 are both 0. Therefore, we

produce exact computations when the bits we would drop are

all zero. Our ADC block conversions fall into three categories:

exact conversions, slightly inaccurate conversions, and highly

inaccurate conversions. Since HD computing utilizes dot prod-

Design, Automation and Test in Europe Conference (DATE 2021) 725

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 27,2022 at 18:01:55 UTC from IEEE Xplore.  Restrictions apply.



0 2 4 6 8 10 12 14
Training Iterations

50

60

70

80

90

A
cc

u
ra

cy
 (

%
)

8 Bit Naive HyDREA

Fig. 2. Impact of HyDREA using a 4 bit model on training compared to
training a naive bitwidth reduction 4 bit model and training a 8 bit model.

TABLE I
DATASET INFORMATION

Application Dataset # Classes # Train Data # Test Data # Features

Speech Recognition [23] ISOLET 26 6,238 1,559 617

Activity Recognition [24] UCIHAR 6 6,213 1,554 561

Medical Diagnosis [25] CARDIO 2 1,913 213 21

Face Detection [26] FACE 2 22,441 2,494 608

uct as the similarity check, the larger computations dominate

the dot product operation and therefore, the highly inaccurate

conversions of smaller operations do not effect the accuracy

of the HD model. Therefore, we are able to take advantage

of reducing the bitwidth of ADCs to create an analog PIM

architecture for accelerating HD computing that does not incur

a significant loss in accuracy.

DAC Reduction: We additionally reduce the energy and

execution time overhead of analog PIM by reducing the

number of DACs and IMA blocks needed. We achieve this

by reducing the precision of the HD model bitwidth.

Due to HD computing’s robustness to noise, we could

simply reduce the bitwidth of the HD model and achieve

efficiency gains without a significant drop in accuracy. When

reducing the bitwidth further, training the HD model becomes

unstable and the accuracy does not converge. Figure 2 com-

pares training an HD model with 4 bits of precision and

training the same model with a full 8 bits of precision. The

top line shows that training an 8 bit model is much smoother

and clearly improves in each iteration compared to training

with reduced bitwidth. This is because, as HVs are added up

and adjusted with retraining, some dimensions may saturate

the available bitwidth. Any additional change to dimensions

with saturated bitwidths that attempt to change the dimension

in the direction of the bitwidth saturation does not improve

the model further. For instance, when using a bitwidth of 4,

the maximum positive value a dimension can represent is 7. If

during retraining, the dimension would be increased further,

it would instead stay at 7. In contrast, if the dimension is

adjusted with subtraction, it would decrease normally despite

any previous attempts to increase the dimension further. This

causes over-adjustments in the HD model during retraining

when an abnormal change is applied. This is why the accuracy

does not converge during retraining with greatly reduced

bitwidths. HyDREA is able to improve upon the naive design

of simply reducing the bitwidths by additionally modifying

the HD algorithm to complement the bitwidth reduction.

As explained in Section II, the HD model is initially trained

by adding up all of encoded data points into one class HV

for each class. When reducing the bitwidth of the HD model

from 8 bits to 4 bits, 4 bits may not provide enough precision

Fig. 3. SNR/BER vs distance for BPSK modulation with Friis prop. loss.

for model convergence during retraining, preventing the HD

model from performing effectively at lower bitwidths. To

subvert this problem, we propose to analyze the initial HD

model to identify key dimensions that need to utilize the full

bitwidth available. HyDREA then locks these dimensions to

either the maximum or minimum value to ensure the the HD

model does not drastically change during retraining.

We propose that the largest dimensions in both the positive

and negative directions that saturate the desired bitwidth are

key dimensions, as dot product is used as the similarity metric.

Hence, the largest dimensions in both positive or negative

direction contribute the most to the resulting dot product.

Dimensions with the largest values in either direction show

that most data points from that class agree in that dimension,

i.e. a class HV that represents the class well should ensure

these dimensions are not over-adjusted.

To support bitwidth reduction, we propose to modify the

initial training algorithm of HD. To identify key dimensions

in the HD model to lock, our design first performs the initial

training with a full 8 bit representation. HyDREA copies the

initial class HV and takes the absolute value of all the dimen-

sions in the class HV and finds the indices of the largest α

dimensions that would saturate the desired bitwidth. They are

set to the maximum (minimum) value if they saturated in the

positive (negative) direction. The other dimensions are scaled

down to the desired bitwidth. This is done for all k class HVs.

