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Abstract
In this review article, we present more than a decade of our work on the development of brain–computer interface (BCI) 
systems for the restoration of walking following neurological injuries such as spinal cord injury (SCI) or stroke. Most of 
this work has been in the domain of non-invasive electroencephalogram-based BCIs, including interfacing our system with 
a virtual reality environment and physical prostheses. Real-time online tests are presented to demonstrate the ability of 
able-bodied subjects as well as those with SCI to purposefully operate our BCI system. Extensions of this work are also 
presented and include the development of a portable low-cost BCI suitable for at-home use, our ongoing efforts to develop a 
fully implantable BCI for the restoration of walking and leg sensation after SCI, and our novel BCI-based therapy for stroke 
rehabilitation.
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1  Introduction

Neurological conditions, such as spinal cord injury (SCI), 
stroke, or traumatic brain injury (TBI), can compromise gait 
function and leg sensation. These deficits have a profoundly 
negative impact on the independence and quality of life of 
the affected populations. In the USA alone, the primary and 
secondary healthcare costs of SCI and stroke are estimated at 
$90B/year [1, 2], which represent a significant public health 
burden. There are currently limited options to restore motor 
and sensory functions after SCI, and up to 60% of stroke 
survivors have long-term gait deficits despite spontaneous 
recovery and intense physiotherapy [3, 4]. Therefore, novel 
approaches to the restoration of gait function and leg sensa-
tion after SCI and stroke are in high demand.

Brain–computer interfaces (BCIs) represent one such 
novel approach. Generally, BCIs are systems that record 
neural correlates of users’ intentions, decode these signals 
in real time, and generate control commands for external 
end-effectors, such as computer applications, wheelchairs, 

robotic prostheses/orthoses, and muscle stimulators [5]. 
BCIs enable those with paralysis to bypass the site of neu-
rological injury and assume direct brain control of external 
devices (see Fig. 1). Principally, BCIs can be classified as 
invasive or noninvasive, depending on the way they acquire 
brain signals. An overwhelming majority of noninvasive 
BCIs rely on scalp-recorded electroencephalogram (EEG). 
Invasive BCIs primarily utilize action and local field poten-
tials recorded by intracortically implanted microelectrode 
arrays [6, 7]. These high-fidelity brain signals enable a BCI 
performance that is superior to those achieved by EEG-
based BCIs. They also require brain surgeries, which carry 
non-negligible health risks, and the longevity of these brain 
implants is limited [8].

Early BCI applications targeted the most severe forms 
of paralysis, such as amyotrophic lateral sclerosis (ALS) or 
brainstem stroke. For example, the earliest proof-of-concept 
BCIs enabled people with ALS to communicate with their 
environment [9–11]. Similarly, those with severe tetraplegia 
due to cervical SCI [12] or brainstem stroke [13] used inva-
sive BCIs to control a variety of devices including robotic 
arm prostheses. However, there were relatively few attempts 
to develop BCIs for leg paralysis (paraplegia) due to condi-
tions such as mid-thoracic or lumbar SCI, or subcortical 
stroke. Motivated by this knowledge gap, we developed sev-
eral BCI systems to address lower extremity paralysis and 
this review summarizes more than a decade of our work in 

 *	 Zoran Nenadic 
	 znenadic@uci.edu

1	 Department of Biomedical Engineering, University 
of California, Irvine, CA 92697, USA

2	 Department of Electrical Engineering and Computer Science, 
University of California, Irvine, CA 92697, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11768-021-00070-y&domain=pdf


517Brain–computer interfaces for human gait restoration﻿	

1 3

this area. In Sect. 2, we describe our approach to designing a 
non-invasive BCI system for the restoration of walking after 
SCI. Subsequently, we integrated this BCI with a virtual 
reality environment (VRE) and tested its performance first 
in a population of able-bodied individuals and then in those 
with SCI. These results are summarized in Sects. 3 and 4, 
respectively. Once we verified its function in a VRE, we inte-
grated our BCI system with physical prostheses, first with a 
robotic gait orthosis for treadmill walking (see Sect. 5) and 
subsequently with a functional electrical stimulation (FES) 
system for free-overground walking (see Sect. 6). We pro-
vide conclusions and future directions in Sect. 7.

2 � Noninvasive BCIs for restoration 
of walking after SCI

Wheelchair mobility remains the primary mode of ambula-
tion for individuals with paraplegia due to SCI. However, 
prolonged wheelchair use and sedentary lifestyle associated 
with SCI lead to a number of comorbid conditions [14–16], 
which contribute to the majority of SCI-related healthcare 
costs. These problems have inspired the pursuit of novel 
approaches to the restoration of walking after SCI. Examples 
include cell-based therapies, which have shown promise in 
preclinical studies [17], followed by clinical trials designed 
to ascertain their safety [18, 19]. Another example is a neu-
romodulation-based approach, whereby electrical stimula-
tion is delivered to the spinal cord, below the lesion. This 
method enabled those with motor-complete SCI to regain 
volitional leg movements [20, 21]. While orthogonal to 
cell-based and neuromodulation-based therapies, BCIs are 
inherently complementary to these approaches due to their 

unique ability to provide real-time access and interpretation 
of brain signals. Therefore, BCIs will continue to play an 
important role in the restoration of walking after SCI, either 
as a stand-alone or adjunct technology.

