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UniPose+: A unified framework for 2D and 3D
human pose estimation in images and videos

Bruno Artacho, Member, IEEE, and Andreas Savakis, Senior Member, IEEE

Abstract—We propose UniPose+, a unified framework for 2D and 3D human pose estimation in images and videos. The UniPose+
architecture leverages multi-scale feature representations to increase the effectiveness of backbone feature extractors, with no
significant increase in network size and no postprocessing. Current pose estimation methods heavily rely on statistical postprocessing
or predefined anchor poses for joint localization. The UniPose+ framework incorporates contextual information across scales and joint
localization with Gaussian heatmap modulation at the decoder output to estimate 2D and 3D human pose in a single stage with
state-of-the-art accuracy, without relying on predefined anchor poses. The multi-scale representations allowed by the waterfall module
in the UniPose+ framework leverage the efficiency of progressive filtering in the cascade architecture, while maintaining multi-scale
fields-of-view comparable to spatial pyramid configurations. Our results on multiple datasets demonstrate that UniPose+, with a HRNet,
ResNet or SENet backbone and waterfall module, is a robust and efficient architecture for single person 2D and 3D pose estimation in
single images and videos.

Index Terms—Human Pose Estimation, 3D Human Pose Estimation, Computer Vision, Deep Learning.

F

1 INTRODUCTION

HUMAN pose estimation is an important task in com-
puter vision that has motivated the development of

several approaches, in 2D [61], [43], [59] and 3D [55], [75],
[1]; on a single frame [5] or a video sequence [18]; for a single
[62] or multiple subjects [10]. Pose estimation is challenging
due to the large number of degrees of freedom in the
human body mechanics and the frequent occurrence of joint
occlusions. To deal with occlusion, many methods rely on
statistical and geometric models to estimate occluded joints
[46], [44]. Another approach is the utilization of a library of
known poses, known as anchor poses [55], but this could
limit the generalization power of the model and the ability
to handle unforeseen poses.

Motivated by advances in semantic segmentation archi-
tectures [14] and [68], and expanding upon state-of-the-art
results obtained by UniPose [3] on 2D pose estimation,
we propose UniPose+, an expanded and improved pose
estimation framework for images and videos in both 2D and
3D, consisting of only a single stage and capable of obtaining
accurate results without requiring postprocessing. A main
component of our architecture is the multi-scale feature
representation with the Waterfall Atrous Spatial Pooling
(WASP) module which combines the cascaded approach for
atrous convolution with the larger Field-of-View (FOV) ob-
tained from the parallel configuration of the Atrous Spatial
Pyramid Pooling (ASPP) module [13].

Our unified approach predicts the location of joints using
contextual information due to the multi-scale approach used
in our network. With our contextual approach, our network
includes the information of the entire frame and, therefore,
does not require post analysis based on statistical or geomet-
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Fig. 1. 2D and 3D Pose estimation examples with our UniPose+ method.

ric methods. Examples of pose estimation obtained with our
UniPose+ method for both 2D and 3D are shown in Figure
1. The main contributions of this paper are the following.

• We propose the UniPose+ framework, a single-pass
multi-scale approach that achieves state-of-the-art
results for single person 2D and 3D human pose es-
timation in an end-to-end architecture incorporating
depth regression into the pose estimation network.

• The UniPose+ framework achieves an increase in
performance with Gaussian heatmap modulation of
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the multi-scale decoder for a more accurate represen-
tation of joint locations and reduction of the reprojec-
tion error during the decoder stage of the network,
without requiring anchor poses or post processing.

• We extend the waterfall-based 2D UniPose+ ap-
proach to UniPose+LSTM by adopting a linear se-
quential Long Short-Term Memory (LSTM) configu-
ration and obtain state-of-the-art results for temporal
human pose estimation in video.

2 RELATED WORK

Early works on human pose estimation from a single image
focused on the detection of joints [51], [67]. In recent years,
deep learning methods relying on Convolutional Neural
Networks (CNNs) have achieved superior results [61], [62],
[10], [59], [55]. The popular Convolutional Pose Machine
(CPM) [62] proposed an architecture that refined joint de-
tection via a set of stages in the network. Building upon
[62], Yan et al. integrated the concept of Part Affinity Fields
(PAF) resulting in the OpenPose method [10].

Multi-scale representation has been successfully used in
backbone structures for pose estimation. Stacked hourglass
(HG) networks [43] use cascaded structures of the hourglass
method for the pose estimation task. Expanding on the
hourglass structure, the multi-context approach in [19] relies
on an hourglass backbone to perform pose estimation. The
original backbone is augmented by the Hourglass Residual
Units (HRU) with the goal of increasing the receptive FOV.
Postprocessing with Conditional Random Fields (CRFs) is
used to assemble the relations between detected joints.
However, the drawback of CRFs is increased complexity
that requires high computational power and reduces speed.

The High-Resolution Network (HRNet) [59] includes
both high and low resolution representations. HRNet bene-
fits from the larger FOV of multi resolution, a capability that
we achieve in a simpler fashion with our WASP module. An
analogous approach to HRNet is used by the Multi-Stage
Pose Network (MSPN) [37], where the HRNet structure is
combined with cross-stage feature aggregation and coarse-
to-fine supervision.

