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Abstract. In this paper, morphological operations on hexagonal lattices
and regular hexagonal regions are applied to 2D parallel beam comput-
erized tomography (CT) image denoising. To show some denoising ef-
fects of the morphological operations, for an input image, we add certain
amount of noise to get the noised image; and perform Radon transform
and inverse Radon transform on the noised image to obtain a CT im-
age. To compare hexagonal lattices with square lattices fairly, the CT
image is resampled to an image defined on a certain randomized grid,
which is in turn resampled to an image defined on a hexagonal lattice
and an image defined on the corresponding square lattice (with the same
sampling rate), respectively. For the morphological operations, we use
a structuring element defined on a hexagonal lattice and a structuring
element defined on a square lattice such that those two structuring ele-
ments have the same number of ones. Each of those two images performs
an erosion with the corresponding structuring element. Then use those
two images as masks and use the two corresponding eroded images as
makers to perform morphological image reconstructions to obtain the
two reconstructed images. Finally, both usual and Phantom images are
used as test images. For many different tested noise levels, the output
data show that the image reconstructed on the hexagonal lattice is usu-
ally more similar to the input image than the one reconstructed on the
square lattice.

Keywords: Hexagonal lattices - morphological reconstruction - com-
puterized tomography - image segmentation.

1 Introduction

As in [1] by Zheng, R, Z, N denote the set of real numbers, integers, and natural
numbers, respectively. Let [|x|| denote the norm of x for any x € R?. If u, v € R?
such that ||u|| = ||v|| and the angle between u and v is 60° or 120°, then the set
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2 X. Zheng

{ki-u+ko-v: ki, ko €Z} is called a hezagonal lattice generated by u and v.
The two numbers k1 and k5 are called the affine coordinates of the lattice point
k1-u+ky-v. If ||u|| = ||v] and the angle between them is 90°, then they generate
a square lattice, which is a 2D Clartesian lattice. The usual 2D image processing
is done on a square lattice for the discretization of a geometric object. However,
hexagonal lattices have advantages over square lattices in some aspects. For
example, in a hexagonal lattice, each lattice point has six equidistant neighbors;
each Voronoi cell is well-connected to six adjacent Voronoi cells.

If ||u|| = ||v| and the angle between u and v is 120°, then for each n € N let
En:{kl-u+k2-v: ki, ko EZ,|]€1| §n|k2\ Sn,|k1 —/{72| S’/L}

As in [2,3] by Zheng, =), is called a regular hexagonal structure (RHS) with
parameter n. Fig. 1 in [2] shows the geometric structures of Z5. =, is actually
a discretization of a regular hexagonal region. As pointed out by Zheng and Gu
at Section 6 in [4], the domain of a 2D computerized tomography (CT) image
may be assumed to be circular because of rotations of CT machines. In some
situations, the 2D region to be scanned may be embedded into a regular hexago-
nal region more compactly than the corresponding square region. Hence 2D CT
image reconstruction on =, may produce a smaller set of data and better image
quality than the usual image reconstruction on a square region. Furthermore, as
shown in [2] by Zheng or in [5] by Li, regular hexagonal structures allow efficient
pixel indexing and storage schemes for image processing on hexagonal lattices.
Because morphological operations are important tools for image processing, in
this paper, we perform computer simulations to show certain denoising effects
of morphological reconstruction for CT images defined on RHSs.

(0,;) (1.;3) (2.;5) (3.;)
(-1?2) (0-;) (1 ,;) (2,.2) (3=;)

(-271) (-171) (0-,;) (1-;) (2-;) (3,;)
(-3?0) (-2?0) (-170) (0,:)) (1 ,EJ) (2.:)) (3.;))
(-37-1) (-2?-1) (-1?-1) (0:1) (1:1) (2:1)
(-3?—2) (-27-2) (-17-2) (0:2) (1 -:2)

(-3-8)  (2:8) (1,:3) (0-9)

Fig. 1. The lattice points of =3 and their affine coordinates.
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Simulations for denoising effect of morph. recon. on hex. grids 3

2 Morphological Operations on Regular Hexagonal
Structures

Morphological operations on the usual Cartesian lattices can be found in ref-
erences such as [6] by Serra, [7] by Shih, [8] by Bartovsky et al., and [9] by
Bartovsky. They are important in some image processing tasks such as filter-
ing and segmentation. In [2], Zheng defined morphological operations for images
defined on RHSs and provided some efficient computational algorithms for the
computation of dilations and erosions. Let us review some of those definitions in
the following.

