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We construct tilting modules over Jacobian algebras arising from knots. To a two-
bridge knot L[a1, . . . , an], we associate a quiver Q with potential and its Jacobian 
algebra A. We construct a family of canonical indecomposable A-modules M(i), 
each supported on a different specific subquiver Q(i) of Q. Each of the M(i) is 
expected to parametrize the Jones polynomial of the knot. We study the direct sum 
M = ⊕iM(i) of these indecomposables inside the module category of A as well as 
in the cluster category.
In this paper we consider the special case where the two-bridge knot is given by 
two parameters a1, a2. We show that the module M is rigid and τ -rigid, and we 
construct a completion of M to a tilting (and τ -tilting) A-module T . We show 
that the endomorphism algebra EndA T of T is isomorphic to A, and that the 
mapping T �→ A[1] induces a cluster automorphism of the cluster algebra A(Q). This 
automorphism is of order two. Moreover, we give a mutation sequence that realizes 
the cluster automorphism. In particular, we show that the quiver Q is mutation 
equivalent to an acyclic quiver of type Tp,q,r (a tree with three branches). This quiver 
is of finite type if (a1, a2) = (a1, 2), (1, a2), or (2, 3), it is tame for (a1, a2) = (2, 4)
or (3, 3), and wild otherwise.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

We construct tilting modules over Jacobian algebras that are motivated by knot invariants of two-bridge 
knots and their relation to cluster algebras.

A relation between knot invariants and cluster algebras has been established recently in [14], where the 
authors give a realization of the Jones polynomial of a two-bridge link in terms of the Laurent expansion 
of a certain cluster variable. In this approach, one first constructs a quiver R of Dynkin type A from the 
link and then considers the cluster algebra A(R) determined by it. The cluster variable xM that realizes 
the Jones polynomial is the one associated with the unique indecomposable module M of the path algebra 
of R that is one-dimensional at each vertex. In this special situation, the cluster variable xM is a Laurent 
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polynomial whose terms are parametrized by the submodules of the module M [8]. Equivalently, it can be 
computed via a perfect matching formula of an associated snake graph [16]. In particular, the number of 
terms (counted with multiplicities) in the Jones polynomial is equal to the number of submodules of M and 
equal to the number of perfect matchings of the snake graph.

We point out that a similar result for the Alexander polynomial was given more recently in [17] using 
ancestral triangles, and for the HOMFLY polynomial in [19] using path posets. See also [15] for an interesting 
reformulation of the results in [14].

On the other hand, the authors of [11] established a dimer model for links, using the (overlaid) Tait graph 
G of the link, to interpret the Alexander polynomial as a partition function. In this method, one has to 
remove two adjacent regions from the graph G and thereafter one can compute the Alexander polynomial 
as the determinant of the (weighted) adjacency matrix of the reduced graph. This formula is reminiscent 
of Alexander’s original definition of the polynomial as the determinant of the incidence matrix from which 
one removes two columns that correspond to two adjacent regions in the graph [2].

It is crucial to note that the result does not depend on the choice of the two adjacent regions in G, and 
this observation motivated the research project in this paper.

If the link is a two-bridge link, we can associate a quiver Q with potential W to the graph G, and we 
denote by A the corresponding Jacobian algebra. The removal of two adjacent regions in G corresponds 
to the removal of a connected subquiver of Q, and, for a certain choice of adjacent regions, the resulting 
quiver is precisely the quiver R used in [14] to compute the Jones polynomial of the link. If we chose a 
different pair of adjacent regions then the subquiver may look very different, but it is natural to expect that 
a variation of the methods of [14] will also apply for these subquivers and give another way to compute the 
Jones polynomial. This problem will be considered in a different paper.

In this paper, we want to consider all possible choices of adjacent pairs at the same time. Each such 
choice i will determine a subquiver Qi of the quiver Q which we need to remove. On the remaining quiver 
Q(i) = Q \Qi, we define a canonical indecomposable A-module M(i) of dimension 1 at every vertex of Q(i), 
and we let M = ⊕iM(i) be the direct sum of these indecomposables.

Motivated by the results mentioned above, we want to study the structure of M inside the module 
category of A. Thereby we combine all possible choices of adjacent regions into one object. It is natural to 
expect that this module M has a particularly nice structure.

By construction, M is a sincere A-module, meaning it is supported at every vertex of Q, each inde-
composable summand M(i) of M is supported on a different subquiver Q(i) of Q and each M(i) should 
parametrize the Jones and the Alexander polynomial of the two-bridge link via its submodules.

Recall that a two-bridge link L[a1, a2, . . . , an] is given by a sequence of positive integers a1, a2, . . . , an and 
the number of terms in the Jones (and Alexander) polynomial is equal to the numerator of the continued 
fraction

[a1, a2, . . . , an] = a1 +
1

a2 +
1

. . . +
1
an

.

In this paper, we consider the special case where n = 2. Thus we have two positive integers a1, a2 and the 
number of terms in the Jones polynomial is a1a2 + 1. The case n = 1 is contained in this case because the 
link L[a1] is equivalent to the link L[1, a1 − 1]. For n = 2, the quiver Q is of the form illustrated in Fig. 1. 
It consists of an oriented cycle of length a2 + 1 whose vertices are labeled r0, r1, . . . , ra2 , and two branches, 
both of which are linearly oriented subquivers of type Aa1 , one entering the oriented cycle at vertex ra2 and 
the other leaving the cycle at vertex r0. This quiver is actually mutation equivalent to an acyclic quiver Q′
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and the potential is obtained from the trivial potential via this mutation sequence. In particular, the cluster 
category C is the cluster category of Q′ of [7] and the algebra A is cluster-tilted of type Q′.

