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ABSTRACT 
In this paper, we investigate the design of pennate topology 
fluidic artificial muscle bundles under spatial and operating 
constraints. Soft fluidic actuators are of great interest to 
roboticists and engineers due to their potential for inherent 
compliance and safe human-robot interaction. McKibben fluidic 
artificial muscles (FAMs) are soft fluidic actuators that are 
especially attractive due to their high force-to-weight ratio, 
inherent flexibility, relatively inexpensive construction, and 
muscle-like force-contraction behavior. Observations of natural 
muscles of equivalent cross-sectional area have indicated that 
muscles with a pennate fiber configuration can achieve higher 
output forces as compared to the parallel configuration due to 
larger physiological cross-sectional area (PCSA). However, this 
is not universally true because the contraction and rotation 
behavior of individual actuator units (fibers) are both key factors 
contributing to situations where bipennate muscle configurations 
are advantageous as compared to parallel muscle configurations. 
This paper analytically explores a design case for pennate 
topology artificial muscle bundles that maximize fiber radius. 
The findings can provide insights on optimizing artificial muscle 
topologies under spatial constraints.  Furthermore, the study can 
be extended to evaluate muscle topology implications on work 
capacity and efficiency for tracking a desired dynamic motion.  

Keywords: biomimetic, pennate, soft actuators, fluidic 
artificial muscles, muscle topology 

1. INTRODUCTION
The design of actuators plays a critical role in enabling the

interaction of mechatronic systems and the physical world. 
Roboticists and engineers have drawn inspiration from the 
unique characteristics of biological muscles to develop actuators 
capable of safe human-robot interaction. Study of neuromuscular 
physiology and anatomy has shown that a single biological 
muscle tissue consists of many motor units. This design has been 
identified as cellular architecture and applied to actuator design 

such that a singular actuator consists of a collection of small 
actuator units [1].  Hierarchical actuation relies on this cellular 
architecture to extend the total actuator performance such that it 
increases functionality [2]. Cellular piezoelectric actuators [1], 
different levels of whiffletree actuators [2], series-parallel elastic 
actuators [3], and bioinspired orderly recruitment [4] have all 
demonstrated the practicality of this actuation strategy. This 
muscle-inspired hierarchy has led to the development of linear 
actuator bundles capable of mimicking orderly recruitment and 
thus improves efficiency through minimizing energy 
consumption in the smallest required actuator unit [4,5]. Recent 
studies have explored the parallel and pennate arrangement 
actuator bundle configurations. The parallel arrangement orients 
the longitudinal axis of individual actuators parallel to the bundle 
actuator line of motion. On the other hand, the pennate 
arrangement configures the longitudinal axis of individual 
actuators at an angle to the bundle actuator line of motion. 
Several studies have highlighted biological advantages of this 
pennate muscle topology as well as identified the effects of fiber 
pennation angle on speed of contraction, damping of impact 
disturbances, and aging [6-11]. Additionally, this muscle 
topology demonstrates the ability to passively change effective 
gear ratio since the muscle force and displacement are coupled 
with the fiber force and displacement. Several pennate actuator 
studies identified this variable gearing attribute and led to the 
development of a constitutive model for pennate actuators [9-
11]. Furthermore, pennate actuator bundles have also been 
categorized as variable stiffness actuators, which are highly 
attractive for their potential in energy storage and safety in 
human-interaction [12]. McKibben fluidic artificial muscles 
(FAMs) are especially suitable for this application due to their 
muscle-like actuation behavior, inexpensive construction, 
inherent flexibility, and high force-to-weight ratio.  Although 
previous pennate McKibben bundle case studies have provided 
insight into how fibers (individual McKibben actuator units) 
should be arranged and what parameters should be varied, there 
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has yet to be a unified approach to optimal fiber parameter 
design.  

This paper explores the modeling, design, and analysis of a 
bio-inspired pennate topology fluidic artificial muscle actuator 
under spatial constraints. This analytical model has strengthened 
the understanding of fiber behavior during muscle contraction. A 
modified McKibben actuator bundle analytical model was used 
to further the understanding of the mechanical and performance 
implications of pennate topological configuration in fluidic 
artificial muscles.    