We first sought to test the feasibility of developing an 
EEG-based BCI to control walking [22]. In doing so, we 
established the following design criteria: (1) intuitive con-
trol, (2) short training time and (3) robust operation. To 
achieve intuitive control, subjects with SCI initiated walk-
ing by either attempting to walk or creating the kinesthetic 
motor imagery (KMI) of walking, i.e., a mental rehearsal 
of walking without any overt movement execution [23]. To 
cease walking, they simply relaxed. This control strategy 
intuitively matches the task at hand and is in contrast to other 
BCI approaches that often involve the KMI of unrelated 
body parts, such as fist pumping or tongue protrusion. Short 
training time and robust control were achieved by employ-
ing a data-driven subjects-specific decoder design. This 
approach generally permitted BCI-naive subjects or those 
with very little prior BCI experience to assume purposeful 
control of an end-effector after a 15-min training/calibration 
procedure. Other BCI approaches typically require a signifi-
cantly more extensive training time [24, 25]. Our approach 
also allowed a fixed decoder to be used over time despite the 
non-stationary nature of EEG signals.

At the core of our BCI system is a state decoder designed 
as a binary-state machine (see Fig. 2). Its transitions are 
driven by a probabilistic input, P(W f⋆) , which represents 
the posterior probability of Walk state given the observed 
EEG feature f⋆ . Note that P(I f⋆) = 1 − P(W f⋆) , so the 
knowledge of P(W f⋆) is sufficient for defining state transi-
tions. This probability is compared to fixed thresholds, TI 

Fig. 1   Elementary BCI framework. A person with paralysis due 
to SCI generates movement intentions whose neural correlates are 
decoded real-time and used to control an external end-effector. Typi-
cal feedback is visual, although other sensory modalities can be 
employed Fig. 2   a The state transition diagram of the BCI decoder with a prob-

abilistic input, P(W f⋆) . b The state-input space of the system with 
the transition thresholds TI and TW ( TI < TW ). When TW > 0.5 and 
TI < 0.5 , these transition rules are consistent with Bayes factors [26]
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and TW , which are found through a calibration process. Since 
TI < TW , the binary-state machine (BSM) exhibits a hyster-
etic behavior. Such an asymmetric threshold structure also 
minimizes the mental fatigue of BCI participants. For exam-
ple, to transition from Idle to Walk state, the input P(W f⋆) 
must exceed TW . However, to remain in Walk state, it is 
sufficient for P(W f⋆) to remain above TI , which is typically 
lower than TW and requires much less mental effort. Like-
wise, to transition from Walk to Idle state, P(W f⋆) must 
be brought below TI ; however, to remain in Idle state, it is 
sufficient for the posterior probability to remain below TW.

Another challenge in the design of our BCI decoder is the 
small sample size problem [27]. Namely, obtaining accurate 
posterior probability estimates P(W d⋆) ∝ p(d⋆ W)P(W) 
from observed EEG data d⋆ ∈ ℝNc×Nt is difficult given the 
high number of EEG channels, Nc , and the high sampling 
rate. For example, a typical 750-ms, 64-channel EEG data 
segment sampled at 256 Hz ( Nt = 192 ), would result in a 
∼ 12,288-dimensional data. In the face of limited number 
of data segments, the likelihood function estimate p(d W) 
is typically meaningless and so low-dimensional features 
f = �(d) must be pursued. In the simplest form, feature 
extraction maps, � ∶ ℝNc×Nt ↦ ℝm , are linear. Using infor-
mation-theoretic arguments [28], we designed a piecewise 
linear feature extraction map that maximizes the separabil-
ity of features f under different class assignment [29, 30]. 
For binary class problems (e.g., Fig. 2), this method often 
yields optimal results in one-dimensional (1D) feature space 
( m = 1 ), which is consistent with the feature dimension of 
the theoretical Bayes classifier [31]. Since EEG signals often 
exhibit rhythmic behavior, our analysis is performed in the 
frequency domain, i.e., d ∈ ℝNc×Nb , where Nb is the num-
ber of frequency bands and the elements of d are the power 
spectra.

3 � Self‑paced BCI control of ambulation 
in a virtual reality environment

We recruited eight able-bodied subjects and one individual 
with mid-thoracic SCI to participate in this study. The par-
ticipants were fitted with an actively-shielded, 63-channel 
EEG cap connected to an amplifier array. They were seated 
in front of a computer screen which showed textual cues 
prompting them to alternate between relaxing (Idle state) 
and KMI of walking (Walk state). During this procedure, 
their EEG data were recorded (sampling rate 256  Hz), 
labeled by the state information, and stored on a computer 
for subsequent analysis. This training data collection lasted 
10 min and included 10 alternating Idle and Walk epochs, 
each lasting 30 s. A more detailed description of these pro-
cedures can be found in [22].

From each Idle and Walk epoch, we extracted 5 non-
overlapping 4  s-long trials of EEG data. This created 
a training database of 100 trials (50 trials in each state). 
These trials were then fast Fourier transformed (FFT) and 
their power spectra were integrated in 2 Hz bins centered 
at 1, 3,… , 39  Hz. Note these frequencies were chosen 
since most of the motor-related EEG signals are confined 
to ⩽ 40 Hz frequency band. This transformation resulted 
in spatio-spectral data d ∈ ℝ63×20 , which, at 50 trials per 
class, create a severe small sample size problem. Therefore, 
the data were vectorized and subjected to a combination of 
dimensionality reduction via classwise principal component 
analysis (CPCA) [29] and feature extraction via approximate 
information discriminant analysis (AIDA) [30]:

where �
C
 is a piecewise linear CPCA mapping and TA is an 

AIDA feature extraction matrix. Through this procedure, we 
extracted 1D features, f, which enabled the accurate estimate 
of the likelihood p(f W) as a univariate Gaussian function 
and in turn the posterior probability P(W f ) ∝ p(f W)P(W).

