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Transport in the two-dimensional Fermi-Hubbard model: Lessons from weak coupling
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We use quantum kinetic theory to calculate the thermoelectric transport properties of the two-dimensional
single-band Fermi-Hubbard model in the weak coupling limit. For generic filling, we find that the high-
temperature limiting behaviors of the electrical (∼T ) and thermal (∼T 2) resistivities persist down to
temperatures of order the hopping matrix element T ∼ t , almost an order of magnitude below the bandwidth. At
half filling, perfect nesting leads to anomalous low-temperature scattering and nearly T -linear electrical resistiv-
ity at all temperatures. We hypothesize that the T -linear resistivity observed in recent cold atom experiments is
continuously connected to this weak coupling physics and suggest avenues for experimental verification. We find
a number of other novel thermoelectric results, such as a low-temperature Wiedemann-Franz law with Lorenz
coefficient 5π 2/36.
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I. INTRODUCTION

One of the most significant open problems in condensed
matter physics is the origin of “strange metal” behavior in
strongly correlated materials. This non-Fermi-liquid behavior
is often identified experimentally through anomalous trans-
port properties: a DC resistivity which is T -linear down to
low temperatures and a mean-free path which becomes shorter
than the lattice spacing at high temperatures. The latter is
referred to as a violation of the the Mott-Ioffe-Regel (MIR)
limit. These observations differ from expected Fermi liquid
behavior, which is characterized by a resistivity that is propor-
tional to T 2 at low temperatures and a saturation of the MIR
bound at high temperatures [1–3]. Such anomalous behaviors
have been observed in a diverse array of strongly correlated
materials [4–9] and have invited a variety of sophisticated the-
oretical and numerical approaches to explain them [10–18].

One longstanding difficulty of studying these materials
directly is the complex interplay of interactions between elec-
trons, phonons, and impurities. For this reason, there has
been considerable interest in the cold atom community to
simulate nontrivial strongly correlated model systems. The
Fermi-Hubbard model is a natural starting point for these
investigations, as cold atoms in an optical lattice naturally
realize a nearest-neighbor hopping model with onsite interac-
tions. The first is controlled using the lattice depth, while the
second is tuned via a Feshbach resonance [19,20]. Optical lat-
tices are, furthermore, defect-free and do not support phonons.
This puts us in a novel transport regime: current dissipation
arises only from the analog of electron-electron scattering. At
low temperatures, the dominant processes involve umklapp
scattering, where the lattice absorbs momentum correspond-
ing to a reciprocal lattice vector [21].

Recent experimental evidence from the Bakr group indi-
cates that the two-dimensional (2D) realization of this model
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has a high-temperature strange metal phase [22]. This conclu-
sion is supported by advanced numerical methods [15–18] and
analytic high-temperature expansions [13]. Of particular note,
the authors found that the Nernst-Einstein decomposition of
the conductivity σ = Dχ does not shed light onto the origin
of this behavior: both the diffusion constant and the charge
compressibility have nontrivial temperature dependencies in
the strange metal regime, conspiring to give a T -linear resis-
tivity. Furthermore, the diffusion constant appears to saturate a
high-temperature bound that would be conceptually consistent
with the MIR limit [22].

In this paper we clarify this story by studying weak-
coupling transport in the 2D Fermi-Hubbard model. We use
a quantum kinetic theory to show that, even at weak coupling,
the resistivity is nearly T -linear down to temperatures an order
of magnitude below the bandwidth. At temperatures that are
large compared to the bandwidth, this behavior is attributed
to a vanishing inverse effective mass, arising from competing
contributions from both the top and bottom of the band. De-
spite the diverging resistivity, the quasiparticle scattering rate
in this regime saturates at an interaction-dependent value that
is well below the MIR bound. Remarkably, at intermediate
temperatures, T -linearity arises from a nontrivial interplay
between the effective mass and the scattering lifetime. This
is analogous to the aforementioned “conspiracy” between the
compressibility and diffusion constant seen in experiments.
We demonstrate that T -linearity persists to arbitrarily low
temperatures in the vicinity of half filling, where the density of
states diverges and the Fermi surface is perfectly nested. Away
from half filling we find the the conventional T 2 behavior at
sufficiently low temperature, with a crossover to T -linearity
at higher temperature. The crossover temperature vanishes at
half filling and for small Fermi surfaces |µF | > 2t , where
umklapp scattering is forbidden.

