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Both entangled and unentangled polymer melts exhibit stress overshoots when subject to shearing flow. The size
of the overshoot depends on the applied shear rate and is related to relaxation mechanisms such as reptation, chain
stretch and convective constraint release. Previous experimental work shows that melts subjected to interrupted shear
flows exhibit a smaller overshoot when sheared after partial relaxation. This has been shown to be consistent with
predictions by constitutive models. Here, we report molecular dynamics simulations of interrupted shear of polymer
melts where the shear flow after the relaxation stage is orthogonal to the original applied flow. We observe that, for a
given relaxation time, the size of the stress overshoot under orthogonal interrupted shear is larger than observed during
parallel interrupted shear, which is not captured by constitutive models. Differences in maxima are also observed for
overshoots in the first normal stress and chain end-to-end distance. We also show that measurements of the average
number of entanglements per chain and average orientation at different scales along the chain are affected by the change
in shear direction, leading to non-monotonic relaxation of the off-diagonal components of orientation and an appearance
of a ’double peak’ in the average number of entanglements during the transient. We propose that such complex behavior
of entanglements is responsible for the increase in the overshoots of stress components, and that models of the dynamics
of entanglements might be improved upon by considering a tensorial measurement of entanglements that can be coupled

to orientation.

I. INTRODUCTION

The concept of entanglements is fundamental to the theory
of polymer dynamics'?. In equilibrium, tube theories relate
the timescales that govern the dynamics of individual poly-
mer chains to the rheological properties of the melt by scaling
relations that involve the number of entanglements per chain.
However, it is not clear how this picture can be fully extended
to the nonequilibrium regime. Changes in the entanglement
structure are one of several relaxation mechanisms that play
a role in the complex nonlinear viscoelastic behavior of en-
tangled linear polymer melts under shear>*. Dynamic equa-
tions for disentanglement have been proposed?, but one inter-
esting effect that has been overlooked is the coupling of en-
tanglements to orientation and how this affects the relaxation
mechanisms. Entanglements are usually built into constitu-
tive models through the number of entanglements per chain,
which is a scalar quantity. However, in melts that have been
highly oriented by flow the interaction of any chain with its
neighbors becomes anisotropic. Neglecting this property can
lead to problems when using constitutive models to calculate
the change in components of stress under flow, when starting
from an out of equilibrium state. In this paper, we simulate
an orthogonal flow protocol to study the nonlinear rheology
of startup shear, starting from states that are partially relaxed
after being driven to steady state of shear, and compare the
simulation results to predictions by widely used constitutive
equations. We also analyze the evolution of the number of
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entanglements per chain and the orientation at multiple scales
along the chain during the transient period of startup.

Several models for the nonlinear viscoelasticity of polymer
melts have been proposed. The original tube model of Doi and
Edwards? relates the polymer stress to the average orientation
of the tube, and integrates over the whole deformation his-
tory of the melt. More recent models incorporated other relax-
ation mechanisms, such as contour-length fluctuations, chain
stretch and convective constraint release (CCR)>~7. Some of
these are the DEMG model®, which includes the effects of
chain stretch on the simpler Doi-Edwards theory; the MLD
model’, which incorporates CCR; and the GLaMM model'?,
which starts from a stochastic differential equation describ-
ing the microscopic dynamics of a polymer chain that can
be used to derive an equation for the stress. Another ap-
proach not based on tube theory is the slip-link model!.
One of the more successful simple models proposed is the
Rolie-Poly model!?, which includes reptation, chain stretch
and CCR as relaxation mechanisms, and is a single-mode ver-
sion of the GLaMM model'?. It has been shown to describe,
at least semi-quantitatively, several observations of nonlinear
phenomena under many flow conditions, in both experiment
and simulation!%13

One of the hallmarks of nonlinear rheology of polymer
melts is the existence of stress overshoots during startup shear
under strong flows'*!3 particularly with Rouse-Weissenberg
numbers Wir > 1. Overshoots have been observed extensively
in both experiments and simulations'>1%22 and connecting
the overshoot in the stress components to changes in molecu-
lar properties has been a subject of debate in the literature®>*,
The strain at the peak of the viscosity 1 varies from ¥, ~
1 up to 7; ~ 10. The first normal stress difference N; also
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goes through an overshoot, and its peak happens at a strain
ﬁvl ~ 27y. Simulations find the same qualitative features, and
also show that the overshoot in the stresses is mirrored by the
components of the chain orientation tensor for low and mod-
erate shear rates!>232%, This is usually interpreted as a vali-
dation of the stress optical rule, which states that information
about the stress is encoded in the orientation and can be corre-
lated to birefringence. Simulations also show an overshoot in
the stretch and an undershoot in the number of entanglements
per chain at very high rates.

One interesting protocol for investigating nonlinear rheol-
ogy of polymer melts is interrupted startup shear'’-*728, Ex-
periments have shown that when one interrupts shear after
reaching steady-state and resumes it after a short waiting time,
the observed transient overshoot is smaller during the second
stage of shear. This has been attributed to changes in the en-
tanglement structure of the melt during the first shear?®, but
reductions in the overshoot during the second shear have also
been observed for unentangled melts*®. Associated changes
on the first normal stress overshoot have also been observed.
Interestingly, while the original overshoot for unentangled
systems is recovered for waiting times similar to the longest
equilibrium relaxation time (the Rouse time), for entangled
systems it is only recovered on timescales longer than several
disengagement times.

While this protocol is useful for studying the effects of re-
laxation on the size of the overshoot, it is challenging to per-
form in both experiments and simulations due to the unusual
changes in the flow over time. However, it allows for a new
type of experiment that so far has not been realized: restarting
shear with a different flow direction after relaxation. Such a
setup can probe the changes in relaxation due to starting shear
from a configuration far from equilibrium. For an aligned
chain, the local molecular environment is different in the di-
rections along the backbone and in the plane orthogonal to
the backbone, and this anisotropy in the entanglement struc-
ture might lead to a different stress response. A related con-
cept is orthogonal superposition rheometry, where a fluid in
steady-state of shear is subject to oscillatory shear in a direc-
tion orthogonal to the steady state flow>!=3%. A similar set of
experiments was conducted by Hurlimann and Kraft***? in a
series of papers where they measured the rheological response
of low-density polyethylene melts under a sudden change in
shear direction using a multidirectional rtheometer. Their ex-
periments are essentially orthogonal interrupted shear experi-
ments with no waiting time between the end of the first stage
of shear and start of the second stage. Their focus was on the
changes observed in the overshoot in the viscosity when the
first stage of shear was interrupted at different pre-strains. For
pre-strains smaller than the strain needed to reach the peak
of the overshoot, little change was observed on the size of
the overshoot during the orthogonal stage of shear. How-
ever, for large pre-strains (larger than the strain needed to
reach steady state) a significant reduction on the overshoot
during the orthogonal shear stage was observed. Jeyaseelan
and Giacomin®} showed that transient network theory predic-
tions were in reasonable agreement with these experiments,
but the absence of strong overshoots in the stress for the ana-

lyzed rates makes agreement during the transient regime eas-
ier.