More recently, the HRNet structure was combined with
multi-resolution pyramids in [17] to further explore multi-
scale features. The Distribution-Aware coordinate Represen-
tation of Keypoints (DARK) method [71] aims to reduce loss
during the inference processing of the decoder stage when
using an HRNet backbone.

Other works attempt to leverage contextual information
into pose estimation. The Cascade Prediction Fusion (CPF)
[72] uses graphical components in order to exploit the
context for pose estimation. Similarly, the Cascade Feature
Aggregation (CFA) [58] aims to use semantic information to
detect pose with a cascade approach. Generative Adversar-
ial Networks (GANs) were used in [11] to learn dependen-
cies and contextual information for pose.

A drawback of some methods is that they require an
independent branch for the detection of the bounding box
of human subjects in the frame. LightTrack [45], for instance,
relies on a separate YOLO [53] architecture to perform the
detection of subjects prior to detecting joints. In a different
feamework, LCR-Net [55] has different branches for the

detection using Detectron [21] and the arrangement of joints
during classification.

2.1 Depth Regression
Most 3D pose estimation methods rely on regression to
generate 3D joint coordinates from 2D pose. Multi-scale ap-
proaches to depth estimation became popular for overcom-
ing the loss of pooling [20]. Hao et al. [23] initially made use
of atrous convolutions to access multiple scales for depth.
Analogously, [27] implements a multi-scale approach with
improved results by fusing feature scales, although it still
lacks in precision for more complex objects. Other methods
that use multi-scales include [15] and [65] which combines
the multi-scale approach with CRFs. Several networks rely
on leveraging information from the backbone to perform
both 2D pose and depth tasks in multi-scale approaches [64]
and [30].

2.2 Temporal Pose Estimation
For the task of pose estimation in videos, most methods
do not account for the temporal component and process
each frame independently. An additional challenge is the
occasional blurring resulting from the movement of the hu-
mans in the video. The main incentive for developing a pose
estimation method with a temporal component is to better
estimate joints during blurring or occlusion conditions using
information from previous frames.

Deepflow [63] used optical flow to better connect predic-
tions between frames. Another method that utilized optical
flow is Thin-Slicing [57], relying on both optical flow and a
spatio-temporal model. However, the increased complexity
of this model results in a significant increase in compu-
tational cost. The Chained Model [22] utilizes recurrent
networks to incorporate the temporal component. A simi-
lar concept was adopted by the LSTM Pose Machine [41]
approach, where the LSTM was used to augment memory
in the network.

2.3 Multi-Scale Feature Representations
A challenge with CNN-based semantic segmentation and
pose estimation methods is the significant reduction of res-
olution caused by pooling. Fully Convolutional Networks
(FCN) [39] addressed this problem by deploying upsam-
pling strategies across deconvolution layers that increase the
feature maps back to the dimensions of the input image.

In semantic segmentation, dilated or atrous convolutions
[13] are used to increase the size of the receptive fields
in the network and avoid downsampling in a multi-scale
framework. The ASPP approach assembles atrous convolu-
tions in four parallel branches with different rates, that are
combined by fast bilinear interpolation with an additional
factor of eight. This configuration recovers the feature maps
in the original image resolution. The increase in resolution
and FOV in the ASPP network can be beneficial for a
contextual detection of body parts during pose estimation.

The WASP module incorporates multi-scale features
without immediately parallelizing the input stream [4],
[3]. Instead, it creates a waterfall flow by first processing
through a filter and then creating a new branch. WASP
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Fig. 2. UniPose+ architecture for single frame 2D pose detection. The input color image of dimensions (HxW) is fed through the backbone and
WASP module to obtain 256 feature channels. The decoder module generates K heatmaps, one per joint.

also goes beyond the cascade approach by combining the
streams from all its branches and average pooling of the
original input to achieve a multi-scale representation.

2.4 3D Pose Estimation

The Localization, Classification, and Regression network
(LCR-Net) [55] extends pose estimation to 3D space via
depth regression. LCR-Net relies on a Detectron backbone
[21] for the detection of human joint locations. From these
locations, the method finds the best fit to predefined anchor
poses for the detected human poses. Finally, LCR-Net per-
forms a regression to estimate 3D coordinates in the image.
A drawback of this method is the limited set of anchor poses
available, which impose a limitation for the estimation of
unforeseen poses.

Similarly, PandaNet [6] also relies on anchor poses. An
expansion to the LCR-Net architecture was proposed by
LCR-Net++ [56]. This version improves pose estimation
performance by using additional synthetic training data.

Aiming to better associate joints into the 3D skeleton
without anchor poses, [32] relies on an autoencoder to
learn a latent pose representation and accounts for joint
dependencies. It also applies LSTM to exploit temporal
consistencies between frames.

The MonoCap method for 3D human capture [75] cou-
ples a CNN with a geometric prior in order to statisti-
cally determine the third dimension for pose using the
Expectation-Maximization algorithm. Similarly, [76] applies
a geometric constraint to regularize 3D predictions, exploit-
ing the correlations between 2D and 3D poses.

The baseline for 3D pose method [42] applies a feed-
forward network to overcome the errors associated with the
regression from 2D to 3D. The same regression is achieved
by [12] by combining state-of-the-art 2D pose estimation
architecture with a MoCap library with 3D pose data.
Pavlakos et al. [49] focused on refining of the coarse pose
estimation data through the network in order to reduce
error in the pose estimation. Further refinement of joint
detections was explored by [48] with the use of a weakly
supervised signal from ordinal depths to overcome the
lower availability of 3D labelled images and achieve a
competitive performance with CNN trained with accurate
3D joint coordinates.