Subsequently, we found the BSM transition thresholds, 
TI and TW (Fig. 2), through the following calibration pro-
cedure. The subjects were instructed through verbal cues 
to alternate between short epochs of relaxing and walk-
ing KMI for a total of ∼ 2 min. During this period, their 
EEG data were acquired in real time and the most recent 
750-ms-long data segment was transformed into the fre-
quency domain as explained above. Subsequently, we 
extracted 1D features f⋆ using Eq. (1) and calculated the 
posterior probability P(W f⋆) using the Bayes rule. Ide-
ally, the samples of P(W f⋆ ∈ I) should cluster around 
0 and those of P(W f⋆ ∈ W) should cluster around 1. To 
account for noise, we chose TI = median{P(W f⋆ ∈ I)} 
and TW = median{P(W f⋆ ∈ W)} . To further smooth the 
state transitions, the calibration procedure often required 
averaging the posterior probabilities P(W f⋆) across two 
or three consecutive 750-ms data segments. Another option 
is to smooth the posterior probabilities through a recursive 
Bayesian update [32]:

where f⋆
k−1

 and f⋆
k

 are the observed EEG features across two 
consecutive data segments. The feature extraction transfor-
mations, the parameters of the likelihood function, and the 
thresholds TI and TW were then saved for each subject. This 
concluded the design of data-driven subject-specific BCI 
decoders.

We quantified the BCI system’s performance through 
real-time online tests consisting of walking in a VRE. Within 
the VRE, each subject was assigned a BCI-controlled avatar 
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that had to be walked in a straight line and stopped by each 
of the 10 non-player characters (NPCs) for at least 2 s (see 
Fig. 3). The goal of the game was to finish the course as 
quickly as possible while making all 10 stops. Once the 
game started, the subject’s EEG data were recorded in real 
time with a refresh rate of 0.5 s (limited by the computer 
processing speed). From the most recent 750-ms data seg-
ment, the posterior probabilities P(W f⋆) were estimated as 
above using the subjects-specific parameters. To walk, the 
subjects had to use the KMI of walking and to dwell by each 
NPC, they had to relax. The state transitions were controlled 
by the subject-specific BSM with transition thresholds deter-
mined through the above calibration procedure. Each sub-
ject performed the walking task 5 times, with all the tasks 
completed in a single day. A video showing an example of a 
real-time BCI test can be found here: https://​www.​youtu​be.​
com/​watch?v=​GXmov​T3BxEo. Figure 4 shows the space-
time plot of a representative test for one of the able-bodied 
subjects.

Table 1 shows the real-time online performances of all 
study participants, averaged over 5 walking tests. The per-
formances are quantified using the completion time and 
the number of stops made. Dwelling for less than 2 s at 
each NPC’s location incurred a partial stop score. Note that 
these two performance metrics are inherently traded off, 
as shorter completion time can be achieved at the expense 
of not making designated stops. Monte Carlo simulations 
showed that all but one of the 45 total online tests performed 
by the subjects were statistically significant, i.e., they could 
not be achieved by uniformly drawing P(W f⋆) between 0 
and 1. The performance achieved with a manually controlled 

joystick is also shown for reference. For a more detailed 
presentation of results, the reader is referred to [22].

In summary, this study demonstrated that a non-invasive 
EEG-based BCI could be used to restore walking in a VRE. 
These results were achieved while adhering to the principles 
of intuitive control, short training time, and robust opera-
tion. Intuitive control was achieved by subjects utilizing the 
KMI of walking and relaxation to respectively initiate vir-
tual walking and standing. All subjects achieved purposeful 
control of the BCI after undergoing a 10-min training data 
collection and 2-min calibration. This is in contrast to simi-
lar BCI-VRE studies [24, 25], which respectively required 
3–5 and 4 months of training. Robust operation was achieved 

Fig. 3   A BCI-controlled avatar within a VRE, operated in a third-per-
son view. The subject uses walking KMI to move the avatar from one 
NPC to another at a constant speed. The subject relaxes to dwell by 
each NPC for ⩾ 2 s.  Reprinted with permission from [22]. Copyright 
IOP Publishing

Fig. 4   The space-time plot of a representative online walking test for 
an able-bodied subject A8. The pink areas mark designated stopping 
zones (the location of the NPC ± one body length tolerance). Orange 
segments mark false starts. The game finishes after the avatar walks 
past the last stopping zone. There were no false stops in this particu-
lar test.  Reprinted with permission from  [22]. Copyright IOP Pub-
lishing

Table 1   Average BCI-VRE performance for 8 able-bodied subjects 
(A1–A8) and one subject with paraplegia due to SCI (S1). The aver-
age performance with a manually controlled (MC) joystick is also 
shown

std standard deviation

Subject Completion time (s) Stops made
Mean ± std Mean ± std

A1 319.8 ± 48.3 9.14 ± 0.57
A2 266.7 ± 10.8 7.80 ± 1.10
A3 291.9 ± 19.3 8.03 ± 1.08
A4 291.7 ± 20.6 9.01 ± 1.39
A5 325.4 ± 54.2 8.10 ± 0.94
A6 318.2 ± 27.3 8.09 ± 1.06
A7 291.5 ± 24.4 7.65 ± 1.19
A8 228.8 ± 14.0 9.34 ± 0.60
S1 410.6 ± 37.4 9.25 ± 0.96
MC 205.1 ± 4.2 9.38 ± 0.85

https://www.youtube.com/watch?v=GXmovT3BxEo
https://www.youtube.com/watch?v=GXmovT3BxEo
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by utilizing a data-driven, subject-specific approach to the 
decoder design. This approach allowed the BCI walking 
tasks to be repeated over time without making adjustments 
for the non-stationarity of EEG data due to factors, such as 
impedance drifts, sweat formation, and human–computer 
co-adaptation [33]. Our study also demonstrated that some 
subjects (e.g., A8 and A2) were only marginally inferior to 
manually controlled joystick in terms of completion time 
(Table 1) and several participants achieved competitive 
stop scores, e.g., ⩾ 9.0 . Especially encouraging is the per-
formance of subject S1, who despite being paralyzed for 11 
years, was able to achieve purposeful BCI control of walk-
ing. These results warranted an extension of this study to a 
population of individuals with SCI.

