Residue-Net: Multiplication-free Neural Network by In-situ
No-loss Migration to Residue Number Systems

Sahand Salamat, Sumiran Shubhi, Behnam Khaleghi, Tajana Rosing
Computer Science and Engineering Department, UC San Diego, La Jolla, CA 92093, USA
{sasalama, sshubhi, bkhaleghi, tajana}@ucsd.edu

ABSTRACT

Deep neural networks are widely deployed on embedded devices to
solve a wide range of problems from edge-sensing to autonomous
driving. The accuracy of these networks is usually proportional to
their complexity. Quantization of model parameters (i.e., weights)
and/or activations to alleviate the complexity of these networks
while preserving accuracy is a popular powerful technique. Nonethe-
less, previous studies have shown that quantization level is limited
as the accuracy of the network decreases afterward. We propose
Residue-Net, a multiplication-free accelerator for neural networks
that uses Residue Number System (RNS) to achieve substantial en-
ergy reduction. RNS breaks down the operations to several smaller
operations that are simpler to implement. Moreover, Residue-Net
replaces the copious of costly multiplications with non-complex,
energy-efficient shift and add operations to further simplify the
computational complexity of neural networks. To evaluate the effi-
ciency of our proposed accelerator, we compared the performance of
Residue-Net with a baseline FPGA implementation of four widely-
used networks, viz., LeNet, AlexNet, VGG16, and ResNet-50. When
delivering the same performance as the baseline, Residue-Net
reduces the area and power (hence energy) respectively by 36%
and 23%, on average with no accuracy loss. Leveraging the saved
area to accelerate the quantized RNS network through parallelism,
Residue-Net improves its throughput by 2.8x and energy by 2.7x.

CCS CONCEPTS

« Hardware — Hardware accelerators; - Computing method-
ologies — Neural networks.

ACM Reference Format:

Sahand Salamat, Sumiran Shubhi, Behnam Khaleghi, Tajana Rosing. 2021.
Residue-Net: Multiplication-free Neural Network by In-situ No-loss Migra-
tion to Residue Number Systems . In 26th Asia and South Pacific Design
Automation Conference (ASPDAC °21), January 18-21, 2021, Tokyo, Japan.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3394885.3431541

1 INTRODUCTION

Many of the machine learning applications including robotics,
autonomous driving, and virtual/augmented reality require real-
time processing where the computation platforms are strictly con-
strained by the size of the computation and communication [1-
4]. Deep Neural Networks (DNNs) are widely exploited thanks to
their ever-increasing accuracy. The accuracy of DNNs is highly
dependent on the complexity of the model. Certain applications
can afford to sacrifice the classification accuracy to achieve higher

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASPDAC 21, January 18-21, 2021, Tokyo, Japan

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7999-1/21/01.

https://doi.org/10.1145/3394885.3431541

222

performance or reduce energy consumption whereas plenty of ap-
plications, e.g., autonomous driving workloads, require the highest
accuracy to avoid fatal consequences of misprediction, while energy
usage and performance (to process hundreds of inputs per second)
is of utmost importance.

Quantizing the floating-point weights and activations (i.e., out-
puts of network layers) to fixed-point numbers with lower precision
is a widely applied technique to shrink the memory footprint and
computational complexity in DNN inference [1]. Previous works
have shown that DNNs can be quantized down to six bits without af-
fecting the accuracy of the network [5]. Quantizing the network not
only reduces the size of the required memory to store the weights
but also simplifies the computation of the multiplication and accu-
mulation (MAC) operations, which contribute to more than 99%
of operations in DNN inference [6]. FPGAs have been widely used
to accelerate DNN operations [7, 8], Figure 1 shows the efficacy of
quantization in reducing the complexity of DNN inference (partic-
ularly MAC operations) on FPGA. Quantizing 32-bit fixed-point
weights to six bits reduces the number of Look-up Tables (LUTs) by
97%, without adverse impact on the accuracy of the network after
re-training (because of scale issue, LUT count for 32-bit operands
is not shown, though the o« n? trend can be discerned from the
figure). Although reducing the bit-width below six bits saves area,
its significantly lower accuracy is not affordable for the majority of
real-world applications.

In this paper, instead of trying to squeeze networks below six
bits, we leverage a modified number representation to improve
resource usage by breaking down the computation to smaller oper-
ations. Residue Number System (RNS) is an unorthodox number
representation developed based on the Chinese Remainder Theo-
rem (CRT). RNS has used in compute-intensive applications such
as DNNs and digital signal processing applications [9-11] RNS is
defined by a set of k integer numbers that are pairwise co-prime,
called moduli set. To represent a binary number in RNS format, the
number is divided by each modulus where the residues (remainders
of divisions) represent the number in RNS. Each residue (remainder)
is always smaller than the corresponding modulus. Therefore, for
representing each residue fewer bits are needed. RNS simplifies
the operations by breaking them down to the same operations on
the residues with smaller bit-width. Consequently, it needs simpler
arithmetic for implementation. Figure 1 shows the area of a MAC

100
={J=Conventional ==O==RNS X Residue-Net
- 80
E
5 60
o
= 40
=
20
X
0
1bit 2bit 3bit 4bit 5bit 6bit 7bit 8bit

Figure 1: Resource utilization of MAC operation in conven-
tional binary, RNS, and Residue-Net on FPGA.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 18:05:01 UTC from IEEE Xplore. Restrictions apply.

ASPDAC °21, January 18-21, 2021, Tokyo, Japan

unit in RNS format for different bit-widths. The area is the total area
of the residue MAC units. For instance, for six-bit binary numbers
that are converted to RNS with {3, 4, 5} as moduli set, the area of the
MAC unit is shown as six-bit RNS MAC. Six-bit RNS MAC reduces
the area by 2.4x as compared to the binary MAC unit (18 LUTs
versus 44).