Constitutive equations based on tube theory can capture
the qualitative features of interrupted shear experiments. The
Rolie-Poly model can predict not only the monotonic recovery
of the overshoot as a function of waiting time when the first
shear is stopped after steady state, but also the non-monotonic
recovery seen if one stops the first stage of shear during the
overshoot***. The Doi-Edwards model, which only includes
relaxation due to orientation of the chains, is also able to
model the recovery of the overshoot, suggesting that while
disentanglement might contribute quantitatively to the recov-
ery of the overshoot it is not the only mechanism responsible
for it

In this paper we describe non-equilibrium molecular dy-
namics simulations of interrupted startup shear flow. We per-
form simulations in which the second shear is in the same di-
rection as the original, or in a plane orthogonal to the plane of
shear during the first startup. The stress overshoot is signifi-
cantly larger for a given waiting time for an orthogonal second
shear. We also show measurements of the normal stresses as
well as molecular scale quantities such as the end-to-end dis-
tance and orientation during both stages of startup shear. All
of the relevant measures show corresponding overshoots and
undershoots before reaching steady-state, though the time at
which they occur are not the same for all quantities. We con-
trast these measurements to predictions by constitutive equa-
tions based on tube theory and show that available models are
not capable of capturing this behavior even qualitatively.

Il. METHODS
A. Molecular Dynamics Simulations

Molecular dynamics simulations were carried with the
package LAMMPS* and used the Kremer-Grest bead-spring
model for linear homopolymers*®. Monomers were modeled
as beads with mass m interacting via a purely repulsive trun-
cated Lennard-Jones (LJ) potential

Uy = 4ug [(‘r’)n - (%)6+ 1] forr <r.=2"%a. (1)
All simulation results will be in terms of LJ units (distance
a, energy up, mass m and time T = a\/m/up). The simulated
melts have a total of 184,000 beads, and each melt comprises
polymers with length N = 40 or 500 beads. The polymers
are linear chains of beads connected by covalent bonds repre-
sented by the FENE potential

Urene = 1.5KRGIn [1— (r/Ro)?) 2)

where K = 30uq/ a® and Ry = 1.5a. All simulations were per-
formed at a density of p = 0.85.

Table I lists parameters for the systems studied.
These parameters have been measured extensively in
the literature!3#%>°, Recently Svaneborg and Everaers have
published values of these parameters for many different
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stiffnesses®!, and values in the table are equal to the values
quoted in their paper when these are readily available. All
values quoted were consistent with direct measurements from
our simulations. For the timescales, we use the values in
the literature for the entanglement Rouse time 7, and obtain
the chain Rouse time 7z and disentanglement time 7; from
scaling relations. The scaling relation for the Rouse time
is the standard g = 7,Z%, while for 7; we use the scaling
relationship by Likhtman et al.>> which accounts for contour
length fluctuations:

3)

3.38 4.17 1.55
Td/TR =3Z (1 )

Szt oz pR

where Z = N/N, and N, is the entanglement length.

For all simulations, the equations of motion were integrated
with a timestep 0t = 0.017, and temperature was kept at
T = 1.0ug. Equilibrated melts were generated using the stan-
dard double-bridging algorithm>®. Temperature during equi-
libration was controlled by a Langevin thermostat with a time
constant of 107.

B. Shear Protocols

The simulation protocol involved two stages of simple shear
with a stage of relaxation in between. Figure 1 shows the shear
plane and rate used during each stage of the simulations. In
the first stage the simulation box is sheared in the xy-plane at a
desired rate. After the simulation has reached steady state, we
stop the flow in a configuration where the simulation box is or-
thorhombic. The melt is allowed to relax for a certain time ¢,
and then sheared again. During the second stage of shear we
deform the box either in the xy or yz plane (where the first axis
refers to the flow direction and the second refers to the gradi-
ent direction), leading to different transient stress responses.
The rates used for shearing each system were chosen to pro-
duce Rouse Weissenberg numbers Wiz = y7g ranging from 1
to 250. In this flow regime, nonlinear viscoelastic effects be-
come relevant and the transient overshoot in the viscosity is
very prominent!3-20:25-33,

During the relaxation stage, temperature was controlled by
a Langevin thermostat with a time constant of 107>*. The
temperature is obtained from the velocities of atoms after sub-
tracting an instantaneous linear velocity profile that is calcu-
lated by binning the system in the y direction and calculating
the average x velocity in each bin. This is done so that the re-
maining velocity profile after the first stage of shear does not
affect the temperature at the beginning of the relaxation stage.
Other methods for calculating temperature such as account-
ing only for the velocity component in the vorticity direction
were also used and resulted in no measurable difference in the
measured temperature and stresses.

Both stages of shear were simulated by integrating the
SLLOD equations of motion and deforming the simulation
box with the desired shear rate, and temperature was con-
trolled with a Nose-Hoover thermostat with a time constant
of 107%. In our simulations, the flow homogeneity was en-
sured by directly probing the linear velocity profile across the

system, and peculiar velocities were defined by subtracting
the profile at a particle’s position from its velocity. During
these stages the thermostat was biased by subtracting a linear
velocity profile consistent with the simulation box deforma-
tion rate before thermostatting, and then reinstating the linear
profile after the thermostatting was performed on the peculiar
velocities.

Since the SLLOD equations of motion simulate a sys-
tem under homogeneous flow, inhomogeneities such as shear
banding are not seen in our simulations>. Other methods can
be used to probe inhomogeneous flows. Recent Dissipative
Particle Dynamics simulations with Lees-Edwards boundary
conditions have shown that shear banding can be observed
during startup shear of entangled polymer melts®®7. In that
case, the melt separates into fast and slow bands where stress
overshoots are still seen, but the values of the normal stress
maxima differ from one band to the other.

The different types of thermostatting can lead to artifacts
when calculating the temperature immediately after the flow
is turned off or on. This is particularly important for the sys-
tems with small chains, where the relevant timescales of the
dynamics are shorter and short time stress data can be af-
fected by temperature fluctuations. In order to avoid this prob-
lem, the shearing stages were initialized with a velocity profile
consistent with the desired shear rate, and peculiar velocities
were adjusted to match the desired temperature. Other meth-
ods such as thermostatting only the direction perpendicular to
the flow plane and quickly ramping the shear rate from zero to
the desired value at the start of shear resulted in no significant
change in the measured values of the stress in all cases tested.

C. Analysis

Rheological data is obtained during the transient regime
of startup shear and interrupted shear. Due to the noisy na-
ture of stress measurements at individual timesteps, we report
stress data for single simulations that have been filtered us-
ing a Savitzky-Golay filter’®. This filtering method works by
fitting polynomials to sequential subsets of data points, effec-
tively averaging data over a moving window without distort-
ing the underlying signal.

Individual chain statistics such as length and orientation
along different axes at different scales can be obtained by
taking suitable averages over the positions of the monomers.
Primitive path information can be obtained by one of several
methods published in the literature®*—°!, usually by an algo-
rithm that shrinks the backbone of the chains as short as pos-
sible without allowing chains to pass through each other.