4 � BCI control of ambulation in a virtual 
reality environment after SCI

Encouraged by the results from Sect. 3, we sought to test 
the performance of our BCI-VRE system in a population of 
people with SCI. We also wanted to verify whether purpose-
ful control could be retained over multiple days. To this end, 
we recruited 5 individuals with SCI and tested their ability 
to operate our BCI system over 5 non-consecutive days. Four 
participants had paraplegia due to thoracic SCI and one (S3) 
had tetraplegia due to syringomyelia in the cervical spine. All 
were considered to be in the chronic phase of SCI with post-
injury times ranging from 1 year (S5) to 14 years (S3) and 
ages ranging from 21 (S5) to 59 (S4). A more detailed demo-
graphic description of the participants can be found in [34].

The experimental procedures were identical to those 
described in Sect. 3, except that they were repeated over 5 
non-consecutive days. On each experimental day, the sub-
jects underwent training EEG data collection (10 min), fol-
lowed by a decoder design, including a 2-min calibration 
procedure, and between 2 and 8 real-time online BCI-VRE 
walking tests. These tests were identical to those in the pre-
vious section (see also Fig. 3). The total number of real-time 
online walking tests on a per-subject basis ranged from 19 to 
29. Subject S2 attained purposeful BCI control on the sec-
ond experimental day, with all the other participants being 
able to do so on the very first day.

A representative video of a real-time online BCI-VRE 
test for subject S3 can be found at https://​www.​youtu​be.​com/​
watch?v=​K4Frq​9pwAz8. Table 2 shows a more detailed 
performance breakdown including the total number of tests 
performed by each subject, their best experimental day, and 
the level of SCI injury and paralysis type. Since these perfor-
mances are characterized by the completion time and stops 
made, which are opposing criteria, determining the best 
day’s performance included combining these measures into a 
single composite score. The performances and experimental 

days could then be ordered based on the composite score. To 
ascertain the statistical significance of these results, we per-
formed Monte Carlo simulations with subject-specific BSMs 
and the posterior probabilities drawn uniformly between 0 
and 1. Across 124 real-time online BCI-VRE tests performed 
by all participants, only 5 tests had performances that could 
have been achieved by Monte Carlo simulations, with the 
majority of these non-significant performances attributed 
to S1. For an in-depth presentation of the results, the reader 
is referred to [34].

These results demonstrate that a population of people 
with SCI could learn to operate an intuitive, KMI-based BCI 
within a relatively short time period. All subjects attained 
purposeful BCI control, as ascertained by statistical tests, on 
the very first experimental day, except for subject S2, who 
did it on the second day. These times are still significantly 
shorter than those reported in related BCI-VRE studies [24, 
25]. Our data-driven, subject-specific approach to the BCI 
decoder design yielded a robust performance in the face of 
EEG signal non-stationarity. Anecdotally, we tested these 
decoders across multiple days, and while they still yielded 
purposeful control, the performances were better when a 
new decoder was designed for each experimental day. Given 
the relatively short decoder training and calibration process, 
this did not impose additional burden on the participants 
and/or experimenters. All subjects (except S4) achieved 
their best performance on the fourth or fifth experimental 
day, suggesting that the performance may improve over time 
due to human-computer co-adaptation [33]. Other factors 
such as the motor imagery induced reactivation of the previ-
ously dormant brain areas [35] may also have played a role. 

Table 2   Average BCI-VRE performance for five participants with 
SCI (S1–S5)

SCI levels and types of paralysis are given in the second column (e.g., 
T11—the eleventh thoracic vertebra, C5—the fifth cervical vertebra). 
The third column shows the total number of tests performed and the 
day at which the best performance was attained. The performance 
with a manually controlled (MC) joystick is also shown

Subject SCI level Total tests Completion time (s) Stops made
Best day Mean ± std Mean ± std

S1 T11 n = 29 275 ± 45 6.2 ± 1.8
Paraplegia Best day: 5 298 ± 77 6.8 ± 2.3

S2 T1 n = 25 271 ± 66 5.7 ± 2.3
Paraplegia Best day: 5 293 ± 26 8.1 ± 1.2

S3 C5 n = 24 277 ± 65 9.4 ± 1.3
Tetraplegia Best day: 4 231 ± 8 10.0 ± 0.0

S4 T1 n = 19 289 ± 43 8.3 ± 1.8
Paraplegia Best day: 1 264 ± 12 8.9 ± 0.3

S5 T11 n = 27 258 ± 31 7.7 ± 2.1
Paraplegia Best day: 4 260 ± 17 10.0 ± 0.0

MC N/A n = 5 205 ± 4 9.4 ± 0.9

https://www.youtube.com/watch?v=K4Frq9pwAz8
https://www.youtube.com/watch?v=K4Frq9pwAz8
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Especially encouraging are the performances of subjects 
S3 and S5, who on their best day achieved the perfect stop 
score, while being marginally slower than the manually con-
trolled joystick. It should also be noted that subject S3 was 
the most severely paralyzed and could not use his arms or 
breathe on his own. Such as high level of control achieved by 
a diverse population of people with SCI indicates that BCI-
controlled lower extremity prostheses for gait rehabilitation 
or restoration may be feasible. Our BCI-VRE system may 
also serve as a training platform for such prostheses if/when 
they become available.