In this paper, we propose Residue-Net that uses six-bit RNS with
{3,4,5} moduli set. Residue-Net exploits the benefits provided by
RNS to represent six-bit network weights with two 2-bit and one 3-
bit numbers. Considering the {3,4, 5} moduli set, in Residue-Net,
the residues can only be within the set of {0, 1, 2, 3, 4}. Therefore,
multiplications over the mentioned set can be implemented with
add and shift operations (as elaborated in section 3.1) which are
more energy-efficient than the primary fixed-point multiplications.
As it is shown in Figure 1, the six-bit MAC unit of Residue-Net,
by eliminating the multiplication operations, requires 50.0% fewer
LUTs than the baseline RNS MAC unit, and 79.5% less than the
original binary unit.

Residue-Net trains and quantizes the DNN model using the
approach proposed in [12], and transforms the weights and activa-
tions into RNS to carry out the exact computations on operands
with fewer bits. Since Residue-Net performs all the computations
in exact mode, the accuracy of the network remains the same.
Residue-Net, not only breaks down the computations to oper-
ations with fewer bits, but it is also able to replace the costly multi-
plications with simpler add operations to further reduce the compu-
tation complexity. The main contribution of this paper is as follows.
(i) We propose Residue-Net, a novel FPGA-based accelerator based
on RNS which maps all activations and weights of a neural network
to RNS, which breaks down the six-bit operations to two 2-bit and
a 3-bit operation.

(ii) We further simplify the multiplications to add and shift opera-
tions, which further enhances the computation complexity of the
neural network inference.

(iii) The results of implementing four popular neural networks,
LeNet, AlexNet, VGG16, and ResNet-50 on FPGA leveraging the
aforementioned innovations reveal 2.8X average speedup without
impacting the accuracy.

2 BACKGROUND AND RELATED WORK

Neural networks have been extensively used in many applications
and have been accelerated on various platforms[7, 13]. Quantization
has been explored to compress and accelerate the neural network
in literature [3, 5, 14, 15]. The work in [16] developed a tool that
enables both software simulation and hardware realization of DNNs
using different data representations and approximate computing
blocks. The work in [5] proposes an automated DNN inference accel-
erator generator that first quantizes the network and then retrains
it to retrieve the accuracy drop. The work [3] uses reinforcement
learning for hardware-aware layer-wise weight quantization. The
above works use static quantization so that the weight bit-width
is set fixed either for the entire network or on a layer-by-layer
basis. However, the studies in [14, 17] quantize the weights based
on the complexity of the input such that difficult-to-predict inputs
run through a more precise network. For over-simplifying the ex-
ecution of the neural network, studies [18] quantize the network
weights down to binary, {—1, +1}, which replaces the multiplica-
tions with XOR operations. Although binarized neural networks
are significantly faster than fixed-point alternatives, they are prac-
tically unappealing for real-world applications due to their low
accuracy [19, 20].

223

Sahand Salamat, Sumiran Shubhi, Behnam Khaleghi, Tajana Rosing

On an orthogonal research path, unorthodox number represen-
tations have been studied to achieve better accuracy or perfor-
mance than the conventional fixed-point or floating-point networks
[11, 21-23]. The study in [21] proposes narrow-precision floating-
point representations instead of 32-bit floating-point numbers to
simplify the operations. The posit number system is introduced in
[22] as an alternative representation of IEEE floating-point number
to represent real numbers. Posit has a larger dynamic range and
higher accuracy as compared to floating-point numbers which make
it suitable for DNNs to get the same accuracy as 32-bit floating-
point weights with less than eight-bit posit weights [24]. While
these studies convert a trained network to posit representation,
[25] uses posit numbers to train the networks. Posit operations,
however, are more complicated than the floating-point ones [26].

Residue Number System: RNS has been used in compute-
intensive applications such as digital signal processing [9] and
neural networks [10, 11, 27] to accelerate them by reducing the
bit-width of operands. A number in RNS is represented by the
remainders (residues) of dividing it by a set of numbers, called mod-
uli. Moduli set is a set of numbers M; € Moduli Set{M;, My, ..., M.}
where any pair M; and M; are co-prime. The process of dividing
a number by the moduli set and representing the number by the
residues is called forward conversion. The process of converting
the RNS numbers back to the binary system is called backward
conversion. Several studies such as [28] investigate the impact of
different moduli sets on the computation complexity of the forward
conversion step. Multiplication and add operations, the two most
common operation in DNNSs, can be directly performed in the RNS
domain [11]. Being the remainder of the division by a modulus,
each number in RNS is smaller than the modulus, thereby RNS
represents a binary number with multiple smaller numbers with
fewer bits. Several recent studies have focused on optimizing the
architecture of RNS operations [29]. By decreasing the bit width
of the operands at the cost of increasing the number of operations,
RNS simplifies the hardware implementation that can be translated
to a higher parallelism.

The work in [11] uses RNS to implement the DNNs with resis-
tive processing-in-memory (PIM) technology. They utilize RNS to
simplify the operation such that all the DNN operations can be run
in RRAM crossbar memory. The work in [30] focuses on using RNS
to improve multipliers for neural network applications on FPGA.
Works in [27] and [31] use nested RNS to reduce the bit width of
numbers so that it maps all the NN operations in FPGA LUTs to
increase the efficiency of computations. In our work, we take the
advantage of RNS to breakdown the weights and activations so that
the costly multiplications can be performed with energy-efficient
shift and add operations whilst keeping the accuracy intact.