2. METHODS
2.1 Design Case 

In this configuration study, an entire actuator consists of 
multiple McKibben FAMs, where individual FAMs are referred 
to as “fibers” and the complete actuator is referred to as a 
“muscle”. The design case considered in this study seeks to 
determine the fiber parameters, spacing, and number such that 
the fiber radius is maximized while constraining the muscle to 
remain within a prescribed bounding box spatial envelope 
throughout actuation. The fiber parameters of interest are fiber 
radius, fiber length, and the number of fibers that can be packed 
inside the bounding volume.  

2.2 Muscle/System Configurations 
Parallel and pennate configurations are the two topologies 

considered in this analysis. The fibers are oriented parallel to the 
muscle line of motion in the parallel configuration while the 
fibers are arranged at an angle to the muscle line of motion in the 
pennate configuration. A critical difference between the parallel 
and pennate configuration is the behavior of the individual 
fibers. The fibers in a parallel configuration are only subject to 
axial contraction when the muscle is activated. On the other 
hand, the fibers in a pennate configuration will not only axially 
contract but also rotate when the muscle is activated.  

a) parallel configuration (b) bipennate 
configuration 

FIGURE 1: VISUAL REPRESENTATION OF PARALLEL 
AND BIPENNATE MUSCLE TOPOLOGY 

In this analysis, each muscle configuration considered is a single 
layer two-dimensional array of fibers. The initial braid angle 𝛼𝑖

is the same for all fibers. The fibers in the bipennate 
configuration are symmetrically arranged.    

Figure 1 is a visual representation of the two muscle topologies 
under consideration. Figure 1(a) illustrates the parallel fiber 
configuration and Figure 1(b) is the bipennate fiber 
configuration. The fibers are represented in the illustration as red 
rectangles due to the 2D projection of the circular cross section. 
The black dashed lines around the exterior indicate the length 
and width dimensions of a bounding box that surrounds the 
actuator bundle. The dimensions of this bounding box are 
defined such that all portions of the bundle remain fully inside 
the bounding box during inflation and contraction of the actuator 
fibers. The black dotted centerline is the muscle axis of motion. 
The 𝛽 shown in Figure 1 (b) indicates the fiber pennation angle 
or the angle at which the fiber is orientated with respect to the 
muscle line of motion. It is important to note that an initial 
pennation angle of 0° in a pennate configuration is equivalent to 
fibers in a parallel configuration. 

The boundary conditions are such that one end of each fiber is 
pinned to a rigid carriage subject to only vertical translational 
motion along the vertical dashed line during contraction and the 
other end is pinned to a rigid external frame.  

FIGURE 2: VISUAL REPRESENTATION OF FIBER END 
BOUNDARY CONDITIONS OF BIPENNATE 

CONFIGURATION 

Figure 2 illustrates the fiber boundary conditions of the 
bipennate configuration considered in this study. The black half-
circle marker indicates the fiber end has a pinned boundary 
condition. It also identifies the dimension parameters of the 
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prescribed bounding box. The illustrations in Figure 2 are in the 
planar view so the depth dimension is not indicated on the figure. 

Table 1: System parameters 
Parameter Value 
𝛼𝑖 30° 
𝐿 30.48 𝑐𝑚(12 𝑖𝑛) 
𝑊 15.24 𝑐𝑚 (6 𝑖𝑛) 
𝐷 2.54 𝑐𝑚 (1 𝑖𝑛) 

Table 1 shows the initial braid angle of the mesh for each fiber 
as well as the prescribed bounding box parameter dimensions.  

2.3 Modeling 
This section details a model developed to determine the optimal 
set of fiber parameters based on the initial pennation angle of the 
fiber for the specified design objective. The initial pennation 
angle can be used to provide insight on the fiber behavior during 
muscle contraction. The fibers in the configuration can be 
contraction-limited, rotation-limited or both at the maximum 
contraction condition of the muscle. If the fibers are contraction-
limited, it indicates the fibers are not capable of reaching full 
rotation but will reach full contraction. On the contrary, if the 
fibers are rotation-limited, it indicates the fibers are not capable 
of reaching full contraction but will reach full rotation. If the 
fiber is both contraction and rotation-limited, it indicates that the 
fiber will reach full contraction and full rotation simultaneously. 