5 � BCI control of robotic gait orthosis

After extensively testing our BCI-VRE system in able-bod-
ied population (Sect. 3) and people with SCI (Sect. 4), we 
explored whether it was possible to interface this system 
with a physical prosthesis [36]. To this end, we integrated 
our EEG-based BCI with a commercial robotic gait ortho-
sis (RoGO) system (see Fig. 5). This system consists of a 
RoGO, a support harness, a treadmill, and a computer con-
trol module. When in motion, both the RoGO and treadmill 
move in a synchronized manner, i.e., with the step rate that is 
proportional to the treadmill speed. The system can accom-
modate different body habitus and provide different levels of 
body-weight support, which may be needed when the system 
is used by those with SCI. While conceptually similar, there 
are several important differences between this system and 
our BCI-VRE for walking. First, the BCI-RoGO system is 
operated in an up-right position. The same goes for the train-
ing and calibration processes. Second, walking on a tread-
mill causes vibrations and movement artifacts that can easily 
be picked up by EEG. In general, these artifacts must be 
appropriately dealt with. Finally, feedback in the BCI-RoGO 
system is no longer visual and it involves a complex com-
bination of tactile, proprioceptive, and auditory sensations.

We recruited one able-bodied participant (Subject 1) 
and one participant with mid-thoracic T6 SCI (Subject 2) 
to participate in this study. They, respectively, had 5 and 3 
hours of prior BCI experience, mostly by participating in 
our BCI-VRE experiments. They were fitted with an actively 
shielded 63-channel EEG cap and placed in the RoGO. Both 
had a gyroscope mounted above their left ankle to meas-
ure leg trajectories. Subject 1 also had three electromyo-
gram (EMG) channels to measure the activity of the left 
quadriceps (thigh), tibialis anterior (shin) and gastrocnemius 
(calf) muscles. These EMG signals were measured in the 
able-bodied subject to rule out BCI control by voluntary leg 
movements. Both subjects then completed 10 min of training 
data collection, by alternating between epochs of relaxation 
and the KMI of walking. The decoder was then designed 
from these training data using a similar procedure to those 

presented in the previous sections. Subsequently, a 5-min 
calibration was performed, where EEG data were acquired 
every 0.25 s, while the subjects were instructed verbally to 
alternate between idling and the KMI of walking. We then 
calculated the posterior probabilities, P(W f⋆) , from the 
most recent 750-ms-long EEG data segment and determined 
the state transition thresholds as explained in the previous 
sections. A more detailed account of these procedures can 
be found in [36].

A real-time online walking test consisted of subjects 
being prompted by a computer screen to alternate between 
1-min-long epochs of idling and walking for a total of 5 min. 
By alternating between relaxation and the KMI of walking 
they, respectively, stopped/moved the RoGO. Their EEG 
data were recorded every 0.25 s and the posterior probabili-
ties were computed in real time from the most recent 750-ms 
data segment. This resulted in the state of the BSM (Fig. 2) 
being updated at a rate of 4 Hz. Therefore, to complete the 
whole 5-min task correctly, 1200 EEG data segments must 
be correctly decoded in succession. A video showing a rep-
resentative example of a real-time online walking test can 

Fig. 5   A subject wearing an EEG cap suspended in the RoGO via a 
harness. Surface EMG electrodes and a gyroscope are respectively 
measuring the muscle activity and movement of the left leg. When 
movement intentions are decoded from EEG, the BCI sets the RoGO 
and the treadmill in motion, which provides feedback to the subject.  
Reprinted from [36] under the Creative Commons License Attribution
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be found at https://​www.​youtu​be.​com/​watch?v=​HXNCw​
onhjG8. Both subjects completed 5 such tests during a sin-
gle experimental day. Figure 6 shows the time course of 
representative walking tests for Subject 1 and Subject 2. We 
subsequently analyzed these online walking tests to assess 
the performance. Specifically, we calculated the normalized 
cross-correlation between the instructional cues and BCI-
RoGO walking, as determined from the gyroscope data. We 
also calculated the rate of omissions (failure to activate BCI-
RoGO walking during Walk cues) and false alarms (initia-
tion of BCI-RoGO walking during Idle cues). Finally, we 
performed Monte Carlo simulations to establish the empiri-
cal p-values and ascertain the statistical significance of the 
achieved performances.

Table 3 summarizes these results across five real-time 
online BCI-RoGO walking tests. In all ten tests, the achieved 
performances were statistically significant, i.e., they could 
not have been achieved a the random sampling of posterior 
probabilities. Both subjects achieved cross-correlations in 
excess of 0.8 at the average lag of ∼7 s. Note that most of 
this lag is imposed by the RoGO system’s built-in stopping 
cycle, over which the treadmill velocity is gradually brought 

to 0. A small source of additional lag is the averaging of 
posterior probabilities across multiple 750-ms segments, 
although, as mentioned in Sect. 3, this smoothing procedure 
reduces state misclassifications. Indeed, both subjects had 
no omissions and had on average < 1 false alarm per 5-min 
test. The average duration of these false alarms was ∼ 7 s 
and was largely dominated by the RoGO system’s stopping 
cycle. The examples in Fig. 5 show no false alarms for Sub-
ject 1 and two false alarms for Subject 2. Analysis of EMG 
data for Subject 1 showed that there was no significant EMG 
activity in either muscle group prior to the transition from 
Idle to Walk state. This confirms that the able-bodied subject 
did not use volitional leg movement to initiate the transi-
tion to Walk state. Additionally, the levels of EMG activity 
during the BCI-RoGO walking tests were consistent with 
passive leg movements, indicating that BCI-RoGO was not 
controlled by the subject actively moving his legs. A detailed 
discussion of these and related points can be found in [36].

Finally, we turn our attention to the information-theoretic 
feature extraction maps defined by Eq. (1). While solely 
data-driven, these maps have an intuitive physiological inter-
pretation. Namely, for each frequency bin, the coefficients 
of the piecewise linear CPCA-AIDA transformation can be 
mapped onto the EEG electrodes, interpolated, and visual-
ized as brain topographies. Figure 7 shows an example of 
these maps for Subject 2, which had the most salient coeffi-
cients at the 10–12 Hz frequency bin. This is consistent with 
the loss of EEG power in the �-frequency band (8–12 Hz) 
that tends to happen with the imagination or execution of 
movements [37]. Spatially, the areas of importance appear 
to overlay the leg and arm sensorimotor representation areas, 
which is consistent with prior studies [22, 34]. For example, 
the involvement of the leg and bilateral arm areas has been 
reported in our BCI-VRE experiments and is likely associ-
ated with the imagery of leg movements and arm swings.

