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Abstract

In this review article, we present more than a decade of our work on the development of brain—computer interface (BCI)
systems for the restoration of walking following neurological injuries such as spinal cord injury (SCI) or stroke. Most of
this work has been in the domain of non-invasive electroencephalogram-based BClIs, including interfacing our system with
a virtual reality environment and physical prostheses. Real-time online tests are presented to demonstrate the ability of
able-bodied subjects as well as those with SCI to purposefully operate our BCI system. Extensions of this work are also
presented and include the development of a portable low-cost BCI suitable for at-home use, our ongoing efforts to develop a
fully implantable BCI for the restoration of walking and leg sensation after SCI, and our novel BCI-based therapy for stroke

rehabilitation.
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1 Introduction

Neurological conditions, such as spinal cord injury (SCI),
stroke, or traumatic brain injury (TBI), can compromise gait
function and leg sensation. These deficits have a profoundly
negative impact on the independence and quality of life of
the affected populations. In the USA alone, the primary and
secondary healthcare costs of SCI and stroke are estimated at
$90B/year [1, 2], which represent a significant public health
burden. There are currently limited options to restore motor
and sensory functions after SCI, and up to 60% of stroke
survivors have long-term gait deficits despite spontaneous
recovery and intense physiotherapy [3, 4]. Therefore, novel
approaches to the restoration of gait function and leg sensa-
tion after SCI and stroke are in high demand.
Brain—computer interfaces (BCIs) represent one such
novel approach. Generally, BCIs are systems that record
neural correlates of users’ intentions, decode these signals
in real time, and generate control commands for external
end-effectors, such as computer applications, wheelchairs,
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robotic prostheses/orthoses, and muscle stimulators [5].
BClIs enable those with paralysis to bypass the site of neu-
rological injury and assume direct brain control of external
devices (see Fig. 1). Principally, BCIs can be classified as
invasive or noninvasive, depending on the way they acquire
brain signals. An overwhelming majority of noninvasive
BClIs rely on scalp-recorded electroencephalogram (EEG).
Invasive BCIs primarily utilize action and local field poten-
tials recorded by intracortically implanted microelectrode
arrays [6, 7]. These high-fidelity brain signals enable a BCI
performance that is superior to those achieved by EEG-
based BClIs. They also require brain surgeries, which carry
non-negligible health risks, and the longevity of these brain
implants is limited [8].

Early BCI applications targeted the most severe forms
of paralysis, such as amyotrophic lateral sclerosis (ALS) or
brainstem stroke. For example, the earliest proof-of-concept
BClIs enabled people with ALS to communicate with their
environment [9—11]. Similarly, those with severe tetraplegia
due to cervical SCI [12] or brainstem stroke [13] used inva-
sive BClIs to control a variety of devices including robotic
arm prostheses. However, there were relatively few attempts
to develop BCIs for leg paralysis (paraplegia) due to condi-
tions such as mid-thoracic or lumbar SCI, or subcortical
stroke. Motivated by this knowledge gap, we developed sev-
eral BCI systems to address lower extremity paralysis and
this review summarizes more than a decade of our work in
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" End-effector Feedback

Fig.1 Elementary BCI framework. A person with paralysis due
to SCI generates movement intentions whose neural correlates are
decoded real-time and used to control an external end-effector. Typi-
cal feedback is visual, although other sensory modalities can be
employed

this area. In Sect. 2, we describe our approach to designing a
non-invasive BCI system for the restoration of walking after
SCI. Subsequently, we integrated this BCI with a virtual
reality environment (VRE) and tested its performance first
in a population of able-bodied individuals and then in those
with SCI. These results are summarized in Sects. 3 and 4,
respectively. Once we verified its function in a VRE, we inte-
grated our BCI system with physical prostheses, first with a
robotic gait orthosis for treadmill walking (see Sect. 5) and
subsequently with a functional electrical stimulation (FES)
system for free-overground walking (see Sect. 6). We pro-
vide conclusions and future directions in Sect. 7.

2 Noninvasive BCls for restoration
of walking after SCI

Wheelchair mobility remains the primary mode of ambula-
tion for individuals with paraplegia due to SCI. However,
prolonged wheelchair use and sedentary lifestyle associated
with SCI lead to a number of comorbid conditions [14-16],
which contribute to the majority of SCI-related healthcare
costs. These problems have inspired the pursuit of novel
approaches to the restoration of walking after SCI. Examples
include cell-based therapies, which have shown promise in
preclinical studies [17], followed by clinical trials designed
to ascertain their safety [18, 19]. Another example is a neu-
romodulation-based approach, whereby electrical stimula-
tion is delivered to the spinal cord, below the lesion. This
method enabled those with motor-complete SCI to regain
volitional leg movements [20, 21]. While orthogonal to
cell-based and neuromodulation-based therapies, BCIs are
inherently complementary to these approaches due to their
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Fig.2 a The state transition diagram of the BCI decoder with a prob-
abilistic input, P(W|f*). b The state-input space of the system with
the transition thresholds 7; and Ty, (T; < Ty). When Ty, > 0.5 and
T, < 0.5, these transition rules are consistent with Bayes factors [26]

unique ability to provide real-time access and interpretation
of brain signals. Therefore, BCIs will continue to play an
important role in the restoration of walking after SCI, either
as a stand-alone or adjunct technology.