The initial model is then loaded into our PIM architecture.

The dimensions that were previously set to the maximum or

minimum value are locked from changes during retraining to

prevent the HD model from over adjustments. HyDREA only

locks dimensions that would saturate the desired bitwidth.

If the dimensions do not saturate the desired bitwidth, the

bitwidth is sufficient and no change is needed. This lock is

achieved by not enabling the write bits at locked dimensions.

Figure 2 compares training an HD model with the naive

approach of simply reducing the bitwidth to 4 and training

the same model with HyDREA using the same bitwidth. The

graph shows how HyDREA improves upon the naive design, as

during retraining the model is clearly improving and increasing

in accuracy like the full 8 bit model. Meanwhile, the naive

design’s accuracy fluctuates greatly and does not converge.

IV. EVALUATION

A. Experimental Setup

We verified the functionality of HyDREA using both soft-

ware and hardware implementations. In software, we im-

plemented HD training and inference on an Intel Core i7

726 Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 27,2022 at 18:01:55 UTC from IEEE Xplore.  Restrictions apply.



02468
ADC Bitwidth

90

91

92

93
A

cc
u

ra
cy

 (
%

)

(a) ISOLET

02468
ADC Bitwidth

94.5

95

95.5

96

96.5

A
cc

u
ra

cy
 (

%
)

(b) UCIHAR

02468
ADC Bitwidth

92

93

94

95

96

A
cc

u
ra

cy
 (

%
)

(c) FACE

02468
ADC Bitwidth

99.4

99.6

99.8

100

A
cc

u
ra

cy
 (

%
)

(d) CARDIO

Fig. 4. Impact of bitwidth reduction on accuracy of HyDREA.

Fig. 5. Accuracy of Design as the SNR varies with an ADC bitwidth of 2
and varying model bitwidth.

7600 CPU using an optimized C++ implementation. For the

hardware implementation, we used an analog-based PIM ar-

chitecture proposed in [21]. Our PIM design works at 1.2GHz

and uses n bit ADCs, 1 bit DACs, and 128×128 arrays, where

each memresistor cell stores 2 bits. We tested the efficiency of

our approach on four practical applications, shown in Table I.

We additionally study how HD performance changes with

varying transmission power levels, distance, different prop-

agation loss scenarios, and under a different number of in-

terfering devices. To do this, we utilize the widely known

network simulator, NS-3 [11]. The error rate depends on the

modulation, coding, and error correction mechanism adopted

by the wireless technology. NS-3 allows us to study the error

rates for modulation schemes such as BPSK, QPSK, 16-1024

QAM, under binary convolutional coding for rates ½, , ¾, .

We test both with or without forward error correction (FEC).

These experiments use the WiFi standard (802.11n). The

modes (High Throughput Modulation and Coding Schemes -

HTMCSs) of 802.11n have different SNR vs BER (Bit error

rates) curves. We vary the distance between the transmitter

and the receiver to collect data at various SNRs. We evaluate

with the Friis propagation loss model. Figure 3 shows the BER

versus distance curve between transmitter and receiver.

B. HyDREA and Dimensionality

To test the impact of dimensionality on HD robustness, we

utilized the 6.64 SNR test with all datasets. Table II summa-

rizes the results. There is a clear relationship between HD

robustness to errors and dimensionality. One may think that

we can achieve faster execution and lower energy consumption

with lower dimensionality; but due to our PIM’s highly parallel

nature, as long as the HD model fits into the PIM arrays,

execution time and energy does not change. Since our design

(a) Retraining (b) Inference

Fig. 6. Energy consumption and execution time of HyDREA using different
model bitwidths during training and inference with an ADC bitwidth of 2.

TABLE II
IMPACT OF DIMENSIONALITY ON THE ROBUSTNESS OF HD COMPUTING

Dimensionality 10,000 8,000 6,000 4,000 2,000

Accuracy Loss 0.58% 0.82% 1.44% 1.89% 2.39%

requires a highly robust HD model, the rest of our tests utilize

a dimensionality of D = 10, 000.