3 PROPOSED RESIDUE-NET

DNNs consist of convolutional (CNV), activation function (AF), fully
connected (FC), and pooling layers. Residue-Net first converts the
incoming inputs to RNS. The rest of the intermediate computations
are carried out in RNS format. The moduli set for Residue-Net is
{2t — 1,2, 2! + 1}; for t equal to 2, the moduli set becomes {3, 4, 5}.
Considering the RNS with the selected moduli set, valid values for
Rs (residue of dividing by 3) are {0, 1,2}, and valid values for R4
and Rs are {0,1,2,3} and {0, 1,2, 3,4}, respectively. To represent
Rs3 and R4, Residue-Net requires two bits, while to represent R it
requires three bits. Therefore, Residue-Net converts six-bit num-
bers and operations into two two-bit and one three-bit numbers
and operations. In the following, we first introduce the required

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 18:05:01 UTC from IEEE Xplore. Restrictions apply.

Residue-Net: Multiplication-free Neural Network by In-situ No-loss Migration to Residue Number Systems

operations involved in neural networks, and then we propose the
Residue-Net architecture to accelerate DNNs.

3.1 RNS Operations
RNS can uniquely represent binary numbers in the range of D =

k
I'1 M; (as each residue R; can take i different values). Therefore, any
i=1

binary number € [0, D) can be represented uniquely as {Rps,, Ry, - Rag,

where Ry, is | X|p, , i.e., X mod M. A six-bit binary number x[5 : 0]
can be expanded as x = x[5 : 4] x 2% + x[3: 2] x 2% + x[1: 0] x 2.
We therefore can obtain residues of R3 following Equation (1).
Ry = |x[3=|x[5:4] X 16 +x[3:2] x4+ x[1:0] X 1|3
= x[5:4] X |16]3+x[3 : 2] X |[4|3+x[1: 0] X |1]3 (1)
=x[5:4] +x[3:2] +x[1:0]
Analogously, for Ry, and Rs we have:
Ry = |x|4= x[1: 0] (2a)

Rs = |x|s=x[5:4] —x[3:2] + x[1:0] (2b)

Note that to calculate R3 = x[5 : 4] + x[3 : 2] + x[1 : 0], if the
result of the sum is greater than the modulus 3, we subtract the
modulus from the result of the addition. R4 is equal to the two
least significant bits x[1 : 0], and Rs is calculated in a similar
fashion of calculating the R3, though the middle addition is replaced
by subtraction. Therefore, Residue-Net requires two three-port
adders for the forward conversion. To convert the RNS numbers
back to the binary system, we use a look-up table that maps every
RNS number to its corresponding binary number.

Addition and Multiplication: Upon converting binary num-
bers to RNS, Residue-Net executes the neural network operations
in RNS, where the majority of operations in convolution and fully-
connected layers are addition and multiplication. Multiplication and
addition in RNS are similar to the binary operations. To multiply
(add) two RNS numbers, their corresponding residues are multiplied
(added); if the result is greater than the modulus, the final residue is
computed by subtracting the modulus, as represented by Equation
(3) and (4).

(A+B)rNs = {|A+Bl3,|A+Bls,|A+B|s}
= {|Al3+|Bl3, |Ala+|Bls, |Als+|B|s } 3)
= {|R3,a + R3 Bl3, |[Ry o + Ry Bla,|Rs5 A + Rs g5}

(Ax B)rNs = {|A X Bls,|A X Bls, |A X Bls}
= {|Al3x|Bl3, |AlaX|Bla, |Alsx|B|s } (4)
= (IR X RP I3, RS X R Ja, |RS' X R |5}

As alluded before, considering the selected moduli set, RNS num-
bers will be in the set {[0, 1], [0, 1, 2], [0, 1, 2,3]}. Thus, Residue-Net
simplifies the multiplication to shift and/or add operation. Multi-
plication by 0 results in constant 0 output. In multiplying by 1, the
output simply gets the input value. Multiplication by 2 and 4 are
realized by shift operations. Residue-Net computes multiplication
by 3 by adding the input with to its left-shifted (i.e., 3x = 2x + x).

Figure 2 demonstrates how a Residue-Net multiplication mod-
ule works. First, if the inputs are not in RNS, Residue-Net converts
them to RNS using the forward conversion (FWC) formulated ear-
lier. Each multiplexer covers all possible scenarios of the weight
parameter (which is also in RNS format) and inputs/activation val-
ues. As shown in the figure, Residue-Net only utilizes a two-bit

224

ASPDAC 21, January 18-21, 2021, Tokyo, Japan

In}iu7t
[l [R] [®1]
1 3 2
=
HQ

4

- ﬁl x0 x1 x2 T ‘a -

ED R o <0 x1 xZ x3 T

§ '35_4 \(0 x1 x2 x3 x4/
[rs] [rs]

1 0 3

Figure 2: The RNS multiplication unit of Residue-Net.

and a three-bit adder plus three multiplexers to implement a six-bit
multiplication. The output of multiplications in RNS format can also
be larger than the moduli set, which needs to be converted back to
the right range. For this, at the end of computations, Residue-Net
uses a Ranging Block (RB) to calculate the residue in case the output
of multiplexers are greater than the corresponding modulus.

The example of Figure 2 computes 7 X 4 in RNS. Residue-Net
first transforms the input 7 to {R3 = 1, R4 = 3, Rs = 2} (if the input is
an activation, i.e., outputs of intermediate layers, it will be already
in RNS format). All weight parameters of the model are converted
to RNS format offline for once. Here, the w = 4 is represented as
{R3 = 1, R4 = 0, R5 = 4}. Residues of the weights are connected to
the select port of the multiplexers. The output of the multiplexers
are, expectedly, {R3 = 1X1=1,R4 =3X0 = 0,R5 = 2Xx4 = 8}. Since
Rs = 8 is greater than 5, the ranging blocks eventually convert the
output to {1,0,3}, which matches with representing 7 X 4 = 28
in RNS format: |28|3= 1, |28]4= 0, and |28|5= 3. We note that the
ranging blocks in Figure 2 are just for demonstration purposes.
As explained in the following subsection, we share a single RB
block for the entire adder-tree (that sums up the output of several
multiplications) by deferring RB operations after the summations.