The T -linear resistivity of the half-filled 2D Fermi-
Hubbard model has been the subject of previous theoretical
studies [23–26], and similar behavior was observed in other
models with van Hove singularities, such as twisted bilayer
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graphene [27]. These references draw interesting connections
to marginal Fermi liquid theory [10]. Our paper uses ele-
mentary arguments to show that this feature can be found at
weak coupling and explains the behavior in terms of kinetic
theory and perfect nesting. Furthermore, we model how ther-
mal population of the nested Fermi surface affects transport
away from half filling. This is particularly important because
nesting-driven instabilities at half filling will always lead to a
Mott transition at sufficiently low temperatures in two dimen-
sions [28,29].

Beyond calculating the conductivity σ , we explore thermal
conductivity κ and more general thermoelectric properties. At
low temperatures we find that the Lorenz number L = κ/(σT )
approaches a constant. This Wiedemann-Franz law [30] is ex-
pected when the same degrees of freedom are responsible for
thermal and electrical transport. Our Lorenz number, however,
differs from what is found in a system where the dissipation is
dominated by impurity scattering. The Wiedemann-Franz law
breaks down at high temperature.

We organize our paper as follows. In Sec. II we discuss the
2D Fermi-Hubbard model as well as the variational approach
that we use to solve the Boltzmann equation [31]. In Sec. III
we present our results, divided between the electrical proper-
ties (Sec. III A) and the full thermoelectric matrix (Sec. III B).
We discuss the theoretical context and experimental implica-
tions of our work in Sec. IV, and in Sec. V we summarize our
conclusions.

II. MODEL

In this paper we study the 2D single-band Fermi-Hubbard
model on a rectangular lattice with nearest-neighbor hopping

H = −t
∑

〈i j〉,σ
(c†

iσ c jσ + H.c.) + U
∑

i

c†
i↑c†

i↓ci↓ci↑, (1)

where c(†)
iσ is the fermionic annihilation (creation) operator on

site i with spin σ . In condensed matter systems, this model
describes highly localized orbitals with an onsite interaction
parameterized by U . It is a natural model Hamiltonian for
fermionic cold atoms in an optical lattice, where the interac-
tion strength U is tuned using a Feshbach resonance and the
tunneling strength t is set by the optical lattice depth.

Although we are largely thinking of cold atom realizations,
we use the language of electronic systems. We interpret a
force F in terms of an electric field E = F/e. The charge
current is simply the number current times the electron
charge j = ejn.

A. Linearized Boltzmann equation

The richness of the Hubbard model arises from the non-
commutativity of the kinetic and interaction terms: the kinetic
term is diagonal in momentum space, with a dispersion εk =
−2t cos(kx ) − 2t cos(ky), while the interaction term is diag-

onal in real space. Our paper will study this model in the
weak-coupling regime U ' t , such that the interaction may
be treated as a perturbation. In this limit the excitations are
quasiparticle states with well-defined crystal momenta. The
interaction term introduces collisions between quasiparticles,
giving them a finite lifetime. Fermi liquid theory holds that
there is a domain of finite U/t within which this analysis is
valid.

We model the fermion distribution function fk (r), which
counts how many quasiparticles of a given spin state are at
position r with momentum h̄k. The particle density is n(r) =
2

∫ d2k
(2π )2 fk (r), where the factor of 2 accounts for spin. The

distribution function obeys a Boltzmann equation

∂t fk + ∇r fk · vk + eE · ∇k fk = Ik[ f ], (2)

where vk = 1
h̄∇kεk is the velocity. The collision integral Ik[ f ]

is a functional that determines the rate at which particles scat-
ter into and out of the momentum state k. It can be calculated
with Fermi’s Golden Rule:

Ik[ f ] = −2π

h̄

∑

i f

pi|〈 f |Hint|i〉|2
(
n( f )

k − n(i)
k

)
δ(ε f − εi ), (3)

where |i〉 and | f 〉 are Slater determinants, pi is the proba-
bility of initially being in state |i〉, Hint = U

∑
i c†

i↑c↑
i c†

i↓ci↓,
n(i)

k = 〈i|c†
kσ ckσ |i〉, and fk = 〈c†

kσ ckσ 〉 =
∑

i pin
(i)
k . Replacing

Hint with the full many-body T -matrix gives a formally exact
value for the decay rate; Eq. (3) corresponds to the Born
approximation, where one keeps only the leading-order term
after expanding in powers of U/t .