For each integer m > 0, a binary image defined on the RHS =, is just
an indicator function b on a subset of S of =y, i.e., b(s) = 1 for each s € S
and b(s) = 0 for each s ¢ S. Hence, the binary image can be just denoted
as S. For any m,n € N, the dilation and erosion of the binary image =, by
the structuring element =,, are denoted as =, @ =, and =,,0=,, respectively.
Thus, =, P =, ={p+9q: p€ Z,q€ =,} and

En05,={peZ,: ptqe =, foreachqe Z,,}.

Let f be a greyscale image defined on =),. The greyscale dilation and greyscale
erosion of f by the structuring element =), are defined to be [0z, (f)](p) =
maz{f(p+q): q€ =} and [ez, (f)](p) :=min{f(p—q): q€ =Z,} for each
p € =, respectively. Efficient algorithms for the computation of [d=, (f)] and

[ez, (f)] are shown in [2] by Zheng.

3 Morphological Reconstruction for Hexagonal CT
Images and Certain Denoising Effects

The concept of morphological image reconstruction for Cartesian lattices can be
found in references such as [10] by Vincent, [11] by Ledda, [12] by Vartak and
Mankar, and [13] by Chudasama et al. Given two images M and N such that
M > N (by elementwise comparisons), the morphological reconstruction is the
process of dilations from N under M until idempotence. The morphologically
idempotent image from the dilations is called the morphologically reconstructed
image. The two images M and N are called the mask and the marker of the
reconstruction, respectively. In this section, we show some procedures and certain
denoising effects for the morphological operations on RHSs versus square lattices
for CT images.
Let SE4 be the structuring element represented by the matrix

(00111007
0111110
1111111

SE,= 1111111
1111111
0111110

10011100 ]
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4 X. Zheng

To fairly compare hexagonal lattices with square lattices for morphological re-
construction, we use =3 as the structuring element for hexagonal lattices because
both SE, and the indicator function of =5 (as shown in Fig. 1) have 37 ones.

Let s = ,/\%, u=s-[1,0, v=s- {—%, ‘/Tﬂ, and let {2 be the hexagonal

lattice generated by u and v. Obviously the angle between u and v is 120°, and
the area of the Voronoi cells of {2 is 1. Hence the hexagonal lattice {2 and the
Cartesian lattice Z? have the same sampling rate on the 2D space R2.

In Matlab, a usual image is defined on a square lattice and is represented
by a matrix M = (m, ;), where m; ; denotes the image value at the coordi-
nate [j,4] whose z coordinate is j and y coordinate is i. To perform the re-
sampling among the square lattices, the corresponding hexagonal lattices, and
certain random grids for images represented by matrices, we need the follow-
ing notations. For any n € N, let r = 251 O, = {[z,y] € R? : 2% +¢? <r?},
Jo={z—"H2: zeNand 1<z <n}, (J.)> = {[z,y]: 2 € J.and y € J.},
and P = (J.)?>(C,. Then let m = {’%] and Q = =, C,. Let A, cir, Bs.cirs

As,cir,Rand, a0d B cir Rand be the 1D vectors having the same length Ly such
that

P= {[As,Ci'r'(i)a B&Ci’r(i)} 01 <:< Ls}»
As,Cir,Rand(i) = As,cw(i) +0.98 - (rand — 05)

where rand is the command (as in Matlab) generating a random number between
0 and 1, and

Bs,Ci'r,Ra'rzd(i) = Bs,cw(i) + 0.98 - (rand — 05)

Also let Ah,Cim Bh’cz',r, Ah,Cir,Rand, and Bh,Cir,Rand be the 1D vectors having
the same length L; such that

Q = {[An.cir(?),Bh,cir(1)] 1 1 <i<Lyp},

Ah,Cz‘r,Rand(i) = Ah,cw(f) +0.98 - (Ta’l’Ld — 0.5),

and Bp,cir.Rand(!) = Bhr.cir(i) + 0.98 - (rand — 0.5). Now we apply the steps
in the following Algorithm 1 to show certain denoising effects of morphological
reconstructions on RHSs for 2D CT images.

