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ABSTRACT

Vehicle pose estimation is useful for applications such as self-driving cars, traffic monitoring, and scene analysis.
Recent developments in computer vision and deep learning have achieved significant progress in human pose
estimation, but little of this work has been applied to vehicle pose. We propose VehiPose, an efficient architecture
for vehicle pose estimation, based on a multi-scale deep learning approach that achieves high accuracy vehicle
pose estimation while maintaining manageable network complexity and modularity. The VehiPose architecture
combines an encoder-decoder architecture with a waterfall atrous convolution module for multi-scale feature
representation. Our approach aims to reduce the loss due to successive pooling layers and preserve the multi-
scale contextual and spatial information in the encoder feature representations. The waterfall module generates
multiscale features, as it leverages the efficiency of progressive filtering while maintaining wider fields-of-view
through the concatenation of multiple features. This multi-scale approach results in a robust vehicle pose
estimation architecture that incorporates contextual information across scales and performs the localization of
vehicle keypoints in an end-to-end trainable network.
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1. INTRODUCTION

Vehicle pose estimation is important in multiple applications but has not been explored much compared to
human pose estimation. With the recent advancements in technology for the automotive industry, the demand
for accurate vehicle pose estimation' has gained popularity due to its applications in autonomous driving,? traffic
monitoring® and scene analysis. Vehicle pose estimation involves locating specific keypoints of a particular vehicle
under consideration. This is a challenging task, as there are several types of vehicles with different color, shape,
and size.

Convolutional Neural Networks (CNNs) have revolutionized the field of deep learning and have been used to
dramatically improve the performance of human pose estimation methods.* However, very little of these methods
has been utilized in vehicle pose estimation. Human pose estimation is challenging due to high degree of freedom
in body joints and high occlusion of those joints, whereas vehicle pose deals with a more rigid structure and
has different types of occlusions. The growth of the automobile industry has resulted in high variability within
each vehicle class, causing challenges for developing a reliable method for different types of vehicles. Camera
viewpoint has more variations in elevation for vehicles. So far, vehicle datasets® are annotated for other tasks
and there are no defined conventions for pose, making it difficult to find representative keypoints for training
and testing deep learning models.

To deal with above challenges and improve on the generalization power of the network, our framework utilizes
an encoder-decoder architecture that leverages multi-level features from the backbone (ResNet-101) and processes
them with a waterfall module® for multi-scale representations. A related version of this configuration, without
multi-level features, was beneficial for the tasks of semantic segmentation® and human pose estimation7. In
this paper, we incorporate multi-level features in the waterfall module and demonstrate the usefulness of our
framework for vehicle pose estimation.
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Our architecture combines an encoder-decoder network along with larger field of view generated by the
waterfall of atrous convolutions. Aiming to achieve better spatial and contextual representations, our multi-scale
approach is designed to improve the predicted keypoint accuracy by combining atrous convolutions and low-level
feature maps from the encoder network, and integrating them with the decoder module. This approach generates
richer image features by concatenating them and avoiding loss of spatial information at different scales. The
multi-scale approach, along with successively increasing the Field-of-View (FOV) in a waterfall architecture, helps
in predicting the location of keypoints by preserving the contextual and spatial information. Our approach more
efficiently incorporates the contextual information across scales and performs keypoint localization in a single
stage, end-to-end trainable network. Our results demonstrate that VehiPose is a robust and efficient architecture
for vehicle pose estimation. The main contributions of this paper can be summarized as the following :

o We propose the VehiPose framework, a multi-scale, end-to-end trainable, single-stage approach that pro-
duces state-of-the-art results for vehicle pose estimation.

e The waterfall framework generates multi-scale feature representations by combining the contextual and
spatial information, resulting in larger FOV features for vehicle pose estimation.

2. RELATED WORK

Vehicle pose estimation is a relatively new topic with multiple applications, such as traffic surveillance and
autonomous driving. However, there are very few methods for estimating the vehicle pose. There are essentially
two main approaches to pose estimation: the top-down approach as shown in Ref. 8, 9 and the bottom-up
approach as shown in Ref. 10, 11, and 12. The top-down'? approaches begin by detecting and localizing objects
independently, using a bounding box object detector, such as YOLO' or Faster R-CNN.!® After identifying
the total number of instances present in the image, the locations of the keypoints are estimated for every
instance. These top-down methods for pose estimation are dependent on precise object detection and suffer if
the object detector fails. In a bottom-up approach,! all the keypoints in the image are detected first, followed
by clustering those keypoints belonging to distinct instances. The bottom-up approaches offer robustness and
have the potential to decouple runtime complexity from the total number of instances present in the image.