(a) 𝜀𝑚 = 0 (b) 𝜀𝑚 =
𝜀𝑓𝑟𝑒𝑒

2
(c) 𝜀𝑚 = 𝜀𝑓𝑟𝑒𝑒

FIGURE 3: VISUAL REPRESENTATION OF 
CONTRACTION-LIMITED FIBERS DURING FREE 

MUSCLE CONTRACTION 

Figure 3 is a visual representation of contraction-limited fiber 
behavior during free muscle contraction of a bipennate 
configuration. Each image is a snapshot of the fiber dimension 
and orientation at different stages of free muscle contraction. 
Figure 3(a) shows the initial fiber configuration prior to any 
muscle contraction or at zero muscle strain 𝜀𝑚. Figure 3(b)
shows some fiber contraction and rotation occurring as the 
muscle is contracting, where muscle strain has reached half of 
muscle free strain. Figure 3(c) shows that the fibers have fully 
contracted at free muscle contraction but not fully rotated at 

muscle free strain. Therefore, the fibers in this muscle 
configuration are contraction-limited. [13] 

(a) 𝜀𝑚 = 0 (b) 𝜀𝑚 =
𝜀𝑓𝑟𝑒𝑒

2
 (c) 𝜀𝑚 = 𝜀𝑓𝑟𝑒𝑒

FIGURE 4: SNAPSHOTS OF ROTATION-LIMITED 
FIBERS DURING FREE MUSCLE CONTRACTION  

Figure 4 is a visual representation of rotation-limited fiber 
behavior during free muscle contraction of a bipennate 
configuration. Like Figure 3, each image is a snapshot of the 
fiber dimension and orientation at different stages of free muscle 
contraction. Figure 4(a) shows the initial fiber configuration 
prior to any muscle contraction. Figure 4(b) shows some fiber 
contraction and rotation occurring as the muscle is contracting. 
Figure 4(c) shows that the fibers have fully rotated at free muscle 
contraction. It can be difficult to determine if the fibers at free 
muscle contraction have also fully contracted in this visual 
representation. However, the following mathematical analysis 
can indicate if the fibers in the muscle configuration are 
contraction-limited, rotation-limited or both. We will consider 
the fibers as idealized McKibben actuators.   
The free-contraction pennation angle can be expressed as  

𝛽𝑓𝑟𝑒𝑒 = 𝑠𝑖𝑛−1 (
𝑠𝑖𝑛(𝛽𝑖) cos(𝛼𝑖)

cos(54.7°)
) 

(1) 

where 𝛽𝑓𝑟𝑒𝑒  is the pennation angle at free muscle contraction, 𝛽𝑖

is the fiber initial pennation angle, and 𝛼𝑖 is the initial braid
angle. If 0° ≤ 𝛽𝑓𝑟𝑒𝑒 < 90°, fibers cannot fully rotate at free
muscle contraction. Consequently, the braid angle at free muscle 
contraction, 𝛼𝑓𝑟𝑒𝑒 , is 54.7°, which is the maximum possible
braid angle, 𝛼𝑚𝑎𝑥, for an ideal McKibben muscle [13].  When
𝛼𝑓𝑟𝑒𝑒 = 𝛼𝑚𝑎𝑥  and 𝛽𝑓𝑟𝑒𝑒 < 90°, the fibers in that configuration
are contraction-limited. If 𝛽𝑓𝑟𝑒𝑒 = 90°, the fibers can fully rotate
at free muscle contraction. However, it does not necessarily 
indicate the fibers are rotation-limited. The braid angle at free 
muscle contraction can be computed in (2) to determine if the 
fibers are solely rotation-limited or both contraction and 
rotation-limited.  

𝛼𝑓𝑟𝑒𝑒 = cos−1(𝑠𝑖𝑛(𝛽𝑖) cos(𝛼𝑖)) (2) 
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If 𝛽𝑓𝑟𝑒𝑒 = 90° and 𝛼𝑓𝑟𝑒𝑒 = 𝛼𝑚𝑎𝑥 , the fibers are both contraction
and rotation-limited. However, if 𝛽𝑓𝑟𝑒𝑒 = 90° and 𝛼𝑓𝑟𝑒𝑒 <

𝛼𝑚𝑎𝑥, the fibers in that configuration are purely rotation limited.