Algorithm 1: The denoising effects for morphological reconstruction on square
lattices versus hexagonal lattices.

Input: A greyscale image M, which is resampled to the size 1024 by 1024.
Output: The dissimilarity measures for morphological reconstruction on the
square lattice Z2 versus the hexagonal lattice 2.

1) Because we need to use SE4 and =35 as structuring elements, the size of images
should not be small. For any rectangular 2D Cartesian image (in greyscale), resize
it to a 1024 by 1024 image; and denote the resized image as Ij.

2) Add certain amount of noise to Iy, and denote the noised image as I;. For
example, we can add Salt & Pepper noise or Gaussian noise to Ij.

3) Let © = {0°,1°,2°,...,179°} and perform Radon transform on I with
directions specified by angles in © to get the sinogram.
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Simulations for denoising effect of morph. recon. on hex. grids 5

4) Let the output image size be the same as the size of I; and apply the
inverse Radon transform on the sinogram with the linear interpolation method,
Ram-Lak filter, and angles in © to obtain the output image I».
5) Letr = ";17 and let X, and Y, be two n by n matrices such that each
row of X, is equal to J. and each column of Y, is equal to the transpose of
J.. To fairly compare hexagonal lattices with square lattices for morphological
operations, we resample the two images Iy and I (defined on the coordinates
specified by X, and Y;) into the two images Iy rand,cir and Iz rand,cir (defined
on the coordinates specified by As cir,Rand a11d Bs cir Rand) respectively, where
As Cir.Rand and Bg cir rana are defined before and represent the corresponding
sets of z and y coordinates of P := (J.)?()C. For example, in Matlab, the
resampling processes can be done as the following.

IO,ra,nd,Cir - C]T"]d(lm (XT(:)v YT(:)7 IO(:)a Bs,Cir,Randa As,Cir,Randal linear’) )

IQ,’rund,C’i’r' = griddata (X’r<:)7 )/I()7 12(3)7 Bs,Ci'r,Randa As,C’i’r',Randvl linear’) .
6) Let Aj cir and By, cir be as defined before and represent the correspond-
ing sets of z and y coordinates of Q := =, C,, respectively. So are A, cir
and B cir for P. We resample the image Iy rgnd,cir into the two images Sy
(defined on the coordinates specified by B cir and Ag cir) and Hey, (defined
on the coordinates specified by By, cir and Ay, cir). We also resample the image
I5 rand,cir into the two images Scir, Noised (defined on the coordinates specified
by Bs,cir and As cir) and Heir Noised (defined on the coordinates specified by
By, cir and Ap,cir), respectively. In Matlab, the resampling processes can be
done as the following.