Furthermore, the removal of two adjacent regions in G corresponds to the removal of a vertex ri on the 
oriented cycle of Q together with the branch at the vertex ri if i = 0 or i = a2. We let M(ri) be the unique 
indecomposable A-module that is one-dimensional at every vertex of the remaining subquiver. We prove 
that each M(ri) has precisely a1a2 + 1 submodules as expected. Note that the zero module is always a 
submodule of M(ri).

We then construct an indecomposable A-module M(x) for each of the remaining vertices x =
s1, s2, . . . , sa1−1, t1, t2, . . . , ta1−1 of Q, and we define T = ⊕x∈Q0M(x) to be the direct sum of all these 
indecomposables.

We show that T is a tilting A-module. This means that Ext1A(T, T ) vanishes, that the projective dimension 
of T is at most one and that there exists a short exact sequence of the form 0 → A → T 0 → T 1 → 0 with 
T 0, T 1 in the additive closure of T . Tilting modules and their endomorphism algebras play a central role 
in representation theory, see for example [6,3]. In particular, it follows that T is a τ -tilting A-module as 
defined in [1]. This means that the number of indecomposable summands of T is equal to the number of 
vertices of Q and Hom(T, τT ) = 0 where τ is the Auslander-Reiten translation.

Our τ -tilting module T is particularly nice, since we can show that its endomorphism algebra EndA T is 
isomorphic to the dual of A, and A is self-dual.

We then consider this situation at the level of the corresponding cluster algebra A(Q) defined in [13]. 
We show that the τ -tilting module T induces a cluster-tilting object in the cluster category C of acyclic 
type as introduced in [7] (and [9], for Dynkin type A). Therefore, the results in [10] imply that each of A[1]
and T corresponds to a cluster xA[1] and xT in the cluster algebra (here [1] denotes the shift in the cluster 
category). Using a result from [5], we see that the correspondence T �→ A[1] induces a cluster automorphism 
σ of A(Q), that maps the cluster xT to the cluster xA[1] and induces an isomorphism between the quiver 
Q of the cluster xA[1] and the opposite of the quiver of the cluster xT . We further show that σ has order 2. 
We then construct a sequence of mutations μ that realizes the automorphism σ.

Our main results are summarized in the following theorem.

Theorem 1.1. Let A be the Jacobian algebra of Q = Q[a1, a2] and let T = ⊕x∈Q0M(x).

(1) T is a tilting A-module and hence a τ -tilting A-module.
(2) The endomorphism algebra EndA T is isomorphic to A.
(3) The correspondence T �→ A[1] induces a cluster automorphism σ of order two of the cluster algebra 

A(Q).
(4) The automorphism σ is given by the sequence of mutations

μ = μ−1
R ◦ μS ◦ μT ◦ μR,

where

μR = μra2−1 ◦ · · · ◦ μr2 ◦ μr1 ,

μS = μs1μs2μs3 · · ·μra2
◦ · · · ◦ μs1μs2μs3 ◦ μs1μs2 ◦ μs1 ,

μT = μta1−1μta1−2μta1−3 · · ·μr0 ◦ · · · ◦ μta1−1μta1−2μta1−3 ◦ μta1−1μta1−2 ◦ μta1−1 .

(5) The cluster algebra A(Q) is of acyclic type μR Q = Tp,q,r, a tree with three branches. Moreover, the 
cases where it is of finite or tame type are the following.
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A2a1+1 if a2 = 2;
Da2+1 if a1 = 1;
E6 if (a1, a2) = (2, 3);
Ẽ7 if (a1, a2) = (3, 3);
Ẽ6 if (a1, a2) = (2, 4);

and it is of wild acyclic type in all other cases.

The case n ≥ 3 is more complicated and will require different methods. We expect that we can still 
construct the tilting module T and a mutation sequence. However, already in small examples, we do not 
obtain a cluster automorphism of order two.

The paper is organized as follows. We define the A-module T in Section 2 and compute the number of 
submodules in Section 3. After computing the Auslander-Reiten translate of T in Section 4, we show that 
T is a tilting and a τ -tilting A-module in Section 5. Section 6 is devoted to the study of the endomorphism 
algebra of T and to the proof of EndA T ∼= A. In Section 7, we construct the mutation sequence that 
transforms A into T and show that the corresponding cluster automorphism has order two. We illustrate 
the results in an example in Section 8.

We thank the anonymous referee for suggesting a simpler proof of Lemma 6.1 as well as several other 
improvements. We also thank Lidia Angeleri Hügel for pointing out to us that every tilting module is 
τ -tilting.

r0ra2

ra2−1 r1

t1 ta1−1sa1−1s1

Fig. 1. The quiver Q = Q[a1, a2] = (Q0, Q1).

2. Definition of T

Throughout the paper, let k denote an algebraically closed field. Let a1, a2 be positive integers and let 
Q = Q[a1, a2] be the quiver shown in Fig. 1. Thus Q consists of an oriented cycle of length a2 + 1 and a 
path of length 2a1 − 1 whose halfway arrow is part of the cycle. Let Q0 be the set of vertices of Q and Q1

the set of arrows. We label the vertices that lie on the cycle by r0, r1, . . . , ra2 , those on the incoming branch 
by s1, s2, . . . , sa1−1 and those on the outgoing branch by t1, t2, . . . , ta1−1.

We equip Q with the potential W = r0 → r1 → · · · → ra2 → r0 and denote the corresponding Jacobian 
algebra by A. Thus A = kQ/I is the quotient of the path algebra of Q by the two-sided ideal I generated 
by all subpaths of W of length a2.

