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13F60 two parameters ai,az. We show that the module M is rigid and 7-rigid, and we

construct a completion of M to a tilting (and 7-tilting) A-module T. We show
that the endomorphism algebra End4 T of T is isomorphic to A, and that the
mapping T +— A[1] induces a cluster automorphism of the cluster algebra A(Q). This
automorphism is of order two. Moreover, we give a mutation sequence that realizes
the cluster automorphism. In particular, we show that the quiver @ is mutation
equivalent to an acyclic quiver of type T} 4.~ (a tree with three branches). This quiver
is of finite type if (a1, a2) = (a1,2), (1, a2), or (2,3), it is tame for (a1, a2) = (2,4)
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1. Introduction

We construct tilting modules over Jacobian algebras that are motivated by knot invariants of two-bridge
knots and their relation to cluster algebras.

A relation between knot invariants and cluster algebras has been established recently in [14], where the
authors give a realization of the Jones polynomial of a two-bridge link in terms of the Laurent expansion
of a certain cluster variable. In this approach, one first constructs a quiver R of Dynkin type A from the
link and then considers the cluster algebra A(R) determined by it. The cluster variable xps that realizes
the Jones polynomial is the one associated with the unique indecomposable module M of the path algebra
of R that is one-dimensional at each vertex. In this special situation, the cluster variable xj; is a Laurent
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polynomial whose terms are parametrized by the submodules of the module M [8]. Equivalently, it can be
computed via a perfect matching formula of an associated snake graph [16]. In particular, the number of
terms (counted with multiplicities) in the Jones polynomial is equal to the number of submodules of M and
equal to the number of perfect matchings of the snake graph.

We point out that a similar result for the Alexander polynomial was given more recently in [17] using
ancestral triangles, and for the HOMFLY polynomial in [19] using path posets. See also [15] for an interesting
reformulation of the results in [14].

On the other hand, the authors of [11] established a dimer model for links, using the (overlaid) Tait graph
G of the link, to interpret the Alexander polynomial as a partition function. In this method, one has to
remove two adjacent regions from the graph G and thereafter one can compute the Alexander polynomial
as the determinant of the (weighted) adjacency matrix of the reduced graph. This formula is reminiscent
of Alexander’s original definition of the polynomial as the determinant of the incidence matrix from which
one removes two columns that correspond to two adjacent regions in the graph [2].

It is crucial to note that the result does not depend on the choice of the two adjacent regions in G, and
this observation motivated the research project in this paper.

If the link is a two-bridge link, we can associate a quiver ) with potential W to the graph G, and we
denote by A the corresponding Jacobian algebra. The removal of two adjacent regions in G corresponds
to the removal of a connected subquiver of ), and, for a certain choice of adjacent regions, the resulting
quiver is precisely the quiver R used in [14] to compute the Jones polynomial of the link. If we chose a
different pair of adjacent regions then the subquiver may look very different, but it is natural to expect that
a variation of the methods of [14] will also apply for these subquivers and give another way to compute the
Jones polynomial. This problem will be considered in a different paper.

In this paper, we want to consider all possible choices of adjacent pairs at the same time. Each such
choice i will determine a subquiver Q' of the quiver Q which we need to remove. On the remaining quiver
Q(i) = Q\ @, we define a canonical indecomposable A-module M (i) of dimension 1 at every vertex of Q(i),
and we let M = @®; M (i) be the direct sum of these indecomposables.

Motivated by the results mentioned above, we want to study the structure of M inside the module
category of A. Thereby we combine all possible choices of adjacent regions into one object. It is natural to
expect that this module M has a particularly nice structure.

By construction, M is a sincere A-module, meaning it is supported at every vertex of @, each inde-
composable summand M (i) of M is supported on a different subquiver Q(%) of @ and each M (i) should
parametrize the Jones and the Alexander polynomial of the two-bridge link via its submodules.

Recall that a two-bridge link L[a,as, ..., a,] is given by a sequence of positive integers a1, as, . .., a, and
the number of terms in the Jones (and Alexander) polynomial is equal to the numerator of the continued
fraction

ay,asg,...,a,] =ay +

az + 71

4

an
In this paper, we consider the special case where n = 2. Thus we have two positive integers a1, a2 and the
number of terms in the Jones polynomial is ajas + 1. The case n = 1 is contained in this case because the
link L[aq] is equivalent to the link L[1,a; — 1]. For n = 2, the quiver @ is of the form illustrated in Fig. 1.
It consists of an oriented cycle of length as + 1 whose vertices are labeled rg, 71, ..., 74,, and two branches,
both of which are linearly oriented subquivers of type A,,, one entering the oriented cycle at vertex r,, and
the other leaving the cycle at vertex ry. This quiver is actually mutation equivalent to an acyclic quiver Q’
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and the potential is obtained from the trivial potential via this mutation sequence. In particular, the cluster
category C is the cluster category of @’ of [7] and the algebra A is cluster-tilted of type @Q’.