Even in equilibrium, measurements of the number of entan-
glements by different estimators can vary; equivalently, one
must determine the entanglement length N,, i.e. the num-
ber of bonds per entanglement. Hoy and Kroger® showed
how different ways of calculating the entanglement length
lead to different values. One possible measure, based on ran-
dom walk statistics, is the rheological entanglement length
Nheol = Ny (R?) /L2 . where N}, is the number of bonds, (R?)

pp?
is the average squared end-to-end distance and L, is the prim-
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TABLE L. Parameters of the different types of systems used for MD simulations. For each number of beads per chain N we measure the end-

to-end length(R
times. Values for the entanglement times are obtained from Ref.

)1/ 2, Kuhn length [, entanglement length N, number of entanglements Z and the entanglement, Rouse and disentanglement

N (R2)'/2 Ja Ii/a N, Z=N/N, T./T R/T /7T
40 8+ 1 1.8 86 + 7 <1 - 2.4 %103 -
500 20+ 1 1.8 86+ 7 6+1 1.07 x 10* 3.7 % 10° 1.2 x 106

itive path length of a chain. One can also calculate a topolog-
ical entanglement length, given by N.P”' = N, /Z; where Z;
is the number of topological constraints (points of contact be-
tween chains as obtained by an algorithm that reduces chains
to their primitive paths) on a chain. It is usually found that the
rheological entanglement length is larger than the topologi-
cal entanglement length by a factor of around two. To avoid
confusion we will use N, to refer to the rheological entangle-
ment length in equilibrium, and this is the definition used for
values in table I and in scaling relations. Since this method
does not work away from equilibrium, we use the Z1 code®?
to obtain primitive path statistics as well as information about
contact between the primitive paths of different chains. The
Z1 code works by shrinking the polymer chains to their prim-
itive paths through a series of geometrical moves and identi-
fying points where a move would force two chains to come in
contact or cross. We call these contact points topological con-
straints (TCs) and analyze the evolution of the average num-
ber of TCs per chain (Z;) under flow. Other methods such as
Primitive Path Analysis®! can generate similar information,
and direct comparison between TC statistics generated by dif-
ferent algorithms in aligned melts is the subject of undergoing
research.

D. Tube Model Predictions

We use the Rolie-Poly model as well as a differential ver-
sion of the Doi-Edwards model® to calculate the stress tensor
during both stages of startup shear as well as during relax-
ation. The differential version of the Doi-Edwards model is

d 1 2
77:5-0’-'-0'-511—?‘1(0'—_1)—5'{:0'0', 4)

where o is the polymer stress and & is the velocity gradient
tensor given by k;; = d;v;. The operator d/dt is the material
derivative. This differential approximation to the original in-
tegral Doi-Edwards model and is more suitable to numerical
analysis. It has been shown to exhibit much of the same be-
havior as the integral version, except that it predicts a zero sec-
ond normal stress difference. Like its integral counterpart, this
model does not show an overshoot on the first normal stress
difference, predicting a monotonically increasing N, that sat-
urates at the steady-state value'?

The Rolie-Poly'? equation is a single mode version of the
GLaMM'? model that includes contributions to relaxation
from reptation, retraction and convective constraint release
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FIG. 1. Components of the velocity gradient tensor for parallel in-
terrupted shear (left) and orthogonal interrupted shear (right) simu-
lations. The flow is turned off and on during the interrupted shear
protocol at times fo¢ and 7o, The rates utilized always have the same
magnitude in both stages of shear.

(CCR). The Rolie-Poly constitutive equation is

do T
=K-o+0-K

dr
2(1—/3/tro) V3/tro) /3
- Tr < ﬁ U I > 3 (5)

where the parameter 3 sets the relative strength of the CCR
relaxation. The disentanglement and Rouse times are related
by Equation 3. To replicate the flow conditions in our repeated
startup shear MD simulations, we use different velocity gra-
dient tensors to represent the different stages of the MD sim-
ulation when calculating the polymer stress using the consti-
tutive equations. The chosen x controls which components
of the stress tensor couple to flow in the advective terms of
Equations 4 and 5. The most general velocity gradient tensor
needed for our Rolie-Poly calculations is given by

1
(a'I

0 Ky O
k=0 0 x|, (6)
00 O

where we remind the reader that the first index defines the
velocity direction v and the second index defines the gradi-
ent direction V, i.e. K, = kyv. The two shear protocols are
shown in figure 1. The first stage of shear always has nonzero
Ky (K; = 0), while the shear after relaxation can have either
Kyy O Ky, as the nonzero component of the velocity gradient
tensor. The choices Ky, or K, couple different components of
the stress tensor to the flow during the second stage of shear
while the uncoupled components continue to relax.
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Ill.  RESULTS

For both the parallel and orthogonal interrupted shear pro-
tocols, the viscosity 7, normal stress differences Ny and N,
and chain statistics were measured for different values of shear
rate 7, waiting time #,, between the two shear stages and pa-
rameters in table I. We contrast the transient stresses during
the second shear to the transient stresses during the first shear
and show that the main features apparent in the transient pe-
riod vary monotonically with waiting time #,,. The simulation
data shows that the magnitude of the transient peak in all rel-
evant properties is larger during the second shear when flow
is resumed in a direction orthogonal to the previous shear. We
then show that both the Doi-Edwards and Rolie-Poly models
predict the same magnitude of the overshoot in viscosity re-
gardless of the relative orientation of the flow during the sec-
ond stage, contradicting the simulations.

A. First stage of shear

The measured values of 11 and N; during the first stage of
startup shear are summarized in Figure 2. Also plotted are
components of the bond orientation tensor S;; = (u,'uj>, where
w is the bond vector connecting neighboring beads along the
chain and i and j are cartesian indices. Measurements of the
orientation are performed on a single snapshot of the simula-
tion, leading to noisier data. We do not show data for Sy, — S,
or N,, but their values are always negative and very small in
magnitude, with an undershoot consistent with the observed
stress behavior. Under startup shear, according to the stress-
optical rule the stress components are proportional to the com-
ponents of the bond orientation tensor,

! S 7

Oij =, Siis (7
where o is the stress-optical coefficient. For the fully-
flexible FENE model, Cao and Likhtman!3 showed that ot =
0.32a* /ug. For the entangled system, orientation and stress
components track each other closely with minor deviations
at the highest Weissenberg numbers. This can be attributed
to the higher degrees of chain stretch and disentanglement
induced at these stronger flows. For more moderate shear
rates, the stress overshoot seems to be completely accounted
for by the change in orientation, as predicted by the stress-
optical law. For unentangled systems the shear stress is sig-
nificantly larger than orientation for all Weissenberg numbers
larger than one. One possible explanation for this is that for
unentangled systems the polymer contribution to the stress is
small and therefore on the same order of magnitude as the
contribution to the stress from unentangled interchain interac-
tions.

Previous simulations of startup shear flow of entangled
polymer melts have also observed weak undershoots on (Z;),
the number of topological constraints per chain as measured
by the Z1 code, during startup.?!