Based on a well-established understanding of ideal McKibben 
muscle behavior during contraction, relationships can be derived 
to understand how fiber radius and fiber length change with braid 
angle. [13] 

𝑟𝑓

𝑟𝑓,𝑖

=
sin(𝛼)

sin(𝛼𝑖)

(3) 

𝑙𝑓

𝑙𝑓,𝑖

=
cos(𝛼)

cos(𝛼𝑖)

(4) 

𝑟𝑓 , 𝑙𝑓 , and 𝛼 are the instantaneous fiber radius, fiber length and
braid angle, respectively. 

For this study, relationships between fiber parameters and the 
bounding box constraint can be formulated to ensure that the 
fibers remain inside the bounding box during muscle contraction 
[12]:  

2𝑟𝑓 cos(𝛽𝑓) + 𝑙𝑓 sin(𝛽𝑓) ≤
𝑊

2

(5) 

(
𝑛𝑤

2
− 1)

2𝑟𝑓

cos(𝛽𝑓)
+ (2𝑟𝑓 cos(𝛽𝑓) + 𝑙𝑓 sin(𝛽𝑓)) ≤

𝑊

2
(6) 

(
𝑛𝑙

2
− 1)

2𝑟𝑓

sin(𝛽𝑓)
+ 2𝑟𝑓 sin(𝛽𝑓) + 𝑙𝑓 cos(𝛽𝑓) ≤ 𝐿  (7)

where 𝑛𝑤 is the number of fibers that can fit along the prescribed
width dimension of the bounding box 𝑊 and 𝑛𝑙 is the number of
fibers that can fit along the prescribed length dimension of the 
bounding box 𝐿. Although these constraints can provide insight 
on feasible fiber parameters, additional work is needed to 
determine the optimal set of fiber parameters for each design 
case.  

To maximize fiber radius, a constraint is applied to the fiber 
radius at free muscle contraction 𝑟𝑓𝑟𝑒𝑒  due to the depth
dimension of the bounding box as shown in (3). 

𝑟𝑓𝑟𝑒𝑒 =
𝐷

2

(8) 

𝐷 is the depth dimension of the bounding box. This expression 
bounds the fiber radius parameter such that the fiber remains 
inside the bounding box during muscle contraction. The initial 
fiber radius 𝑟𝑓,𝑖 can be derived from this constraint.

For a parallel configuration, the fibers only contract axially 
during muscle contraction. Therefore, the fibers in a parallel 

configuration are always contraction-limited. The initial fiber 
length and the number of fibers in the parallel configuration are 
bounded by the length and width dimensions of the bounding 
box, respectively. The initial fiber length 𝑙𝑓,𝑖 is maximized such
that it is equivalent to the length of the bounding box.  

𝑙𝑓,𝑖 = 𝐿 (9) 

Fibers in the parallel configuration are arranged along the width 
dimension of the bounding box. Therefore, the maximum 
number of fibers 𝑛 that can fit inside the bounding box in the 
parallel configuration can be computed from the inequality in 
(7). 

𝑛 ≤
𝑊

2𝑟𝑓𝑟𝑒𝑒

(10) 

𝑛 must also be a positive non-zeros integer. In the parallel 
configuration, 𝑛 = 𝑛𝑤 and 𝑛𝑙 = 1.

For bipennate configurations, the fiber length and the maximum 
number of fibers that fit in the bounding box depend on the fiber 
behavior. Although the constraints can provide insight on the 
fiber parameters, 𝑙𝑓,𝑖 and 𝑛 are coupled and will depend on the
minimum fiber clearance required to enable the fibers to fully 
contract, rotate or both. An initial fiber length can be estimated 
from the following relationship.  