C. HyDREA and the Impact of our Analog PIM Architecture

Figure 4 shows the impact of ADC bitwidth reduction

on HD model accuracy for four practical applications. The

accuracy of each model reduces as the bitwidth drops, but

not significantly. When the ADC bitwidth is 4, the average

accuracy drop across all applications is 1.5%. This is because

our ADC blocks provide highly accurate approximations for

high value conversions, and the high value numbers dominate

the dot product output. Thus, the resulting dot product closely

approximates the exact version. Also, the resulting dot product

does not need to be exact, owing to HD’s robustness to

hardware inaccuracies. Despite inaccurate results, the classes

are separated enough that slight variations still result in the

HD model selecting the same output class. Overall, HyDREA

reduces bitwidth to 2 while only losing 1.8% in accuracy.

Figure 6 shows the impact of our analog PIM architecture

with 2 bit ADCs and varying model bitwidths on energy

consumption and execution time. Our proposed architectural

changes drastically improve the energy efficiency and execu-

tion time of HD. Our proposed architecture uses 2 bit ADCs

and 1 bit models, and achieves 32× (29×) speed up and 232×
(267×) higher energy efficiency than the baseline architecture

Design, Automation and Test in Europe Conference (DATE 2021) 727

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 27,2022 at 18:01:55 UTC from IEEE Xplore.  Restrictions apply.



Fig. 7. Comparison of the Robustness of HD to other Classifiers

during inference (retraining). Also, in high SNR cases, these

models achieve comparable accuracy to full precision models.

D. HyDREA and the Impact of SNR

Figure 5 shows the impact of SNR on model accuracy in

our analog PIM architecture. We can load in low bitwidth

models when the channel has a high SNR to achieve the

best energy consumption and execution time. However, during

high network traffic, longer communication distance, or other

factors that incur a high amount of noise on the wireless

channel, we need to load in the higher bitwidth models

to maintain accuracy. This is because our highly quantized

models are taking advantage of HD’s robustness to noise by

effectively adding more noise to the computation. Therefore,

if the environment, in this case wireless communication, is

also adding noise, the robust property of HD does not hold

up. However, if we adaptively switch which model is loaded

based on the SNR, we can maintain high accuracy and achieve

significant energy and execution time savings when possible.

E. HD vs. Other Classifiers

We also compared HD to state-of-the-art classifiers (Linear

Regression (LR), MultiLayer Perceptron (MLP), Perceptron,

Support Vector Classification (SVC)) and evaluated its robust-

ness to noise on our 4 datasets. Figure 7 shows the results

for 1) data with no noise, and 2) data corrupted with SNR of

2.21. All classifiers have comparable accuracy with no noise.

While HD stays robust with a significant amount of noise, the

other classifiers become very inaccurate. The high-dimensional

nature of the hypervectors used in HD leads to significant

redundancy in representation which improves its robustness

to noise by 48× compared to other classifiers at 2.21 SNR.

Where noise robustness is defined by how well the model

maintains accuracy with the added wireless noise.

V. CONCLUSION

In this paper, we proposed HyDREA, an HD computing sys-

tem that is Robust, Efficient, and Accurate. We evaluated the

feasibility of HyDREA in a “Federated learning” environment,

by utilizing a popular network simulator, NS-3, to model the

communication between devices and simulate wireless noise.

We compared HyDREA with other light-weight ML algorithms

in the same noisy environment. Our results demonstrated that

HyDREA is 48× more robust to noise than other comparable

ML algorithms. We additionally proposed a PIM architecture

that adaptively changes the bitwidth of the model based on

the SNR of the incoming sample to maintain the robustness

of the HD model while achieving high accuracy and energy

efficiency. Our results indicate that our proposed system loses

less than 1% classification accuracy even in scenarios with an

SNR under 7dB. Our PIM architecture is also able to achieve

255× better energy efficiency and speed up execution time by

28× compared to the baseline PIM architecture.

ACKNOWLEDGEMENTS

This work was supported in part by CRISP, one of six

centers in JUMP, an SRC program sponsored by DARPA, in

part by SRC-Global Research Collaboration grant Task No.

2988.001, and also NSF grants 1527034, 1730158, 1826967,

1830331, 1911095, 2003277, and 2003279.

REFERENCES

[1] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,

“Federated learning: Strategies for improving communication efficiency,” arXiv

preprint arXiv:1610.05492, 2016.