Several approaches rely on the use of multiple cameras
for the geometric inference of the 3D pose through triangu-
lation. The work in [54] computes the FOV from the camera

angles during training to estimate the 3D pose via a direct
linear transform. Another approach to 3D pose is to rely on
part-specific architectures with architecture search [16].

An approach to the reconstruction of 3D poses is to
generate a mesh representation of the human body. The
Skinned Multi-Person Linear Model (SMPL) [40] estimates
the 3D model based on the skinning and blending of images
from 3D body scans. Following SMPL, the SPIN method [35]
uses a supervised network to learn the SMPL model of the
human body during training iterations. The Video Inference
for Body Pose (VIBE) method [34] trains the SMPL structure
to learn the body model and interpret the statics, physics,
and kinetics of the human body in videos. Aiming to lever-
age the human body mechanics, [66] uses the kinematics
structure of the human body to simplify the body structure.

Similarly, Pavllo et al. [50] applies dilated temporal
convolutions to correlate 2D keypoint detections between
frames. The method applies the concept of back-projection
to train the model with unlabeled video data in a semi-
supervised fashion. Further, Cai et al. [9] combined the in-
formation of temporal consistencies with the domain knowl-
edge of the human body using a combination of multi-scale
features and a graph-based representation to estimate 3D
pose in a sequence of frames.

To overcome the challenge of 3D pose estimation of
multiple targets in video, [25] applied LSTM to create a
sequence-to-sequence network that creates temporal con-
straints between frames. In another approach, [69], ap-
plies trajectory optimization and the Hungarian method to
resolve the 3D temporal assignment of individual poses.
MubyNet [70] aimed to optimize the occurrence of multiple
people for 3D pose by fusing the extracted information
from attention maps and the deep-auto-encoders for the
multitask of localization and grouping of people.

3 UNIPOSE+ ARCHITECTURE

We propose the UniPose+ framework, a unified framework
for human pose estimation tasks including 2D and 3D pose
estimation in images or videos. Improving upon previous
works, UniPose+ does not require separate branches for
bounding box and joint detections, and simultaneously
estimates 2D and 3D pose in an end-to-end architecture
with shared backbone. The UniPose+ framework performs a
unified detection of the bounding box and joints of a person,
as well as regression for the 3D coordinates of the joints.
Building upon the UniPose method for 2D pose [3], the
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Fig. 3. Waterfall architecture in the WASP module [4]. The inputs to the
WASP module are 1280 channels of ResNet features maps.

UniPose+ framework includes the multi-scale “Waterfall”
configuration and further improves the efficiency of joint
detection with the incorporation of Gaussian heatmap mod-
ulation at the decoder stage.

The first configuration of UniPose+ is the framework for
2D pose estimation in single images, which provides in-
creased accuracy over UniPose [3]. The processing pipeline
is shown in Figure 2. The input image is initially fed into
a deep CNN backbone. Unipose+ is a backbone agnostic
framework. To demonstrate its capability of improving ac-
curacy in a wide variety of backbones, we implement the
UniPose+ framework to accommodate a variety of back-
bones including HRNet [59], a modified ResNet-101 [24],
and SENet-152 [26].

The resultant feature maps are processed by a decoder
network that generates K heatmaps, one for each joint, with
the corresponding probability distributions obtained from
Softmax. Then the decoder performs bilinear interpolation
to recover the original resolution, followed by a local max
operation to localize the joints for 2D pose estimation. The
decoder in our network generates detections for both visible
and occluded joints. Additionally, the decoder generates a
bounding box detection without the use of postprocessing
or independent parallel branches.

The incorporation of the multi-level approach via the
WASP module and the Gaussian heatmap modulation dur-
ing interpolation allows the UniPose+ framework to more
widely explore feature representations without incorporat-
ing a larger backbone, such as the deeper ResNet-152, or
a heavier multi-stage architecture, such as Hourglass. The
modularity of the UniPose+ framework enables easier im-
plementation for reproducibility, and natural expansion to
3D pose estimation.

3.1 WASP Module

The WASP module generates an efficient multi-scale repre-
sentation that helps UniPose+ to achieve state-of-the-art re-
sults. The WASP architecture, shown in Figure 3, is designed
to leverage both the larger FOV of the ASPP configuration
and the reduced size of the cascade approach.

WASP relies on atrous convolutions to maintain a large
FOV, performing a cascade of atrous convolutions at in-
creasing rates to gain efficiency. In contrast to ASPP, WASP
does not immediately parallelize the input stream. Instead,
it creates a waterfall flow by first processing through a filter
and then creating a new branch. In addition, WASP goes
beyond the cascade approach by combining the streams
from all its branches and average pooling of the original
input to achieve a multi-scale representation. The WASP
module output fWASP is defined by the equation:

fWASP = K1~(
4∑

i=1

K1~(K1~(Kdi~fi−1))+AP (f0)) (1)

where ~ represents convolution, f0 is the input feature
map, fi is the feature map resulting from the ith atrous
convolution, AP is the 2D global average pooling operation
through the channels with filter dimension and stride of 1,
K1 andKdi

represent convolutions of kernels 1×1 and 3×3
with dilations of di = [6, 12, 18, 24], respectively. All feature
maps from the 4 branches are concatenated with the 2D
average pooling branch with pooling and kernel size equal
to one, averaging their channel dimension, resulting in 1,280
channels. The last convolution of kernel size 1 brings the
number of feature maps down to 256.