If one assumes that the momentum states are are uncorre-
lated, the collision integral is given by

Ik[ f ] = 2πU 2

h̄

∑

k′,k′′,k′′′,Q

δk+k′−k′′−k′′′−Q δ(ε f − εi )

× [ f ′′ f ′′′(1− f )(1− f ′)− f f ′(1− f ′′)(1− f ′′′)],
(4)

where we used the short-hand notation f = fk, f ′ = fk′ , and
so on. We explicitly included the sum over reciprocal lattice
vectors, Q, which accounts for momentum nonconserving
umklapp scattering events. Note that the integrand is exactly
zero for fk = f 0

k (r), the Fermi-Dirac distribution

f 0
k (r) = 1

eβ(r)[εk−µ(r)] + 1
. (5)

We take β(r) = 1/kBT (r) and µ(r) to be slowly varying,
treating ∇β, ∇µ, and E as small parameters.

We linearize the Boltzmann equation by taking fk − f 0
k =

−)k
∂ f 0

k
∂εk

, where )k is formally small. We can always choose β
and µ so that this perturbation does not change the density or
energy,

∫ d2k
(2π )2 )k

∂ f 0
k

∂εk
=

∫ d2k
(2π )2 (εk − µ))k

∂ f 0
k

∂εk
= 0. The lin-

earized collision integral, in the thermodynamic limit, is given
by

Ik[)] = − *β

(2π )3

∑

Q

∫
d2k′

∫
d2k′′

∫
d2k′′′()k + )k′ − )k′′ − )k′′′ ) f 0

k f 0
k′
(
1 − f 0

k′′
)(

1 − f 0
k′′′

)

× δ2(k + k′ − k′′ − k′′′ − Q)δ(εk + εk′ − εk′′ − εk′′′ ), (6)

where * = U 2a4

h̄ and a is the lattice spacing.
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B. Variational solution

The thermoelectric matrix is obtained from the steady-state
solutions to the Boltzmann equation, where ∂t fk = 0. The
resulting equation is an inhomogeneous integral equation for
)k . We follow the procedure set out in Ref. [31] to obtain
a variational bound on the transport coefficients. We make
the ansatz )k =

∑
i ξiφ

(i)
k , where φ(i)

k are a fixed set of trial
functions. The goal will be to determine the optimal set of
coefficients {ξi}, such that the resulting distribution is as close
to the actual Boltzmann equation solution as possible. In our
numerical calculations we will use a two-term ansatz, with
φ(1)

k = (∇kεk )x and φ(2)
k = (εk − µ)(∇kεk )x, though in this

section we consider the completely general case. The theory
becomes exact in the limit where the φ(i)

k form a complete set.
We define the particle and heat currents arising from each

trial function, respectively, as

j (i)
α = −2e

∫
d2k

(2π )2
(∇kεk )αφ(i)

k

∂ f 0
k

∂εk
,

u(i)
α = −2

∫
d2k

(2π )2
(εk − µ)(∇kεk )αφ(i)

k

∂ f 0
k

∂εk
, (7)

where α = x, y, z. These currents are generated by the electric
field E included explicitly in Eq. (2), as well as a spatially ho-
mogeneous temperature gradient ∇rT . The latter force comes
from the spatial derivative of β(r) in the second term of
Eq. (2). Gradients of µ(r) play the same role as the electric
field, and we follow the standard condensed matter convention
of defining an effective field E + (1/e)∇rµ that generates par-
ticle currents [32]. In what follows, we will use the variable E
to denote this combination of an external field and the gradient
of the chemical potential. Furthermore, we will neglect the
effect of density gradients on the steady-state properties of
the system. In this particular problem, neglecting density gra-
dients can be justified by noting that the Hartree terms which
couple density gradients to currents are of subleading order
in U/t . Furthermore, we envision a current-carrying state of
constant density.