In summary, these results demonstrate that purposeful 
BCI control of leg prostheses for the restoration of walking 
is feasible. It is particularly notable that both subjects had 
very little prior BCI experience, yet they attained highly 
accurate BCI control of the RoGO system on their first 
attempt. Our BCI-RoGO system retained the intuitiveness, 
short training, and robust performance—the design crite-
ria established with our BCI-VRE system. Moreover, the 
performances achieved in this study were superior to those 

Fig. 6   Representative real-time online walking tests for Subject 
1 (able-bodied) and Subject 2 (SCI), showing epochs of idling and 
BCI-RoGO walking. The walking epochs (green blocks) were esti-
mated from the gyroscope data. The system has a built-in startup/
stopping cycles, during which the treadmill speed and RoGO step-
ping rates are gradually increased/decreased. The red line shows the 
states decoded by the BCI (thin-idle, thick-walk), while the blue line 
(thin-idle, thick-walk) marks the instructional cues. Corresponding 
EMG (gold: quadriceps; teal: tibialis anterior; purple: gastrocnemius) 
are also shown.  Reprinted from  [36] under the Creative Commons 
License Attribution

Table 3   BCI-RoGO 
performances for the two 
participants, averaged over five 
real-time online walking tests

The third column shows the total number of tests performed and the day at which the best performance was 
attained

Subject SCI level Cross-correlation Omissions False alarms
(Lag in s) (Avg. duration in s)

Subject 1 N/A 0.81 ± 0.06 (6.95 ± 3.89) 0 0.8 (7.08)
Subject 2 T6 0.82 ± 0.05 (7.85 ± 3.60) 0 0.8 (7.76)

https://www.youtube.com/watch?v=HXNCwonhjG8
https://www.youtube.com/watch?v=HXNCwonhjG8
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achieved with our BCI-VRE system. We hypothesize that 
this gain in performance could be attributed to a more natu-
ral up-right operation of the BCI-RoGO system and a more 
biomimetic nature of feedback consisting of a combination 
of tactile, proprioceptive, and auditory sensation. To the best 
of our knowledge, this was the first-ever demonstration of 
a person with SCI using a BCI to operate a leg prosthesis. 
It also represents an important intermediate step toward the 
restoration of free overground walking using neurorestora-
tion technologies.

6 � BCI control of free overground walking

Following up on our BCI-VRE and BCI-RoGO studies [22, 
34, 36], we explored the possibility of integrating our EEG-
based BCI system with a prosthesis for free overground 
walking [38]. Specifically, we chose a U.S. Food and Drug 
Administration (FDA)-approved FES system (Parastep, 
Sigmedics, Fairborn, OH) which achieves ambulation by 
electrically activating the quadriceps and tibialis anterior 
muscles in a coordinated manner [39]. Coupled with the 
user’s anterior-lateral shifting maneuvers, this procedure 
allows those with complete paraplegia to walk overground. 
The Parastep system is equipped with a front-wheel walker 
for stability and additional support (see Fig. 8). The stand-
ing function and individual steps are normally controlled 
manually by pressing the corresponding buttons. To enable 
BCI control of the system, we used a microcontroller unit 
(MCU) and digital relays to interface with the “left step”, 
“right step”, and “stand” buttons of the Parastep system.

We recruited a single subject with paraplegia due to SCI 
(T6, 6 years post-injury), who had no motor/sensory function 
below the level of injury. He underwent a battery of screening 
procedures to rule out severe spasticity, osteoporosis, lower 
extremity fractures, pressure ulcers, orthostatic hypotension, 

contractures, and restricted range of motion. We also con-
firmed that he had an adequate neuromuscular response to 
FES. Subsequently, the participant began a BCI practice using 
our BCI-VRE system (see Sect. 4). He simultaneously started 
FES training in order to recondition his leg muscles for weight 
bearing and overground walking, and to improve his cardio-
pulmonary endurance. The FES training continued until the 
subject could walk the length of the 3.66-m course (12 ft). This 
procedure was also used to determine the optimal parameters 
for the Parastep system, such as the step rate and stimulation 
amplitude. For safety purposes and partial body-weight sup-
port, he was placed in the ZeroG body-weight support system 
(Fig. 8).

After ∼ 12 weeks of BCI practice and FES training, we 
began testing the subject’s ability to walk using the BCI 
system. The walking tests entailed the subject receiving 
verbal cues to start and stop walking, while his EEG data 
were recorded every 0.25 s, analyzed in real time using the 

Fig. 7   The CPCA-AIDA feature extraction maps at the 10–12  Hz 
frequency bin for Subject 2. The piecewise linear nature of the map 
is represented as two images (one for each state). Topographic areas 
with values close to + 1 or −1 are the most important for distin-
guishing between Idle and Walk states at this frequency.  Modified 
from [36] under the Creative Commons License Attribution