We first sought to test the feasibility of developing an
EEG-based BCI to control walking [22]. In doing so, we
established the following design criteria: (1) intuitive con-
trol, (2) short training time and (3) robust operation. To
achieve intuitive control, subjects with SCI initiated walk-
ing by either attempting to walk or creating the kinesthetic
motor imagery (KMI) of walking, i.e., a mental rehearsal
of walking without any overt movement execution [23]. To
cease walking, they simply relaxed. This control strategy
intuitively matches the task at hand and is in contrast to other
BCI approaches that often involve the KMI of unrelated
body parts, such as fist pumping or tongue protrusion. Short
training time and robust control were achieved by employ-
ing a data-driven subjects-specific decoder design. This
approach generally permitted BCI-naive subjects or those
with very little prior BCI experience to assume purposeful
control of an end-effector after a 15-min training/calibration
procedure. Other BCI approaches typically require a signifi-
cantly more extensive training time [24, 25]. Our approach
also allowed a fixed decoder to be used over time despite the
non-stationary nature of EEG signals.

At the core of our BCI system is a state decoder designed
as a binary-state machine (see Fig. 2). Its transitions are
driven by a probabilistic input, P(W|f*), which represents
the posterior probability of Walk state given the observed
EEG feature f*. Note that P(I[f*) = 1 — P(W|f*), so the
knowledge of P(W|f™*) is sufficient for defining state transi-
tions. This probability is compared to fixed thresholds, T,
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and 7'y, which are found through a calibration process. Since
T, < Ty, the binary-state machine (BSM) exhibits a hyster-
etic behavior. Such an asymmetric threshold structure also
minimizes the mental fatigue of BCI participants. For exam-
ple, to transition from Idle to Walk state, the input P(W [f*)
must exceed Ty,. However, to remain in Walk state, it is
sufficient for P(W |f*) to remain above T, which is typically
lower than Ty, and requires much less mental effort. Like-
wise, to transition from Walk to Idle state, P(W[f*) must
be brought below T;; however, to remain in Idle state, it is
sufficient for the posterior probability to remain below Ty;.

Another challenge in the design of our BCI decoder is the
small sample size problem [27]. Namely, obtaining accurate
posterior probability estimates P(W|d*) e p(d* |W)P(W)
from observed EEG data d* € RV is difficult given the
high number of EEG channels, N,, and the high sampling
rate. For example, a typical 750-ms, 64-channel EEG data
segment sampled at 256 Hz (N, = 192), would result in a
~ 12,288-dimensional data. In the face of limited number
of data segments, the likelihood function estimate p(d|W)
is typically meaningless and so low-dimensional features
f = @(d) must be pursued. In the simplest form, feature
extraction maps, @ : RN>N s R™ are linear. Using infor-
mation-theoretic arguments [28], we designed a piecewise
linear feature extraction map that maximizes the separabil-
ity of features f under different class assignment [29, 30].
For binary class problems (e.g., Fig. 2), this method often
yields optimal results in one-dimensional (1D) feature space
(m = 1), which is consistent with the feature dimension of
the theoretical Bayes classifier [31]. Since EEG signals often
exhibit rhythmic behavior, our analysis is performed in the
frequency domain, i.e., d € R¥>*s_ where N, is the num-
ber of frequency bands and the elements of d are the power
spectra.

3 Self-paced BCI control of ambulation
in a virtual reality environment

We recruited eight able-bodied subjects and one individual
with mid-thoracic SCI to participate in this study. The par-
ticipants were fitted with an actively-shielded, 63-channel
EEG cap connected to an amplifier array. They were seated
in front of a computer screen which showed textual cues
prompting them to alternate between relaxing (Idle state)
and KMI of walking (Walk state). During this procedure,
their EEG data were recorded (sampling rate 256 Hz),
labeled by the state information, and stored on a computer
for subsequent analysis. This training data collection lasted
10 min and included 10 alternating Idle and Walk epochs,
each lasting 30 s. A more detailed description of these pro-
cedures can be found in [22].
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From each Idle and Walk epoch, we extracted 5 non-
overlapping 4 s-long trials of EEG data. This created
a training database of 100 trials (50 trials in each state).
These trials were then fast Fourier transformed (FFT) and
their power spectra were integrated in 2 Hz bins centered
at 1,3,...,39 Hz. Note these frequencies were chosen
since most of the motor-related EEG signals are confined
to < 40 Hz frequency band. This transformation resulted
in spatio-spectral data d € R%*?0 which, at 50 trials per
class, create a severe small sample size problem. Therefore,
the data were vectorized and subjected to a combination of
dimensionality reduction via classwise principal component
analysis (CPCA) [29] and feature extraction via approximate
information discriminant analysis (AIDA) [30]:

[ =T (), ()

where @ is a piecewise linear CPCA mapping and 7', is an
AIDA feature extraction matrix. Through this procedure, we
extracted 1D features, f, which enabled the accurate estimate
of the likelihood p(f| W) as a univariate Gaussian function
and in turn the posterior probability P(W|f) « p(f| W)P(W).