Furthermore, the removal of two adjacent regions in G corresponds to the removal of a vertex r; on the
oriented cycle of @ together with the branch at the vertex r; if i = 0 or i = ag. We let M (r;) be the unique
indecomposable A-module that is one-dimensional at every vertex of the remaining subquiver. We prove
that each M(r;) has precisely ajas + 1 submodules as expected. Note that the zero module is always a
submodule of M (r;).

We then construct an indecomposable A-module M (z) for each of the remaining vertices x =
81,82, 8a;—1,t1,t2,...,tq,—1 of Q, and we define T = @,eq,M(x) to be the direct sum of all these
indecomposables.

We show that T is a tilting A-module. This means that Extil(T, T') vanishes, that the projective dimension
of T is at most one and that there exists a short exact sequence of the form 0 — A — T° — T — 0 with
TO,T! in the additive closure of T. Tilting modules and their endomorphism algebras play a central role
in representation theory, see for example [6,3]. In particular, it follows that T is a 7-tilting A-module as
defined in [1]. This means that the number of indecomposable summands of T is equal to the number of
vertices of @ and Hom(T,7T) = 0 where 7 is the Auslander-Reiten translation.

Our 7-tilting module T is particularly nice, since we can show that its endomorphism algebra Endg T is
isomorphic to the dual of A, and A is self-dual.

We then consider this situation at the level of the corresponding cluster algebra A4(Q) defined in [13].
We show that the 7-tilting module 7" induces a cluster-tilting object in the cluster category C of acyclic
type as introduced in [7] (and [9], for Dynkin type A). Therefore, the results in [10] imply that each of A[1]
and T corresponds to a cluster x 411 and x7 in the cluster algebra (here [1] denotes the shift in the cluster
category). Using a result from [5], we see that the correspondence T' — A[1] induces a cluster automorphism
o of A(Q), that maps the cluster x7 to the cluster x ) and induces an isomorphism between the quiver
@ of the cluster x 4[] and the opposite of the quiver of the cluster xr. We further show that o has order 2.
We then construct a sequence of mutations p that realizes the automorphism o.

Our main results are summarized in the following theorem.

Theorem 1.1. Let A be the Jacobian algebra of Q = Qla1, az] and let T = Seq,M ().

(1) T is a tilting A-module and hence a T-tilting A-module.
(2) The endomorphism algebra Enda T is isomorphic to A.
(3) The correspondence T +— A[l] induces a cluster automorphism o of order two of the cluster algebra

AQ).

(4) The automorphism o is given by the sequence of mutations

p= iz o ps o pir o ik,
where
MR:HT%—IO"'ONWOMH’

HS = Hsy sy sy " Hra, O O sy sy sy O Hsy sy © Msy 5

BT = Htoy s Mtgy oMta, 3" Hrg OO Mty Htg oMte 3 © Mg 1 Hta, 2 O Htay -

(5) The cluster algebra A(Q) is of acyclic type ur Q@ = Tp q.r, a tree with three branches. Moreover, the
cases where it is of finite or tame type are the following.
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Aggq1 ifax =2
Da2+1 if a; = 1;

EG if ((Ll,ag) = (2,3);
Er if (a1, a2) = (3,3);
EG lf (al,ag) = (2,4),

and it is of wild acyclic type in all other cases.

The case n > 3 is more complicated and will require different methods. We expect that we can still
construct the tilting module T' and a mutation sequence. However, already in small examples, we do not
obtain a cluster automorphism of order two.

The paper is organized as follows. We define the A-module T' in Section 2 and compute the number of
submodules in Section 3. After computing the Auslander-Reiten translate of T in Section 4, we show that
T is a tilting and a 7-tilting A-module in Section 5. Section 6 is devoted to the study of the endomorphism
algebra of T" and to the proof of End4 T = A. In Section 7, we construct the mutation sequence that
transforms A into 7" and show that the corresponding cluster automorphism has order two. We illustrate
the results in an example in Section 8.

We thank the anonymous referee for suggesting a simpler proof of Lemma 6.1 as well as several other
improvements. We also thank Lidia Angeleri Hiigel for pointing out to us that every tilting module is

T-tilting.
S1—3 s —%Sa—1 ——3 Tay o —t — s —3ta, 1
Ta,—1 T1

N,

Fig. 1. The quiver Q = Q[a1, a2] = (Qo, Q1)-

2. Definition of T

Throughout the paper, let k& denote an algebraically closed field. Let a1, as be positive integers and let
Q@ = Qla1, az] be the quiver shown in Fig. 1. Thus @ consists of an oriented cycle of length as + 1 and a
path of length 2a; — 1 whose halfway arrow is part of the cycle. Let Qo be the set of vertices of @ and Q4
the set of arrows. We label the vertices that lie on the cycle by ro,71,...,74,, those on the incoming branch
by s1,S82,...,54,—1 and those on the outgoing branch by ¢1,%s,...,t4,—1.

We equip @ with the potential W =rqg — r; — --- = 14, — 79 and denote the corresponding Jacobian
algebra by A. Thus A = kQ/I is the quotient of the path algebra of @ by the two-sided ideal I generated
by all subpaths of W of length as.

The opposite quiver Q°P is obtained from @ by reversing the direction of each arrow. Let D = Homy(—, k)
denote the standard duality.