The strain at the peak of overshoot or undershoot is differ-
ent for the shear and normal stresses. In experiments and sim-

Entangled Unentangled

—— Stress
--o-- Orientation
Wig=1
Wig =25
Wigr =50
Wig =100
Wig = 250,

o000

°E§§Qmm—°—‘lm—
= Q0000 0 0 000
o © 58888833885

107 10 10T 10° 107

t/Tr t/Tr

10~ 1071

FIG. 2. Viscosities and first normal stress differences (lines) at differ-
ent Rouse Weissenberg numbers during the initial startup for entan-
gled (a,b) and unentangled (c,d) fully-flexible systems. Components
of the bond orientation tensor (circles) follow the stress closely at all
but the highest rates for the entangled systems, satisfying the stress-
optical rule (Equation 7). For the unentangled melt orientation and
stress data only agree for the diagonal components of the stress.

ulations of both entangled and unentangled melts the strain at
the peak of the overshoot in N; is usually twice as large as
the peak strain in 720263064 This is consistent with our find-
ings, and we also observe even larger strains at the peak for
the chain end-to-end length.

B. Parallel interrupted shear

Figure 3 shows the viscosity, normal stress differences and
end-to-end length measured during the first and second stages
of shear for a melt of chains with N = 500 monomers at a
Rouse Weissenberg number Wig = 100 and second shear in
the same plane as the initial shear. Components of the bond
orientation tensor during the overshoot are included for com-
parison. The orientation is correlated to the stress in a man-
ner similar to the one observed during the startup from equi-
librium, and the difference between stress and orientation is
smaller for shorter waiting times. The size of the stress over-
shoot during startup shear increases monotonically with the
waiting time f,,. The same behavior is observed for the first
normal stress difference and end-to-end distance, as well as
for the undershoot in the second normal stress difference.

Similar features can be observed when the simulations are
repeated with a melt of short chains, as can be seen in fig. 4.
The dependence of the size of the overshoot on the waiting
time between stages of shear remains even in the absence of
entanglements between chains. In the unentangled case full
recovery of the overshoot occurs in the Rouse time, while
for the entangled melt full recovery happens for waiting times
longer than the disentanglement time.
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FIG. 3. Stress and orientation components of the entangled fully-
flexible melt during parallel interrupted shear simulations for differ-
ent waiting times #,,. Plots show (a) viscosity, (b) first and (c) sec-
ond normal stress differences and (d) end-to-end distance of chains.
The curve labeled initial refers to the first stage of shear, and the
other curves refer to the second stage of shear after a waiting time
indicated by the label. Open circles in the plots for stress show the
components of the bond orientation tensor S = (uu) properly nor-
malized according to the stress-optical rule. Parameters: N = 500,
Wig = 100.

Both sets of simulations show that the strain at the over-
shoot peak is about twice as large for Ny as it is for 17 and N,.
The strain at the peak of viscosity seems to be independent of
the waiting time, while the strain at the peak of the first normal
stress difference decreases for the entangled system, moving
from a position very close to the onset of steady-state for short
waiting times to a smaller value at the largest waiting times.
The strain at the peak of the overshoot in the end-to-end dis-
tance of the chains also appears to decrease with increasing
waiting time.

Both the Doi-Edwards and Rolie-Poly models qualitatively
capture the recovery of the overshoot in the viscosity***®.
Neither the Rolie-Poly or the differential Doi-Edwards model
used here can predict a nonzero value for the second normal
stress difference. The integral Doi-Edwards model predicts a
value of N, = —2N) /7, but neither form can predict an over-
shoot in N;%3. Figure 5 shows the values for the peak of
the overshoot in the viscosity, Ni, N, and in the end-to-end
distance obtained in the simulations as a function of waiting
time. The maxima/minima for all properties for the unentan-
gled system reach the terminal value (identical to the obtained
when starting from equilibrium) after a waiting time around
the Rouse time, which is the longest relaxation time for un-
entangled chains, while the entangled systems only reach the
terminal value for the longest waiting times studied, which are
over four times larger than the disentanglement time. This is
consistent with trends observed in experiments on polystyrene
melts’®. A conservative estimate for the error bars on points
in Fig. 5 can be obtained by looking at the variation in the ra-
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FIG. 4. Stress components of the unentangled fully-flexible melt dur-
ing parallel interrupted shear simulations. Plots show (a) viscosity,
(b) first and (c) second normal stress differences and (d) end-to-end
distance of chains. The curve labeled initial refers to the first stage of
shear, and the other curves refer to the second stage of shear after a
waiting time indicated by the label. Parameters: N = 40, Wig = 100.
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FIG. 5. Relative size of overshoots and undershoots for entangled
(filled circles) and unentangled (open squares) fully-flexible melts
during parallel interrupted shear of fully flexible polymer melts as a
function of waiting time. Peak of viscosity (a), N; (b) and end-to-end
distance (d) overshoot normalized by steady-state value as a function
of waiting time. (c) Minima of N, normalized by steady-state value.
The overshoots in the normal stresses for the unentangled case at the
lowest Weissenberg number were too small to discern from noise and
therefore are not plotted. All properties at the longest waiting time
are statistically the same as startup from an equilibrium state. Dash-
dotted lines represent the values for the initial startup at the different
Weissenberg numbers for the entangled system. Arrow shows 7, for
the entangled system.
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tio 7™ /n** and other quantities during startup from several
equilibrium configurations prepared independently. By simu-
lating startup shear of 5 different equilibrium melt configura-
tions, we estimate error bars to be of order +0.25 in the vis-
cosity and first normal stress ratios. Using the same method to
estimate an error bar for the ratio of the second normal stress
leads to an error bar of £0.75. This shows that all melts at
the longest waiting time are statistically equivalent to samples
sheared from equilibrium.

Both the the entangled and unentangled systems exhibit
a monotonic recovery of the overshoot, with corresponding
changes to the bond orientation tensor.

Figure 6 compares predictions of the Doi-Edwards and
Rolie-Poly models to the viscosity in the molecular dynamics
simulations of the fully-flexible entangled system. The best
Rolie-Poly model fit parameters were Z =9 and 8 = 1, while
the shown Doi-Edwards fit uses Z = 3. The Rolie-Poly value
of Z is consistent with N, = 60, which is similar to the value
used to fit the Likhtman-McLeish’> and GLaMM'® models
to stress data by Cao and Likhtman'3. Although this value
differs from the rheological entanglement length N, = 86 re-
ported in the literature, previous work has also shown that con-
stitutive models using fit parameters derived from MD simu-
lations do not necessarily correctly match the measured val-
ues of either the steady-state or the overshoot?!. The value
of Z used in the Doi-Edwards fit is significantly smaller than
the simulation and Rolie-Poly values. One possible expla-
nation is the well-known excessive shear thinning predicted
by the Doi-Edwards model. The ratio 1™ /n* grows very
strongly with increasing Wig, so a small value of Z is needed
to fit the values measured in the simulations for our range of
Weissenberg numbers. The Doi-Edwards model more accu-
rately describes the data for shorter waiting times, while pre-
dicting smaller overshoots for longer waiting times. The best
agreement with the Rolie-Poly model is for the longest wait-
ing times. This might be due in part to our choice of using
a single mode model, and better agreement for shorter wait-
ing times can probably be obtained by adding a spectrum of
shorter relaxation modes.