Comparison: Comparison is another operation required to ex-
ecute DNNs, mainly used in pooling and activation layers. Com-
parison cannot be directly performed in RNS format by simply
comparing the residues [32]. Instead of converting the RNS num-
bers back to the binary number system to perform the comparison,
Residue-Net uses mathematical attributes of RNS for this purpose.
For a number in our RNS representation with residues {R3, R4, Rs},
we define « as the smallest number that has the same residue for
Rs3 and Rs. For instance, for an arbitrary number with R3 = 0 and
Rs =1, we see @ = 6 as |6/3= 0 = R3, and |6]s= 1 = Rs. Any number
smaller than a = 6 does not hold this property. Such a number (c)
will have an arbitrary Ry of §, i.e., |a|s= . That being said, if we
multiply x = {Rs, R4, Rs}rns by Mj X M3 = 3 X 5 = 15, we observe
[15x(|3= 0, |15x]4= |—x|4= —R4, and |15x|5= 0 as well. With these
insights, we can represent x = {R3, R4, R5} in RNS as follows.

x = |f—R4|X15+« (5a)
— |xl3= [(|f — R4|x15)|3+|ctl3= 0 + R3 = R3 (5b)
— |xlg= [(|f — Ra|x15)|4+|axla= (Rg — f) + f = Ry (5¢)

= |x|5= || — Ra|X15)|5+|a|s5= 0 + R5s = Rs (5d)

We use this property to compare two binary numbers x’ =
 —Rax|X15+ay and y’ = |fy — Ry y|X15 + @ that have the same
Px —Rax|x15 dy’ = |By —Ray|x15+ay that have th

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 18:05:01 UTC from IEEE Xplore. Restrictions apply.

ASPDAC °21, January 18-21, 2021, Tokyo, Japan

Weight
Memory

Sahand Salamat, Sumiran Shubhi, Behnam Khaleghi, Tajana Rosing

Modulo 4 Convolution
Kernel

22—
Conv/FC
layer (Rs)

R3 Memory L’L’D—b{

R3 Memory

F -
Conv/FC
layer (R4)

1
Conv/FC
layer (Rs)

Forward §
Conversion _’| By Rlgery LL:D_’{

Rs Memory ’_”_.D—b{

Input Buffer

§
B
o
g
=}
[t
=
-8
b=}
s
5
J31
<

R4 Memory

Rs Memory

@

(®)

Figure 3: (a) The proposed architecture for Residue-Net. (b) A convolutional kernel that performs computations on the inputs
and weights Ry. (c) Residue-Net proposed comparator module. (d) A fully connected neuron working in inputs and weights R4.

RNS representation of x and y: we can simply compare |fx — Ry x|
and |By — Ry y| to compare the actual values x and y. If these
two terms are equal, we then use the comparison of ay and ay.
To avoid computational complexity, for every possible value of x,
Residue-Net stores ay and fy in a memory. Note that binary x
has six bits, so the memory footprint is trivial. The Ry x (i.e., |x|4)
is ready beforehand as the operands passed through the layers are
all in RNS format.

We showed that Residue-Net can execute the neural network
operations entirely in RNS representation. After performing all the
computations, Residue-Net converts the final results back to the
binary system using the backward conversion module explained
above for the final soft-max operations. Since the binary number
has a limited bit-width of six, Residue-Net transforms each RNS
number to the corresponding binary number using a small lookup
table.

3.2 Residue-Net Architecture

The architecture and dataflow of Residue-Net is illustrated in
Figure 3(a). In Residue-Net, the network is trained and weights are
quantized to 6-bit binary values offline. The weights are converted
to RNS and transferred to FPGA DRAM. Since the computation
in RNS is performed on each residue independently, Residue-Net
stores the weights residues in three separate memory blocks to
simplify the memory access pattern of different residues. During
the execution of the network, Residue-Net transfers the weights to
FPGA local BRAMs which have considerably faster access latency
than the off-chip memory (DRAM). Residue-Net uses a weight
stationary dataflow to load the weights. Weights of each kernel
remain stationary in the FPGA BRAM to maximize the kernel reuse.
Once a convolutional kernel weights are fetched into BRAMs, all
the computations that use those weights are executed.
Residue-Net transfers the primary inputs to the Input Buffer
which is connected to forward conversion (FWC) modules. FWC
modules calculate the residues as explained in Equation (1) and
(2) for multiple input features in parallel. Ry, Ry, and R3 of the
converted inputs are stored in three separate memory blocks, one
for each residue. Residue-Net comprises the required modules for
DNN inference, convolutional, fully connected, ReLu activation
function, pooling layers, memory blocks, scheduler, and controller.
Multiplication and add operations can be carried out independently
for each of the residues, however, an RNS comparison demands all
the three representing residues. Thus, Residue-Net executes the
computations of CNV and FC layers for each residue in parallel
while ensuring that results of all residues become ready simultane-
ously to pass to the next layer. Residue-Net makes three instances

225

of both convolution and fully connected layer, whereby each in-
stance performs computations on the corresponding residue. As
executing activation function and pooling layers require all the
three residues, only one instance of these layers is present in the
architecture. Note that, in Figure 3 (b)/(d), only the convolutional
kernel and fully connected neuron of the residue Ry is illustrated.
Computations on the other two residues are performed in a module
with the same architecture but slightly different in the primary
arithmetic modules (see Figure 2).