Frana = scatterInterpolant (Bs ciry As.cirs 1o, Rand,cir, linear’, none’) ;
FNoised,Rand = scatterInterpolant (Bs cir, As,cir, 12, Rand,cir, linear’, none’) ;
SCi'r‘ = FRand (Bs,Cir» AS,CiT) ;SC'ir,Noised = FRand,Noised (BS,CiT7 As,Cir) )
Hcir = Frand (Bh,cirs An,cir) s Hoir,Noised = Frand, Noised (Bh,cirs An,cir) -
7) Using zero paddings, extend Scir Noised 10 SNoisea that is defined on (J.)?%;
and extend Hcir Noised t0 Hnoised that is defined on =,,.
8) Let SNoised, Eroded be the morphologically eroded image from Syeiseq using
the structuring element SFEy, and let Hnoiscd, Eroded D€ the eroded image from
Hpyoiseq using the structuring element =3 on the hexagonal lattice 2.
9) Let R, be the morphologically reconstructed image using Snoised, Eroded 83
the marker and Syoiseq as the mask; and let Rj be the reconstructed image on
the hexagonal lattice (2 using Hnoised, Eroded 85 the marker and Hoiseq as the
mask.
10) Let Rs i and Ry cir be the 1D vectors corresponding to Rs and Ry,
restricted to the circular region C., respectively.
11) Finally compute the dissimilarity measures between R i and Scyr, and
the dissimilarity measures between R cir and Hcejr based on the Ly and Lo
norms, which are used in [14] by Kim et al. and in [15] by Nourian and Aah-
madzadeh, respectively. In Matlab, the code can be
df L1s,rs = norm (Scir — Rs,cir, 1) ;df L1 gy = norm (Hei — Ry, cir, 1) 5
df L2g gs = norm (Scir — Rs.cir,2) ;df L2y gn = norm (Heir — Ry cir, 2).
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6 X. Zheng

We also computed several dissimilarity measures discussed in [16] by Gosh-
tasby including Pearson correlation coefficient, Tanimoto measure, minimum
ratio, and intensity ratio variance. Let F' and G be two images of the same size;
and assume that F' and G are represented by 1D column vectors of length L.
The Tanimoto measure between F and G is denoted as Tys (F, G) and defined by
Ty (F,Q) = M—Cﬁ% The Pearson correlation coefficient is usually called
correlation coefficient.

Let F; and G; be the ith component of F' and G. For each integer i with
1 <i< L, if F; = G, let r; = 1; otherwise, let r;, = 0 if F; - G; = 0 and

let r; = min g’;, %} if F; - G; # 0. The minimum ratio between I’ and G is

denoted as Mg (F,G) and defined by My (F,G) := + ¢ r;.

The noised square image The image obtained from radon and iradon

1000 —
-1 -0.8 -06 -04 -0.2 0 02 04 06 08 1 100 200 300 400 500 600 700 800 900 1000

Reconstructed IM from eroded Hex IM

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

Fig. 2. Test of Algorithm 1 using an abdominal CT scan image and salt & pepper
noise with density 0.05. The top left is the original noised image; the top right is the
output image after Radon and inverse Radon transforms; the bottom left shows the
morphologically reconstructed image using the square lattice; and the bottom right
shows the morphologically reconstructed image using the hexagonal lattice.

Let € be a small positive number (in our computations we let ¢ = 1078). If I/
or G have negative components, then let ¢ be the difference between 10~8 and

the minimal component. Finally let r; = g? +i for each integer ¢ with 1 <1 < L.
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Simulations for denoising effect of morph. recon. on hex. grids 7

Table 1. Using an abdominal CT scan image as the input of Algorithm 1 and using
salt & pepper noise with density 0.05 in Fig 2, this table shows the corresponding
dissimilarity measures between Pci,. and Qcir that denote the original and the mor-
phologically reconstructed images restricted to the circular region respectively, where
the last row is the dissimilarity measures for the hexagonal lattice.

Dissimilarity Measures|L1 Norm |Le Norm |intRatioV |PeCorr|TanM |minRatio
d (Scir, Rs,cir) 8.658 - 10°[1.333 - 10*(5.679 - 10™°[0.971  [0.981 [0.785
d(Hcir, Ri,cir) 8.077 - 10°1.273 - 10*(2.910 - 10™[0.974  [0.983 [0.795

The noised square image

Reconstructed IM from eroded square IM

100
200
300
400
500
600
700
800
900

1000
100 200 300 400 500 600 700 800 900 1000

1000

The image obtained from radon and iradon

100 200 300 400 500 600 700 800 900 1000

Reconstructed IM from eroded Hex IM

100 200 300 400 500 600 700 800 900 1000

Fig. 3. Test of Algorithm 1 using a usual image and salt & pepper noise with density
0.20. The top left is the original noised image; the top right is the output image af-
ter Radon and inverse Radon transforms; the bottom left shows the morphologically
reconstructed image using the square lattice; and the bottom right shows the morpho-
logically reconstructed image using the hexagonal lattice.