We also analyzed how the peak strain changes with wait-
ing time. We see a systematic trend of a decrease by a factor
of two for the strain at the peak of N; with increasing wait-
ing time, while there is an increase by a factor of two for the
viscosity peak strain. The latter is, however, hard to estimate
since the shear stress curves tend to be flat near the peak, par-
ticularly for short waiting times, making it hard to measure the
position of the peak precisely. Comparison with our chosen
constitutive models is difficult, since the Doi-Edwards model
predicts a strain at peak that does not vary with Weissenberg
number and the Rolie-Poly model® (as well as the more com-
plicated GLaMM model?%) has been shown to strongly over-
predict y,,ax for flows in the regime Wig > 10. This also hap-
pens in our case, where our MD simulations show peak strains
ranging from 2 to 11 for our different Weissenberg numbers,
while Rolie-Poly predicts a peak strain of around 200 for our
largest Wig. Rolie-Poly does predict a decrease of ¥, for N
with increasing t,,, but also predicts a decrease for the peak
strain of viscosity, which goes against what we observe in
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FIG. 6. Comparison of Doi-Edwards (dashed) and Rolie-Poly (solid)
model predictions for relative size of the viscosity overshoot during
the second stage of interrupted shear as a function of waiting time to
simulation data for the fully-flexible entangled system.

simulations.

C. Orthogonal interrupted shear

We repeated the MD simulations detailed above with a sec-
ond shear flow in a plane orthogonal to the first shear. Most
of the same features remain, with overshoots and undershoots
similar to those seen in the previous section. However, the
size of the stress overshoot for the same waiting time is sig-
nificantly larger when the direction of the second shear is
changed.

In this orthogonal protocol, y is now the flow direction and
z is the gradient direction (previously the vorticity). Hence
both the flow and gradient directions are orthogonal. Later
we will refer to this as “fully orthogonal". Here the viscosity
during the second stage of shear is given by n = o,./7, and
the normal stress differences are given by Ny = oy, — 0,; and
Ny = 0, — Oxy.

Figure 7 shows data equivalent to that shown in Figure 3
for the orthogonal case. While the qualitative features are the
same, for the same waiting time the relative magnitude of the
overshoots in 17,N{,N,, and R,, is larger than in the parallel
case. The most striking difference is for short waiting times:
in the parallel case the overshoot was almost completely gone,
while for orthogonal shear there is still a significant overshoot
even for waiting times smaller than the Rouse time, a relative
increase of around 50%.

Another significant difference can be seen in the values
of the second normal stress difference N, for short waiting,
which are significantly more negative than during the initial
shear. This is mainly due to our change in the definition of N,
to accommodate the different flow direction: the inclusion of
a contribution from oy, which is still not fully relaxed for the
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FIG. 7. Stress components of the fully-flexible entangled melts dur-
ing orthogonal interrupted shear simulations. Plots show (a) viscos-
ity, (b) first and (c) second normal stress differences and (d) end-
to-end distance of chains. The curve labeled initial refers to the
first stage of shear, and the other curves refer to the second stage
of shear after a waiting time indicated by the label. Open circles
in the plots for stress show the components of the bond orientation
tensor S = (uw). Parameters: N=500, Wig = 100.

smallest waiting times, leads to a more negative initial value
of N2 .

The increase in the overshoot of the end-to-end distance
comes exclusively from the behavior of R§ along the new flow
direction. The x component, which was the largest one in the
first stage of shear, decreases monotonically.

The relative magnitudes of the overshoots and undershoot
are larger than for parallel interrupted shear for all Weis-
senberg numbers. Figure 8 shows the values of the overshoot
at the peak, normalized by the steady-state values, for both
entangled and unentangled systems at all Weissenberg num-
bers as a function of waiting time. Comparison with Figure
5 shows that for the shortest waiting times the magnitude of
the overshoot is significantly higher when the second stage of
shear is orthogonal to the original shear plane.

Figure 9 compares the viscosity overshoot of the entangled
system to predictions by both constitutive models, with the
Rolie-Poly parameters Z =9 and 8 = 1. There is significant
disagreement for the shortest waiting times at all Weissenberg
numbers larger than one. In fact, the model predictions are
essentially the same as those for the parallel interrupted shear.
An analysis of the form of Equations 4 and 5 explains this be-
havior: the coefficients of the relaxation mechanisms in both
models involve only scalar quantities such as tro-, which have
no directionality and therefore cannot distinguish stresses re-
lated by rotations. The steady-state properties predicted by
the models are the same as for parallel interrupted shear.

Figures 6 and 9 together suggest that there is no physical
mechanism contained in the analyzed constitutive models that
can explain the increase of the relative size of the overshoot
due to the change of shear direction. Including extra faster
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FIG. 8. Relative size of overshoots and undershoots for entangled
(filled circles) and unentangled (open squares) fully-flexible melts
during orthogonal interrupted shear as a function of waiting time.
Peak of viscosity (a), 1st NSD (b) and end-to-end distance (d) over-
shoot normalized by steady-state value as a function of waiting time.
(c) Minima of the 2nd NSD normalized by steady-state value. The
overshoots in the normal stresses for the unentangled case at the low-
est Weissenberg number were too small to discern from noise and
therefore are not plotted. All properties at the longest waiting times
are statistically the same as startup from an equilibrium state. Dash-
dotted lines represent the values for the initial startup at the different
Weissenberg numbers.

relaxation modes can increase agreement in the short waiting
time regime for either parallel or orthogonal interrupted shear,
but the same spectrum of relaxation times cannot fit the differ-
ent values of the overshoot measured in these regimes in the
MD simulations. In the next section, we will highlight mea-
surements of chain orientation and entanglements that we be-
lieve can help elucidate possible physical mechanisms driving
the observed differences in overshoot size. In particular, we
propose that the anisotropic nature of the chains in the aligned
state leads to remarkably different dynamics of entanglement
in the transient regime when flow is restarted in a direction
orthogonal to the previous alignment direction, generating a
contribution to the stress that arises from the larger number of
constraints that need to be overcome in order for the melt to
flow into steady state. We argue that constitutive models can
be improved upon by utilizing a tensorial definition of entan-
glements instead of a scalar value of Z.