Stacked hourglass networks'® were proposed for human pose estimation and have been utilized for vehicle

pose estimation in Ref. 17, 18, and 19. These networks consist of multiple stages that are made up of residual
convolutional blocks with skip connections in a symmetric design capturing information at every block. The
challenge of using an encoder feature generation module is the loss of resolution due to successive pooling
layers. To tackle this problem, Fully Convolutional Networks (FCN) network?’ applied upsampling techniques
to upsample the image to its input dimensions. Corrales et al.! explored estimating the 2D vehicle pose in
a manner similar to human pose, by proposing a simple baseline method. A ResNet?! backbone network was
utilized along with few deconvolution layers to generate heatmaps corresponding to vehicle keypoints. This
approached obtained good results but was limited by the loss of spatial and contextual information of the input
image during progressive convolutional layers in the network. Wang et al. estimated the vehicle keypoints for
the task of vehicle re-identification, improving the performance of their model in distinguishing between similar
vehicles.

2.1 Feature Representations with Atrous Convolution, ASPP and Res2Net

Atrous or dilated convolutions are used to increase the size of the receptive field, while maintaining the input
size, and avoid the loss of resolution due to downsampling. Yu et al. systematically usds dilated convolutions
for preserving the contextual information of the input image by proposing a multi-scale context aggregation
module.??

Further improving the FOV while maintaining the same resolution by using atrous convolutions at larger
dilation rates in parallel branches, Deeplab?® proposed the Atrous Spatial Pyramid Pooling (ASPP) module
to increase the receptive field of the network at the same resolution. DeepLab combined four branches with
increasing dilation rates for larger FOV to deal with loss of resolution in the encoder module. The main
disadvantage of this network was the increased computational cost and memory consumption. Res2Net?* used
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Figure 1. The proposed VehiPose architecture for 2D vehicle pose estimation. The input color image is fed into the
ResNet backbone and the last layer features are processed by the WASP module to obtain 304 feature maps after the
concatenation of WASP and low level features at @. The decoder module generates K heatmaps, one per joint, and the
exact location of each keypoint is extracted by applying a local maximum operation.

a multi-scale approach for extracting features by introducing hierarchical connections in a single residual block
of the CNN model. The proposed Res2Net block can be plugged into many CNN based models for multi-scale
feature extraction.

Improving upon DeepLab and Res2Net, Artacho introduced the waterfall architecture of the WASP module®
which incorporates multi-scale features of the Res2Net block and the cascade of atrous convolutions from the
DeepLab model but without immediately parallelizing the input stream. The WASP module resembles a waterfall
flow by progressively extracting the larger FOV from a series of atrous convolutions at different dilation rates
and parallelizing the branches of the atrous convolutions. The waterfall architecture was found to be more
computationally efficient and produced better results for semantic segmentation® and human pose estimation.”

3. VEHIPOSE ARCHITECTURE

We propose the Vehipose framework, a unified multi-scale framework which produces state-of-the-art results for
vehicle pose estimation without any intermediate supervision or postprocessing. The proposed architecture is
shown in Figure 1. The input image is fed in the ResNet backbone, generating 2048 feature maps at the second
last layer of the network which are fed into the WASP module. The waterfall of atrous convolutions in the WASP
module helps in preserving the spatial and contextual information due to the larger Field-of-View (FOV) and
multi-scale feature representation. The WASP module outputs 256 feature maps which are concatenated with 48
low-level feature maps, generated from the first block of the ResNet backbone after applying 1 x 1 convolution
and max-pooling operation to match the dimensions. After concatenation, the 304 feature maps become the
input for our decoder module, which converts the feature maps into heatmaps corresponding to the total number
of keypoints.