The scheduler of Residue-Net moves primary input data to the
input buffer as well as fetches the required weights into the weight
memory blocks. Thereafter, based on the network architecture, it
initiates different layers sequentially. Convolutional layers might
consist of different numbers of convolutional kernels with different
shapes. Thus, the scheduler applies the layer configurations to
the CNV layers in the runtime. Since each layer may not be able
to accomplish the computations in a single cycle, the controller
generates the memory access addresses for the layer’s inputs and
weights. For the first layer, the controller reads the RNS inputs from
the first array of residue memories and writes the intermediate
results into the second array of the residue memories. The controller
also issues hand-shaking signals when the computations of a layer
are accomplished. To execute the next layer, instead of reading the
inputs from the first array, the controller reads the layer’s inputs
from the second memory array and writes the results into the first
array. That is, the controller switches the memories alternatively
for every other layer; a layer reads from one memory and writes to
the other memory.

Convolutional layers consist of single or multiple convolutional
kernels that multiply the inputs by the kernel weights and accumu-
late the results. The convolutional kernels move along the inputs
to generate outputs. Figure 3(b) depicts the convolutional kernel of
Residue-Net that operates on the R4 residues. The convolutional
of the kernel weights and the inputs are carried out in Residue-Net
multiplier (see Figure 2). Since the values of Rys are smaller than 4,
Residue-Net simplifies the multiplication to selecting among the
pre-calculated multiplied values. The number of multiplications in a
K XK convolutional kernel is equal to the size of the kernel, i.e., KXK.
Residue-Net aggregates the multiplication outputs in a pipelined
adder-tree. The result of the accumulation of the multiplied inputs
and weights may be greater than the modulus. Therefore, as men-
tioned earlier, Residue-Net uses a ranging block to convert the
output back to valid RNS representation. In the RNS multiplier
shown in Figure 2, a ranging block is used immediately after the
multiplication. However, in intermediate computations, temporary
variables do not need to be in a valid RNS representation Therefore,

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 18:05:01 UTC from IEEE Xplore. Restrictions apply.

Residue-Net: Multiplication-free Neural Network by In-situ No-loss Migration to Residue Number Systems

Table 1: Accuracy of the Residue-Net as compared to the full
precision and quantized to 6 bits networks.

LeNet AlexNet VGG16 ResNet50
(MNIST) (ImageNet) (CIFAR-10) (CIFAR-10)
32-bit Fixed-point 99.3% 47.95% 92.44% 93.62%
6-bit Fixed-Point 99.3% 47.95% 92.41% 93.58%
Residue-Net 99.3% 47.94% 92.41% 93.59%

Residue-Net utilizes only a single ranging block (here, mod 4) after
computing the final value of convolutional kernel rather than using
a ranging block after every operation. To fully utilize the available
FPGA resources, Residue-Net instantiates multiple convolutional
kernels within the convolutional layer.

In DNNs, the output of the layers passes through a non-linear ac-
tivation function. Rectified Linear Unit (ReLU) activation function
is the most widely used activation function layer. To implement
the ReLU activation function, Residue-Net needs to perform the
comparison using the procedure explained in Section 3.1. Figure
3(c) shows the Residue-Net comparator. To compare two RNS
numbers, R3, and Rs of both inputs are connected to a lookup ta-
ble to the values of @ and . Residue-Net comparator calculates
the difference of R4 of each input and their corresponding f; the
one with the larger difference is greater. For equal differences, the
number with the greater « is larger. To implement the ReLU acti-
vation function, Residue-Net uses the implemented comparator
with one input fixed. Residue-Net also uses the RNS comparator
to implement max/min pooling layers.

In fully connected layers, similar to convolutional layers, multi-
ple neurons are executing simultaneously. The architecture of each
neuron is illustrated in Figure 3(d). Since the number of inputs in
different fully connected layers varies, Residue-Net uses a generic
architecture, which parallelizes the computation by instantiating
multiple neurons, where each neuron multiplies and accumulates
multiple inputs. Each neuron multiplies the outputs of the previous
layer by the corresponding weights and accumulates the results.
A series of Residue-Net multipliers multiply the weights by the
inputs. The results are aggregated in a pipelined adder-tree and
an accumulator adds up the intermediate results of consecutive
iterations. The controller issues the memory access signals and
reads all the inputs of the layer (P inputs per cycle), and at the end,
converts the accumulated RNS result to valid RNS representation.

4 EXPERIMENTAL RESULT

4.1 Experimental Setup

Residue-Net migrates the neural network execution to the RNS
domain to reduce the complexity of DNNs without losing the ac-
curacy of the quantized network. To evaluate the efficiency of
Residue-Net, we implemented four common network architec-
tures, LeNet, Alexnet, VGG16, and ResNet50 on FPGA. Table 1
compares the Top-1 accuracy of Residue-Net with that of the
32-bit fixed-point, and networks quantized to 6-bit over four popu-
lar DNNGs classifying various popular datasets (LeNet on MNIST,
AlexNet on ImageNet, VGG16 and ResNet-50 on CIFAR-10). To
train and quantize the networks we used the approach proposed in
[12]. As presented in the table, Residue-Net provides almost the
same accuracy as the full-precision network.

Residue-Net host code is written in OpenCL to convert the
quantized weights to RNS. The host code uses the Xilinx Vitis soft-
ware platform to transfer the primary inputs and RNS weights to
FPGA DRAM and invoke the Residue-Net kernel. Residue-Net
FPGA kernel is implemented in SystemVerilog HDL and synthesized
using Xilinx Vivado Design Suite. The timing and the functionality

226

ASPDAC 21, January 18-21, 2021, Tokyo, Japan

of the Residue-Net are also verified using Vivado Design Suite.
We implemented Residue-Net on Kintex-7 FPGA KC705 Evalua-
tion kit. To estimate the device power we used the built-in Xilinx
Power Estimator tool in Vivado. To evaluate the efficiency, we com-
pared Residue-Net with the baseline FPGA implementation. Since
the dynamic range of RNS used in Residue-Net can only uniquely
represent 6-bit binary numbers, we implemented the network quan-
tized to 6-bit weights and activations in the binary system on FPGA
with the same architecture. We used the same architecture for the
baseline and Residue-Net to minimize the impact of the accelera-
tor architecture on the evaluations and emphasize the effectiveness
of migrating to RNS from the binary system and multiplication-free
execution of DNNs. We also compared the efficiency of the build-
ing blocks of DNNs to represent the efficiencies and overheads of
Residue-Net.