Fig. 8   Integrated BCI-Parastep system for free overground walking. 
The subject is placed in a safety harness of a body-weight support 
system (ZeroG, Aretech, Ashburn, VA) for added safety. EEG ampli-
fiers are placed in a backpack and EEG data are sent wirelessly (via 
Bluetooth) to the BCI computer, which processes the data in real-time 
and wirelessly sends the BCI commands to a microcontroller (placed 
in the belt-pack). A laser distance meter (placed on the rail of ZeroG) 
and two gyroscopes (placed above the ankles) are added to measure 
the subject’s position and leg trajectories.  Modified from [38] under 
the Creative Commons License Attribution
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procedures similar to those described in the previous sec-
tions, and decoded to issue the corresponding command to 
the Parastep system. To facilitate free overground walking, we 
untethered the subject from the BCI system by using a wire-
less communication protocol (Bluetooth) for the transfer of 
EEG data and Parastep control commands. We had to reduce 
the number of EEG channels from 63 to 24 to accommodate 
the wireless transfer bandwidth limit. This reduction in the 
number of channels did not adversely affect the performance 
as 24 channels still provided a good coverage of motor corti-
cal areas. The walking task began with the subject standing 
still for ∼20 s, followed by walking to the mid-point of the 
course (marked by a traffic cone), standing there for ∼ 20 s, 
finishing the course, and standing there for another ∼ 20 s. 
A video showing a representative example of one real-time 
online walking test can be found here: https://​www.​youtu​be.​
com/​watch?v=​RBAeR-​Z0EHg. The participant performed 
between one and six such overground walking tests per visit. 
Over the course of 19 weeks, he had 11 visits during which 
he performed a total of 30 walking tests. Figure 9 shows data 
from a representative walking test.

The subject’s performances during overground walking 
tests were characterized based on the video, BCI state, and 
gyroscope data. Specifically, we calculated the normalized 
cross-correlation between verbal cues (recorded by the camera) 
and BCI-FES mediated responses (recorded by the gyroscope), 
as well as the lag at which the maximum cross-correlation 

occurs. Similar to our BCI-RoGO study (Sect. 5), the statisti-
cal significance of these cross-correlations was established by 
comparing them to those achieved through Monte Carlo simu-
lations. To make our study comparable to related BCI studies, 
we expressed these performances using an information transfer 
rate (ITR). The ITR (bit/s) was calculated as

where B is the number of decisions per unit of time (4/s 
in this study) and I(D,T) ∶= H(D) − H(D T) is the mutual 
information between the true state of the nature T (deter-
mined from the cue) and the decoded state D. The entropy 
H(D) and conditional entropy H(D T) can be found from the 
four terms of the confusion matrix, viz. the probability of: 
correctly decoding Idle state, correctly decoding Walk state, 
omission (incorrectly decoding Idle state), and false alarm 
(incorrectly decoding Walk state). Further derivation of this 
formula can be found in [38].

Table 4 shows the average performance of the subject 
across 30 overground walking tests performed during 11 
visits, as well as the performance during the best session 
(recorded on the 9th visit). The achieved cross-correlations 
were similar to those reported in Sect. 5 with a significantly 
shorter lag. Monte Carlo simulations confirmed that in all 30 
tests, the achieved cross-correlations were statistically sig-
nificant. Similarly, there were no omissions and the subject 
had ∼ 2 false alarms per test. Notably, the false alarm rate 
decreased toward the end of the study, presumably due to 
learning. Finally, the average ITR of 2.3 bit/s is comparable 
to the values recorded with our EEG-based BCI for commu-
nication [40]. Finally, the analysis of the peak performance 
indicates that a very high level of control can be achieved 
with this system. Specifically, the cross-correlations as high 
as 0.987 are achievable with no omissions or false alarms. 
In addition, ITRs as high as 3.7 bit/s were observed, which 
is significantly superior to 1 bit/s—the hypothesized upper 
ITR bound of EEG-based BCIs [5, 41].

This study represents the first demonstration of a per-
son with paraplegia due to SCI purposefully operating a 

(2)ITR = BI(D,T),

Fig. 9   Graphical representation of a BCI-controlled overground walk-
ing test. The beginning and end of yellow blocks mark the onset of 
Walk and Idle verbal cues, respectively. Red blocks represent periods 
when the BCI system decoded Walks state; otherwise, the system is 
in Idle state. Green and blue blocks mark leg movements recorded 
by the gyroscopes. The laser signal (blue trace) depicts the partici-
pant’s position over time, as measured by the laser distance meter. 
The beginning, mid-point, and end of the course are marked by traf-
fic cones.  Reprinted from [38] under the Creative Commons License 
Attribution

Table 4   Cross-correlation, � , between verbal cues and gyroscope 
movement, ITR, number of false alarms, and false alarm rate for the 
30 overground walking tests performed

The best session results (on the 9th visit) are shown in the last col-
umn. No omissions occurred during any overground walking test

Performance criterion Average Standard devia-
tion

Best

� 0.775 0.164 0.987
Lag (s) 2.861 4.229 2.742
ITR (bit/s) 2.298 0.904 3.676
FA 2.333 2.073 0
FA rate (FA/s) 0.043 0.039 0

https://www.youtube.com/watch?v=RBAeR-Z0EHg
https://www.youtube.com/watch?v=RBAeR-Z0EHg
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noninvasive BCI-FES system for overground walking. The 
participant achieved highly accurate control of the system 
and maintained this level of performance during a 19-week 
period. The subject was also able to lightly converse dur-
ing these experiments without interfering with the function 
of the system. These results provide a proof-of-concept for 
direct brain control of the leg prosthesis for the restoration of 
elementary overground walking to those with leg paralysis. 
Further studies are necessary to test the performance of this 
system in a population of individuals with SCI.