Remark 2.1. The quiver @ is isomorphic to its opposite quiver Q°P and, hence, the algebra A is isomorphic
to its opposite algebra A°P.

For every = € Qo, let P(z),I(x) and S(z) denote the indecomposable projective, injective and simple
A-module at z, respectively. Every A-module L is described as a representation of the quiver @ satisfying
the relations in I, and we shall frequently use the notation L = (Ly, ¥a)zeQq,acq,, Where L, is the k-vector
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space at vertex x and ¢, is the linear map on the arrow « of the representation corresponding to L. For
further details on representation theory we refer to [6,18].

In this section, we define an indecomposable A-module M (z) for every vertex x € Qq, and denote by T
the direct sum T = @5, M (). The definition of M (x) is given in three separate cases depending on x
being a vertex in the cycle or in one of the two branches.

Definition 2.2. For all vertices labeled r;, we define the module M (r;) = (M (7;)+, ©a) by

Ti41 S1
Ti42 S2
0 ifz=r;
Tag—1 Sap—1 . .
% B Tay M _J0 ifr; =r¢and z =t; for any j;
(ri) = ro ) (ri)s = . .
- t 0 if r; =74, and x = s; for any j;
g t .
: : k  otherwise.
Ti—1 tag—1

Given any arrow = — y in Q1, the map M (r;), — M(r;)y is defined by

Pa = .
0 otherwise.

Thus the support of M(r;) is given by removing the vertex r; from our quiver @, together with vertices
labeled s; when i = a9, and respectively vertices labeled ¢; when i = 0. Equivalently, the support of M (r;)
is given by removing the vertex r; from our quiver @) and taking the component containing ;1.

Remark 2.3. For any minimal path w between a vertex x and a vertex y of @, let ¢,, be the composition of
maps in the module M (r;) along the path w. If M(r;), = k, then

1 if r; is not in w;
Pw =

0 if r; is in w.

Definition 2.4. For all vertices labeled t;, we define the module M(t;) = (M(t;)z, o) by the short exact
sequence

0 — M(t;) — I(ray) L I(si) — 0,

with f given by the path s; — s;41 — -+ — r,,. For any vertex z € Qo, we have M (t;), = k if and only if
I(s;)s =0 and I(rq,)s = k. Also, M(t;), = 0 otherwise. Therefore

1 Sit1 0 if x =rg;
r S;
’ +2 0 if z =t; for any j;
M(t;) = L, M(t;), = . .
Tag—1  Saj—1 0 if x=s; for any j <5
fez k otherwise.

Given any arrow = 2 y in Q1, the map M (t;), = M(t;), is given by
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1 M(t), = k= M(t)y;
o« =
0 otherwise.

Definition 2.5. For all vertices labeled s;, we define the module M(s;) = (M(s;)z,®a) by the short exact
sequence

0—>P(tl) i>‘P(1"())—)]\4(&)—)0,

with ¢ given by the path rg — t; — --- — t;. For any vertex x € @Qg, we have M(s;), = k if and only if
P(t;). =0 and P(rg), = k. Also, M(s;), = 0 otherwise. Therefore

ro 0 if x =1rg,;
1 t . . .
M{(s:) T2 t2 M(s) 0 if 2 =t; for any j > ¢
S;) = 5 S; =
' : : e 0 if x =s; for any j;
rea=1  h- k otherwise.

Given any arrow & — y in Q1, the map M (s;), Lo, M(s;)y is given by

1 if M(si)e = k= M(s4)y;
Pa =
0 otherwise.

Definition 2.6. We define the module T to be the sum of all modules defined in Definitions 2.2, 2.4, and 2.5.
That is to say

T := (éM(M) @ (EB M(&)) ® ( Eé M(ti)> = P M)

T€Qo

3. Submodules of M (r;)

As mentioned in the introduction, we want that each indecomposable module M (r;) gives a parametriza-
tion of the Alexander polynomial of the link L[ay, as] via its submodules. In particular, since the Alexander
polynomial has ajas + 1 terms, we should expect that the number of submodules of M(r;) also equals
aias + 1 and does not depend on i. We prove this fact in this section.

Lemma 3.1. For every i =0,1,..., a2, the module M(r;) has exactly ai(az — i) submodules with support at

Tagy-

Proof. If i = ag, then there is nothing to show because M (r,,) is not supported at r,,. Otherwise, for each
pair (7,¢) with i+ 1 < j <ag and 1 < /¢ < a1, we have a submodule

Tj Sy
Tag—1 Saq—1
Tag

T0 s
T1 t1
T2 to
Ti—1 tag—1

where we set s,, = rq, if £ = a;. There are exactly a;j(as — ¢) such submodules. O
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Lemma 3.2. For everyi=1,2...,az, the module M (r;) has exactly 1 submodule that is supported at ro and
not supported at rq, .

Proof. The submodule is given by

To

1 t1
ro to
Ti—1 ta;—1
Lemma 3.3. For every i = 1,2,..., a2, the module M(r;) has exactly (iay) submodules that are zero at ro

and rq, -

Proof. For each pair (j,¢) such that 1 < j <iand 1 < ¢ < a;, we have a submodule

Ty te
EB = L1 @LQ

i1 tay—1
Note that if j = ¢, then we take L; = 0. Similarly, if £ = a;, then we take Lo = 0. There are exactly i a;
such submodules. O

Proposition 3.4. Let r; be any vertex on the cycle in Q. Then M (r;) has exactly ajas + 1 submodules.