𝑙𝑓,𝑖 = max (
𝐿 − 𝑚𝑎𝑥(𝑟𝑓 𝑠𝑖𝑛(𝛽𝑓)) − 𝑟𝑓 𝑠𝑖𝑛(𝛽𝑓)

𝑐𝑜𝑠(𝛼)
𝑐𝑜𝑠(𝛼𝑖)

cos(𝛽𝑓)
) 

(11) 

This relationship depends on the minimum vertical fiber 
clearance of the top-most pair of fibers, 𝑚𝑎𝑥(𝑟𝑓 𝑠𝑖𝑛(𝛽𝑓)). 
Assuming that at least one pair of fibers can fit along the width 
dimension of the bounding box and 𝑛𝑤 = 2, this estimated initial
fiber length must satisfy inequality (6). If this estimated initial 
fiber length satisfies inequality (6) during contraction, then this 
guess is valid. However, this does not necessarily indicate that a 
single pair of fibers is the maximum number of fibers that can fit 
along the width dimension of the bounding box or 𝑛𝑤 = 2. The
exact 𝑛𝑤 and 𝑛𝑙 should be determined using inequality (6) and
inequality (7) respectively with a suitable set of fiber 
dimensions. If this estimated initial fiber length violates 
inequality (6) during contraction, the estimated initial fiber 
length is no longer valid and must be recomputed with the 
assumption that only one pair of fibers can fit along the width 
dimension of the bounding box and 𝑛𝑤 = 2 as shown in the
relationship below. 

𝑙𝑓,𝑖 = min (

𝑊
2

− 2𝑟𝑓 𝑐𝑜𝑠(𝛽𝑓)

𝑐𝑜𝑠(𝛼)
𝑐𝑜𝑠(𝛼𝑖)

𝑠𝑖𝑛(𝛽𝑓)
) 

(12) 
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Thus, 𝑛𝑙 can be found from inequality (7) with the minimum
vertical clearance required between the fibers, max (

2𝑟𝑓

sin(𝛽𝑓)
). If 

𝑛𝑤 > 𝑛𝑙, the fibers will be laterally arranged. If 𝑛𝑤 < 𝑛𝑙, the
fibers will be centrally arranged. If 𝑛𝑤 = 𝑛𝑙, the fibers can be
arbitrarily arranged. It is important to note that both 𝑛𝑤 and 𝑛𝑙

must be even and positive non-zero integers to maintain the 
bipennate configuration. A visual representation of laterally 
attached and centrally attached fibers is shown in Figure 5.  

(a) Laterally attached (b) Centrally attached  
FIGURE 5: VISUAL REPRESENTATION OF LATERAL 

AND CENTRALLY ATTACHED FIBERS 

3. RESULTS AND DISCUSSION
An optimal set of fiber parameters were found using the 
analytical model presented and the system parameters shown in 
Table 1.  

(a) Maximum number of fibers that can fit inside 
prescribed boundary box 

(b) Initial fiber radius with respect to initial pennation 
angle 

(c) Initial fiber length with respect to initial pennation 
angle 

FIGURE 6: OPTIMAL SET OF FIBER PARAMETERS 
THAT MAXIMIZE FIBER RADIUS 

Figure 6 shows the optimal set of fiber parameters as a function 
of initial pennation angle such that fiber radius is maximized. 
The red star marker indicates the parallel configuration while the 
green circle marker represents the bipennate configuration where 
fibers can both fully contract and rotate. The black vertical 
dashed line indicates the fiber contraction-/rotation-limited 
boundary line for bipennate configurations. Regions shaded in 
light green indicate configurations where fibers are laterally 
attached while regions shaded in pink are configurations where 
fibers are centrally attached. The unshaded region indicates 
bipennate fibers associated with those initial pennation angles 
are not restricted to lateral or central attachment.  
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The discontinuities seen in the curve for the plot shown in Figure 
6(a) correspond to the addition of a pair of fibers to the muscle 
configuration. The change in number of fibers as fiber initial 
pennation angles increases shows that muscles with a small fiber 
initial pennation angle must be laterally attached, while fibers 
with a larger fiber initial pennation angles must be centrally 
attached. The thumbnail pointing to the red star marker 
illustrates the parallel configuration while the thumbnail found 
in the light green region illustrates a bipennate muscle with 
laterally attached fibers. The thumbnail in the white region show 
only one pair of fibers can fit in these configurations and thus the 
fibers can be arbitrarily attached. The illustration found in the 
pink region to the left of the vertical dashed line depicts the fibers 
in these configurations to be contraction-limited and centrally 
attached. The graphic to the right of the vertical dashed line 
indicates the fibers in these configurations to be rotation-limited 
and centrally attached.  