3.2 Decoder Module for 2D pose

Our 2D decoder module converts the score maps from the
WASP module to heatmaps corresponding to body joints
and the bounding box. Figure 4 shows the decoder archi-
tecture for an input color image of size (1280×720). The
decoder receives feature maps from WASP and low level
feature maps from the first block of the backbone. After
a max pooling operation to match the dimensions of the
inputs, the feature maps are concatenated and processed
through convolutional layers, dropout layers, bilinear inter-
polation to resize to the original input size and Gaussian
heatmap modulation to select the peak.

3.3 Gaussian Heatmap Modulation

Conventional interpolation or upsampling methods for the
decoding stage of the network result in an inevitable loss in
resolution and consequently accuracy, limiting the potential
of the network. Motivated by recent results with distribution
aware modulation [71], we include Gaussian heatmap mod-
ulation in our decoder module for training, validation, and
inference. The implementation of the Gaussian interpolation
allows the network to achieve sub-pixel resolution for peak
localization following the anticipated Gaussian pattern of
the feature response. This method results in a smoother
response and more accurate peak prediction for joints, by
eliminating false positives in noisy responses during the
joint detection.

We utilize a convolution operation of the interpolated
features map fD with a Gaussian kernel K , shown in
Equation (2), aiming to approximate the response shape to
the expected label of the dataset during training.

fG = K ~ fD (2)
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Fig. 4. Decoder module used in the UniPose+ pipeline. Assuming original image dimensions of (1280×720), the inputs to the decoder are the
channels from low level features layer of the backbone and channels of the WASP feature maps. The bilinear interpolation is used to bring the
high level feature dimensions to match the lower level features dimensions depending on the backbone selected. The output of the decoder is K
heatmaps corresponding to K joints, shown in the image example. Additionally, the decoder outputs heatmaps for the bounding box (not shown in
the image).

Fig. 5. Illustration of the Gaussian heatmap modulation process for
feature maps following the interpolation in the decoder.

where fG represent the feature maps after the Gaussian con-
volution operation. The behavior is learned and reproduced
by the network during validation and inference.

Following convolution with the Gaussian kernel, the
modulation of the interpolation output is scaled to fGs

by
mapping fG to the range of the response of the original
feature map fD using:

fGs
=

fG −min(fG)
max(fG)−min(fG)

∗max(fD). (3)

Our Gaussian heatmap modulation approach allows for
better localization of the coordinates during interpolation,
by overcoming the quantization error inherited from the
increase in resolution. Figure 5 demonstrates the modular-
ization of a feature map response used by UniPose+.

3.4 UniPose+LSTM for Pose Estimation in Video
The UniPose architecture was modified to UniPoseLSTM
for pose estimation in videos [3]. For video processing, it is
useful to leverage the similarities and temporal correlations
between consecutive frames. To operate in video processing
mode, the UniPose+ architecture is augmented by an LSTM
module that receives the final heatmaps from the previous
frame along with the decoder heatmaps from the current
frame. The pipeline of UniPose+LSTM is shown in Figure 6.
This network includes CNN layers following the LSTM to
generate the final heatmaps used for joint detection.

The UniPose+LSTM configuration allows the network
to use information from the previously processed frames,
without significantly increasing the total size of the network.
For both the single image and video configurations, our net-
work uses identical ResNet-101 backbone, WASP module,
and decoder. We evaluated the performance benefits due
to the temporal length of the memory component, when
using an LSTM for several frames. It was experimentally
determined that accuracy improves when incorporating up
to 5 frames in the LSTM, and a plateau in accuracy was
observed for additional frames.

3.5 UniPose3D for 3D Pose Estimation

We extend the UniPose+ framework to perform 3D pose
estimation from monocular images. We propose UniPose3D,
an end-to-end unified architecture for both 2D and 3D pose
estimation that does not require anchor poses. Our 3D
regression approach, inspired by [76], is based on depth
regression using multi-scale representations and 2D joint
coordinates.

The UniPose3D processing pipeline is shown in Figure 7.
Our proposed methodology is composed of the 2D UniPose
method combined with a depth regression module. After
the 2D coordinates for the joint locations are determined,
the additional depth dimension is estimated, resulting in a
concatenated output of pixel coordinates and depth.

The input image is initially processed through the back-
bone to extract high-level and low-level features. The output
feeds its high-level features to the WASP module, followed
by concatenating the low level-features with the WASP
module output. The resultant feature maps are processed
by a short decoder network that generates K heatmaps for
the 2D pose estimation output, one for each joint, with
the corresponding probability distributions obtained from
Softmax. The short 2D decoding stage is followed by a
3D regression stage that extracts the depth estimation for
the joints and generates a 3D pose detection without the
requirement of anchor poses.
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Fig. 6. UniPose+LSTM architecture for pose estimation in videos. The joint heatmaps from the UniPose+ decoder are fed into the LSTM along with
the final heatmaps from the previous LSTM state. The convolutional layers following the LSTM reorganize the outputs into the final heatmaps used
for joint localization.