4.2 System Evaluation

The baseline FPGA implementation is designed to utilize ~90%
of the FPGA available LUTs which are the bottleneck of increas-
ing the parallelism. We took two approaches in selecting the par-
allelism level of Residue-Net: i) Residue-Net (area-opt) targets
minimizing the area and power consumption of the network. It
provides the same performance as the baseline while reducing
the power and area of the network. ii) Residue-Net (performance-
opt) targets to fully utilize (~90%) the FPGA LUTs to improve the
performance and energy consumption of the network. Figure 4
shows the throughput improvement and energy reduction values
of all the four DNNs as compared to the baseline for both area-
opt and performance-opt implementations. Residue-Net (area-opt)
provides the same performance as the baseline with less area and
consequently lower power and energy consumption. Residue-Net
(area-opt) shows 24% energy reduction on average as compared
to the baseline. Residue-Net (performance-opt), by increasing the
parallelism provides 2.8x higher throughput, with a close area and
power consumption to the baseline; thus increasing the energy effi-
ciency by 2.7x. The main efficiency of the Residue-Net comes from
the optimized MAC unit, therefore, Residue-Net shows higher
performance improvement in networks with a higher number of
MAC operations. As the number of MAC operations in LeNet is
significantly less than those of the ResNet-50 the performance im-
provement in LeNet is less than that in ResNet-50 (2.1x as compared
to 3.1x). Although Residue-Net requires more memory to store
the weights (7 bits as compared to 6 bits in the baseline), since all of
Residue-Net implementations are compute-bound, the memory
and communication overhead is negligible.

Figure 5 shows the LUT, and BRAM utilization of the FPGA
(divided by the total available resources), as well as the power,
throughput, and energy consumption of both Residue-Net (area-
opt) and Residue-Net (performance-opt) as compared to the base-
line in AlexNet. Residue-Net (area-opt) shows 33% reduction in
the number of required LUTSs as compared to the baseline. Although
Residue-Net increases the BRAM utilization because of using mul-
tiple memory instances to store the RNS weights and activations,
this overhead does not affect the performance as BRAMs are not
the bottleneck of the design. Residue-Net (area-opt) in AlexNet,
is able to reduce the power consumption and consequently the
energy consumption of classifying an input by 17%, while deliver-
ing the same performance as the baseline. Residue-Net (area-opt)
on average, reduces the resource utilization by 36% and power
consumption by 21%. Residue-Net (performance-opt), by fully uti-
lizing the FPGA resources, is able to increase the throughput and

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 18:05:01 UTC from IEEE Xplore. Restrictions apply.

ASPDAC °21, January 18-21, 2021, Tokyo, Japan

4.0
O Baseline MResidue-Net (area-opt) B Residue-Net (performance-opt)
3.0
2.0
1.0
0.0
LeNet AlexNet VGG16 ResNet50| LeNet AlexNet VGG16 ResNet50,
Throughput Energy Reduction

Figure 4: Comparing the normalized values of power,
throughput and energy consumption of the FPGA baseline,
Residue-Net (area-opt), and Residue-Net (performance-opt)
w.r.t the FPGA baseline for different DNNs.

3.0
OBaseline AlexNet
B Residue-Net (area-opt)
2.0 B Residue-Net (performance-opt)
.o LN m | | =

LUT usage BRAM usage Power Throughput Energy

Figure 5: Comparing the LUT and BRAM utilization of
the FPGA baseline, Residue-Net (area-opt), and Residue-Net
(performance-opt), as well as the normalized values of
power, throughput and energy consumption w.r.t the FPGA
baseline for AlexNet.

energy efficiency by 2.9x as compared to the AlexNet quantized to
6 bits. Since CNV and FC layers in DNNs contribute to the majority
of execution time, Residue-Net (performance-opt) employs the
saved resources to increase the parallelism in CNV and FC layers,
thereby increasing the performance. Residue-Net (performance-
opt) provides higher speed-up and energy reduction due to the
efficiency of Residue-Net in executing MAC operations. In the fol-
lowing subsection, we evaluate the efficiency of DNN sub-modules
to justify where the efficiency of the system comes from.

4.3 Operation Evaluation

Residue-Net tackles the computation complexity of MAC opera-
tion and particularly the complexity of the multiplication operation.
It has been shown that convolutional layers consume 80% of the
execution time [33]. To show the effectiveness of Residue-Net in
breaking down the computation complexity of the multiplication
operation we evaluate the efficiency of Residue-Net in executing
the building blocks of convolutional, fully connected, activation
function and pooling layer separately.