Figure 6 (b) illustrates the initial fiber radius with respect to fiber 
initial pennation angle for maximizing fiber radius. For fiber 
contraction-limited configurations, (0° ≤ 𝛽𝑖 ≤ 41.86°), the
initial fiber radius is maximized such that the fibers can fully 
contract. On the other hand, the rotation-limited configurations 
(𝛽𝑖 > 41.86°) are not capable of fully contracting, so the initial
fiber radius can be larger than that of the fiber contraction-
limited configurations. Figure 6(c) illustrates the initial fiber 
length with respect to fiber initial pennation angle. A maximum 
initial fiber length exists at the parallel configuration since the 
fibers are only bounded by the length dimension of the bounded 
box. Although it is hard to discern, bipennate configurations with 
small fiber initial pennation angles can have an initial fiber 
length larger than the fibers in a parallel configuration since the 
fibers are arranged at an angle. However, at some fiber initial 
pennation angle, the fiber length is forced to decrease to ensure 
the fibers remain inside the prescribed bounding box. The 
nonlinear behavior observed in the fiber length as fiber initial 
pennation angle increases for fiber contraction-limited 
configurations is a result of the fiber contraction and rotation 
behavior.  

Using the optimal set of fiber parameters for maximizing fiber 
radius, we next consider how optimized muscle performance 
depends on initial pennation angle.  

The maximum muscle contraction ∆𝑙𝑚,𝑚𝑎𝑥  can be computed as
the difference between initial muscle length 𝑙𝑚,𝑖 and muscle
length at free muscle contraction 𝑙𝑚,𝑓𝑟𝑒𝑒.

∆𝑙𝑚,𝑚𝑎𝑥 = 𝑙𝑚,𝑖 − 𝑙𝑚,𝑓𝑟𝑒𝑒 = 𝑙𝑓,𝑖 cos(𝛽𝑖) − 𝑙𝑓𝑟𝑒𝑒 cos(𝛽𝑓𝑟𝑒𝑒) (13) 

FIGURE 7: MAXIMUM MUSCLE CONTRACTION WITH 
RESPECT TO INITIAL PENNATION ANGLE 

The maximum muscle contraction depends on both the fiber 
length and the pennation angle. Bipennate fibers are subject to 
contraction and rotation during muscle contraction, which 
explains the nonlinear behavior seen in the fiber contraction-
limited configurations from Figure 7. Furthermore, a maximum 
muscle contraction peak observed at bipennate configurations 
with a small fiber initial pennation angle exceeds that of the 
parallel configuration. On the other hand, the maximum muscle 
contraction decreases significantly with initial pennation angle 
in fiber rotation-limited configurations. This is due to a shorter 
fiber length and limited fiber rotation during muscle contraction. 

The modified nonlinear force-strain relationship represented by 
the ideal virtual work model for a pennate topology [11] is used 
to understand the muscle force behavior during free muscle 
contraction at different initial pennation angles. This relationship 
can provide insight on the force generation performance of the 
muscle.  

𝐹𝑚(∆𝑙𝑚) = 𝑛𝜋𝑟𝑓,𝑖
2 𝑃(𝑎(1 − 𝜀)2 − 𝑏) cos(𝛽𝑓) (14) 

𝜀 =
∆𝑙𝑓

𝑙𝑓,𝑖
 𝑎 =

3

𝑡𝑎𝑛(𝛼𝑖)2      𝑏 =
1

𝑠𝑖𝑛(𝛼𝑖)2

𝐹𝑚(∆𝑙𝑚) is the muscle force with respect to muscle contraction,
where 𝑃 is the applied pressure, 𝑎 and 𝑏 are constants related to 
the initial braid angle.  𝜀 is the fiber strain and will vary based on 
fiber configuration and behavior.  
For the parallel configuration, 

𝜀 =
𝑙𝑓,𝑖 −

𝑙𝑓,𝑖 cos(𝛽𝑖) − ∆𝑙𝑚

cos(𝛽𝑖)

𝑙𝑓,𝑖

(15) 

For the bipennate configurations, 
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𝜀 =