Subsequently, we found the BSM transition thresholds,
T, and T, (Fig. 2), through the following calibration pro-
cedure. The subjects were instructed through verbal cues
to alternate between short epochs of relaxing and walk-
ing KMI for a total of ~ 2 min. During this period, their
EEG data were acquired in real time and the most recent
750-ms-long data segment was transformed into the fre-
quency domain as explained above. Subsequently, we
extracted 1D features f* using Eq. (1) and calculated the
posterior probability P(W|f*) using the Bayes rule. Ide-
ally, the samples of P(W|f* € I) should cluster around
0 and those of P(W|f* € W) should cluster around 1. To
account for noise, we chose T; = median{ P(W|f* € )}
and Ty, = median{P(W|f* € W)}. To further smooth the
state transitions, the calibration procedure often required
averaging the posterior probabilities P(W [f*) across two
or three consecutive 750-ms data segments. Another option
is to smooth the posterior probabilities through a recursive
Bayesian update [32]:

P |[WP(WFX )

PW|fY) =
Vi P

k)

where £, and fk* are the observed EEG features across two
consecutive data segments. The feature extraction transfor-
mations, the parameters of the likelihood function, and the
thresholds 7 and T, were then saved for each subject. This
concluded the design of data-driven subject-specific BCI
decoders.

We quantified the BCI system’s performance through
real-time online tests consisting of walking in a VRE. Within
the VRE, each subject was assigned a BCI-controlled avatar
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that had to be walked in a straight line and stopped by each
of the 10 non-player characters (NPCs) for at least 2 s (see
Fig. 3). The goal of the game was to finish the course as
quickly as possible while making all 10 stops. Once the
game started, the subject’s EEG data were recorded in real
time with a refresh rate of 0.5 s (limited by the computer
processing speed). From the most recent 750-ms data seg-
ment, the posterior probabilities P(W|f*) were estimated as
above using the subjects-specific parameters. To walk, the
subjects had to use the KMI of walking and to dwell by each
NPC, they had to relax. The state transitions were controlled
by the subject-specific BSM with transition thresholds deter-
mined through the above calibration procedure. Each sub-
ject performed the walking task 5 times, with all the tasks
completed in a single day. A video showing an example of a
real-time BCI test can be found here: https://www.youtube.
com/watch?v=GXmovT3BxEo. Figure 4 shows the space-
time plot of a representative test for one of the able-bodied
subjects.

Table 1 shows the real-time online performances of all
study participants, averaged over 5 walking tests. The per-
formances are quantified using the completion time and
the number of stops made. Dwelling for less than 2 s at
each NPC’s location incurred a partial stop score. Note that
these two performance metrics are inherently traded off,
as shorter completion time can be achieved at the expense
of not making designated stops. Monte Carlo simulations
showed that all but one of the 45 total online tests performed
by the subjects were statistically significant, i.e., they could
not be achieved by uniformly drawing P(W|f™*) between 0
and 1. The performance achieved with a manually controlled

Fig.3 A BClI-controlled avatar within a VRE, operated in a third-per-
son view. The subject uses walking KMI to move the avatar from one
NPC to another at a constant speed. The subject relaxes to dwell by
each NPC for > 2 s. Reprinted with permission from [22]. Copyright
IOP Publishing
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Fig.4 The space-time plot of a representative online walking test for
an able-bodied subject A8. The pink areas mark designated stopping
zones (the location of the NPC =+ one body length tolerance). Orange
segments mark false starts. The game finishes after the avatar walks
past the last stopping zone. There were no false stops in this particu-
lar test. Reprinted with permission from [22]. Copyright IOP Pub-
lishing

joystick is also shown for reference. For a more detailed
presentation of results, the reader is referred to [22].

In summary, this study demonstrated that a non-invasive
EEG-based BCI could be used to restore walking in a VRE.
These results were achieved while adhering to the principles
of intuitive control, short training time, and robust opera-
tion. Intuitive control was achieved by subjects utilizing the
KMI of walking and relaxation to respectively initiate vir-
tual walking and standing. All subjects achieved purposeful
control of the BCI after undergoing a 10-min training data
collection and 2-min calibration. This is in contrast to simi-
lar BCI-VRE studies [24, 25], which respectively required
3-5 and 4 months of training. Robust operation was achieved

Table 1 Average BCI-VRE performance for 8 able-bodied subjects
(A1-A8) and one subject with paraplegia due to SCI (S1). The aver-
age performance with a manually controlled (MC) joystick is also
shown

Subject Completion time (s) Stops made

Mean + std Mean =+ std
Al 319.8 +48.3 9.14 + 0.57
A2 266.7 +10.8 7.80 +1.10
A3 291.9+193 8.03 +1.08
A4 291.7 +20.6 9.01 +1.39
A5 3254 +54.2 8.10 £ 0.94
A6 3182273 8.09 + 1.06
A7 291.5+24.4 7.65+1.19
A8 228.8 +14.0 9.34 + 0.60
S1 410.6 +37.4 9.25 +0.96
MC 205.1 £ 4.2 9.38 +£0.85

std standard deviation

& Springer
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by utilizing a data-driven, subject-specific approach to the
decoder design. This approach allowed the BCI walking
tasks to be repeated over time without making adjustments
for the non-stationarity of EEG data due to factors, such as
impedance drifts, sweat formation, and human—computer
co-adaptation [33]. Our study also demonstrated that some
subjects (e.g., A8 and A2) were only marginally inferior to
manually controlled joystick in terms of completion time
(Table 1) and several participants achieved competitive
stop scores, e.g., > 9.0. Especially encouraging is the per-
formance of subject S1, who despite being paralyzed for 11
years, was able to achieve purposeful BCI control of walk-
ing. These results warranted an extension of this study to a
population of individuals with SCI.