Proof. If i = 0, then M(ry) has exactly ajas submodules supported at r,,, by Lemma 3.1. Note that
M(rg) = I(ra,) is the injective at 7,,. Thus the only other submodule of M (rg) is the zero module.

Now suppose i # 0. Then Lemmata 3.1-3.3 yield an exhaustive list of the ajas + 1 submodules of
M(’I’Z) O

4. Computation of 7T

In this section, we compute the Auslander-Reiten (AR) translate of each indecomposable summand of
the A-module T' defined in Section 2.

First, we compare the indecomposable summands of T" the indecomposable projectives and injectives of
A, and we see the following.

Remark 4.1. We have

M(ra,-1) = P(s1),  M(re,) = P(ro), M(ta,—1) = P(r1),
M(ro) = I(ra,), M(r1) = I(ta,-1), M(s1) = I(ray-1).

For the rest of this section, we use the notation L = (L, 9o )zeQo,ac@, for an A-module L.

Lemma 4.2. The modules TM (rq,) and TM(rq,—1) are zero, and for i =0,1,...,as — 2 we have
82 Tito 0 ifex=r; forany0<j<i+1;
83 Ti43
0 ifx=t; for any j;
TM(r;) = , TM(ri)s = ) I
- S 0 ifx=s;
Tz k  otherwise.

Furthermore, the projective dimension of M (r;) is 1.
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Proof. Remark 4.1 implies that 7M(r,,) and 7M(r,,—1) are zero. Suppose now that 0 < i < as — 2. We
have the projective resolution

0= P(ra,) L P(ri1) ® P(s1) = M(r;) — 0.
This shows that pd M(r;) = 1. By applying the Nakayama functor v, we get the exact sequence
0— 7M(r;) = I(ra,) 12N I(riy1) @ 1(s1).

= 0. The map I(rq,) — I(rit1)
is nonzero at the vertices ry,...,r; 11, so TM(r;) is zero at these vertices. Also, both modules I(r,,) and

The map I(r,,) — I(s1) is nonzero only at the vertex sy, so 7M(r;)s

i

I(r;4+1) ® I(s1) have no support at vertices labeled t;, so 7M(r;) is zero at these vertices. Finally, 7M (r;)
is zero at vertex 1o, because I(r,,) is zero at that vertex. This completes the proof. O

Lemma 4.3. The module TM (tq,—1) is zero, and fori=0,1,...,a1 — 2 we have
Sit2 T2 0 ifx=rgorx=r;
Si+3 T3 0 f . f .
) ) if x =t; for any j;
TM(t:) = Do TM(ti)e = ) ’ o
Soy 1 Fag 1 0 ifex=s;foranyl <j<i+1;
Tz k  otherwise.

Furthermore, the projective dimension of M (t;) is 1.

Proof. Remark 4.1 implies that 7M (t,, 1) is zero. Suppose now that 0 < i < ag — 2. We have the projective
resolution

0= P(ra,) 1 P(r1) @ P(si1) — M(t;) = 0.
This shows that pd M (¢;) = 1. The rest of the proof is analogous to Lemma 4.2. O

Lemma 4.4. Fori=1,2,...,a; — 1, we have

if x =7; for any j;
if x =t; for any j > i;
if x = s; for any j;

otherwise.

TM(s;) = ., TM(S;)e =

> O O O

Furthermore, the projective dimension of M(s;) is 1.
Proof. By definition of M(s;), we have the projective resolution
0— P(t:) L Plro) — M(s;) — 0.
This shows that pd M (s;) = 1. The rest of the proof is analogous to Lemma 4.2. O
Proposition 4.5. The module T from Definition 2.6 has projective dimension 1.

Proof. This follows immediately from Lemmata 4.2-4.4. 0O
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5. T is a tilting and a 7-tilting module

In this section, we show that T is a tilting A-module and a 7-tilting A-module. We then show that T'
induces a cluster-tilting object in the cluster category C.

Recall that an A-module T is called a tilting module if Ext'(T,T) = 0, pd T < 1, and the number |T'| of
isoclasses of indecomposable summands of T is equal to the number of vertices |Qp| of Q. Furthermore, T is
said to be 7-tilting in the sense of [1] if Hom(T,7T") = 0 and |T'| = |Qo|. It is shown in [1] that every tilting
module is 7-tilting. Tilting modules and their endomorphism algebras play a central role in representation
theory, see [6] for an introduction.

Recall that an A-module L = (L, ¢4 ) is called thin if all vector spaces L, are of dimension at most one.
Let Q(L) denote the subquiver of @ containing all vertices € Qg such that L, # 0 and all arrows o € @1
such that ¢, # 0. A thin module L is indecomposable if and only if Q(L) is connected.

Remark 5.1. For every vertex x, the A-module M (z) is thin and indecomposable.