7 � Conclusion and future directions

In this article, we summarized more than a decade of our 
work on the development of EEG-based BCIs for the resto-
ration of walking after SCI. Our design process was guided 
by the principles of intuitiveness, short training time, and 
robustness. We first integrated our BCI system with a VRE 
and tested the ability of able-bodied individuals to virtu-
ally walk in this environment [22]. We then repeated this 
study with a cohort of people with SCI [34]. We demon-
strated that participants in these studies could master the 
BCI-mediated virtual walking with very little or no prior 
BCI experience, in a relatively short period of time (often 
on the very first try). We attribute these results to using a 
combination of intuitive control strategy based on KMI and 
subject-specific data-driven decoders. We subsequently inte-
grated our BCI system with physical prostheses, such as gait 
orthosis and FES for walking, and respectively, tested their 
performances in treadmill [36] and free overground walk-
ing [38] conditions. At the time, these studies represented 
first-of-a-kind demonstrations of individuals with paraplegia 
using their brain signals to regain elementary walking func-
tions. Similar studies involving a larger number of subjects 
with paralysis due to SCI were subsequently reported by 
other groups [42], who also observed partial neurological 
improvements in response to long-term BCI use.

There are several potential extensions and improvements 
of our work. For example, conventional EEG-based BCIs, 
including the one presented in the previous sections, are gen-
erally expensive, complex to operate, require a long set-up 
time, and lack portability. These factors limit their use to 
laboratory settings. These problems can be mitigated using 
a fewer number of EEG electrodes [43] and custom-design-
ing EEG amplifiers for portability and compactness [44]. 
Additional savings can be achieved by replacing the BCI 
computer with a dedicated embedded processing system [45, 
46]. Motivated by these shortcomings, we developed a port-
able low-cost BCI platform and compared its performance 
to that of our conventional BCI system [47]. Specifically, we 
designed a custom 4-channel amplifier array and integrated 
it with an open-source MCU and a touchscreen. When 

blind-tested in a population of able-bodied subjects, the real-
time online decoding performance of the low-cost system 
was statistically indistinguishable from that of a conven-
tional BCI. To ascertain its clinical utility, our future work 
will be directed toward testing the function of this system in 
a population of individuals with SCI or other neurological 
conditions.

While we demonstrated that highly accurate control is 
possible with EEG-based BCIs, a real-world deployment 
of these systems may require much higher levels of perfor-
mance. For example, decoding errors, such as omissions or 
false alarms, may have serious implications for the safety of 
BCI users. Achieving error rates that are within an accept-
able safety margin may not be feasible given the limited 
spatio-temporal resolution of EEG signals and their suscep-
tibility to biological and non-biological artifacts. A potential 
solution to this problem is to employ invasively recorded 
brain signals. Having access to surgically implanted elec-
trodes may also provide a conduit for delivering biomimetic 
feedback by means of cortical electrostimulation. We are 
currently in the process of developing a fully implantable 
BCI for the restoration of walking and leg sensation in peo-
ple with paraplegia due to SCI. For this purpose, we intend 
to use subdurally recorded electrocorticogram (ECoG). In a 
simplified form, ECoG signals can be viewed as a high spa-
tio-temporal resolution instantiation of EEG [48]. They are 
also largely immune to artifacts. ECoG is typically recorded 
by subdurally placed electrode grids, which while invasive, 
do not penetrate the brain tissue and have been shown to 
remain stable for up to 9 years [49–51]. ECoG grids are 
also FDA-approved for cortical electrostimulation, which 
when delivered over the sensory cortex, can elicit artificial 
sensation [52, 53]. Our preliminary results with subjects 
implanted with ECoG grids show distinct patterns of walk-
ing-induced activity over the leg motor cortex that extend 
well into the � (40–160 Hz) frequency band [54]. Our offline 
analysis demonstrated that the state information could be 
decoded from ECoG data with an unprecedented accuracy 
of 99.8%. Additionally, using a Bayesian filter approach, 
we achieved an average correlation coefficient between the 
decoded and true step rates of 0.934 [55]. We are currently 
in the process of developing custom integrated circuits (ICs) 
for ECoG recording [56], wireless data transmission [57], 
and cortical electrostimulation  [58]. These ICs were 
designed to conform to the stringent requirements of fully 
implantable devices in terms of size and power consumption. 
Also, we are developing novel methods for the suppression 
of stimulation artifacts [59] in order to accommodate simul-
taneous recording and cortical electrostimulation. Finally, 
we recently developed a computational framework to esti-
mate the thermal impact of the various components of our 
implantable BCI system [60] and calculate the power budget 
of underlying ICs. A proof-of-concept demonstration of an 



526	 Z. Nenadic 

1 3

ECoG-based BCI for the restoration of walking after SCI has 
recently been reported by others [61]. Earlier studies have 
reported on ECoG-based BCIs for the restoration of arm 
movements in those with tetraplegia [62]. While neither of 
these systems were fully implantable and provided no bio-
mimetic feedback, their results are encouraging and warrant 
further development of ECoG-based BCIs, including fully 
implantable ones.

Finally, the most important benefit of EEG-based BCIs 
for lower extremities may be in the realm of neurorehabili-
tation, where such systems would be used to develop novel 
therapies for motor rehabilitation of individuals with incom-
plete paralysis due to conditions such as stroke, TBI, or 
incomplete SCI. For example, by interfacing our EEG-based 
BCI with an FES placed over the tibialis anterior muscle, a 
co-activation of upper motor neurons (via attempted move-
ments) and lower motor neurons (via electrical stimulation) 
may be achieved. This near-simultaneous activation of two 
neuronal populations has been hypothesized to strengthen 
the synaptic coupling between them [63]—a mechanism 
known as Hebbian learning. This could potentially lead to 
rehabilitation of the residual motor and sensory functions 
beyond what is achievable with standard therapies. We tested 
this concept in a small population of chronic stroke survivors 
with foot drop [64], which is a major contributor to gait 
impairments after stroke [65, 66]. After 12 hours of BCI-
FES therapy, we found that 5 out of 9 subjects demonstrated 
a detectable increase in their gait speed and six-minute walk 
distance. Furthermore, these gains were retained 4 weeks 
post therapy. Encouraged by these results, we are now in the 
process of conducting a randomized controlled trial [67] to 
formally ascertain the effectiveness of this therapy.
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