4 BCI control of ambulation in a virtual
reality environment after SCI

Encouraged by the results from Sect. 3, we sought to test
the performance of our BCI-VRE system in a population of
people with SCI. We also wanted to verify whether purpose-
ful control could be retained over multiple days. To this end,
we recruited 5 individuals with SCI and tested their ability
to operate our BCI system over 5 non-consecutive days. Four
participants had paraplegia due to thoracic SCI and one (S3)
had tetraplegia due to syringomyelia in the cervical spine. All
were considered to be in the chronic phase of SCI with post-
injury times ranging from 1 year (S5) to 14 years (S3) and
ages ranging from 21 (S5) to 59 (S4). A more detailed demo-
graphic description of the participants can be found in [34].

The experimental procedures were identical to those
described in Sect. 3, except that they were repeated over 5
non-consecutive days. On each experimental day, the sub-
jects underwent training EEG data collection (10 min), fol-
lowed by a decoder design, including a 2-min calibration
procedure, and between 2 and 8 real-time online BCI-VRE
walking tests. These tests were identical to those in the pre-
vious section (see also Fig. 3). The total number of real-time
online walking tests on a per-subject basis ranged from 19 to
29. Subject S2 attained purposeful BCI control on the sec-
ond experimental day, with all the other participants being
able to do so on the very first day.

A representative video of a real-time online BCI-VRE
test for subject S3 can be found at https://www.youtube.com/
watch?v=K4Frq9pwAz8. Table 2 shows a more detailed
performance breakdown including the total number of tests
performed by each subject, their best experimental day, and
the level of SCI injury and paralysis type. Since these perfor-
mances are characterized by the completion time and stops
made, which are opposing criteria, determining the best
day’s performance included combining these measures into a
single composite score. The performances and experimental
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Table2 Average BCI-VRE performance for five participants with
SCI (S1-S5)

Subject SCIlevel  Total tests Completion time (s) Stops made

Best day Mean + std Mean =+ std
S1 T11 n=29 275 + 45 62+1.8
Paraplegia Bestday: 5 298 + 77 6.8+23
S2 T1 n=25 271 + 66 57+23
Paraplegia Bestday: 5 293 + 26 81+12
S3 C5 n=24 277 + 65 94+13
Tetraplegia Bestday: 4 231 +38 10.0 £ 0.0
S4 T1 n=19 289 +43 83+1.8
Paraplegia Bestday: 1 264 + 12 89+03
S5 T11 n=27 258 + 31 77+21
Paraplegia Bestday: 4 260 + 17 10.0 + 0.0
MC N/A n=>5 205 +4 94+09

SCI levels and types of paralysis are given in the second column (e.g.,
T11—the eleventh thoracic vertebra, C5—the fifth cervical vertebra).
The third column shows the total number of tests performed and the
day at which the best performance was attained. The performance
with a manually controlled (MC) joystick is also shown

days could then be ordered based on the composite score. To
ascertain the statistical significance of these results, we per-
formed Monte Carlo simulations with subject-specific BSMs
and the posterior probabilities drawn uniformly between 0
and 1. Across 124 real-time online BCI-VRE tests performed
by all participants, only 5 tests had performances that could
have been achieved by Monte Carlo simulations, with the
majority of these non-significant performances attributed
to S1. For an in-depth presentation of the results, the reader
is referred to [34].

These results demonstrate that a population of people
with SCI could learn to operate an intuitive, KMI-based BCI
within a relatively short time period. All subjects attained
purposeful BCI control, as ascertained by statistical tests, on
the very first experimental day, except for subject S2, who
did it on the second day. These times are still significantly
shorter than those reported in related BCI-VRE studies [24,
25]. Our data-driven, subject-specific approach to the BCI
decoder design yielded a robust performance in the face of
EEG signal non-stationarity. Anecdotally, we tested these
decoders across multiple days, and while they still yielded
purposeful control, the performances were better when a
new decoder was designed for each experimental day. Given
the relatively short decoder training and calibration process,
this did not impose additional burden on the participants
and/or experimenters. All subjects (except S4) achieved
their best performance on the fourth or fifth experimental
day, suggesting that the performance may improve over time
due to human-computer co-adaptation [33]. Other factors
such as the motor imagery induced reactivation of the previ-
ously dormant brain areas [35] may also have played a role.
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Especially encouraging are the performances of subjects
S3 and S5, who on their best day achieved the perfect stop
score, while being marginally slower than the manually con-
trolled joystick. It should also be noted that subject S3 was
the most severely paralyzed and could not use his arms or
breathe on his own. Such as high level of control achieved by
a diverse population of people with SCI indicates that BCI-
controlled lower extremity prostheses for gait rehabilitation
or restoration may be feasible. Our BCI-VRE system may
also serve as a training platform for such prostheses if/when
they become available.

5 BCI control of robotic gait orthosis

After extensively testing our BCI-VRE system in able-bod-
ied population (Sect. 3) and people with SCI (Sect. 4), we
explored whether it was possible to interface this system
with a physical prosthesis [36]. To this end, we integrated
our EEG-based BCI with a commercial robotic gait ortho-
sis (RoGO) system (see Fig. 5). This system consists of a
RoGO, a support harness, a treadmill, and a computer con-
trol module. When in motion, both the RoGO and treadmill
move in a synchronized manner, i.e., with the step rate that is
proportional to the treadmill speed. The system can accom-
modate different body habitus and provide different levels of
body-weight support, which may be needed when the system
is used by those with SCI. While conceptually similar, there
are several important differences between this system and
our BCI-VRE for walking. First, the BCI-RoGO system is
operated in an up-right position. The same goes for the train-
ing and calibration processes. Second, walking on a tread-
mill causes vibrations and movement artifacts that can easily
be picked up by EEG. In general, these artifacts must be
appropriately dealt with. Finally, feedback in the BCI-RoGO
system is no longer visual and it involves a complex com-
bination of tactile, proprioceptive, and auditory sensations.