The opposite quiver Qop is obtained from Q by reversing the direction of each arrow. Let D = Homk(−, k)
denote the standard duality.

Remark 2.1. The quiver Q is isomorphic to its opposite quiver Qop and, hence, the algebra A is isomorphic 
to its opposite algebra Aop.

For every x ∈ Q0, let P (x), I(x) and S(x) denote the indecomposable projective, injective and simple 
A-module at x, respectively. Every A-module L is described as a representation of the quiver Q satisfying 
the relations in I, and we shall frequently use the notation L = (Lx, ϕα)x∈Q0,α∈Q1 , where Lx is the k-vector 
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space at vertex x and ϕα is the linear map on the arrow α of the representation corresponding to L. For 
further details on representation theory we refer to [6,18].

In this section, we define an indecomposable A-module M(x) for every vertex x ∈ Q0, and denote by T
the direct sum T = ⊕x∈Q0M(x). The definition of M(x) is given in three separate cases depending on x
being a vertex in the cycle or in one of the two branches.

Definition 2.2. For all vertices labeled ri, we define the module M(ri) = (M(ri)x, ϕα) by

M(ri) =

ri+1 s1
ri+2 s2

...
...

ra2−1 sa1−1
ra2
r0

r1 t1
r2 t2

...
...

ri−1 ta1−1

, M(ri)x :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x = ri;
0 if ri = r0 and x = tj for any j;
0 if ri = ra2 and x = sj for any j;
k otherwise.

Given any arrow x α−→ y in Q1, the map M(ri)x
ϕα−−→ M(ri)y is defined by

ϕα :=
{

1 if M(ri)x = k = M(ri)y;
0 otherwise.

Thus the support of M(ri) is given by removing the vertex ri from our quiver Q, together with vertices 
labeled sj when i = a2, and respectively vertices labeled tj when i = 0. Equivalently, the support of M(ri)
is given by removing the vertex ri from our quiver Q and taking the component containing ri+1.

Remark 2.3. For any minimal path w between a vertex x and a vertex y of Q, let ϕw be the composition of 
maps in the module M(ri) along the path w. If M(ri)x = k, then

ϕw =
{

1 if ri is not in w;
0 if ri is in w.

Definition 2.4. For all vertices labeled ti, we define the module M(ti) = (M(ti)x, ϕα) by the short exact 
sequence

0 → M(ti) → I(ra2)
f−→ I(si) → 0,

with f given by the path si → si+1 → · · · → ra2 . For any vertex x ∈ Q0, we have M(ti)x = k if and only if 
I(si)x = 0 and I(ra2)x = k. Also, M(ti)x = 0 otherwise. Therefore

M(ti) =

r1 si+1
r2 si+2

...
...

ra2−1 sa1−1
ra2

, M(ti)x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x = r0;
0 if x = tj for any j;
0 if x = sj for any j ≤ i;
k otherwise.

Given any arrow x α−→ y in Q1, the map M(ti)x
ϕα−−→ M(ti)y is given by
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ϕα =
{

1 if M(ti)x = k = M(ti)y;
0 otherwise.

Definition 2.5. For all vertices labeled si, we define the module M(si) = (M(si)x, ϕα) by the short exact 
sequence

0 → P (ti)
g−→ P (r0) → M(si) → 0,

with g given by the path r0 → t1 → · · · → ti. For any vertex x ∈ Q0, we have M(si)x = k if and only if 
P (ti)x = 0 and P (r0)x = k. Also, M(si)x = 0 otherwise. Therefore

M(si) =

r0
r1 t1
r2 t2

...
...

ra2−1 ti−1

, M(si)x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x = ra2 ;
0 if x = tj for any j ≥ i;
0 if x = sj for any j;
k otherwise.

Given any arrow x α−→ y in Q1, the map M(si)x
ϕα−−→ M(si)y is given by

ϕα =
{

1 if M(si)x = k = M(si)y;
0 otherwise.

Definition 2.6. We define the module T to be the sum of all modules defined in Definitions 2.2, 2.4, and 2.5. 
That is to say

T :=
(

a2⊕
i=0

M(ri)
)

⊕
(

a1−1⊕
i=1

M(si)
)

⊕
(

a1−1⊕
i=1

M(ti)
)

=
⊕
x∈Q0

M(x).

3. Submodules of M(ri)

As mentioned in the introduction, we want that each indecomposable module M(ri) gives a parametriza-
tion of the Alexander polynomial of the link L[a1, a2] via its submodules. In particular, since the Alexander 
polynomial has a1a2 + 1 terms, we should expect that the number of submodules of M(ri) also equals 
a1a2 + 1 and does not depend on i. We prove this fact in this section.

Lemma 3.1. For every i = 0, 1, . . . , a2, the module M(ri) has exactly a1(a2 − i) submodules with support at 
ra2 .

Proof. If i = a2, then there is nothing to show because M(ra2) is not supported at ra2 . Otherwise, for each 
pair (j, �) with i + 1 ≤ j ≤ a2 and 1 ≤ � ≤ a1, we have a submodule

rj s�

...
...

ra2−1 sa1−1
ra2
r0

r1 t1
r2 t2

...
...

ri−1 ta1−1

,

where we set sa1 = ra2 if � = a1. There are exactly a1(a2 − i) such submodules. �
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Lemma 3.2. For every i = 1, 2 . . . , a2, the module M(ri) has exactly 1 submodule that is supported at r0 and 
not supported at ra2 .

Proof. The submodule is given by

r0
r1 t1
r2 t2

...
...

ri−1 ta1−1

. �

Lemma 3.3. For every i = 1, 2, . . . , a2, the module M(ri) has exactly (i a1) submodules that are zero at r0
and ra2 .