𝑙𝑓,𝑖 −
𝑙𝑓,𝑖 sin(𝛽𝑖)

sin (tan−1 (
𝑙𝑓,𝑖 sin(𝛽𝑖)

𝑙𝑓,𝑖 cos(𝛽𝑖) − ∆𝑙𝑚
))

𝑙𝑓,𝑖

(16) 

Muscle blocked force 𝐹𝑚,𝑏𝑙𝑜𝑐𝑘  can be derived from the modified
nonlinear force-strain relationship to compare the maximum 
possible output force of different muscle configurations. The 
muscle blocked force is computed as the muscle force at zero 
strain. For this analysis, applied pressure 𝑃 is held constant to 
accurately.  

𝐹𝑚,𝑏𝑙𝑜𝑐𝑘 = 𝐹𝑚(∆𝑙𝑚)|
𝜀=0

(17) 

FIGURE 8: MUSCLE BLOCKED FORCE WITH RESPECT 
TO INITIAL PENNATION ANGLE 

The muscle blocked force is evaluated with a constant applied 
pressure of 50 𝑝𝑠𝑖 ( 344.74 𝑘𝑃𝑎). Figure 8 shows the change in 
muscle blocked force as fiber initial pennation angle increases. 
The steps observed in the curve are associated with changes in 
the number of fibers in the muscle configuration as shown in 
Figure 6(a). This plot shows that muscles with a bipennate 
configuration are capable of outputting a muscle blocked force 
significantly larger than that of a parallel configuration. For fiber 
contraction-limited configurations, the muscle blocked force is 
driven by the number of fibers that can be packed in the 
prescribed bounding box. This is the case since the initial fiber 
radiuses are all the same for fiber contraction-limited 
configurations. In addition, fiber initial pennation angles are 
relatively small, which indicates most of the muscle output force 
is exerted along the same direction as the muscle line of motion. 
For fiber rotation-limited configurations, a nonlinear relationship 
exists between the muscle blocked force and fiber initial 
pennation angle due to a combination of factors. Both the 
number of fibers and initial fiber radius increases with increasing 
fiber initial pennation angle such that the maximum muscle 
blocked force is observed in a purely fiber rotation-limited 

configuration. However, the muscle blocked force decreases 
significantly for large fiber initial pennation angles. This is due 
to the amount of muscle output force exerted in the direction of 
muscle motion. At larger fiber initial pennation angles, less 
muscle output force is exerted in the direction of muscle 
contraction.    

Maximum muscle free contraction in Figure 7 and muscle 
blocked force in Figure 8 provide insight to understand how 
muscle stiffness varies with fiber initial pennation angle. The 
muscle stiffness 𝑘𝑚 can be computed from the muscle force
behavior during free muscle contraction. In this analysis, applied 
pressure 𝑃 is held constant for a fair comparison.  

𝑘𝑚 =
𝑑𝐹𝑚

𝑑∆𝑙𝑚

(18) 

Muscle stiffness at blocked force 𝑘𝑚,𝑏𝑙𝑜𝑐𝑘  can be extracted from
the muscle force behavior.  

𝑘𝑚,𝑏𝑙𝑜𝑐𝑘 = 𝑘𝑚|∆𝑙𝑚=0 (19) 

FIGURE 9: MUSCLE STIFFNESS AT BLOCKED FORCE 
WITH RESPECT TO INITIAL PENNATION ANGLE 

Intuitively, a muscle configuration with a large fiber initial 
pennation angle is expected to have a smaller muscle stiffness as 
compared to the same muscle configuration but, with a small 
fiber initial pennation angle due to the rate of change of fiber 
length with respect to muscle deflection. However, in this study, 
bipennate muscles with large fiber initial pennation angles can 
pack in more fibers and the fiber radiuses are larger than that of 
muscle configurations with smaller fiber initial pennation angles. 
This results in muscles with large fiber initial pennation angles 
achieving higher muscle output forces and small muscle 
contraction, which contribute to an overall large muscle 
stiffness. Figure 9 shows the change in muscle stiffness at 
blocked force as fiber initial pennation angle increases. The steps 
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seen in the plot are associated with changes in the number of 
fibers in the muscle configuration. The muscle stiffness at 
blocked force significantly increases with increasing initial 
pennation angle of the fibers. This is primarily due to the number 
of fibers in the muscle configuration. Like muscle blocked force, 
the maximum muscle stiffness at blocked force is observed in the 
purely fiber-rotation-limited configuration. However, this purely 
fiber-rotation-limited configuration for maximum muscle 
stiffness is different from that for maximum muscle blocked 
force.  