Lemma 5.2. Let L = (L, pqo) be a thin A-module and let N = (N, ¢.,) be any A-module. Let f € Hom(L, N)
and let w be a nonzero path in Q(L) from a vertex x to a vertex y. If f, =0, then f, = 0.

Proof. We have a commutative diagram:

L, 2> L,

fl lfy
Ny

’
Puw
Ny ——

Since L is thin, the map ¢, is invertible, so f, = ¢!, fzn'. O

Lemma 5.3. Let L = M(r;) = (M (r;)z, 9a) with i # as and let N = (N, 1,) be indecomposable and thin.
Suppose Hom(L, N) # 0. Then Ny, # 0 or there exists a vertex r; with j # as — 1,as such that S(r;) is a
summand of the socle of N.

Proof. Suppose first that ¢ = ag — 1. Then L = M (r4,—1) = P(s1). Therefore the condition Hom(L, N) # 0
implies that N, # 0, and we are done.

Suppose now that i < az — 1. Let f € Hom(L,N) be a nonzero morphism. Suppose N5, = 0. Then
Lemma 5.2 implies f, = 0 for all vertices y that can be reached from s; by a path in Q(L). In particular,
fra2 =0.

We have top L = S(r;4+1) @ S(s1). Now consider the path w : 7,41 — - -+ — rg,. Note that w runs through
all vertices of @Q(L) which cannot be reached by a path from s; in Q(L), plus the vertex r,,. Since f is
nonzero, it must be nonzero at some vertex on w. By Lemma 5.2, we see that f must be nonzero at the
vertex r;;1. Now let 7; be the last vertex in w such that f,.. # 0. Denote by w’ the subpath of w from 7;41
to r;. Then we have a commutative diagram:

Pt Pa
LTH—l L’”j LT.7‘+1
O | o =
Pw Ya
Nrijy N, Nijia

where « is the arrow r; — rj41. The left square implies 1), # 0 and the right square implies 9o = 0. The
arrow « is the only arrow whose source is r;, since 1 < i+ 1 < j < ag — 1. This implies that S(r;) is a
summand of the socle of N. O
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Lemma 5.4. Let L = M(rq,) or M(s;) with i = 1,2,--- ;a1 — 1 and let N be indecomposable and thin.
Suppose Hom(L, N) # 0. Then N,, # 0.

Proof. We have top L = S(rg) and every vertex in (L) can be reached by a path from rg in Q(L). By
Lemma 5.2, if f € Hom(L, N) is a nonzero morphism, then f., #0. O

Lemma 5.5. Let L = M(t;) with i = 1,2,--- ;a1 — 1 and let N be indecomposable and thin. Suppose
Hom(L,N) # 0. Then N,, # 0 or there exists a vertex s; with i +1 < j < a3 — 1 such that S(s;) is
a summand of the socle of N.

Proof. The proof is similar to the proof in Lemma 5.3 with r; in the role of s; and the path s;41 — -+ —
Say—1 — Tq, in therole of rjpq1 — -+ = re,—1 = 7rg,. O

Lemma 5.6. Let L be an indecomposable summand of the module T defined in Definition 2.6 and let N be
an indecomposable summand of TT. Then

Hom(L, N) = 0.
In particular,
Hom(T,7T) =0  and  Ext (T,T)=0.

Proof. From our computations in Section 4, we see that each indecomposable summand N of 77 is thin,
and zero at the vertices s1, r1, and ry. Using Lemma 5.4 and N,, = 0, we see that Hom(L, N) = 0 for
L = M(ry,) or M(s;). Using Lemma 5.2 and N,, = 0, we see that Hom(L, N) = 0 for L = M (r;), i # a
because none of the summands of 77 has S (rj) with 1 < j < as — 1 in its socle. Indeed, our computations
in Section 4 show that soc N can only contain S(r,,) and S(¢;) as summands. Similarly, using Lemma 5.5
and N,, = 0, we see that Hom(N, L) = 0 for L = M (t;) because none of the summands of 77" admit S(s,)
as a summand of its socle. This shows Hom(L, N) = 0, and thus Hom(7,7T) = 0.
Because of the Auslander-Reiten formula

Ext'(T,T) = DHom(T,7T)

this also implies the vanishing of Ext'(T,T). O

We are now ready for the main results of this section.
Theorem 5.7. The module T is a tilting A-module and a T-tilting A-module.
Proof. The projective dimension of T is 1 by Proposition 4.5 and T is rigid by Lemma 5.6. In partic-
ular, we have shown that Hom(7,7T) = 0. The result now follows since the number of non-isomorphic
indecomposable summands of T is equal to the number of vertices in Q). O
Theorem 5.8. The module T induces a cluster-tilting object in the cluster category C.

Proof. Since T does not share any indecomposable summands with A[l] = €@ P(z)[1], we see that

z€Qo
Theorem 5.7 and [1, Theorem 4.1] complete the proof. O
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6. The endomorphism algebra End T’

In this section, we study the endomorphism algebra of our A-module T' by computing the Hom spaces
between its indecomposable summands.

Lemma 6.1. Given two vertices ;,7; on the oriented cycle in Q, we have

o it
Hom(MmM(rj))—{k ;j #ZL

where we use the convention that rg,+1 = ro.