Table 2. The dissimilarity measures between Pc;r and Qcsr when the salt & pepper
with density 0.2 as in Fig 3, where Pc; and Q¢ mean the same as Table 1.

Dissimilarity Measures|L; Norm [Ls Norm |intRatioV |PeCorr|TanM |minRatio
d (Scir, Rs,cir) 1.7918 - 107[2.6152 - 10*[2.0636 - 10"°[0.8754 [0.9278 [0.6858
d(Hcir, Ru.cir) 1.6728 - 107[2.4911 - 10%]1.6377 - 10™°[0.8897 [0.9337[0.6977
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8 X. Zheng

The intensity-ratio variance from F to G is denoted as R, (F,G) and defined
by R, (F,G) := $ XL (r; — 7)% the intensity-ratio variance between F and G
is denoted as I, (F,G) and defined by I, (F,G) := 3 (Ry(F,G) + R,(G, F)).

We tested Algorithm 1 using two different CT images and a Phantom image
with three different kinds of noise. The input image of Algorithm 1 for Fig. 2
and Table 1 is an abdominal CT scan image downloaded from the link of CT
scans in the website sansumclinic.org; and the input for Fig. 3 and Table 2 is
a 2D CT scan image downloaded from a blog link of the website sinuswellbe-
ing.com. In Step 2 of Algorithm 1, salt & pepper noise is added (in Step 2 of
Algorithm 1) with noise density 0.05 and 0.2 to generate Figs. 1 and 2, respec-
tively. Fig. 2 shows the noised image, the image after Radon and inverse Radon
transforms, the morphologically reconstructed image using the square lattice,
and the morphologically reconstructed image using the hexagonal lattice. Let
intRatioV, PeCorr, TanM, and minRatio denote the intensity-ratio variance,
Pearson correlation coefficient, Tanimoto measure, and minimum ratio, respec-
tively. Table 1 shows the results of the six dissimilarity measures that we have
introduced. Smaller values for the dissimilarity measures in terms of L; norm,
Lo norm, and intensity-ratio variance imply that F' and G are more similar, but
bigger values for the dissimilarity measures in terms of Pearson correlation co-
efficient, Tanimoto measure, and minimum ratio imply that F' and G are more
similar.

When the salt & pepper noise density is increased to 0.2 from 0.05, the
corresponding results are shown in Fig. 3 and Table 2. When the usual image
is replaced by the 1024 by 1024 Phantom image with salt & pepper noise at
density 0.05, the corresponding results are shown in Fig. 4 and Table 3. We
also tested Algorithm 1 using a Phantom image with Gaussian noise as well as
an abdominal CT scan image with Poisson noise; and the results are shown in
Figs. 5 and 6 along with Tables 4 and 5.

Table 3. The dissimilarity measures between Pc;, and Qcir when a Phantom image
is used as the input of Algorithm 1 and when the salt & pepper noise with density 0.05
is applied as in Fig 4, where Pci» and Qcir mean the same as Table 1.

Dissimilarity Measures|L; Norm |Le Norm|intRatioV |PeCorr|TanM |minRatio
d (Scir, Rs,cir) 3.498 - 10%53.8100 [1.556 - 10'1[0.9673 [0.9525 [0.4495
d(Hcir. Ru,cir) 3.155 - 10%[50.8512 [1.347 - 10'7[0.9719 [0.9571{0.4612

4 Summary

We have developed an algorithm to show certain denoising effects of morpho-
logical image reconstruction on hexagonal versus square lattices, and tested the
algorithm using both CT and Phantom images with three different kinds of
noise. As shown in the figures, the morphologically reconstructed image using
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The noised square image

Reconstructed IM from eroded square IM
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Fig. 4. Test of Algorithm 1 using a Phantom image and salt & pepper noise with
density 0.05. The top left is the original noised Phantom image; the top right is the
output image after Radon and inverse Radon transforms; the bottom left shows the
morphologically reconstructed image using the square lattice; and the bottom right
shows the morphologically reconstructed image using the hexagonal lattice.