IV. ENTANGLEMENTS AND ORIENTATION DURING
PARALLEL AND ORTHOGONAL INTERRUPTED SHEAR

"Based on the title of section IV, you are trying to separate
orientation effects from changes in entanglement density. The
maxima in figure 10 (and figures 16 and 18) might suggest
that you did not make this separation quite correctly? At least
I do not understand why the number of entanglements would
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FIG. 9. Comparison of Doi-Edwards (dashed) and Rolie-Poly (solid)
model predictions for relative size of the viscosity overshoot dur-
ing the second stage of orthogonal interrupted shear as a function of
waiting time to simulation data for the fully-flexible entangled sys-
tem. Notice the increase in simulation data relative to Figure 6, while
the model predictions remain essentially the same.

ever be larger than the quiescent case. When any network
gets stretched, the tube diameter in the stretch direction gets
smaller but I think of that as an orientation effect (anisotropic
tube) that does not increase the number of entanglements per
chain. So maybe you need to rethink the separation of orien-
tation and entanglements? "

An important metric in polymer rheology is the number
of entanglements per chain. Recent computational studies
have focused on how the average number of topological en-
tanglements per chain (Z;) changes under flow in a United
Atom model for polyethylene (UA-PE)!'8-21-33  with this num-
ber usually measured by the Z1 code. They observe a de-
crease in the average (Z;) as a function of Weissenberg num-
ber in steady state shear, and a small undershoot in (Z;) dur-
ing the transient under startup shear roughly corresponding
to the overshoot in the first normal stress difference. The
UA-PE model is much more detailed than the simpler coarse-
grained FENE model used in our simulations, and differences
in quantities such as the friction coefficient between chains
might change the degree of disentanglement at comparable
Weissenberg numbers.

While it is still unclear how to couple the dynamics of en-
tanglements as observed in simulations to constitutive equa-
tions, lanniruberto and Marrucci proposed a model for the en-
tanglement dynamics based on CCR’, which has been used
along with constitutive equations to model disentanglement
during flow®®®7. A direct comparison of predictions of this
equation to the evolution of the number of entanglements in
simulation as measured by the Z1 code is hard since a direct
relation between the concept of entanglements in tube mod-
els and those measured by simulation techniques is still not
known®®. In order to determine how (Z;) is affected by our
flow protocol, we analyzed the number of entanglements per

chain during both parallel and orthogonal interrupted startup
shear as a function of waiting time.

Entanglement data during interrupted shear for the entan-
gled system are shown in Fig. 10. During parallel interrupted
shear, we observe an undershoot in the number of entangle-
ments per chain at around the same time as the overshoot in
the end-to-end distance of the chains. The recovery of the un-
dershoot as a function of waiting time is monotonic, similar to
the transient behavior of other measured quantities. We also
observe an overshoot during the transient before the under-
shoot happens, corresponding to a strain similar to the strain
at the viscosity overshoot. One possible origin of the brief
overshoot is that disentanglement is triggered by the nonaffine
deformation of the chains in the nonlinear regime by mecha-
nisms such as CCR, while deformations in the linear regime
either preserve the number of entanglements or drive their for-
mation.

During the orthogonal interrupted shear protocol the evo-
lution of the average number of entanglements (Z;) differs
remarkably from that observed when shearing from equilib-
rium. Instead of going through an undershoot into steady-
state, (Z) undershoots and then rises again to a value sig-
nificantly above the expected steady-state value, finally de-
creasing on a timescale larger than 7g. The initial overshoot
before the first undershoot is also significantly larger than in
the parallel case even for the shortest waiting times. We will
demonstrate below that that this interesting behavior can be
understood as arising as a superposition of different mecha-
nisms that affect the entanglement structure, and annotate on
the bottom panel of figure 10 the regimes where each mecha-
nism dominates the dynamics of entanglements:

(i) the large orientation along an axis orthogonal to the
new flow (because the chains have not relaxed after the
first shear pulse) enables formation of new entangle-
ments under shear in a mechanism by which chains with
nearly parallel backbones are pulled over each other;
this leads to a large rapid increase in the entanglement
number; this can be seen in the bottom panel of figure
10, where the first and second (from left to right) pic-
tures of the chain "cloud" have similar width, indicating
similar alignment along the original flow direction, but
the second picture shows a cloud with larger height, in-
dicating chains have started to align along the new flow
direction;

(i1) disentanglement is triggered by the nonlinear deforma-
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FIG. 10. Average number of entanglements per chain, (Z), as a
function of time during the second stage of shear under parallel (top)
and orthogonal (bottom) interrupted startup shear. Fully-flexible sys-
tem, sheared at Wig = 100. Histograms of Z; at each snapshot show
wide distributions, with standard deviations of order & 2-3, corre-
sponding to an error on the mean of approximately & 0.1-0.15. Pic-
tures in the bottom plot show all chains in the melt (aligned by their
centers of mass), forming a "cloud" that better illustrates the distribu-
tion of molecular shapes. Two individual chains in red and blue have
been selected for illustration. Chains are visualized in the xy plane,
with the x axis pointing right and y axis pointing up. The distinct
phases (i), (ii), (iii) and (iv) shown in the bottom panel correspond to
the four mechanisms explained in the text.

tion of the chain along the new flow axis; in 10 this can
be seen in the difference between the second and third
pictures of the "cloud", where the width of the distribu-
tion decreases as (Z;) goes down;

(iii) reorientation and stretch relaxation in the new vorticity
axis lead to reentanglement by forcing chains to collide
when aligning along the flow direction; this can be seen
in the plot by noticing that the fourth and third pictures
of the cloud have a similar aspect ratio despite a large

change in (Z;), because most of the changes in the chain
orientations are along the axis pointing into the page;

(iv) in final stage there is disentanglement to the steady state
value after alignment with the new flow axis. Notice
how the width of the chain cloud decreases from the
fourth to the final picture shown in the plot.

This result suggests that topological constraints between
chains, as measured by the Z1 code, are inextricably linked
to the chain conformation, and a successful model for the dy-
namics of entanglements should not only describe changes in
the average number of entanglements per chain, but also how
the created/lost entanglements couple to orientation and flow.

One possible way of modelling the evolution of the num-
ber of entanglements per chain (or entanglement density) un-
der flow is to assume that the rate of change of the number
of entanglements is proportional to the rate of change of the
tube length, which can be expressed in terms of components
of the bond orientation tensor S and the chain conformation
tensor A = (RR)/ 2R§ (where R, is the radius of gyration
and R is a chain’s end-to-end vector), possibly coupled to the
velocity gradient tensor <. This approach was used by lan-
niruberto and Marrucci® to obtain an equation for the change
in v =Z/Z,, under flow which includes a term proportional to
K : S. In order to identify relevant changes in the components
of S and A that might be responsible for the curious behav-
ior of the entanglement density under orthogonal interrupted
shear, we plot the individual components of these tensors dur-
ing parallel and orthogonal interrupted shear after our shortest
waiting time of 0.277g in Fig. 11 and 12. The diagonal com-
ponents are shown in the insets of the plots and exhibit little
change for parallel interrupted shear while showing a reversal
of the relevant components for the orthogonal case (relaxing
the xx component while increasing the yy component), similar
to the behavior observed for the stresses.

All components of orientation shown in Figure 11 show the
same qualitative behavior as the stress curves, as predicted by
the stress-optical law. No components under orthogonal shear
show the ‘double peaks’ observed for (Z;).

The conformation tensor A combines the orientation and
stretch at the chain scale into a single measure. The diago-
nal components of A under flow show very little change in
the steady state values of the individual components in paral-
lel interrupted shear but an inversion between A,, and A,y in
orthogonal interrupted shear, where A, relaxes in the same
timescale that A, rises to become the dominant component in
A. The trace of A is the same as the average end-to-end dis-
tance in Fig. 3 (d), just squared and normalized by the square
of the radius of gyration.