Proof. If i = as we have M(r;) = P(r¢) and hence

Hom(M (rs), M(r;)) = M(r;), = {Z o
Suppose now 0 < i < as — 1 and consider the projective resolution

0— P(rq,) = P(rit1) ® P(s1) = M(r;) — 0.
Applying the functor Hom(—, M (r;)) yields an exact sequence of the form

0 — Hom(M (r;), M (r;)) = Hom(P(ri41) @ P(s1), M(r;j)) = Hom(P(rq,), M(r;)) — 0,

where the last term is zero, since Ext'(M(r;), M(r;)) = 0, by Lemma 5.6. Now using the fact that
Hom(P(i), X) = X; for any representation X, we obtain an exact sequence

0 — Hom (M (r;), M (r;)) — M(r;)

Tit1

& M(Tj)sl — Z\f(’l“j)ra2 — 0.
Since j # az, we have M (r;)s, = k and M(r;)q, = k. Therefore

0 ifj=i+1;
Hom(M((r;), M(r;)) = M(rj)r,., =
(M (1), M (1) = M5y)r {k i
Lemma 6.2. Given two vertices labeled t;,t; € Qo, we have

Hom (M (¢;), M (t;)) = {0 i<

k ifi>j.

Proof. This follows from the observation that if ¢ > j, then M(¢;) is a submodule of M(t;), so
Hom(M (t;), M(t;)) is generated by the inclusion map. O

Lemma 6.3. Given two vertices labeled s;,s; € Qo, we have

0 ifi<j;

Hom (M (s;), M (s;)) = {k ifi>j

Proof. Since @ is isomorphic to Q°P, we see that this is the dual argument to Lemma 6.2. O
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Lemma 6.4. Let x € Qo be any vertex labeled ; or t;. Given any vertex labeled s; € Qo, we have
Hom(M (x), M (s;)) = Hom(M (z), M (74,))-
Proof. From Definition 2.5, we have a short exact sequence
0— P(t;) = M(rq,) = M(s;) — 0.
We apply the functor Hom(M (z), —) to the sequence to get the exact sequence

0 — Hom(M (z), P(t;)) — Hom(M (z), M (ra,)) — Hom(M (z), M(s;))
— BExt! (M (z), P(t;)).

We complete the proof by showing that Hom(M (z), P(t;)) = 0 and Ext*(M (z), P(t;)) = 0.
First, let f € Hom(M (x), P(t;)). By Definition 2.2 and Definition 2.4, we have

S(s1) @ S(rjy1) ifz=rj;

top M(z) = {5(7«1) © S(s,01) ifz =1

In both cases, there is a nonzero path from a vertex y in the top of M(z) to ¢;, and P(¢;) is not supported
on y. Lemma 5.2 implies that f;, = 0, hence f = 0.
Seco_nd, we see that Hom(P(t;),7M (z)) = 0 by Lemma 5.6. Hence by the AR formula, Ext! (M (z), P(t;))
= DHom(P(t;),7M(x)) =0. O
Lemma 6.5. Let x € Qo be any vertex labeled r; or sj. Given any vertex labeled t; € Qo, we have
Hom(M (t;), M (x)) = Hom (M (¢;), M(ro)).

Proof. Since @ is isomorphic to Q°P, the argument is dual to Lemma 6.4. O
Lemma 6.6. Given two vertices labeled r;,t; € Qy, we have

Hom(M (r;), M(t;)) = 0.
Proof. This follows from Lemma 5.2 and Lemma 5.4. O
Lemma 6.7. Given two vertices labeled 4,55 € Qo, we have

Hom(M (s;), M(r;)) = 0.
Proof. The argument is dual to Lemma 6.6. O
Lemma 6.8. Given two vertices labeled s;,t; € Qo, we have

Hom(M (s;), M(t;)) = 0.

Proof. This follows from the fact that the top of M (s;) is S(r¢) and the vertex rq does not lie in the support
of M(tj). O
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The results of this subsection can be combined in the following theorem. Recall that A is isomorphic to
its dual.

Theorem 6.9. The endomorphism algebra of T is isomorphic to (the dual of) A,
End, T = A.

Furthermore, the mapping x — M (x) induces an isomorphism of quivers Q% — Qgnda, - In particular, the
quiver Qend, 7 of Enda T is given by

M(sy) +— -~ — M(sq,-1) $— M(rq,) «— M(rg) «— M(t1) — ------ — M(to,-1)
M(ra,-1) M (r1)

N

Proof. By Lemma 6.1, the full subquiver with vertices M(r;) is an oriented cycle of length as + 1 in which
every subpath of length as is zero. Lemmata 6.2 and 6.3 imply that the full subquivers with vertices M (s;)
and M (t;), respectively, are equioriented of type A and there are no relations on these branches. Lemmata 6.4
and 6.5 imply that there is an arrow M (r,,) — M (S4,-1) and an arrow M (t;) — M (ro) and that there are
no relations between the cycle and the two branches. The Lemmata 6.6-6.8 show that are no other arrows.
This shows that the quiver of End 4T is the one in the theorem and its relations are those coming from the
potential. O

7. Mutation and the cluster algebra A(Q)

In Theorem 5.8, we have shown that 7" induces a cluster-tilting object in the cluster category C introduced
in [7]. From Theorem 6.9, the quiver given by T is the opposite quiver Q°?, so using Lemma 2.3 in [5] we see
that the correspondence T — A[1] induces a cluster automorphism o of the cluster algebra A(Q) associated
to the quiver Q.