Efficiency: The efficiency of DNN building modules is illustrated
in Figure 6. Figure 6(a) shows the LUT utilization, %, of
each module in FPGA. Utilization values not only demonstrate the
reduction in the area achieved by Residue-Net but also show the
relative size of each module as compared to the available FPGA re-
sources. These building modules can be integrated into any DNN ac-
celerator to reduce the area of the accelerators. Residue-Net shows
79.5% area reduction in implementing MAC operations which com-
prise more than 99% of DNN operations [6]. Residue-Net MAC
module also shows 80% power reduction as compared to 6-bit binary
MAC operation. In figure 6 power and performance are calculated
for 100 MAC modules since due to the small size of the MAC mod-
ule, the power consumption of a single MAC module would be

227

Sahand Salamat, Sumiran Shubhi, Behnam Khaleghi, Tajana Rosing

0.04

-~ . .
E\O/ 003 O Baseline O Residue-Net
=
=]
2
g o02
©
=
g 001 H H —‘
) [
100 3x3 CNV4x4 CNV5x5 CNV 11x11 16FC 64FC 128 FC 25AF 2x2 5x5
MAC CNV Pooling Pooling
40
OBaseline O Residue-Net
~ 30
=
E
= 20
5]
3
o
& 10 H
100 3x3 CNV4x4 CNV5x5 CNV 11x11 16FC 64FC 128 FC 25AF 2x2 5x5

MAC CNV Pooling Pooling

Figure 6: LUT utilization and power consumption of
Residue-Net building blocks in DNNs.

close to 0 and hard to represent. We also evaluate the efficiency of
four common convolutional kernels (CNV 3 x 3, CNV 4 x 4, CNV
5%5,CNV 11x11). Residue-Net convolutional kernels, on average,
show 54.5% area reduction and 59% power reduction as compared
to the baseline modules. Consuming most of the execution time of
the network, convolutional layers can be considerably accelerated
in Residue-Net.

In fully connected layers, a neuron multiplies its inputs by weights
and accumulate the results. In Figure 6, 16 FC, 64 FC and 128 FC
represent a neuron that has 16, 64, and 128 inputs respectively. For
instance, 64 FC multiplies 64 inputs by weights and accumulate the
results in an adder-tree with 64 inputs. Note that if the inputs of the
layer are more than 64, the module calculates the result in multiple
iterations. In fully connected neurons, Residue-Net reduces the
area by 53% and power consumption by 57% as compared to the
baseline.

Residue-Net shows a significant reduction in computation com-
plexity of both convolutional and fully connected layers which are
the most time-consuming parts of DNN execution. However, due to
higher complexity in comparison operations in RNS, Residue-Net
activation function and pooling layers require more resources than
the baseline layers. Residue-Net requires 75% more resources to
implement the activation function for 25 inputs than the base-
line activation function, 215% more resources for implementing
the pooling layer. However, these two sub-modules require signif-
icantly fewer resources than the FC and CNV modules, and the
Residue-Net area overhead in these two layers will not consider-
ably impact the effectiveness of Residue-Net.

Overhead: Table 2 shows the LUT overhead of Residue-Net
as compared to the baseline. First, Residue-Net needs to convert
inputs to RNS using forward conversion modules, each requires
5 LUTs. Also, after executing the network, Residue-Net converts
the results back to the binary system using backward conversion
modules. The backward conversion module is a table with all the
possible binary numbers and maps RNS numbers to a unique bi-
nary number, which requires 12 LUTs to implement. After perform-
ing MAC operations, Residue-Net should calculate the residues
using a ranging block that needs 9 LUTs. AF and pooling layers
require comparison operators, each of which needs 15 more LUTs
in Residue-Net as compared to the same operation in the binary
system. Considering the limited number of each of these modules in

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 18:05:01 UTC from IEEE Xplore. Restrictions apply.

Residue-Net: Multiplication-free Neural Network by In-situ No-loss Migration to Residue Number Systems

Table 2: LUT overhead of using Residue-Net in executing
DNNs.

[Forward Conversion | Backward Conversion | Ranging Block | Comparator |
5 | 12 | 9 | 15 |

the entire system, the overhead of Residue-Net will be negligible
in the efficiency of the accelerator.

5 CONCLUSION

In this paper, we proposed Residue-Net, a multiplication-free DNN
accelerator using the residue number system. Residue-Net mi-
grates a trained DNN quantized to 6-bit to RNS representation
using {3, 4, 5} as the moduli set. Residue-Net breaks down the
6-bit operations to smaller operations. It also replaces complex
multiplication operations with energy-efficient shift and addition
operations. Residue-Net on average, shows 36% and 21% reduc-
tion in area and power respectively as compared to the baseline
FPGA implementation with the same throughput when executing
widely-used DNNs. Residue-Net, with the same area as the base-
line implementation, shows 2.8x speedup on average (up to 3.1X
in ResNet-50), while delivering the same accuracy as the network
quantized to six bits.

ACKNOWLEDGEMENTS

This work was supported in part by CRISP, one of six centers
in JUMP, an SRC program sponsored by DARPA, in part by SRC
Global Research Collaboration (GRC) grant, DARPA HyDDENN
grant, and also NSF grants #2028040, #1730158, #1911095, #2003279
and #1826967.

REFERENCES

[1] E.Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield, T. Massengill,
M. Liu, D. Lo, S. Alkalay, M. Haselman, et al, “Serving dnns in real time at
datacenter scale with project brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8-20,
2018.

S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, “F5-hd: Fast flexible fpga-based
framework for refreshing hyperdimensional computing,” in Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pp. 53-62, 2019.

K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware automated
quantization with mixed precision,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 8612-8620, 2019.

S. Salamat, M. Imani, and T. Rosing, “Accelerating hyperdimensional computing
on fpgas by exploiting computational reuse,” IEEE Transactions on Computers,
2020.

R. Venkatesan, Y. S. Shao, M. Wang,]J. Clemons, S. Dai, M. Fojtik, B. Keller,
A. Klinefelter, N. Pinckney, P. Raina, et al, “Magnet: A modular accelerator
generator for neural networks,” in Proceedings of the International Conference on
Computer-Aided Design (ICCAD), 2019.

H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Esmaeilzadeh,
“Bit fusion: Bit-level dynamically composable architecture for accelerating deep
neural network,” in 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pp. 764-775, IEEE, 2018.

M. Capra, B. Bussolino, A. Marchisio, M. Shafique, G. Masera, and M. Martina,
“An updated survey of efficient hardware architectures for accelerating deep
convolutional neural networks,” Future Internet, vol. 12, no. 7, p. 113, 2020.