Proof. For each pair (j, �) such that 1 ≤ j ≤ i and 1 ≤ � ≤ a1, we have a submodule

rj

...
ri−1

⊕
t�

...
ta1−1

=: L1 ⊕ L2.

Note that if j = i, then we take L1 = 0. Similarly, if � = a1, then we take L2 = 0. There are exactly i a1
such submodules. �
Proposition 3.4. Let ri be any vertex on the cycle in Q. Then M(ri) has exactly a1a2 + 1 submodules.

Proof. If i = 0, then M(r0) has exactly a1a2 submodules supported at ra2 , by Lemma 3.1. Note that 
M(r0) = I(ra2) is the injective at ra2 . Thus the only other submodule of M(r0) is the zero module.

Now suppose i 
= 0. Then Lemmata 3.1–3.3 yield an exhaustive list of the a1a2 + 1 submodules of 
M(ri). �
4. Computation of τT

In this section, we compute the Auslander-Reiten (AR) translate of each indecomposable summand of 
the A-module T defined in Section 2.

First, we compare the indecomposable summands of T the indecomposable projectives and injectives of 
A, and we see the following.

Remark 4.1. We have

M(ra2−1) = P (s1), M(ra2) = P (r0), M(ta1−1) = P (r1),
M(r0) = I(ra2), M(r1) = I(ta1−1), M(s1) = I(ra2−1).

For the rest of this section, we use the notation L = (Lx, ϕα)x∈Q0,α∈Q1 for an A-module L.

Lemma 4.2. The modules τM(ra2) and τM(ra2−1) are zero, and for i = 0, 1, . . . , a2 − 2 we have

τM(ri) =

s2 ri+2
s3 ri+3

...
...

sa1−1 ra2−1
ra2

, τM(ri)x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x = rj for any 0 ≤ j ≤ i + 1;
0 if x = tj for any j;
0 if x = s1;
k otherwise.

Furthermore, the projective dimension of M(ri) is 1.
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Proof. Remark 4.1 implies that τM(ra2) and τM(ra2−1) are zero. Suppose now that 0 ≤ i ≤ a2 − 2. We 
have the projective resolution

0 → P (ra2)
f−→ P (ri+1) ⊕ P (s1) → M(ri) → 0.

This shows that pdM(ri) = 1. By applying the Nakayama functor ν, we get the exact sequence

0 → τM(ri) → I(ra2)
νf−→ I(ri+1) ⊕ I(s1).

The map I(ra2) → I(s1) is nonzero only at the vertex s1, so τM(ri)si = 0. The map I(ra2) → I(ri+1)
is nonzero at the vertices r1, ..., ri+1, so τM(ri) is zero at these vertices. Also, both modules I(ra2) and 
I(ri+1) ⊕ I(s1) have no support at vertices labeled tj , so τM(ri) is zero at these vertices. Finally, τM(ri)
is zero at vertex r0, because I(ra2) is zero at that vertex. This completes the proof. �
Lemma 4.3. The module τM(ta1−1) is zero, and for i = 0, 1, . . . , a1 − 2 we have

τM(ti) =

si+2 r2
si+3 r3

...
...

sa1−1 ra2−1
ra2

, τM(ti)x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x = r0 or x = r1;
0 if x = tj for any j;
0 if x = sj for any 1 ≤ j ≤ i + 1;
k otherwise.

Furthermore, the projective dimension of M(ti) is 1.

Proof. Remark 4.1 implies that τM(ta1−1) is zero. Suppose now that 0 ≤ i ≤ a2−2. We have the projective 
resolution

0 → P (ra2)
f−→ P (r1) ⊕ P (si+1) → M(ti) → 0.

This shows that pdM(ti) = 1. The rest of the proof is analogous to Lemma 4.2. �
Lemma 4.4. For i = 1, 2, . . . , a1 − 1, we have

τM(si) =

t1
t2

...
ti

, τM(si)x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x = rj for any j;
0 if x = tj for any j > i;
0 if x = sj for any j;
k otherwise.

Furthermore, the projective dimension of M(si) is 1.

Proof. By definition of M(si), we have the projective resolution

0 → P (ti)
f−→ P (r0) → M(si) → 0.

This shows that pdM(si) = 1. The rest of the proof is analogous to Lemma 4.2. �
Proposition 4.5. The module T from Definition 2.6 has projective dimension 1.

Proof. This follows immediately from Lemmata 4.2–4.4. �
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5. T is a tilting and a τ -tilting module

In this section, we show that T is a tilting A-module and a τ -tilting A-module. We then show that T
induces a cluster-tilting object in the cluster category C.

Recall that an A-module T is called a tilting module if Ext1(T, T ) = 0, pdT ≤ 1, and the number |T | of 
isoclasses of indecomposable summands of T is equal to the number of vertices |Q0| of Q. Furthermore, T is 
said to be τ -tilting in the sense of [1] if Hom(T, τT ) = 0 and |T | = |Q0|. It is shown in [1] that every tilting 
module is τ -tilting. Tilting modules and their endomorphism algebras play a central role in representation 
theory, see [6] for an introduction.

Recall that an A-module L = (Lx, ϕα) is called thin if all vector spaces Lx are of dimension at most one. 
Let Q(L) denote the subquiver of Q containing all vertices x ∈ Q0 such that Lx 
= 0 and all arrows α ∈ Q1
such that ϕα 
= 0. A thin module L is indecomposable if and only if Q(L) is connected.

Remark 5.1. For every vertex x, the A-module M(x) is thin and indecomposable.