In this section, we define a mutation sequence p on the quiver ) and show that @ is of acyclic type. The
cluster automorphism o is given by p, which we prove by showing that p sends T to A[l] = @,eq, P(z)[1]
in the cluster category. Furthermore, we show that ¢ has order 2.

Definition 7.1. We define the mutation sequence p on the quiver @ by

[t = pg ' © s © U1 © kR,

where
HR = :uT’QQ—l OO hpy O flpy,

Hs = HsiHsgflsg = Hrgy Ot O sy sy sy © sy sy © Msys

KT = Pty Mty oMtay 3" " Hrg OO Mty s Htay oMta 3 © Htay 1 Htay 2 © Mgy -

We see the effect of these mutation sequences on the quiver illustrated in Figs. 2-5. The quiver ug @ is
seen in the left picture of Fig. 3.
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Tay To Ta, 0 Ta, 0 Tay To Ta, o
N S 7 S
: roB B T o ry B Hrgy g Tet "
/ g 7 . v i . Y
. .'--k” .‘/\T3>,T2 $7‘171(
Fig. 2. The mutation sequence pr on the cycle ro = r1 — -+ = 14, — 70.
S1—» v —»Sa—1 —>Tay —> Ta,—1 ——HT0 —H t1 —p = = =« —p lag, 1 S1 4=+ - 4= Sa -1 &——Tay &——Ta,—1 &——T0 &—t1 &=« = - 4—la, 1
Ta,—2 Tay,—2
T T
. Hs BT .
. R
T T

o Tay ro P T, ro TP ra, ro TP T, ro P ra
v 4 / / N/ \
Ta,—1 r Hrf,i;‘ o ‘:,r; . 1 H:l';l o lil:f r p:/,} r li,’;i r
t / Ay v . y A J
ol e ' oy " "
Fig. 4. The mutation sequence ur on the cycle r1 = ro — -+ — rq,_1 — 79 — Tq, — 71, With ugl shown.

P G ¢ J O S G S S 4 S T ST g ety 4 - 4 tayn

Tay—1 1

N N

T1 Tay—1

$x

Fig. 5. The mutation sequence p = ugluTusuR on the quiver Q.

Theorem 7.2. The cluster algebra A(Q) is of acyclic type ur Q. Moreover, the cases where it is of finite or
tame type are the following.

Agg, 41 ifag =2;
Da2+1 if a; = ].,

]Eﬁ if ((ll, CLQ) = (2, 3),
E7 if ((Il, CLQ) = (3, 3);
E(; if (al, ag) = (2,4),

and it is of wild acyclic type in all other cases.

Proof. The quiver pur @ is given by Fig. 2 together with the branches s; — -+ — 54,1 — 74, and
ro —t1 — -+ = ts, -1, and is shown in Fig. 3. O

Remark 7.3. The quiver urug @ is the quiver T, ,, of [4,12], with p=¢=a1 + 1 and r = ay — 1.

In order to study the cluster automorphism o, we now consider the sequence of mutations g on the
level of cluster-tilting objects in the cluster category using the categorification of [7]. Each indecomposable
summand T; of the cluster-tilting object corresponds to a vertex ¢ in the quiver, and the mutation at 7 is
computed by an exchange triangle in the cluster category.

Lemma 7.4. We have

ps(urT) = pg' (ur T),



R. Schiffler, D. Whiting / Journal of Pure and Applied Algebra 226 (2022) 107041 15

and dually

pr(ur T) = pg' (pr T).

Proof. In pr @, there are no arrows between s; and s;4 for £ > 1. Therefore

l’LSi :U’S7‘,+1, = M5i+2/‘65i'

Thus the mutation sequence

Hsi Mg sy *w* Hrg, © 0O Hsy sy Hsy O Hsy sy O sy

is equal to the mutation sequence

sy © fLsyfhsy © Hisghlsyfhsy =~ O fhry, = fhsg sy sy
and so we have pus(urT) = pg' (ur T). O
Corollary 7.5. The mutation sequence p is of order two, i.e.,
uT = p~'T.

Proof. There are no arrows between s; and ¢; for any 1 < 4,5 < a3 — 1, so psur = prus. Thus p? =
1 st g i sprir = b psps g, and by Lemma 7.4, this is equal to pp ' pg. O

Theorem 7.6. The correspondence T +— A[l] induces a cluster automorphism o. The automorphism o has
order two, and is given by the sequence of mutations p.

Proof. From Corollary 7.5, it is enough to show that o is given by the sequence of mutations u. We show
that prpspr T = pr A[1].