We recruited one able-bodied participant (Subject 1)
and one participant with mid-thoracic T6 SCI (Subject 2)
to participate in this study. They, respectively, had 5 and 3
hours of prior BCI experience, mostly by participating in
our BCI-VRE experiments. They were fitted with an actively
shielded 63-channel EEG cap and placed in the RoGO. Both
had a gyroscope mounted above their left ankle to meas-
ure leg trajectories. Subject 1 also had three electromyo-
gram (EMG) channels to measure the activity of the left
quadriceps (thigh), tibialis anterior (shin) and gastrocnemius
(calf) muscles. These EMG signals were measured in the
able-bodied subject to rule out BCI control by voluntary leg
movements. Both subjects then completed 10 min of training
data collection, by alternating between epochs of relaxation
and the KMI of walking. The decoder was then designed
from these training data using a similar procedure to those

BCI
computer

Fig.5 A subject wearing an EEG cap suspended in the RoGO via a
harness. Surface EMG electrodes and a gyroscope are respectively
measuring the muscle activity and movement of the left leg. When
movement intentions are decoded from EEG, the BCI sets the RoGO
and the treadmill in motion, which provides feedback to the subject.
Reprinted from [36] under the Creative Commons License Attribution

presented in the previous sections. Subsequently, a 5-min
calibration was performed, where EEG data were acquired
every 0.25 s, while the subjects were instructed verbally to
alternate between idling and the KMI of walking. We then
calculated the posterior probabilities, P(W|f*), from the
most recent 750-ms-long EEG data segment and determined
the state transition thresholds as explained in the previous
sections. A more detailed account of these procedures can
be found in [36].

A real-time online walking test consisted of subjects
being prompted by a computer screen to alternate between
1-min-long epochs of idling and walking for a total of 5 min.
By alternating between relaxation and the KMI of walking
they, respectively, stopped/moved the RoGO. Their EEG
data were recorded every 0.25 s and the posterior probabili-
ties were computed in real time from the most recent 750-ms
data segment. This resulted in the state of the BSM (Fig. 2)
being updated at a rate of 4 Hz. Therefore, to complete the
whole 5-min task correctly, 1200 EEG data segments must
be correctly decoded in succession. A video showing a rep-
resentative example of a real-time online walking test can
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be found at https://www.youtube.com/watch?v=HXNCw
onhjG8. Both subjects completed 5 such tests during a sin-
gle experimental day. Figure 6 shows the time course of
representative walking tests for Subject 1 and Subject 2. We
subsequently analyzed these online walking tests to assess
the performance. Specifically, we calculated the normalized
cross-correlation between the instructional cues and BCI-
RoGO walking, as determined from the gyroscope data. We
also calculated the rate of omissions (failure to activate BCI-
RoGO walking during Walk cues) and false alarms (initia-
tion of BCI-RoGO walking during Idle cues). Finally, we
performed Monte Carlo simulations to establish the empiri-
cal p-values and ascertain the statistical significance of the
achieved performances.

Table 3 summarizes these results across five real-time
online BCI-RoGO walking tests. In all ten tests, the achieved
performances were statistically significant, i.e., they could
not have been achieved a the random sampling of posterior
probabilities. Both subjects achieved cross-correlations in
excess of 0.8 at the average lag of ~7 s. Note that most of
this lag is imposed by the RoGO system’s built-in stopping
cycle, over which the treadmill velocity is gradually brought

p EMG o i N
.© Gyroscope ‘m "m‘—
—‘; BCI state
n Cue > ; : . - =

0 50 100 150 200 250 300

t(s)
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5 Gyroscope [————{ilililli- -
.2 BC(I state
= Cue
n
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Fig.6 Representative real-time online walking tests for Subject
1 (able-bodied) and Subject 2 (SCI), showing epochs of idling and
BCI-RoGO walking. The walking epochs (green blocks) were esti-
mated from the gyroscope data. The system has a built-in startup/
stopping cycles, during which the treadmill speed and RoGO step-
ping rates are gradually increased/decreased. The red line shows the
states decoded by the BCI (thin-idle, thick-walk), while the blue line
(thin-idle, thick-walk) marks the instructional cues. Corresponding
EMG (gold: quadriceps; teal: tibialis anterior; purple: gastrocnemius)
are also shown. Reprinted from [36] under the Creative Commons
License Attribution