3.1 WASP module

The success of atrous convolutions in the tasks of semantic segmentation® and human pose estimation” inspired
us to include the waterfall of atrous convolutions in our architecture for the task of vehicle pose estimation. The
proposed waterfall architecture, along with the decoder module, is shown in Fig. 2. The four branches in WASP
have different FOV and are arranged in a waterfall-like fashion. The WASP module goes beyond the cascade
approach by combining the streams from all its branches and average pooling of the original input to achieve a
multi-scale representation. WASP is designed with the goal of reducing the number of parameters in order to
deal with memory constraints and overcome the computational limitation of atrous convolutions.

3.2 Decoder module

Our decoder module converts the 304 feature maps to heatmaps, each corresponding to a joint or keypoint.
The output consists of K heatmaps that are used for keypoint localization after performing a local maximum
operation in each heatmap.
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Figure 2. Waterfall module architecture along with the decoder module used in the VehiPose pipeline. The inputs to the
decoder are 304 feature maps by concatenating 48 channels of ResNet low-level features and 256 channels of the WASP
feature maps. The decoder outputs K heatmaps corresponding to K joints, where K is the total number of keypoints.

Table 1. VeRi-776 dataset keypoint positions.

’ Index ‘ Location ‘ Index ‘ Location
1 left-front wheel 11 left rear-view mirror
2 left-back wheel 12 right rear-view mirror
3 right-front wheel 13 right-front corner of vehicle top
4 right-back wheel 14 left-front corner of vehicle top
5 right fog lamp 15 left-back corner of vehicle top
6 left fog lamp 16 right-back corner of vehicle top
7 right headlight 17 left rear lamp
8 left headlight 18 right rear lamp
9 front auto logo 19 rear auto logo
10 front license plate 20 rear license plate

4. EXPERIMENTS
4.1 Datasets

We performed experiments on the VeRi-776 dataset®® composed of single vehicle images. VeRi-776 dataset
consists of more that 50,000 images. Each image contains 20 labelled keypoints annotations for a single vehicle.
Table 1 presents the details of the keypoint locations. Vehicles are mostly centrally located in images, allowing
a good assessment of the network performance for the task of single vehicle pose estimation.

t25

4.2 Evaluation Metric

For the evaluation of VehiPose, we used Percentage of Correct Keypoints (PCK) as the evaluation metric. It
considers the prediction to be correct when the keypoint lies within a certain threshold o from the ground truth
location. For Example, PCK(@0.2) = P(0)/K, means for a threshold o of 0.02 and input image of size w x w,
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Figure 3. Vehicle pose estimation examples from the VeRi-776 dataset.

PCK is defined as the number of predicted keypoints (P) that are within the threshold range of o x 0.2 of the
ground truth keypoints location divided by the total number of keypoints (k).

4.3 Implementation Details

We considered different rates of dilation on the WASP module and larger rates resulted in better prediction. A
set of dilation rates of r = 6, 12, 18, 24 was selected for the WASP module. Training was performed for 100
epochs with a batch size of 16 images. The learning rate was set initially at 104 and then reduced progressively
for best results.

5. RESULTS

We tested VehiPose on VeRi-776 dataset and obtained the results shown in Table 2. We performed a series
of experiments to compare the performance of ASPP and WASP modules with our decoder module. We also
reported the computational cost and number of parameters of each network to show the computational complexity
and memory requirements. The WASP module performs better than ASPP, improving PCK@OQ.2 results by 1.75%
for vehicle pose estimation. In addition, it is computationally more efficient and requires fewer parameters.
Examples of VehiPose detections for the VeRi-776 dataset are shown in Fig. 3. These examples illustrate that
VehiPose deals effectively with occlusion and vehicles with different color, size, and shape.

Table 2. Results on VeRi-776 dataset using various configurations of the VehiPose framework with a ResNet backbone.

| ASPP | WASP | Decoder | PCK@0.2 | Params (M) | GFLOPs

- - v 53.15 47.8 35.5
v - v 54.37 59.3 34.9
- v v 56.12 47.5 29.2

6. CONCLUSION

We presented the VehiPose architectures for 2D vehicle pose estimation. VehiPose is a single-stage, end-to-end
trainable framework that leverages the waterfall multi-scale approach to accurately predict the vehicle keypoints.
Our framework shows promise for further use in a broader range of applications, including 3D vehicle pose
estimation.
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