[2] P. Kanerva, “Hyperdimensional computing: An introduction to computing in dis-

tributed representation with high-dimensional random vectors,” Cognitive Compu-

tation, vol. 1, no. 2, pp. 139–159, 2009.

[3] M. Imani et al., “Revisiting hyperdimensional learning for fpga and low-power

architectures,” in HPCA, IEEE, 2021.

[4] M. Imani, C. Huang, D. Kong, and T. Rosing, “Hierarchical hyperdimensional

computing for energy efficient classification,” in Proceedings of the 55th Annual

Design Automation Conference, p. 108, ACM, 2018.

[5] M. Javaheripi, M. Samragh, T. Javidi, and F. Koushanfar, “Genecai: Genetic evolution

for acquiring compact ai,” in Proceedings of the 2020 Genetic and Evolutionary

Computation Conference, GECCO ’20, p. 350–358, Association for Computing

Machinery, 2020.

[6] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring hyperdimen-

sional associative memory,” in High Performance Computer Architecture (HPCA),

2017 IEEE International Symposium on, pp. 445–456, IEEE, 2017.

[7] S. Salamat et al., “F5-hd: Fast flexible fpga-based framework for refreshing hyperdi-

mensional computing,” in FPGA, pp. 53–62, ACM, 2019.

[8] S. Gupta et al., “Felix: fast and energy-efficient logic in memory,” in ICCAD, p. 55,

ACM, 2018.

[9] M. Imani et al., “Dual: Acceleration of clustering algorithms using digital-based

processing in-memory,” in IEEE/ACM MICRO, pp. 356–371, IEEE, 2020.

[10] M. Samragh, M. Javaheripi, and F. Koushanfar, “Encodeep: Realizing bit-flexible

encoding for deep neural networks,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 19, no. 6, pp. 1–29, 2020.

[11] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena, “Network

simulations with the ns-3 simulator,” SIGCOMM demonstration, vol. 14, no. 14,

p. 527, 2008.

[12] M. Imani et al., “A binary learning framework for hyperdimensional computing,” in

DATE, IEEE/ACM, 2019.

[13] C. Li et al., “A scalable design of multi-bit ferroelectric content addressable memory

for data-centric computing,” in IEDM, IEEE, 2020.

[14] M. Imani et al., “Floatpim: In-memory acceleration of deep neural network training

with high precision,” in ISCA, pp. 802–815, IEEE, 2019.

[15] M. Imani et al., “Deep learning acceleration with neuron-to-memory transformation,”

in HPCA, pp. 1–14, IEEE, 2020.

[16] A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey, “Efficient biosignal processing

using hyperdimensional computing: Network templates for combined learning and

classification of exg signals,” Proceedings of the IEEE, vol. 107, no. 1, pp. 123–143,

2018.

[17] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient classifier us-

ing brain-inspired hyperdimensional computing,” in Proceedings of the International

Symposium on Low Power Electronics and Design, pp. 64–69, ACM, 2016.

[18] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdimensional com-

puting for efficient speech recognition,” in 2017 IEEE International Conference on

Rebooting Computing (ICRC), pp. 1–8, IEEE, 2017.

[19] M. Imani et al., “Quanthd: A quantization framework for hyperdimensional comput-

ing,” IEEE TCAD, 2019.

[20] H. Li et al., “Hyperdimensional computing with 3d vrram in-memory kernels:

Device-architecture co-design for energy-efficient, error-resilient language recogni-

tion,” in IEDM, pp. 16–1, IEEE, 2016.

[21] A. Shafiee et al., “Isaac: A convolutional neural network accelerator with in-situ

analog arithmetic in crossbars,” in ISCA, pp. 14–26, IEEE, 2016.

[22] S. Ghodrati, H. Sharma, et al., “Mixed-signal charge-domain acceleration of deep

neural networks through interleaved bit-partitioned arithmetic,” in Proceedings of

the ACM International Conference on Parallel Architectures and Compilation Tech-

niques, pp. 399–411, 2020.

[23] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/ISOLET.

[24] “Uci machine learning repository.” https://archive.ics.uci.edu/ml/datasets/Daily+

and+Sports+Activities.

[25] “Uci machine learning repository.” https://archive.ics.uci.edu/ml/datasets/

cardiotocography.

[26] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category dataset,” 2007.

728 Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 27,2022 at 18:01:55 UTC from IEEE Xplore.  Restrictions apply.