Lemma 5.2. Let L = (Lx, ϕα) be a thin A-module and let N = (Nx, ϕ′
α) be any A-module. Let f ∈ Hom(L, N)

and let w be a nonzero path in Q(L) from a vertex x to a vertex y. If fx = 0, then fy = 0.

Proof. We have a commutative diagram:

Lx Ly

Nx Ny

ϕw

fx fy

ϕ′
w

Since L is thin, the map ϕw is invertible, so fy = ϕ′
wfxϕ

−1
w . �

Lemma 5.3. Let L = M(ri) = (M(ri)x, ϕα) with i 
= a2 and let N = (Nx, ψα) be indecomposable and thin. 
Suppose Hom(L, N) 
= 0. Then Ns1 
= 0 or there exists a vertex rj with j 
= a2 − 1, a2 such that S(rj) is a 
summand of the socle of N .

Proof. Suppose first that i = a2 − 1. Then L = M(ra2−1) = P (s1). Therefore the condition Hom(L, N) 
= 0
implies that Ns1 
= 0, and we are done.

Suppose now that i < a2 − 1. Let f ∈ Hom(L, N) be a nonzero morphism. Suppose Ns1 = 0. Then 
Lemma 5.2 implies fy = 0 for all vertices y that can be reached from s1 by a path in Q(L). In particular, 
fra2

= 0.
We have topL = S(ri+1) ⊕S(s1). Now consider the path w : ri+1 → · · · → ra2 . Note that w runs through 

all vertices of Q(L) which cannot be reached by a path from s1 in Q(L), plus the vertex ra2 . Since f is 
nonzero, it must be nonzero at some vertex on w. By Lemma 5.2, we see that f must be nonzero at the 
vertex ri+1. Now let rj be the last vertex in w such that frj 
= 0. Denote by w′ the subpath of w from ri+1
to rj . Then we have a commutative diagram:

Lri+1 Lrj Lrj+1

Nri+1 Nrj Nrj+1

ϕw′

0�=fri+1

ϕα

frj �=0 frj+1=0

ψw ψα

where α is the arrow rj → rj+1. The left square implies ψw 
= 0 and the right square implies ψα = 0. The 
arrow α is the only arrow whose source is rj , since 1 ≤ i + 1 ≤ j < a2 − 1. This implies that S(rj) is a 
summand of the socle of N . �
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Lemma 5.4. Let L = M(ra2) or M(si) with i = 1, 2, · · · , a1 − 1 and let N be indecomposable and thin. 
Suppose Hom(L, N) 
= 0. Then Nr0 
= 0.

Proof. We have topL = S(r0) and every vertex in Q(L) can be reached by a path from r0 in Q(L). By 
Lemma 5.2, if f ∈ Hom(L, N) is a nonzero morphism, then fr0 
= 0. �
Lemma 5.5. Let L = M(ti) with i = 1, 2, · · · , a1 − 1 and let N be indecomposable and thin. Suppose 
Hom(L, N) 
= 0. Then Nr1 
= 0 or there exists a vertex sj with i + 1 ≤ j ≤ a1 − 1 such that S(sj) is 
a summand of the socle of N .

Proof. The proof is similar to the proof in Lemma 5.3 with r1 in the role of s1 and the path si+1 → · · · →
sa1−1 → ra2 in the role of ri+1 → · · · → ra2−1 → ra2 . �
Lemma 5.6. Let L be an indecomposable summand of the module T defined in Definition 2.6 and let N be 
an indecomposable summand of τT . Then

Hom(L,N) = 0.

In particular,

Hom(T, τT ) = 0 and Ext1(T, T ) = 0.

Proof. From our computations in Section 4, we see that each indecomposable summand N of τT is thin, 
and zero at the vertices s1, r1, and r0. Using Lemma 5.4 and Nr0 = 0, we see that Hom(L, N) = 0 for 
L = M(ra2) or M(si). Using Lemma 5.2 and Ns1 = 0, we see that Hom(L, N) = 0 for L = M(ri), i 
= a2

because none of the summands of τT has S(rj) with 1 ≤ j ≤ a2 − 1 in its socle. Indeed, our computations 
in Section 4 show that socN can only contain S(ra2) and S(ti) as summands. Similarly, using Lemma 5.5
and Nri = 0, we see that Hom(N, L) = 0 for L = M(ti) because none of the summands of τT admit S(sj)
as a summand of its socle. This shows Hom(L, N) = 0, and thus Hom(T, τT ) = 0.

Because of the Auslander-Reiten formula

Ext1(T, T ) ∼= DHom(T, τT )

this also implies the vanishing of Ext1(T, T ). �
We are now ready for the main results of this section.

Theorem 5.7. The module T is a tilting A-module and a τ -tilting A-module.

Proof. The projective dimension of T is 1 by Proposition 4.5 and T is rigid by Lemma 5.6. In partic-
ular, we have shown that Hom(T, τT ) = 0. The result now follows since the number of non-isomorphic 
indecomposable summands of T is equal to the number of vertices in Q. �
Theorem 5.8. The module T induces a cluster-tilting object in the cluster category C.

Proof. Since T does not share any indecomposable summands with A[1] =
⊕

x∈Q0
P (x)[1], we see that 

Theorem 5.7 and [1, Theorem 4.1] complete the proof. �
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6. The endomorphism algebra EndT

In this section, we study the endomorphism algebra of our A-module T by computing the Hom spaces 
between its indecomposable summands.

Lemma 6.1. Given two vertices ri, rj on the oriented cycle in Q, we have

Hom(M(ri),M(rj)) =
{

0 if j = i + 1;
k if j 
= i + 1,

where we use the convention that ra2+1 = r0.