Fig. 7. UniPose3D architecture for 3D pose estimation. The input color image of size (H×W) is fed through the backbone and WASP module to
obtain feature channels at reduced resolution by a factor of 8. The bilinear interpolation is used to bring the high level feature dimensions to match
the lower level features dimensions depending on the backbone selected. The concatenation of the WASP output and low level features from the
backbone are fed in the short decoder and 3D regression module. The decoder generates K heatmaps, one per joint for the 2D pose estimation
at the original resolution. For the specific case of the Human3.6M dataset, there are K=17 joints. The 3D regression branch outputs the 3D pose
estimation.

3.6 Depth Regression Module
For depth regression, we utilize a combination of heatmaps
for 2D joints with lower level features extracted from the
backbone and fed in our 2D decoder. The integration of
the 2D joint detections with intermediate feature maps
and multi-level features from the WASP module allows a
more complete representation of the semantic information
form the backbone. The 3D depth regression utilizes a loss,
similar to [76], that is a regression with Euclidean loss for
the 3D component given as follows.

Ldepth = λreg||Ydep − Ŷdep||2 (4)

where Ldepth is the depth regression loss and λreg is the
regularization term for regression loss.

4 DATASETS

We performed experiments on the following datasets. Two
datasets are composed of single images: Leeds Sports Pose
(LSP) [31] and MPII [2]; one dataset consists of video se-
quences: Penn Action [73]; and the Human3.6M dataset is

used for 3D pose estimation. The Leeds Sports Pose (LSP)
dataset [31] was initially used for single person pose estima-
tion. Images for LSP were collected from Flickr for a variety
of individuals performing sports activities. The dataset is
composed of 1,000 images for training and 1,000 images for
testing with 14 labelled keypoints in the entire body. The
LSP dataset includes lower variation in the data, allowing a
good initial assessment of the network performance for the
task of single person pose estimation.

The MPII [2] dataset contains approximately 25,000 im-
ages of annotated body joints of over 40,000 subjects. The
images are collected from YouTube videos in 410 everyday
human activities. The dataset contains frames with 2D and
3D joints annotations, head and torso orientations, and body
part occlusions. Another feature of the MPII dataset is that
it contains previous and following frames, although it lacks
labelling for those frames.

The Penn Action [73] dataset contains 2,326 video se-
quences of 15 different activities including sports, athletic
activities, and playing instruments. The dataset was used to
evaluate the performance of our architecture for temporal
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pose estimation and joint tracking, i.e., the estimation of
pose in a frame while contextually using previous detections
to refine the result.

Human3.6M dataset [28] is a large scale dataset for 2D
and 3D pose estimation training and testing. The dataset
consists of 3.6 million human poses captured in a controlled
laboratory environment with 11 actors performing a set of
17 different everyday actions. The images are extracted from
videos captured from 4 cameras in different positions from
the front and back of the individuals using a MoCap system.

In order to better train our network for joint detection,
ideal Gaussian maps were generated at the joint locations in
the ground truth. These maps are more effective for training
than single points at the joint locations, and they train
our network to generate Gaussian heatmaps corresponding
to the location of each joint. Gaussians with different σ
values were considered and a value of σ = 3 was adopted,
resulting in a well defined Gaussian curve for both the
ground truth and predicted outputs. This value of σ also
allows enough separation between joints in the image.

5 EXPERIMENTS

The training, validation and testing of UniPose+ was based
on the procedures and metrics outlined in each dataset. For
LSP and MPII datasets, data augmentation during training
included horizontal flip, rotation, and random crop.

For 3D pose estimation, similarly to [76], utilizing a
network pre-trained on 2D pose estimation was found to be
more effective compared to random initialization for train-
ing. We performed pre-training of the UniPose3D method
for the specific task of 2D pose using the MPII dataset. Using
the weights trained for the 2D task, we then incorporate the
3D regression module to the architecture resulting in a closer
representation of the 3D pose estimation.

The training procedure for UniPose3D consists of ini-
tially training the network on 140 epochs for 2D pose
estimation on the MPII dataset, following the first step of
the protocol proposed by [76]. We then trained UniPose+
for 60 epochs on the Human3.6M dataset without the use of
any geometric constraints.

The training process in [76] continues training the net-
work for additional 15 epochs with the introduction of
the geometric constraint induced loss for regularization of
depth prediction. The geometric constraint loss is calculated
for the length li of each limb i. The limb lengths are normal-
ized in the Human3.6M dataset, obtaining the normalized
value from li.

Lgeo =
∑
i

1

|li|
∑
j∈li

(
lj

lj
− rj)2 (5)

where the average normalized length of the limb is given as

ri =
1

|li|
∑
j∈li

lj

lj
. (6)

The new depth regression loss Ldepth is then given by the
following equation.

Ldepth =

{
λreg||Ydep − Ŷdep||2, for 3D regression
λgeoLgeo, for 2D joints

(7)

where λreg is the regularization term for regression loss.
During the last stage of training, we did not observe an

accuracy increase, and UniPose+ was able to achieve the
best results without geometric constraints. We attribute this
success to the effectiveness of the WASP module that is able
to more accurately estimate 3D pose in a more robust multi-
scale structure.

5.1 Metrics

For the evaluation of UniPose+, various metrics were used
depending on previously reported results and the available
ground truth for each dataset. The first metric used is the
Percentage of Correct Keypoints (PCK). This metric consid-
ers the prediction of a keypoint correct when a joint detec-
tion lies within a certain threshold distance of the ground
truth. Two commonly used thresholds were adopted. The
first is PCK@0.2, which refers to a threshold of 20% of the
torso diameter, and the second is PCKh@0.5, which refers to
a threshold of 50% of the head diameter.