First, we apply the mutation sequence ugr to T. As shown in Fig. 2, at each step prior to mutating at the
vertex r; we have exactly one arrow ending at r;, namely ro — r;. Hence we replace the summand M (r;) of
T with the module X (r;), given by the exchange triangle

M(ro)[—1] = X (r;)[-1] = M(r;) EN M(rg) = X (),

where f is an add(T/M (r;))-approximation. By Remark 4.1, we know that M(rq) is injective. Therefore
the image of this triangle under the functor Home (T, —) is the exact sequence in Mod A:

0= 771X (r;) = M(r:) L M(ro).

So 771X (r;) is given by the kernel of the morphism M (r;) ER M (rp), hence

To
T1 t1
T2 t2

T_lX(TZ') =

i1 ta;—1

Now 771X (r;) has a projective resolution --- — P(r;) & P(rg) — 7 'X(r;) — 0, so by applying the
Nakayama functor v we see that X (r;) is given by the kernel of the map I(r;) =% I(ro). Hence
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X(r)= .. and T =T\ ( D M(n)) ® ( D Xm)).
: i=1 =1

T4

Second, we apply the mutation sequence pg. Note that the mutation sequence pg only mutates the quiver
ur @ at sources. Since the quiver of T is Q°P, each mutation in this sequence acts on the corresponding
summand of T" as the shift operator. Dually, each mutation in the sequence pr acts on the corresponding
summand of T as the inverse shift operator.

Let s4, := 74, and ¢y := 7g. For each 4, the mutation sequence g mutates the vertex s; exactly a; —i+1
times and the mutation sequence ppr mutates the vertex t; exactly ¢ + 1 times. We conclude that

as—1 ai a;—1
prpspr T = ( &y X(m)> @ <@M(si)[a1 —i+ 1]) @ < P M) -+ 1)]).
=1 =1 1=0

Next, we compute M(s;)[a; —i+ 1] and M (¢;)[—(i + 1)] for all 4. Given a pair (j,£) such that 1 < j <
{ < ay — 1, define

te

Then L has a projective resolution --- — P(tyy1) 2 P(t;) — L — 0. Applying the Nakayama functor v,
we see that 7L = L[1] is given by the kernel of the morphism I(t;1) ~% I(t;), so

tj+1
ti+2

L[l] =
té;r1

Recall 7M (s;) from Lemma 4.4. Then for all ¢, it follows that

M(si)[al -1+ 1] = TM(S»L‘)[(II —1— 1][1}7

t1
ta
= . [a1 —i—1][1],
t;
tal—i
tag—it1
= : [l]a
ta,l.—l
= P(talfi)[l]

Then from a dual argument, we also have

M (ta)[=(i + 1] = I(sa,~:)[=1] = P(sa,-0)[1]-
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Hence

prpsin T = ( D Xm)) o ( D P(smu) ® (@P(tn[l]).
=1 1=0 =1

Finally, let A[l] = @,q, P(2)[1] with quiver Q°P. For i = 1,2, ,as — 1, let X'(r;) be the module
replacing the summand P(r;)[1] in the module ur A[1]. To complete the proof, we show that X'(r;) = X (r;).
This proves that psurpur T = ur A[l], and thus pT = A[1].

Recall from Fig. 2 that at each step of ug, prior to mutating at the vertex r; we have exactly one arrow
ending at r;, namely ro — r;. So X’(r;) is given by the exchange triangle

P(r;) 2 P(ro) = X'(ry)[~1] = P(r;)[1] = P(ro)[1] = X'(r;).
The image of this triangle under the functor Home (A[1], —) is the exact sequence in mod A:
P(r;) 2 P(ro) = 771X (r;) = 0.

We have a projective resolution - -+ — P(r;) LN P(rg) — 771X'(r;), so applying the Nakayama functor v
tells us that X’(r;) is given by the kernel of the map I(r;) Ry (ro). This is exactly how we computed
X(r;), so X'(r;) = X (r;). This completes the proof. O

8. Example

We illustrate the results in the example (a1, as) = (2,2) which is of type As. The corresponding knot is
the figure eight knot L[2,2]. We have

Q=1

2\5/3

and the Jacobian algebra A is the path algebra of @ modulo the two-sided ideal generated by the subpaths
of length 2 in the 3-cycle. Thus A is a cluster-tilted algebra of Dynkin type As.
The A-module T = @®_, M (i) is given by

The indecomposable summands M (2), M (3), M(5) correspond to the vertices on the 3-cycle. Each of these
indecomposables has precisely 5 submodules, as expected, since 5 is the number of terms in the Jones
polynomial of the figure eight knot. For example, the submodules of M(2) are 0,4,5,4@® 5 and M(2).
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The Auslander-Reiten quiver of the cluster category is the following

\/\/\/ /\/\

3

SINSNSNN N
\/\/\/\/\/\
/\/\/\/\/\/

where vertices with the same labels are identified, and the shift of the projective P(i) is denoted by an 7 in
a circle. The summands of T" are set in bold face.

The mutation sequence p of Section 7 is p = 5 0 144 0 43 0 g © 11 © f42 © fg © 5. This mutation sequence
sends T to A[1], more precisely

B wWN

M) — P(4)[1], M(2) — P(3)[1], M(3) — P(2)[1], M(4) — P(1)[1], M(5) — P(5)[1].
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