Proof. If i = a2 we have M(ri) = P (r0) and hence

Hom(M(ri),M(rj)) ∼= M(rj)r0 =
{

0 if j = 0;
k if j 
= 0.

Suppose now 0 ≤ i ≤ a2 − 1 and consider the projective resolution

0 → P (ra2) → P (ri+1) ⊕ P (s1) → M(ri) → 0.

Applying the functor Hom(−, M(rj)) yields an exact sequence of the form

0 → Hom(M(ri),M(rj)) → Hom(P (ri+1) ⊕ P (s1),M(rj)) → Hom(P (ra2),M(rj)) → 0,

where the last term is zero, since Ext1(M(ri), M(rj)) = 0, by Lemma 5.6. Now using the fact that 
Hom(P (i), X) ∼= Xi for any representation X, we obtain an exact sequence

0 → Hom(M(ri),M(rj)) → M(rj)ri+1 ⊕M(rj)s1 → M(rj)ra2
→ 0.

Since j 
= a2, we have M(rj)s1 = k and M(rj)a2 = k. Therefore

Hom(M(ri),M(rj)) ∼= M(rj)ri+1 =
{

0 if j = i + 1;
k if j 
= i + 1.

�

Lemma 6.2. Given two vertices labeled ti, tj ∈ Q0, we have

Hom(M(ti),M(tj)) =
{

0 if i < j;
k if i ≥ j.

Proof. This follows from the observation that if i ≥ j, then M(ti) is a submodule of M(tj), so 
Hom(M(ti), M(tj)) is generated by the inclusion map. �
Lemma 6.3. Given two vertices labeled si, sj ∈ Q0, we have

Hom(M(si),M(sj)) =
{

0 if i < j;
k if i ≥ j.

Proof. Since Q is isomorphic to Qop, we see that this is the dual argument to Lemma 6.2. �
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Lemma 6.4. Let x ∈ Q0 be any vertex labeled rj or tj. Given any vertex labeled si ∈ Q0, we have

Hom(M(x),M(si)) = Hom(M(x),M(ra2)).

Proof. From Definition 2.5, we have a short exact sequence

0 → P (ti) → M(ra2) → M(si) → 0.

We apply the functor Hom(M(x), −) to the sequence to get the exact sequence

0 → Hom(M(x), P (ti)) → Hom(M(x),M(ra2)) → Hom(M(x),M(si))

→ Ext1(M(x), P (ti)).

We complete the proof by showing that Hom(M(x), P (ti)) = 0 and Ext1(M(x), P (ti)) = 0.
First, let f ∈ Hom(M(x), P (ti)). By Definition 2.2 and Definition 2.4, we have

topM(x) =
{
S(s1) ⊕ S(rj+1) if x = rj ;
S(r1) ⊕ S(sj+1) if x = tj .

In both cases, there is a nonzero path from a vertex y in the top of M(x) to ti, and P (ti) is not supported 
on y. Lemma 5.2 implies that fti = 0, hence f = 0.

Second, we see that Hom(P (ti), τM(x)) = 0 by Lemma 5.6. Hence by the AR formula, Ext1(M(x), P (ti))
= DHom(P (ti), τM(x)) = 0. �
Lemma 6.5. Let x ∈ Q0 be any vertex labeled rj or sj. Given any vertex labeled ti ∈ Q0, we have

Hom(M(ti),M(x)) ∼= Hom(M(ti),M(r0)).

Proof. Since Q is isomorphic to Qop, the argument is dual to Lemma 6.4. �
Lemma 6.6. Given two vertices labeled ri, tj ∈ Q0, we have

Hom(M(ri),M(tj)) = 0.

Proof. This follows from Lemma 5.2 and Lemma 5.4. �
Lemma 6.7. Given two vertices labeled ri, sj ∈ Q0, we have

Hom(M(sj),M(ri)) = 0.

Proof. The argument is dual to Lemma 6.6. �
Lemma 6.8. Given two vertices labeled si, tj ∈ Q0, we have

Hom(M(si),M(tj)) = 0.

Proof. This follows from the fact that the top of M(si) is S(r0) and the vertex r0 does not lie in the support 
of M(tj). �
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The results of this subsection can be combined in the following theorem. Recall that A is isomorphic to 
its dual.

Theorem 6.9. The endomorphism algebra of T is isomorphic to (the dual of) A,

EndA T ∼= A.

Furthermore, the mapping x �→ M(x) induces an isomorphism of quivers Qop
A → QEndA T . In particular, the 

quiver QEndA T of EndA T is given by

M(r0)M(ra2)

M(ra2−1) M(r1)

M(t1) M(ta1−1)M(sa1−1)M(s1)

Proof. By Lemma 6.1, the full subquiver with vertices M(ri) is an oriented cycle of length a2 + 1 in which 
every subpath of length a2 is zero. Lemmata 6.2 and 6.3 imply that the full subquivers with vertices M(si)
and M(ti), respectively, are equioriented of type A and there are no relations on these branches. Lemmata 6.4
and 6.5 imply that there is an arrow M(ra2) → M(sa1−1) and an arrow M(t1) → M(r0) and that there are 
no relations between the cycle and the two branches. The Lemmata 6.6–6.8 show that are no other arrows. 
This shows that the quiver of EndAT is the one in the theorem and its relations are those coming from the 
potential. �
7. Mutation and the cluster algebra A(Q)

In Theorem 5.8, we have shown that T induces a cluster-tilting object in the cluster category C introduced 
in [7]. From Theorem 6.9, the quiver given by T is the opposite quiver Qop, so using Lemma 2.3 in [5] we see 
that the correspondence T �→ A[1] induces a cluster automorphism σ of the cluster algebra A(Q) associated 
to the quiver Q.