Isobaric work 𝑊𝑖𝑠𝑜𝑏𝑎𝑟𝑖𝑐  can be evaluated from the understanding
the muscle force behavior during contraction. In this analysis, 
applied pressure 𝑃 is again held constant for a fair comparison. 

𝑊𝑖𝑠𝑜𝑏𝑎𝑟𝑖𝑐 = ∫ 𝐹𝑚𝑑𝑙𝑚

𝑙𝑚,𝑓𝑟𝑒𝑒

𝑙𝑚,𝑖

(20) 

FIGURE 10: ISOBARIC WORK OUTPUT CAPACITY 
WITH RESPECT TO INITIAL PENNATION ANGLE 

The isobaric pressure applied to all muscle configurations was 
50 𝑝𝑠𝑖 ( 344.74 𝑘𝑃𝑎). Figure 10 illustrates the isobaric work 
output capacity varying with initial pennation angle. The steps in 
the plot are associated with changes in the number of fibers in 
the muscle configuration. Although the maximum isobaric work 
is hard to discern, there is a bipennate configuration such that 
with isobaric work output capacity that is slightly larger than that 
of the parallel configuration. The bipennate configuration with 
maximum isobaric work is purely fiber rotation-limited and 
differs from the bipennate configuration for maximum muscle 
blocked force and maximum muscle stiffness. This shows that 
bipennate muscles can be designed to achieve at least equivalent, 
even slightly more, work output under isobaric operation as 
compared to a muscle with parallel fibers.   

Isotonic work output 𝑊𝑖𝑠𝑜𝑡𝑜𝑛𝑖𝑐 can also be evaluated from the
muscle force during muscle contraction.  

𝑊𝑖𝑠𝑜𝑡𝑜𝑛𝑖𝑐 = 𝐹𝑙𝑜𝑎𝑑 ∫ 𝑑𝑙𝑚

𝑙𝑚,𝑓𝑟𝑒𝑒

𝑙𝑚,𝑖

(21) 

FIGURE 11: ISOTONIC WORK OUTPUT CAPACITY 
VS. INITIAL PENNATION ANGLE FOR DIFFERENT 

LOADS 

Figure 11 shows the isotonic work output for 10N, 30N, 60N and 
90N loads. The curves indicate that there is at least one bipennate 
configuration capable of achieving an isotonic work output 
larger than that of a parallel configuration. The results indicate 
the maximum isotonic work exists at the same fiber contraction-
limited bipennate configuration regardless of load conditions.  

3 CONCLUSIONS 
In this paper, a parametric model was presented to 

understand design considerations for pennate topology artificial 
muscle bundles under spatial bounding constraints. This model 
gave insight to not only how the individual fibers would behave 
during contraction but also indicated different methods of fiber 
attachment. Comparisons between the bipennate and parallel 
topology under equal spatial bounding constraint indicate that 
the pennate topology provides opportunities for amplifying 
muscle contraction, muscle output force, and muscle stiffness, 
while maintain similar peak isobaric work output. Particularly, 
pennate topology can amplify maximum muscle contraction by 
approximately 2.2% and maximum muscle blocked force by 
approximately 2.7 times as compared to the parallel 
configuration. This clear tradeoff between muscle contraction 
and muscle output force aligns with the biomechanics of natural 
muscles as pennate muscles are located where maximum force 
and minimum motion is needed. The maximum muscle stiffness 
is approximately 11 times larger than that of the parallel 
configuration. The maximum isobaric work is approximately 3% 
greater than that of the parallel configuration. Maximum isotonic 
work is approximately 1.8% greater than that of the parallel 
configuration regardless of load applied. Further work will 
include other design cases and efficiency analysis as well as 
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experimental validation of different muscle topologies for 
tracking a desired dynamic motion. 
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