To compare our results with other methods for the Hu-
man3.6M dataset, we employed a downsampling protocol
used by [76] for both training and testing from 50 fps to 10
fps, reducing the redundancy of the high frame video. In the
evaluation approach used by [36], [77], [74], and [76], we set
the subjects S1, S5, S6, S7, and S8 for training, and subjects
S9 and S11 for testing.

The error is measured in mm by Mean per Joint Position
Error (MPJPE) for the aligned joints. The 2D and 3D coordi-
nates are aligned to the root joint (pelvis) by the conversion
to the canonical skeleton follows procedures used by [49],
[75], and [76].

Ŷ = (Yout − Y root
out )

(
Ave(Sum(lsk)

lsk

)
+ Y root

GT (8)

where Yout is the aggregate of 2D and 3D joints, lsk is the
summation of the skeleton length, lsk is the average total
skeleton length of all subjects in the dataset, and Y root

GT the
ground-truth for the root joint.

5.2 Parameter Selection

We process the input image at its native resolution without
resizing, in order to train the network with the most detail
possible. For that reason, the batch size varied depending
on the size of the dataset images. We considered different
rates of dilation on the WASP module and found that larger
rates result in better prediction. A set of dilation rates of r =
{6, 12, 18, 24} was selected for the WASP module.

The training procedure for UniPose3D adopts the pre-
trained weights from MPII as the starting weights and
follows both 2D and 3D detections for the Human3.6M
dataset annotations for backpropagation.

For all datasets, we calculate the learning rate based on
the step method, where the learning rate started at 10−4 and
was reduced progressively by an order of magnitude at each
step [38]. All experiments were performed using PyTorch
1.8 on Ubuntu 18.04. The workstation has an Intel i5-2650
2.20GHz CPU with 16GB of RAM and an NVIDIA Tesla
V100 GPU.
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Fig. 8. Pose estimation examples from the LSP dataset.

Fig. 9. Pose estimation examples from the MPII dataset.

5.3 Backbone Selection
The backbone agnostic UniPose+ framework performs pose
estimation with high accuracy by enhancing the features
through the waterfall module, which leverages information
from the first and last blocks of the backbone. The inclu-
sion of the WASP module in the framework improves the
feature representations of the backbone without requiring
significant computational effort and achieves increases in
accuracy with low overhead during implementation.

We demonstrate the UniPose+ framework’s robustness
and flexibility due to its modular nature by considering

three different backbones for feature extraction: ResNet [24],
SENet [26], and HRNet [59]. Comparisons with these three
backbones are provided in the next section, including abla-
tion studies and analyses of the number of parameters and
GFLOPs for each configuration. Our results show that the
use of different backbones significantly impacts the accuracy
and computational cost of the network. The most significant
increases in performance are achieved when adopting the
HRNet backbone, as demonstrated next by our results.
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6 RESULTS

6.1 Single Image 2D Pose Estimation

Initially we performed a series of ablation studies to inves-
tigate individual and combined improvements of compo-
nents used in the UniPose framework. Table 1 demonstrates
the results for the inclusion of the Gaussian deconvolution
modulation (GDM) during interpolation, and the use of
the WASP module [4] for multi-scale feature extraction. All
results for Table 1 utilize ResNet-101 as its decoder.

Method Params GFLOPs GDM WASP PCK
(M) @0.2

UniPose [3] 44.3 27.8 93.4%
UniPose [3] 48.3 29.5 X 94.5%
UniPose+ 48.3 29.5 X X 94.8%

TABLE 1
Results for the LSP dataset using different configurations of UniPose

with ResNet-101 backbone. GDM represents the use of Gaussian
Deconvolution Modulation and WASP indicates the use of the waterfall

module in the network.

Our UniPose method progressively increases its perfor-
mance with the addition of innovations, resulting in 1.5%
improvement over the use of ResNet as a feature extractor,
followed by the UniPose decoder. Most significantly, the
use of the WASP module further improves the extraction
of feature maps at different scales, increasing the accuracy
of keypoints detection, particularly for occluded joints.

The UniPose+ framework was tested on the LSP dataset
and compared with other methods, as shown in Table 2.
UniPose+ achieved a PCK@0.2 of 94.8% when applying a
ResNet backbone, and further increases its performance to a
PCK@0.2 of 99.6% when applying when applying a more ef-
ficient multi-scale backbone, HRNet. UniPose+ shows gains
in comparison to other approaches, including the original
UniPose framework [3] and its versatility to be implemented
with different backbones.

Differently than methods such as CPM, [62], UniPose+
is able to detect the body joints with high confidence in
a single pass, instead of going through several stages of
refinement in the network. Examples of pose estimation
results for the LSP dataset are shown in Figure 8. It is
noticeable from these examples that our method identifies
the location of symmetric body joints with high precision.
Challenging conditions include the detection of joints when
limbs are not sufficiently separated or occlude each other,
or for unusual upside down orientations. Most instances of
error occur with the incorrect association of another person’s
joint, crossing detection between left and right joints (i.e.
ankles) when there is occlusion, specifically for harder joints
to detect, as ankles and wrists.