In this section, we define a mutation sequence μ on the quiver Q and show that Q is of acyclic type. The 
cluster automorphism σ is given by μ, which we prove by showing that μ sends T to A[1] = ⊕x∈Q0P (x)[1]
in the cluster category. Furthermore, we show that σ has order 2.

Definition 7.1. We define the mutation sequence μ on the quiver Q by

μ := μ−1
R ◦ μS ◦ μT ◦ μR,

where

μR = μra2−1 ◦ · · · ◦ μr2 ◦ μr1 ,

μS = μs1μs2μs3 · · ·μra2
◦ · · · ◦ μs1μs2μs3 ◦ μs1μs2 ◦ μs1 ,

μT = μta1−1μta1−2μta1−3 · · ·μr0 ◦ · · · ◦ μta1−1μta1−2μta1−3 ◦ μta1−1μta1−2 ◦ μta1−1 .

We see the effect of these mutation sequences on the quiver illustrated in Figs. 2-5. The quiver μR Q is 
seen in the left picture of Fig. 3.
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r0ra2

r1 μr1�

r0ra2

r1

r2

μr2�

r0ra2

r1

r2
r3

μr3� · · ·
μri−1�

r0ra2

r1

ri−1

ri

μri� · · ·
μra2−1�

r0ra2

r1
ra2−1

Fig. 2. The mutation sequence μR on the cycle r0 → r1 → · · · → ra2 → r0.

s1 sa1−1 ra2 ra2−1 r0 t1 ta1−1

ra2−2

r1

μSμT�

s1 sa1−1 ra2 ra2−1 r0 t1 ta1−1

ra2−2

r1

Fig. 3. The mutation sequence μSμT on the quiver μR Q.

r0 ra2

r1
ra2−1 μra2−1� · · ·

μri�

r0 ra2

r1

ri−1

ri

μri−1� · · ·
μr3�

r0 ra2

r1

r2
r3

μr2�

r0 ra2

r1

r2

μr1�

r0 ra2

r1

Fig. 4. The mutation sequence μR on the cycle r1 → r2 → · · · → ra2−1 → r0 → ra2 → r1, with μ−1
R shown.

r0ra2

ra2−1 r1

t1 ta1−1sa1−1s1

μ�

r0ra2

r1 ra2−1

t1 ta1−1sa1−1s1

Fig. 5. The mutation sequence μ = μ−1
R μTμSμR on the quiver Q.

Theorem 7.2. The cluster algebra A(Q) is of acyclic type μR Q. Moreover, the cases where it is of finite or 
tame type are the following.

A2a1+1 if a2 = 2;
Da2+1 if a1 = 1;
E6 if (a1, a2) = (2, 3);
Ẽ7 if (a1, a2) = (3, 3);
Ẽ6 if (a1, a2) = (2, 4);

and it is of wild acyclic type in all other cases.

Proof. The quiver μR Q is given by Fig. 2 together with the branches s1 → · · · → sa1−1 → ra2 and 
r0 → t1 → · · · → ta1−1, and is shown in Fig. 3. �
Remark 7.3. The quiver μTμR Q is the quiver Tp,q,r of [4,12], with p = q = a1 + 1 and r = a2 − 1.

In order to study the cluster automorphism σ, we now consider the sequence of mutations μ on the 
level of cluster-tilting objects in the cluster category using the categorification of [7]. Each indecomposable 
summand Ti of the cluster-tilting object corresponds to a vertex i in the quiver, and the mutation at i is 
computed by an exchange triangle in the cluster category.

Lemma 7.4. We have

μS(μR T ) = μ−1
S (μR T ),
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and dually

μT (μR T ) = μ−1
T (μR T ).

Proof. In μR Q, there are no arrows between si and si+� for � > 1. Therefore

μsiμsi+�
= μsi+�

μsi .

Thus the mutation sequence

μs1μs2μs3 · · ·μra2
◦ · · · ◦ μs1μs2μs3 ◦ μs1μs2 ◦ μs1

is equal to the mutation sequence

μs1 ◦ μs2μs1 ◦ μs3μs2μs1 · · · ◦ μra2
· · ·μs3μs2μs1 ,

and so we have μS(μR T ) = μ−1
S (μR T ). �

Corollary 7.5. The mutation sequence μ is of order two, i.e.,

μT = μ−1T.

Proof. There are no arrows between si and tj for any 1 ≤ i, j ≤ a1 − 1, so μSμT = μTμS . Thus μ2 =
μ−1
R μSμTμR μ−1

R μSμTμR = μ−1
R μSμSμTμTμR, and by Lemma 7.4, this is equal to μ−1

R μR. �
Theorem 7.6. The correspondence T �→ A[1] induces a cluster automorphism σ. The automorphism σ has 
order two, and is given by the sequence of mutations μ.

Proof. From Corollary 7.5, it is enough to show that σ is given by the sequence of mutations μ. We show 
that μTμSμR T = μR A[1].

First, we apply the mutation sequence μR to T . As shown in Fig. 2, at each step prior to mutating at the 
vertex ri we have exactly one arrow ending at ri, namely r0 → ri. Hence we replace the summand M(ri) of 
T with the module X(ri), given by the exchange triangle

M(r0)[−1] → X(ri)[−1] → M(ri)
f−→ M(r0) → X(ri),

where f is an add(T/M(ri))-approximation. By Remark 4.1, we know that M(r0) is injective. Therefore 
the image of this triangle under the functor HomC(T, −) is the exact sequence in ModA:

0 → τ−1X(ri) → M(ri)
f−→ M(r0).