An interesting effect of the change in flow direction in
the 2nd stage of shear can be seen in the Ay, component of
the chain conformation tensor during orthogonal interrupted
shear. During parallel interrupted shear, both off diagonal
components which do not couple to the flow in k : S are
zero at all times, and one might expect the same would hap-
pen to Ay, after switching the flow direction. However, our
simulations show that A,, goes through a more complicated
relaxation process which exhibits a prolonged undershoot, at
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FIG. 11. Components of the bond orientation tensor S of fully-

flexible entangled (N = 500) melt in parallel and orthogonal inter-
rupted shear at Wig = 100 after a waiting time of #,, = 0.271g. Inset
shows diagonal components.

timescales comparable to the complex behavior appearing in
the Z1 data, and featuring two peaks. The shear component
A, exhibits an overshoot similar to the stresses as shown in
Fig. 7 and is not qualitatively different from what is ob-
served for parallel interrupted shear when taking into account
the appropriate flow, shear and vorticity directions (apart from
changes in the relative size of the overshoot for the same wait-
ing time, as discussed in Section C).

At first glance, the qualitative difference observed between
Sy and Ay, might seem to come from the contribution of
stretch, which is accounted for in A but not in S. However,
another important difference between the two measurements
is the scale over which these measurements are taken. The
bond orientation tensor S = (uu) measures orientation at the
monomer scale, since u is the bond length between neigh-
boring beads in a chain, while A measures the stretch and
orientation of the whole chain. We define orientation and
conformation tensors at different scales as S(n) = (upuy)
and A(n) = (R, R,,)/ZRg .» Where R, is the distance vec-
tor connecting two beads n» monomers apart along the chain,
u, = R, /|Ry,| is the normalized distance vectors, R§7 =R2/6
is the equivalent radius of gyration and averages are taken over
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FIG. 12. Components of the chain conformation tensor A of fully-
flexible entangled (N = 500) melt in parallel and orthogonal inter-
rupted shear at Wig = 100 after a waiting time of #,, = 0.277g. Inset
shows diagonal components.

all suitable pairs of monomers. In Figure 13, we show Sy, (n)
and normalized Ay (n) measured at different relevant scales
along the chain during orthogonal interrupted shear in order
to understand the contribution of orientation at different scales
to the double peak feature observed in A,,. We see that while
the orientation in the monomer scale does not undershoot the
steady state value, the orientation at larger scales does show
an undershoot at a timescale close to Tg, and at scales larger
than N, the prolonged undershoot also appears in Sy, (). In-
terestingly, the double peak only seems to appear in the con-
formation tensor, and only for scales comparable to the whole
length of the chain.

While the relevance of these changes in the xy components
of S and A during orthogonal interrupted shear is not clear,
a term including off-diagonal components of orientation and
conformation that do not couple to flow through terms such as
K : S in a kinetic equation for dZ/dt might be able to explain
the difference in the dynamics of Z in our two different flow
protocols and can be investigated more thoroughly in future
work. Terms that contain a relevant contribution from Sy, and
Ay, such as those involving tensor invariants like the deter-
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FIG. 13. Relaxation of off-diagonal components Sy, and Ay, of the
orientation and conformation tensors under orthogonal interrupted
shear at different scales along the contour of the chain. The curves
are Syy(n) = (ux(n)uy(n)) and Ay (n) = (Rx(n)Ry(n)>/2R§’n where
the average is taken over all possible pairs of connecting beads in the
same chain separated by a chemical distance n (as described in main
text), which is given by the labels for each curve. Data for fully-
flexible entangle melt at Weissenberg number Wig = 100, and the
system was allowed to relax for #, = 0.271g, corresponding to the
blue curve in the bottom panel of Fig. 10. An extended undershoot
in orientation and two peaks in the conformation appear at chemical
distances larger than the entanglement scale N,.

minant, might also need to account for the flow history of the
melt at different scales along the chain.

V. CONCLUSIONS

We used non-equilibrium molecular dynamics simulations
to probe the transient rheological properties of polymer melts
under startup shear, both starting from the equilibrium con-
figuration and from a state that has relaxed after steady state
of shear for a waiting time #,,. The observed behavior during
startup shear from equilibrium is in line with what has been
previously reported in the literature, and shows that the stress
optical law holds up to large Weissenberg numbers (Wi >
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FIG. 14. Ratio of peak viscosity under orthogonal interrupted shear
to parallel interrupted shear in MD simulations of fully-flexible en-
tangled system (open symbols) and predictions by the Doi-Edwards
(dashed line) and Rolie-Poly (solid line) constitutive models. The
colors used for the MD data are also used to indicate different Wig
for the model predictions. Data for Wir = 1 is not shown because
data at the peak is too noisy to show a meaningful difference between
the orthogonal and parallel cases.

100).

Our simulations of interrupted startup shear show a mono-
tonic recovery of the transient viscosity overshoot with in-
creasing waiting time, as is seen in experiments. Recovery of
associated overshoots and undershoots in the normal stresses,
end-to-end distance of the chains and number of entangle-
ments per chain are also observed. Constitutive models based
on tube theory can qualitatively reproduce the stress measure-
ments, as has been demonstrated extensively before. Semi-
quantitative agreement can be obtained by carefully tuning
model parameters, though these do not necessarily reflect the
parameters as measured in simulations (such as the number of
entanglements per chain). Better agreement can probably be
obtained if one uses multi-mode versions of the constitutive
equations, which we have not used.

By performing simulations of orthogonal interrupted shear,
where shearing is resumed in a different plane after the wait-
ing time, we were able to show that these same models fail
to accurately predict the recovery of the overshoot even qual-
itatively. Both the differential Doi-Edwards model and Rolie-
Poly predict the same overshoot size regardless of the relative
orientation of the shear flow during the second stage of shear.
Figure 14 shows the ratio of the peak value of the viscosity
overshoot during orthogonal interrupted shear to parallel in-
terrupted shear in our simulations and in predictions by both
constitutive models studied.

The maximum viscosity under orthogonal interrupted shear
is up to 50% larger than the maximum under parallel inter-
rupted shear for the systems studied, while the constitutive
models predict at most differences on the order of 3% for very
short waiting times. We note that the maximum viscosity val-
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ues predicted by our Rolie-Poly model is smaller than the ob-
tained by MD simulations for short waiting times (as can be
seen in Figures 6 and 9) and as a result a 3% increase is sig-
nificantly smaller when compared to the 50% increase seen in
MD simulations. It is easy to see that such behavior can not
be modeled by the constitutive models due to the lack of any
anisotropic quantities in the incorporated relaxation mecha-
nisms. When integrating the differential equations the only
differences between the second and first stage of shear are the
relative magnitudes of the coefficients for the different relax-
ation mechanisms, which depend on time exclusively through
scalar quantities. Small differences between the maximum
viscosity in orthogonal and parallel interrupted shear can be
seen for short waiting times due to the relatively large dif-
ference in initial values of the components of the stress ten-
sor. Better models that include the effects of chain orienta-
tion or an anisotropic number of entanglements (representing
the very anisotropic nature of neighboring chains in aligned
states) in the relative magnitudes of the relaxation mecha-
nisms can plausibly solve this issue.