to 0. A small source of additional lag is the averaging of
posterior probabilities across multiple 750-ms segments,
although, as mentioned in Sect. 3, this smoothing procedure
reduces state misclassifications. Indeed, both subjects had
no omissions and had on average < 1 false alarm per 5-min
test. The average duration of these false alarms was ~ 7 s
and was largely dominated by the RoGO system’s stopping
cycle. The examples in Fig. 5 show no false alarms for Sub-
ject 1 and two false alarms for Subject 2. Analysis of EMG
data for Subject 1 showed that there was no significant EMG
activity in either muscle group prior to the transition from
Idle to Walk state. This confirms that the able-bodied subject
did not use volitional leg movement to initiate the transi-
tion to Walk state. Additionally, the levels of EMG activity
during the BCI-RoGO walking tests were consistent with
passive leg movements, indicating that BCI-RoGO was not
controlled by the subject actively moving his legs. A detailed
discussion of these and related points can be found in [36].
Finally, we turn our attention to the information-theoretic
feature extraction maps defined by Eq. (1). While solely
data-driven, these maps have an intuitive physiological inter-
pretation. Namely, for each frequency bin, the coefficients
of the piecewise linear CPCA-AIDA transformation can be
mapped onto the EEG electrodes, interpolated, and visual-
ized as brain topographies. Figure 7 shows an example of
these maps for Subject 2, which had the most salient coeffi-
cients at the 10—12 Hz frequency bin. This is consistent with
the loss of EEG power in the p-frequency band (8—12 Hz)
that tends to happen with the imagination or execution of
movements [37]. Spatially, the areas of importance appear
to overlay the leg and arm sensorimotor representation areas,
which is consistent with prior studies [22, 34]. For example,
the involvement of the leg and bilateral arm areas has been
reported in our BCI-VRE experiments and is likely associ-
ated with the imagery of leg movements and arm swings.
In summary, these results demonstrate that purposeful
BCI control of leg prostheses for the restoration of walking
is feasible. It is particularly notable that both subjects had
very little prior BCI experience, yet they attained highly
accurate BCI control of the RoGO system on their first
attempt. Our BCI-RoGO system retained the intuitiveness,
short training, and robust performance—the design crite-
ria established with our BCI-VRE system. Moreover, the
performances achieved in this study were superior to those

Table 3 BCI-RoGO

Subject SCI level Cross-correlation Omissions False alarms
performances for the two ) o
participants, averaged over five (Lagin's) (Avg. duration in s)
real-time online walking tests Subject 1 N/A 0.81 + 0.06 (6.95 + 3.89) 0 0.8 (7.08)

Subject 2 T6 0.82 + 0.05 (7.85 + 3.60) 0 0.8 (7.76)

The third column shows the total number of tests performed and the day at which the best performance was

attained
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Fig.7 The CPCA-AIDA feature extraction maps at the 10-12 Hz
frequency bin for Subject 2. The piecewise linear nature of the map
is represented as two images (one for each state). Topographic areas
with values close to + 1 or —1 are the most important for distin-
guishing between Idle and Walk states at this frequency. Modified
from [36] under the Creative Commons License Attribution

achieved with our BCI-VRE system. We hypothesize that
this gain in performance could be attributed to a more natu-
ral up-right operation of the BCI-RoGO system and a more
biomimetic nature of feedback consisting of a combination
of tactile, proprioceptive, and auditory sensation. To the best
of our knowledge, this was the first-ever demonstration of
a person with SCI using a BCI to operate a leg prosthesis.
It also represents an important intermediate step toward the
restoration of free overground walking using neurorestora-
tion technologies.

6 BCI control of free overground walking

Following up on our BCI-VRE and BCI-RoGO studies [22,
34, 36], we explored the possibility of integrating our EEG-
based BCI system with a prosthesis for free overground
walking [38]. Specifically, we chose a U.S. Food and Drug
Administration (FDA)-approved FES system (Parastep,
Sigmedics, Fairborn, OH) which achieves ambulation by
electrically activating the quadriceps and tibialis anterior
muscles in a coordinated manner [39]. Coupled with the
user’s anterior-lateral shifting maneuvers, this procedure
allows those with complete paraplegia to walk overground.
The Parastep system is equipped with a front-wheel walker
for stability and additional support (see Fig. 8). The stand-
ing function and individual steps are normally controlled
manually by pressing the corresponding buttons. To enable
BCI control of the system, we used a microcontroller unit
(MCU) and digital relays to interface with the “left step”,
“right step”, and “stand” buttons of the Parastep system.
We recruited a single subject with paraplegia due to SCI
(T6, 6 years post-injury), who had no motor/sensory function
below the level of injury. He underwent a battery of screening
procedures to rule out severe spasticity, osteoporosis, lower
extremity fractures, pressure ulcers, orthostatic hypotension,

EEG |

FES

R

Gyros

-

\\\\*\\m\% ‘
o

Fig. 8 Integrated BCI-Parastep system for free overground walking.
The subject is placed in a safety harness of a body-weight support
system (ZeroG, Aretech, Ashburn, VA) for added safety. EEG ampli-
fiers are placed in a backpack and EEG data are sent wirelessly (via
Bluetooth) to the BCI computer, which processes the data in real-time
and wirelessly sends the BCI commands to a microcontroller (placed
in the belt-pack). A laser distance meter (placed on the rail of ZeroG)
and two gyroscopes (placed above the ankles) are added to measure
the subject’s position and leg trajectories. Modified from [38] under
the Creative Commons License Attribution

contractures, and restricted range of motion. We also con-
firmed that he had an adequate neuromuscular response to
FES. Subsequently, the participant began a BCI practice using
our BCI-VRE system (see Sect. 4). He simultaneously started
FES training in order to recondition his leg muscles for weight
bearing and overground walking, and to improve his cardio-
pulmonary endurance. The FES training continued until the
subject could walk the length of the 3.66-m course (12 ft). This
procedure was also used to determine the optimal parameters
for the Parastep system, such as the step rate and stimulation
amplitude. For safety purposes and partial body-weight sup-
port, he was placed in the ZeroG body-weight support system
(Fig. 8).