So τ−1X(ri) is given by the kernel of the morphism M(ri) 
f−→ M(r0), hence

τ−1X(ri) =

r0
r1 t1
r2 t2

...
...

ri−1 ta1−1

.

Now τ−1X(ri) has a projective resolution · · · → P (ri) 
g−→ P (r0) → τ−1X(ri) → 0, so by applying the 

Nakayama functor ν we see that X(ri) is given by the kernel of the map I(ri) 
νg−→ I(r0). Hence
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X(ri) =

r1
r2

...
ri

, and μR T = T \
(

a2−1⊕
i=1

M(ri)
)

⊕
(

a2−1⊕
i=1

X(ri)
)
.

Second, we apply the mutation sequence μS. Note that the mutation sequence μS only mutates the quiver 
μR Q at sources. Since the quiver of T is Qop, each mutation in this sequence acts on the corresponding 
summand of T as the shift operator. Dually, each mutation in the sequence μT acts on the corresponding 
summand of T as the inverse shift operator.

Let sa1 := ra2 and t0 := r0. For each i, the mutation sequence μS mutates the vertex si exactly a1 − i +1
times and the mutation sequence μT mutates the vertex ti exactly i + 1 times. We conclude that

μTμSμR T =
(

a2−1⊕
i=1

X(ri)
)

⊕
(

a1⊕
i=1

M(si)[a1 − i + 1]
)

⊕
(

a1−1⊕
i=0

M(ti)[−(i + 1)]
)
.

Next, we compute M(si)[a1 − i + 1] and M(ti)[−(i + 1)] for all i. Given a pair (j, �) such that 1 ≤ j ≤
� < a1 − 1, define

L :=

tj
tj+1

...
t�

.

Then L has a projective resolution · · · → P (t�+1) 
g−→ P (tj) → L → 0. Applying the Nakayama functor ν, 

we see that τL = L[1] is given by the kernel of the morphism I(t�+1) 
νg−→ I(tj), so

L[1] =

tj+1
tj+2

...
t�+1

.

Recall τM(si) from Lemma 4.4. Then for all i, it follows that

M(si)[a1 − i + 1] = τM(si)[a1 − i− 1][1],

=

t1
t2

...
ti

[a1 − i− 1][1],

=

ta1−i

ta1−i+1

...
ta1−1

[1],

= P (ta1−i)[1].

Then from a dual argument, we also have

M(ti)[−(i + 1)] = I(sa1−i)[−1] = P (sa1−i)[1].
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Hence

μTμSμR T =
(

a2−1⊕
i=1

X(ri)
)

⊕
(

a1−1⊕
i=0

P (si)[1]
)

⊕
(

a1⊕
i=1

P (ti)[1]
)
.

Finally, let A[1] =
⊕

x∈Q0
P (x)[1] with quiver Qop. For i = 1, 2, · · · , a2 − 1, let X ′(ri) be the module 

replacing the summand P (ri)[1] in the module μR A[1]. To complete the proof, we show that X ′(ri) = X(ri). 
This proves that μSμTμR T = μR A[1], and thus μT = A[1].

Recall from Fig. 2 that at each step of μR, prior to mutating at the vertex ri we have exactly one arrow 
ending at ri, namely r0 → ri. So X ′(ri) is given by the exchange triangle

P (ri)
h−→ P (r0) → X ′(ri)[−1] → P (ri)[1] → P (r0)[1] → X ′(ri).

The image of this triangle under the functor HomC(A[1], −) is the exact sequence in modA:

P (ri)
h−→ P (r0) → τ−1X ′(ri) → 0.

We have a projective resolution · · · → P (ri) 
h−→ P (r0) → τ−1X ′(ri), so applying the Nakayama functor ν

tells us that X ′(ri) is given by the kernel of the map I(ri) 
νh−→ I(r0). This is exactly how we computed 

X(ri), so X ′(ri) = X(ri). This completes the proof. �

8. Example

We illustrate the results in the example (a1, a2) = (2, 2) which is of type A5. The corresponding knot is 
the figure eight knot L[2, 2]. We have

Q = 1 2 3 4

5

and the Jacobian algebra A is the path algebra of Q modulo the two-sided ideal generated by the subpaths 
of length 2 in the 3-cycle. Thus A is a cluster-tilted algebra of Dynkin type A5.

The A-module T = ⊕5
i=1M(i) is given by

M(1) = 3
5 , M(2) = 3

4 5 , M(3) = 1 5
2 , M(4) = 5

2 , M(5) =
1
2
3
4

.

The indecomposable summands M(2), M(3), M(5) correspond to the vertices on the 3-cycle. Each of these 
indecomposables has precisely 5 submodules, as expected, since 5 is the number of terms in the Jones 
polynomial of the figure eight knot. For example, the submodules of M(2) are 0, 4, 5, 4 ⊕ 5 and M(2).
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The Auslander-Reiten quiver of the cluster category is the following

5
2 1 1

1
2
3
4

4 4

1 5
2 2

2
3
4

1
2
3

3 3
4 5

1
2 5 3

4
2
3

1
2 5

3 3
4 5 3 2 1 5

2 2

4 4 3
5 5 5

2 1

where vertices with the same labels are identified, and the shift of the projective P (i) is denoted by an i in 
a circle. The summands of T are set in bold face.

The mutation sequence μ of Section 7 is μ = μ5 ◦ μ4 ◦ μ3 ◦ μ4 ◦ μ1 ◦ μ2 ◦ μ1 ◦ μ5. This mutation sequence
sends T to A[1], more precisely

M(1) �→ P (4)[1], M(2) �→ P (3)[1], M(3) �→ P (2)[1], M(4) �→ P (1)[1], M(5) �→ P (5)[1].
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