We used the Z1 code®?, a standard method for analysis of
primitive paths of entangled polymers, to determine changes
in the number of entanglements per chain during both types of
interrupted shear. In parallel interrupted shear, a simple under-
shoot is observed during the second stage of shear, mirroring
the overshoot seen for quantities such as the viscosity, first
normal stress difference and end-to-end distance. Increasing
the waiting time between stages of shear controls the relative
size of the undershoot in (Z;), which changes monotonically
with 1,,. For orthogonal interrupted shear, the same behav-
ior is observed for long waiting times, but short waiting times
lead to peculiar behavior of (Z;), which develops two succes-
sive overshoots during the second stage of shear. The only
components of orientation and conformation that show simi-
lar behavior are the relaxing off-diagonal components S,, and
Ay, which do not couple to flow (since ki, = 0) in the second
stage of shear in standard models of polymer rheology.

Our work suggests that constitutive models that couple
stress to polymer orientation and entanglements could be
modified to accomodate the directional nature inherent in ac-
tual entanglement constraints (rather than a smooth scalar
quantity), which is evidently discriminated by complex time-
dependent flows such as this example of orthogonal inter-
rupted shearing flows. Future work will focus on the effect
of chain stiffness on the phenomena described in this paper.
In particular, some of our preliminary results show that stress
and (Z;) data for melts of stiffer chains still exhibit qualita-
tively the same features observed here.
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Appendix A: Orthogonal interrupted shear with constant
gradient direction

The orthogonal interrupted shear protocol discussed in the
main text rotates both the velocity and gradient by ninety de-
grees: the gradient direction in the first stage becomes the flow
direction in the second stage, while the flow in the first stage
becomes the neutral vorticity direction in the second stage. In-
verting the flow and gradient direction in the second stage of
shear, such that the gradient direction remains the same during
both stages of shear and the initial vorticity direction becomes
the flow direction during the second stage can lead to a differ-
ent stress response. This second flow is partially orthogonal,
or “orthogonal-parallel”, since the gradient direction remains
the same, while the first flow is “orthogonal-orthogonal".

In order to test this, we repeat the simulations detailed in
the main text using a velocity gradient tensor given by

0 Ky O
k=10 0 0
0 Kk O

(AL)

During the first stage of shear, k,, = ¥ and k3, = 0, while
during the second stage ky, = 0 and k;, = 7. This geometry is
similar to that used in experiments by Kraft*142.

Figure 15 shows a comparison between the viscosity and
first normal stress difference at Wiz = 100 for the three strain
protocols (parallel and the two different kinds of orthogonal)
for short and long waiting times.

As expected, there is no difference in the stress response
after a long waiting time. However, for a short waiting time
the peak value of the viscosity lies between the peaks of par-
allel shear and the orthogonal-orthogonal shear discussed in
the main text, while the peak in the first normal stress dif-
ference shows no difference to the one observed for parallel
interrupted shear.

The number of entanglements per chain also displays some
similarities to the behavior described in the main text for short
waiting times (figure 16). The number of entanglements rises
as the melt is sheared and then decreases when approaching
steady state. Although the initial rise and final decrease in en-
tanglements is very similar to that observed in the fully or-
thogonal shear protocol, at short waiting times it lacks the
double peak structure found between 0.17z and 7 in that case
(compare Figures 10 and 16). The characteristic two peaks are
recovered for intermediate waiting times, while for the longest
waiting times we observed the expected behavior similar to a
standard startup shear, with a decrease in (Z;) followed by
an undershoot before reaching steady state. The orientation
and conformation tensor also lack a clear sign of independent
peaks in the off-diagonal components.

The orientation evolution during orthogonal-parallel inter-
rupted shear also shows striking differences at short wait-
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FIG. 15. (a,b) Viscosity and first normal stress differences during
orthogonal interrupted shear with constant gradient direction. The
monotonic increase of the overshoot is observed for both measures
of stress. (c,d) Comparison between viscosity and first normal stress
difference curves between our three flow protocols (in legend, ||
means parallel interrupted shear, 1 | means orthogonal-orthogonal
interrupted shear (yz) and L || means orthogonal-parallel interrupted
shear (zy) with constant gradient) with two different waiting times.
For longer waiting times the stress response is similar, but for short
waiting times the viscosities are different for the three methods,
while the first normal stress difference has a significantly larger peak
only for orthogonal shear.
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FIG. 16. (a) Evolution of the average number of entanglements per
chain (Z;) during orthogonal interrupted shear with constant gradi-
ent direction for several Weissenberg numbers. (b) Comparison of
the evolution of (Z;) during the three different flow protocols for the
shortest waiting time, #,, = 0.277g. Here, || means parallel (k) in-
terrupted shear, 1 | means orthogonal-orthogonal interrupted shear
(%y;) and || means orthogonal-parallel interrupted shear (i) with
constant gradient. There is almost no change in the parallel case,
while in both orthogonal protocols there is a substantial rise in (Z)
during the earlier stages of flow, before a decay for r 2 7¢. Addition-
ally, for orthogonal shear (Z;) drops between 7, and Tg, unlike for
the other two methods.

ing times, compared to that observed for the orthogonal-
orthogonal shear (see Fig. 17). The o, component of the
stress tensor, which is not the primary imposed stress dur-
ing either the first or second stages of shear (where xy and zy
are respectively imposed) has a pronounced overshoot in the
orthogonal-parallel case which is not seen in the other flow

protocols. Since the xz component couples the flow directions
during the first (x) and second (z) stages of shear, we speculate
that this overshoot is due to the realignment of chains when
the flow direction is changed, leading to a noticeable bump in
stress. This is similar to the small undershoot observed during
startup that we associate with the tumbling of chains.

As described by the stress-optical law (Eq. 7), this change
in orientation leads to a change in the corresponding compo-
nent of stress. This change in o, is shown in Figure 17. As
a general rule, all flow protocols satisfy the stress-optical law
for the entire orientation and stress tensors, with systematic
deviations at higher Weissenberg numbers (see Figure 2) and
for unentangled melts. Kraft*!**> performed experiments with
a similar setup and an effective waiting time ¢#,, = 0. However,
they only monitored oy, and oy, observing behavior similar to
the one we see in the simulations, and did not show measure-
ments of o,,. Experimental measurement of a non-zero shear
stress in the xz plane during orthogonal interrupted shear with
constant gradient direction could then be another way of ver-
ifying the results of our simulations for model linear polymer
melts.

Appendix B: Changes in average number of entanglements for
different Weissenberg numbers

In the main text we showed changes in the average number
of entanglements per chain (Z;), as measured by the Z1-code,
as well as in the components of orientation and conformation
tensors during parallel and orthogonal interrupted shear simu-
lations of our entangled fully flexible melt at Wiz = 100. For
completeness, in this appendix we show the changes in the
same quantity for different Weissenberg numbers.

Figure 18 shows data for (Z;) under parallel and orthogonal
interrupted shear of our fully flexible melt for Weissenberg
numbers from 25 to 250. While data is available for Wig =1,
the absolute change in the value of (Z;) is very small because
to the weak imposed flow.
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