We next perform training and testing in the larger MPII
dataset [2], focusing on single person detection. Since the
MPII images may contain multiple people, we selected
the center map of the main person to detect the pose of
the correct individual. We used the WASPnet method [4]
implementation for segmentation and detection of all the
individuals, followed by the UniPose method to detect pose
of the selected individual.

Table 3 shows the results for the MPII testing dataset.
UniPose+ achieves a PCKh detection rate of 96.4% with an

Method Backbone Params GFLOPs Extra PCK
(M) Data @0.2

UniPose+ HRNet 50.4 27.7 99.6%
UniPose+ ResNet 48.3 29.5 94.8%

Gated Skip [7] HG 26.0 33.5 X 94.8%
UniPose+ SENet 55.6 118.8 94.5%

UniPose [3] ResNet 48.3 29.5 94.5%
SAGAN [11] HG (x2) 25.5 - X 94.3%

8-Stack HG [72] HG 23.7 41.4 94.0%
PHR [8] ResNet - - 90.7%

CPM [62] - 31.4 163.7 90.5%
DeepCut [52] VGG - - 87.1%
Recurrent [5] - 15.4 - 85.2%

TABLE 2
Results for 2D pose estimation and comparison with other methods for

the LSP dataset. The backbones used for different versions of
UniPose+ and other methods are shown in the second column.

Fig. 10. Examples of fail cases for images in the LSP datasetp: (a) wrist
location is misplaced due to multiple individuals; and (b) ankle location
is misplaced due to occlusion.

HRNet backbone and 92.9% with a ResNet-101 backbone,
outperforming other methods for single person pose estima-
tion in both configurations and surpassing previous results
by UniPose [3].

The MPII dataset generally presents more common poses
of people in everyday activities that mostly take place out-
doors. The main difficulty with MPII is the presence of mul-
tiple people. Instances where there is not enough separation
between the main person and other people resulted less
accurate detections. Figure 9 demonstrates successful detec-
tions on the main person in MPII images. These examples
illustrate that UniPose+ deals effectively with occlusion, e.g.
in the case of the horse rider.

Method Backbone Params GFLOPs PCKh
(M) @0.5

UniPose+ HRNet 50.4 27.7 96.4%
UniPose+ SENet 55.6 118.8 94.3%
UniPose+ ResNet 48.3 29.5 92.9%

UniPose [3] ResNet 48.3 29.5 92.7%
MSPN [37] ResNet (x4) - - 92.6%

8-Stack HG [72] HG 23.7 41.4 92.5%
Tang et al. [60] - 15.5 33.6 92.3%
SAGAN [11] HG (x2) 25.5 - 92.3%

Structure-Aware [33] - - - 92.0%
CFA [58] HG/ResNet - - 90.0%
CPM [62] - 31.4 163.7 88.5%

TABLE 3
Results for 2D pose estimation and comparison with other methods for

the MPII dataset. The backbones used for different versions of
UniPose+ and other methods are shown in the second column.
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Fig. 11. Pose estimation examples from the Penn Action dataset for a sequence of frames.

Representative examples of fail cases are shown in Fig-
ure 10. Most of the joint detection errors were due to the
presence of multiple people next to each other without
sufficient separation of their limbs. Other types of errors
were due to occlusion or when opposing limbs were very
close to each other resulting in cross detection between the
left and right joints of legs.

6.2 Multi-frame Pose Estimation
Table 4 shows the results for UniPose+LSTM in the Penn
Action dataset [73]. Our results show a significant im-
provement over previous state-of-the-art methods by the
application of UniPose+LSTM in the temporal mode with 5
consecutive frames. For this dataset, the results are reported
as a correct detection when the predicted joint location lies
within the provided bounding box, following the same pro-
cedure proposed by [67] and applied by [41]. Our method
results in a 99.4% detection rate, a significant improvement
of 1.6% over the next best result.

Method PCK for
Penn Action

UniPose+LSTM (ours) 99.4%
UniPoseLSTM [3] 99.3%

LSTM-PM [41] 97.7%
CPM [62] 97.1%

Thin-Slicing Network [57] 96.5%
N-best [47] 91.8%
ACPS [29] 81.1%

TABLE 4
Results for 2D pose estimation in a sequence of frames and
comparisons with other methods for the Penn Action dataset.

Our UniPose+ network leverages the memory capabil-
ity of the LSTM by incorporating 5 consecutive frames,
found optimal in previous experiments [3]. This feature
enables a higher detection rate and consequently a more
robust architecture against motion blur and occlusions in the
image. The PennAction dataset shows signs of saturation

in performance, with UniPose+ achieving high accuracy
scores. Due to its saturation, different backbone configura-
tions for UniPose+ do not present a significant variation in
performance, achieving the state-of-the-art PCK of 99.4% for
both the HRNet and ResNet configurations of UniPose+.

Examples of detections for the Penn Action dataset [73]
are shown in Figure 11. The examples selected are for fast
motion scenarios showing every other frame in sequence, so
that significant differences are observed between frames.

6.3 3D Pose Estimation
We performed training and testing of UniPose3D on the
Human3.6M dataset [28] using monocular images. The
network learned to infer depth for the human body, and
obtained estimates of the 2D locations for joints. The final
3D pose estimation was obtained by the association of the
2D coordinates and depth, using intrinsic information from
the cameras used for the dataset capture.