Table 4. The dissimilarity measures between Pc;, and Qcir when the input of Algo-
rithm 1 is a Phantom image and when Gaussian noise is added as in Fig 5, where Pc;,
and Q¢ir mean the same as Table 1.

Dissimilarity Measures|L1; Norm |Ls Norm|intRatioV |PeCorr|TanM |minRatio
d (Scir, Rs,cir) 2.7494 - 10%(39.7424 [4.9319 - 10'°|0.9842 [0.9736 [0.4777
d (Hcir, Rh,cir) 2.5685 - 10*(37.9757 [2.3873 - 10'°]0.9859 [0.97580.4820

Table 5. The dissimilarity measures between Pci, and Qcsr when the input of Algo-
rithm 1 is an abdominal CT scan image and when Poisson noise is added as in Fig 6,
where Pci, and Qcir mean the same as Table 1.

Dissimilarity Measures|L; Norm |Ls Norm|intRatioV |PeCorr|TanM |minRatio
d (Scir, Rs,cir) 3.1031 - 10°[4878.3  [2.8735-10"%[0.9972 [0.99730.7458
d (Hcir, Ru,cir) 3.0063 - 10°(4785.7 [2.3756 - 10"%[0.9974 [0.9974(0.7525

the hexagonal lattice visually is usually better than the one using the corre-
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10 X. Zheng

The noised square image The image obtained from radon and iradon
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Fig. 5. Test of Algorithm 1 using a Phantom image and Gaussian noise. The top left is
the original noised Phantom image; the top right is the output image after Radon and
inverse Radon transforms; the bottom left shows the morphologically reconstructed
image using the square lattice; and the bottom right shows the morphologically recon-
structed image using the hexagonal lattice.

sponding square lattice. We also computed several usual dissimilarity measures.
As shown in the tables, for the hexagonal lattice, the L; norm, Lo norm, and
the intensity-ratio variance are smaller; the Pearson correlation coefficient, Tan-
imoto measure, and minimum ratio are bigger. All values in the tables imply
that, the image reconstructed on the hexagonal lattice {2 is usually more simi-
lar to the input image (before adding noise) than the one reconstructed on the
corresponding square lattice Z?; hence the morphological image reconstruction
effect for the hexagonal lattice is better than or almost the same as the effect for
the corresponding square lattice. Especially, the hexagonal lattice exhibits very
good denoising effects for salt & pepper noise and Gaussian noise. We performed
the experiments for many times; the experimental results are usually consistent.

As mentioned in the introduction, the 2D region to be scanned may be em-
bedded into a regular hexagon more tightly than into a square. A RHS provides
a good discretization of a regular hexagon. As shown in [17] by Knaup et el., and
[18] by Mueller and Xu, CT image reconstruction from sinograms using hexag-
onal lattices is more effective than the reconstruction using the corresponding
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Simulations for denoising effect of morph. recon. on hex. grids 11

The noised square image The image obtained from radon and iradon
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Fig. 6. Test of Algorithm 1 using an abdominal CT scan image and Poisson noise.
The top left is the original noised Phantom image; the top right is the output image
after Radon and inverse Radon transforms; the bottom left shows the morphologically
reconstructed image using the square lattice; and the bottom right shows the morpho-
logically reconstructed image using the hexagonal lattice.

square lattices. During the actual CT image formation, we may reconstruct CT
images on both hexagonal and square lattices from the same sinogram as usual,
and perform image processing on the two different kinds of lattices, respectively.
Because the advantages of hexagonal lattices, the reconstructed image on the
hexagonal lattice may be beneficial for some tasks such as image deniosing or
segmentation. Therefore, CT image reconstruction (from sinograms) and the
morphological reconstruction using RHSs may be applied to CT imaging. The
success of the 2D situation can usually be generalized to 3D, and the 3D situa-
tion may achieve better effects. In the future, we may develop efficient algorithms
for image reconstruction and morphological operations on 3D optimal sampling
lattices and efficient domains as in [4] or develop the corresponding algorithms
for modern helical CT.
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