After ~ 12 weeks of BCI practice and FES training, we
began testing the subject’s ability to walk using the BCI
system. The walking tests entailed the subject receiving
verbal cues to start and stop walking, while his EEG data
were recorded every 0.25 s, analyzed in real time using the
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procedures similar to those described in the previous sec-
tions, and decoded to issue the corresponding command to
the Parastep system. To facilitate free overground walking, we
untethered the subject from the BCI system by using a wire-
less communication protocol (Bluetooth) for the transfer of
EEG data and Parastep control commands. We had to reduce
the number of EEG channels from 63 to 24 to accommodate
the wireless transfer bandwidth limit. This reduction in the
number of channels did not adversely affect the performance
as 24 channels still provided a good coverage of motor corti-
cal areas. The walking task began with the subject standing
still for ~20 s, followed by walking to the mid-point of the
course (marked by a traffic cone), standing there for ~ 20 s,
finishing the course, and standing there for another ~ 20 s.
A video showing a representative example of one real-time
online walking test can be found here: https://www.youtube.
com/watch?v=RBAeR-Z0EHg. The participant performed
between one and six such overground walking tests per visit.
Over the course of 19 weeks, he had 11 visits during which
he performed a total of 30 walking tests. Figure 9 shows data
from a representative walking test.

The subject’s performances during overground walking
tests were characterized based on the video, BCI state, and
gyroscope data. Specifically, we calculated the normalized
cross-correlation between verbal cues (recorded by the camera)
and BCI-FES mediated responses (recorded by the gyroscope),
as well as the lag at which the maximum cross-correlation

Stand Walk Stand Walk Stand

4m S ST Cone 3
3m

2m Cone 2
Im

Taser feed Cone 1
Verbal cues |

BClI state |
Right gyro +
Left gyro +

150

t(s)

Fig.9 Graphical representation of a BCI-controlled overground walk-
ing test. The beginning and end of yellow blocks mark the onset of
Walk and Idle verbal cues, respectively. Red blocks represent periods
when the BCI system decoded Walks state; otherwise, the system is
in Idle state. Green and blue blocks mark leg movements recorded
by the gyroscopes. The laser signal (blue trace) depicts the partici-
pant’s position over time, as measured by the laser distance meter.
The beginning, mid-point, and end of the course are marked by traf-
fic cones. Reprinted from [38] under the Creative Commons License
Attribution
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occurs. Similar to our BCI-RoGO study (Sect. 5), the statisti-
cal significance of these cross-correlations was established by
comparing them to those achieved through Monte Carlo simu-
lations. To make our study comparable to related BCI studies,
we expressed these performances using an information transfer
rate (ITR). The ITR (bit/s) was calculated as

ITR = BZ(D, T), )

where B is the number of decisions per unit of time (4/s
in this study) and Z(D, T) := H(D) — H(D|T) is the mutual
information between the true state of the nature T (deter-
mined from the cue) and the decoded state D. The entropy
H(D) and conditional entropy H(D|T) can be found from the
four terms of the confusion matrix, viz. the probability of:
correctly decoding Idle state, correctly decoding Walk state,
omission (incorrectly decoding Idle state), and false alarm
(incorrectly decoding Walk state). Further derivation of this
formula can be found in [38].

Table 4 shows the average performance of the subject
across 30 overground walking tests performed during 11
visits, as well as the performance during the best session
(recorded on the 9th visit). The achieved cross-correlations
were similar to those reported in Sect. 5 with a significantly
shorter lag. Monte Carlo simulations confirmed that in all 30
tests, the achieved cross-correlations were statistically sig-
nificant. Similarly, there were no omissions and the subject
had ~2 false alarms per test. Notably, the false alarm rate
decreased toward the end of the study, presumably due to
learning. Finally, the average ITR of 2.3 bit/s is comparable
to the values recorded with our EEG-based BCI for commu-
nication [40]. Finally, the analysis of the peak performance
indicates that a very high level of control can be achieved
with this system. Specifically, the cross-correlations as high
as 0.987 are achievable with no omissions or false alarms.
In addition, ITRs as high as 3.7 bit/s were observed, which
is significantly superior to 1 bit/s—the hypothesized upper
ITR bound of EEG-based BClIs [5, 41].

This study represents the first demonstration of a per-
son with paraplegia due to SCI purposefully operating a

Table 4 Cross-correlation, p, between verbal cues and gyroscope
movement, ITR, number of false alarms, and false alarm rate for the
30 overground walking tests performed

Performance criterion Average Standard devia- Best
tion

p 0.775 0.164 0.987

Lag (s) 2.861 4.229 2.742

ITR (bit/s) 2.298 0.904 3.676

FA 2.333 2.073 0

FA rate (FA/s) 0.043 0.039 0

The best session results (on the 9th visit) are shown in the last col-
umn. No omissions occurred during any overground walking test
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noninvasive BCI-FES system for overground walking. The
participant achieved highly accurate control of the system
and maintained this level of performance during a 19-week
period. The subject was also able to lightly converse dur-
ing these experiments without interfering with the function
of the system. These results provide a proof-of-concept for
direct brain control of the leg prosthesis for the restoration of
elementary overground walking to those with leg paralysis.
Further studies are necessary to test the performance of this
system in a population of individuals with SCI.

7 Conclusion and future directions

In this article, we summarized more than a decade of our
work on the development of EEG-based BClIs for the resto-
ration of walking after SCI. Our design process was guided
by the principles of intuitiveness, short training time, and
robustness. We first integrated our BCI system with a VRE
and tested the ability of able-bodied individuals to virtu-
ally walk in this environment [22]. We then repeated this
study with a cohort of people with SCI [34]. We demon-
strated that participants in these studies could master the
BCI-mediated virtual walking with very little or no prior
BCI experience, in a relatively short period of time (often
on the very first try). We attribute these results to using a
combination of intuitive control strategy based on KMI and
subject-specific data-driven decoders. We subsequently inte-
grated our BCI system with physical prostheses, such as gait
orthosis and FES for walking, and respectively, tested their
performances in treadmill [36] and free overground walk-
ing [38] conditions. At the time, these studies represented
first-of-a-kind demonstrations of individuals with paraplegia
using their brain signals to regain elementary walking func-
tions. Similar studies involving a larger number of subjects
with paralysis due to SCI were subsequently reported by
other groups [42], who also observed partial neurological
improvements in response to long-term BCI use.