Analogously to the 2D experiments, we performed a
series of ablation studies to investigate individual and com-
bined improvements of components used in the UniPose+
framework for 3D pose estimation. Table 5 demonstrates the
results for the inclusion of the GDM during interpolation,
and the use of the WASP module [4] for multi-scale feature
extraction. Our UniPose3D method progressively increases
the performance as the innovations are included in the
model, resulting in a significant total reduction of 16.77mm
in error for the ResNet backbone and 16.34m for the HRNet
backbone.

In contrast to 2D pose estimation methods, 3D pose
estimation publications do not report values for the number
of parameters used in their architecture or the total com-
putational cost associate with processing. In order to better
assess the computational cost and memory required in var-
ious methods, Table 6 shows the number of parameters and
GFLOPs for the backbones used in 3D pose estimation.

We tested UniPose3D on the Human3.6M dataset using
different backbone configurations. The results and com-
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Fig. 12. Examples of 2D and 3D Pose estimation with UniPose3D on the Human3.6M dataset.

Method Backbone GDM WASP MPJPE
UniPose ResNet-101 79.04
UniPose ResNet-101 X 65.86

UniPose+ ResNet-101 X X 62.27
UniPose HRNet 74.30
UniPose HRNet X 61.92

UniPose+ HRNet X X 57.96

TABLE 5
Results for the Human3.6M dataset using different configurations of

UniPose with ResNet backbone. GDM represents the use of Gaussian
Deconvolution Modulation and WASP indicates the use of the waterfall

module in the network.

Backbone Params GFLOPs(M)
ResNet 42.5 12.07

CPN 46.4 13.58
HRNet 68.1 22.49
SENet 113.2 26.88

2 Stack-HG 102.1 126.20
8 Stack-HG 395.3 445.44

TABLE 6
Comparison of parameters (in Millions) and floating point operations
(GFLOPs) for backbones used for 3D pose estimation. All backbone
measurements are reported for an input image of size 256×256×3.

parisons with state-of-the-art methods are shown in Table
7. UniPose3D achieved its best performance using HRNet

as backbone, resulting in a MPJPE of 57.96mm. Using the
SENet backbone, UniPose3D achieved a MPJPE of 61.66
mm when processing 256 features maps through the WASP
module. This configuration corresponds to convolutions
fi = 256 in Equation (1) and is denoted as SENet-256 in
Table 7. Increasing the number of feature maps to fi = 1280
in the WASP module (SENet-1280 in Table 7) results in a sig-
nificant performance boost, at the expense of computational
demands, reducing the MPJPE to 59.81mm. Finally, when
applying the same ResNet backbone used for UniPose [3],
UniPose3D achieved a MPJPE of 62.27mm with a reduced
size compared other configurations. Examples of 2D pose
estimation and 3D pose regression for various poses are
shown in Figure 12.

Differently than some of the comparison methods pre-
sented in Table 7, UniPose3D does not rely on the use of in-
termediate supervision during training or on the generation
of additional depth data for further training. In addition,
UniPose3D does not use information from multiple frames
for its 3D pose estimation. The inclusion of either or both
of these techniques modifies the comparison between meth-
ods, as the training and evaluation take place in different
settings. Methods that rely on intermediate supervision dur-
ing training and/or multi-frame information are illustrated
in separate columns in Table 7.
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Method Backbone Sup. Multi- MPJPEFrame
Xu et al. [66] CPN X T=1 49.20

Pavllo et al. [50] CPN X 51.80
Cai et al. [9] CPN T=1 50.60

Hossain et al. [25] HG T=5 51.90
Pavlakos et al. [48] HG X 56.20

UniPose3D HRNet 57.96
UniPose3D SENet-1280 59.81

LCR-Net+ [56] LCR-Net 61.20
UniPose3D SENet-256 61.66
UniPose3D ResNet-101 62.27

Martinez et al. [42] HG 62.90
LCR-Net++ [56] LCR-Net 63.50
Zhou et al. [76] HG X 64.90

Katircioglu et al. [32] HG X 65.40
LCR-Net [55] LCR-Net 65.40

VIBE [34] ResNet-50 X T=16 65.60
Chen et al. [12] CPM 66.92

Pavlakos et al. [49] HG X 71.90

TABLE 7
Results for 3D Pose estimation and comparisons with other methods

for the Human3.6M dataset with resolution of 256×256. ”Sup.”
represents the use of intermediate supervision during training and
”Multi-Frame” indicates that the model uses information from T=N

frames or incorporates temporal components for training with a
modified procedure for the dataset.

7 CONCLUSION

We presented the UniPose+ framework for 2D and 3D
pose estimation in single images and videos. The UniPose+
pipeline utilizes a multi-scale features extractor and the
WASP module that creates a waterfall flow with a cascade
of atrous convolutions and multi-scale representations. The
UniPose+ framework presents improved performance, with
a more accurate response to the expected Gaussian response,
with the introduction of the Gaussian heatmap modulation
in the interpolation module.

The results of the UniPose+ framework demonstrated
state-of-the-art performance on several datasets using var-
ious metrics. UniPose3D achieves state-of-the-art results
for 3D pose estimation in an end-to-end architecture and
simultaneously performs 2D pose extraction, without the
requirement of anchor poses or postprocessing.

Our modular framework shows promise for further use
in a broader range of applications, including multi-person
2D and 3D pose estimation.
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