S. Salamat, B. Khaleghi, M. Imani, and T. Rosing, “Workload-aware opportunis-
tic energy efficiency in multi-fpga platforms,” in 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 1-8, IEEE, 2019.

G. C. Cardarilli et al., “Residue number system for low-power dsp applications,”
in ACSSC, IEEE, 2017.

N. Samimi, M. Kamal, A. Afzalli-Kusha, and M. Pedram, “Res-dnn: A residue
number system-based dnn accelerator unit,” IEEE Transactions on Circuits and
Systems I: Regular Papers, 2019.

S. Salamat, M. Imani, S. Gupta, and T. Rosing, “Rnsnet: In-memory neural network
acceleration using residue number system,” in 2018 IEEE International Conference
on Rebooting Computing (ICRC), pp. 1-12, IEEE, 2018.

D. Zhang, J. Yang, D. Ye, and G. Hua, “Lq-nets: Learned quantization for highly
accurate and compact deep neural networks,” in Proceedings of the European
conference on computer vision (ECCV), pp. 365-382, 2018.

[11]

[12

228

(13]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(32]

(33]

ASPDAC ’21, January 18-21, 2021, Tokyo, Japan

H. Yan, A. H. Aboutalebi, and L. Duan, “Efficient allocation and heterogeneous
composition of nvm crossbar arrays for deep learning acceleration,” in 2018
IEEE 37th International Performance Computing and Communications Conference
(IPCCC), pp. 1-8, IEEE, 2018.

D. J. Pagliari, E. Macii, and M. Poncino, “Dynamic bit-width reconfiguration
for energy-efficient deep learning hardware,” in Proceedings of the International
Symposium on Low Power Electronics and Design, pp. 1-6, 2018.

H. Wi, H. Kim, S. Choi, and L.-S. Kim, “Compressing sparse ternary weight convo-
lutional neural networks for efficient hardware acceleration,” in 2019 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED), pp. 1-6,
IEEE, 2019.

M. Nazemi and M. Pedram, “Deploying customized data representation and
approximate computing in machine learning applications,” in Proceedings of the
International Symposium on Low Power Electronics and Design, pp. 1-6, 2018.

E. Park, D. Kim, S. Kim, Y.-D. Kim, G. Kim, S. Yoon, and S. Yoo, “Big/little deep
neural network for ultra low power inference,” in 2015 International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ ISSS), pp. 124-132,
IEEE, 2015.

Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and
K. Vissers, “Finn: A framework for fast, scalable binarized neural network in-
ference,” in Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 65-74, 2017.

R. Ding, Z. Liu, R. Shi, D. Marculescu, and R. Blanton, “Lightnn: Filling the
gap between conventional deep neural networks and binarized networks,” in
Proceedings of the on Great Lakes Symposium on VLSI 2017, pp. 35-40, 2017.

N. Khoshavi, C. Broyles, and Y. Bi, “Compression or corruption? a study on the
effects of transient faults on bnn inference accelerators,” in 2020 21st International
Symposium on Quality Electronic Design (ISQED), pp. 99-104, IEEE, 2020.

P. Hill, B. Zamirai, S. Lu, Y.-W. Chao, M. Laurenzano, M. Samadi, M. Pa-
paefthymiou, S. Mahlke, T. Wenisch, J. Deng, et al., “Rethinking numerical repre-
sentations for deep neural networks,” arXiv preprint arXiv:1808.02513, 2018.

J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its own game: Posit
arithmetic,” Supercomputing Frontiers and Innovations, vol. 4, no. 2, pp. 71-86,
2017.

Y. Gu, T. Wahl, M. Bayati, and M. Leeser, “Behavioral non-portability in scientific
numeric computing,” in European conference on Parallel Processing, pp. 558-569,
Springer, 2015.

Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson, and D. Ku-
dithipudi, “Deep positron: A deep neural network using the posit number system,”
in 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1421-1426, TEEE, 2019.

J. Lu, S. Lu, Z. Wang, C. Fang, J. Lin, Z. Wang, and L. Du, “Training deep neural
networks using posit number system,” arXiv preprint arXiv:1909.03831, 2019.

Y. Uguen, L. Forget, and F. de Dinechin, “Evaluating the hardware cost of the posit
number system,” in 2019 29th International Conference on Field Programmable
Logic and Applications (FPL), pp. 106-113, IEEE, 2019.

H. Nakahara and T. Sasao, “A deep convolutional neural network based on nested
residue number system,” in FPL, IEEE, 2015.

K. Anitha, T. Arulananth, R. Karthik, and P. B. Reddy, “Design and implementation
of modified sequential parallel rns forward converters,” International Journal of
Applied Engineering Research, vol. 12, no. 16, pp. 6159-6163, 2017.

R. de Matos et al., “Efficient implementation of modular multiplication by con-
stants applied to rns reverse converters,” in ISCAS, IEEE, 2017.

E. B. Olsen, “Rns hardware matrix multiplier for high precision neural network
acceleration:" rns tpu",” in Circuits and Systems (ISCAS), 2018 IEEE International
Symposium on, pp. 1-5, IEEE, 2018.

H. Nakahara and T. Sasao, “A high-speed low-power deep neural network on
an fpga based on the nested rns: Applied to an object detector,” in Circuits and
Systems (ISCAS), 2018 IEEE International Symposium on, pp. 1-5, IEEE, 2018.

V. Krasnobayev, A. Yanko, and S. Koshman, “A method for arithmetic comparison
of data represented in a residue number system,” Cybernetics and Systems Analysis,
vol. 52, no. 1, pp. 145-150, 2016.

Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks,” ACM SIGARCH Computer Architec-
ture News, vol. 44, no. 3, pp- 367-379, 2016.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 27,2022 at 18:05:01 UTC from IEEE Xplore. Restrictions apply.