There are several potential extensions and improvements
of our work. For example, conventional EEG-based BCls,
including the one presented in the previous sections, are gen-
erally expensive, complex to operate, require a long set-up
time, and lack portability. These factors limit their use to
laboratory settings. These problems can be mitigated using
a fewer number of EEG electrodes [43] and custom-design-
ing EEG amplifiers for portability and compactness [44].
Additional savings can be achieved by replacing the BCI
computer with a dedicated embedded processing system [45,
46]. Motivated by these shortcomings, we developed a port-
able low-cost BCI platform and compared its performance
to that of our conventional BCI system [47]. Specifically, we
designed a custom 4-channel amplifier array and integrated
it with an open-source MCU and a touchscreen. When

blind-tested in a population of able-bodied subjects, the real-
time online decoding performance of the low-cost system
was statistically indistinguishable from that of a conven-
tional BCI. To ascertain its clinical utility, our future work
will be directed toward testing the function of this system in
a population of individuals with SCI or other neurological
conditions.

While we demonstrated that highly accurate control is
possible with EEG-based BCls, a real-world deployment
of these systems may require much higher levels of perfor-
mance. For example, decoding errors, such as omissions or
false alarms, may have serious implications for the safety of
BCI users. Achieving error rates that are within an accept-
able safety margin may not be feasible given the limited
spatio-temporal resolution of EEG signals and their suscep-
tibility to biological and non-biological artifacts. A potential
solution to this problem is to employ invasively recorded
brain signals. Having access to surgically implanted elec-
trodes may also provide a conduit for delivering biomimetic
feedback by means of cortical electrostimulation. We are
currently in the process of developing a fully implantable
BCI for the restoration of walking and leg sensation in peo-
ple with paraplegia due to SCI. For this purpose, we intend
to use subdurally recorded electrocorticogram (ECoG). In a
simplified form, ECoG signals can be viewed as a high spa-
tio-temporal resolution instantiation of EEG [48]. They are
also largely immune to artifacts. ECoG is typically recorded
by subdurally placed electrode grids, which while invasive,
do not penetrate the brain tissue and have been shown to
remain stable for up to 9 years [49-51]. ECoG grids are
also FDA-approved for cortical electrostimulation, which
when delivered over the sensory cortex, can elicit artificial
sensation [52, 53]. Our preliminary results with subjects
implanted with ECoG grids show distinct patterns of walk-
ing-induced activity over the leg motor cortex that extend
well into the y (40-160 Hz) frequency band [54]. Our offline
analysis demonstrated that the state information could be
decoded from ECoG data with an unprecedented accuracy
of 99.8%. Additionally, using a Bayesian filter approach,
we achieved an average correlation coefficient between the
decoded and true step rates of 0.934 [55]. We are currently
in the process of developing custom integrated circuits (ICs)
for ECoG recording [56], wireless data transmission [57],
and cortical electrostimulation [58]. These ICs were
designed to conform to the stringent requirements of fully
implantable devices in terms of size and power consumption.
Also, we are developing novel methods for the suppression
of stimulation artifacts [59] in order to accommodate simul-
taneous recording and cortical electrostimulation. Finally,
we recently developed a computational framework to esti-
mate the thermal impact of the various components of our
implantable BCI system [60] and calculate the power budget
of underlying ICs. A proof-of-concept demonstration of an
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ECoG-based BCI for the restoration of walking after SCI has
recently been reported by others [61]. Earlier studies have
reported on ECoG-based BClIs for the restoration of arm
movements in those with tetraplegia [62]. While neither of
these systems were fully implantable and provided no bio-
mimetic feedback, their results are encouraging and warrant
further development of ECoG-based BCls, including fully
implantable ones.

Finally, the most important benefit of EEG-based BCIs
for lower extremities may be in the realm of neurorehabili-
tation, where such systems would be used to develop novel
therapies for motor rehabilitation of individuals with incom-
plete paralysis due to conditions such as stroke, TBI, or
incomplete SCI. For example, by interfacing our EEG-based
BCI with an FES placed over the tibialis anterior muscle, a
co-activation of upper motor neurons (via attempted move-
ments) and lower motor neurons (via electrical stimulation)
may be achieved. This near-simultaneous activation of two
neuronal populations has been hypothesized to strengthen
the synaptic coupling between them [63]—a mechanism
known as Hebbian learning. This could potentially lead to
rehabilitation of the residual motor and sensory functions
beyond what is achievable with standard therapies. We tested
this concept in a small population of chronic stroke survivors
with foot drop [64], which is a major contributor to gait
impairments after stroke [65, 66]. After 12 hours of BCI-
FES therapy, we found that 5 out of 9 subjects demonstrated
a detectable increase in their gait speed and six-minute walk
distance. Furthermore, these gains were retained 4 weeks
post therapy. Encouraged by these results, we are now in the
process of conducting a randomized controlled trial [67] to
formally ascertain the effectiveness of this therapy.
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