Linearizing the Boltzmann equation, multiplying by )k ,
and integrating over k yields

∑

i

ξi

[
j (i)
α Eα

T
+ u(i)

α ∇α

(
1
T

)]
= 1

T

∑

i j

ξiξ jPi j, (8)

where

Pi j = *β

(2π )5

∑

Q

∫
d2k

∫
d2k′

∫
d2k′′

∫
d2k′′′(φ(i)

k + φ(i)
k′ − φ(i)

k′′ − φ(i)
k′′′

)(
φ

( j)
k + φ

( j)
k′ − φ

( j)
k′′ − φ

( j)
k′′′

)

× f 0
k f 0

k′
(
1 − f 0

k′′
)(

1 − f 0
k′′′

)
δ(k + k′ − k′′ − k′′′ − Q)δ(εk + εk′ − εk′′ − εk′′′ ). (9)

Under the assumption that the forces are small, the f 0
k can be

taken as homogeneous in this expression. Equation (8) does
not uniquely define the set {ξi}. Onsager [33,34] argued that
the optimal choice of {ξi} is the one that maximizes the rate
of entropy production from scattering. Appendix A, modeled
after Ref. [35], gives an explicit derivation in the present con-
text. The three terms in Eq. (8) represent the rates of entropy
change from the external field, temperature gradient, and scat-
tering: Ṡscatter = −Ṡfield − Ṡinhom. Following the optimization
procedure in Appendix B, we find

ξi =
∑

j

(P−1)i j

[
j ( j)
α Eα

T
+ u( j)

α ∇α

(
1
T

)]
. (10)

We define the thermoelectric matrix, following Ref. [31], as
(

J
U

)
= L

(
E

∇T

)
, (11)

where Jα =
∑

i ξi j (i)
α and Uα =

∑
i ξiu(i)

α are the total number
and heat currents. Inserting Eq. (10) into these definitions
yields

L =
(∑

i j j (i)
α (P−1)i j j ( j)

β − 1
T

∑
i j j (i)

α (P−1)i ju
( j)
β∑

i j u(i)
α (P−1)i j j ( j)

β − 1
T

∑
i j u(i)

α (P−1)i ju
( j)
β

)

. (12)

One can determine a variety of transport coefficients in terms
of the components of the thermoelectric matrix. In this paper,
we report the DC charge and thermal resistivities (ρ = 1/σ
and 1/κ , respectively), the Seebeck coefficient (α), and the

Lorenz number (L0 = κ
T σ

):

ρ = 1
L11

, 1/κ = − L11

det(L)
,

α = −L12

L11
, L0 = − 1

T
det(L)

L2
11

. (13)

One can readily verify that the entropy-maximizing con-
dition produces an upper bound on ρ and the bare thermal
resistivity, 1/κ̄ = 1/L22. This bare resistivity corresponds to
the thermal response for E = 0, as opposed to the more phys-
ical condition J = 0. The other coefficients, α, κ , and L0, do
not necessarily satisfy a variational bound.

III. RESULTS

We use two trial functions in the variational calculation:
φ(1)

k = (∇kεk )x and φ(2)
k = (εk − µ)(∇kεk )x. These are natural

deviations from equilibrium to generate charge (φ(1)) and heat
(φ(2)) currents. In Appendix F we estimate that the resulting
low-temperature resistivities are accurate to within 30%. We
expect similar accuracy at high temperature.

We divide our results between electrical and thermal prop-
erties in Secs. III A and III B, respectively.

A. Resistivity and scattering rate

Figure 1 shows the resistivity of the 2D Fermi-Hubbard
model due to quasiparticle-quasiparticle scattering, calculated
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FIG. 1. Rescaled resistivity ρ̃ = (t/U )2 ρ versus temperature,
scaled by ρ0 = e2/h̄. Data are shown for a variety of densities: nσ =
0.5 (green), 0.41 (blue), 0.35 (purple), 0.25 (red), and 0.1 (orange).
The resistivity is a monotonic increasing function of temperature for
all densities with a T -linear high-temperature asymptote ρ̃∞/ρ0 ≈
0.076 T/t . This asymptote is approached most quickly for densities
near half filling. Inset: Zoom in to low temperatures on a log-log
scale, showing the crossover to T 2 behavior. At nσ ! 0.185 the
Fermi surface is sufficiently small that no umklapp processes are
possible at zero temperature, so the resistivity decays exponentially.
At nσ = 0.5, perfect nesting leads to asymptotic T -linear resistivity
down to zero temperature. Power-law guides to the eye are given by
the dashed lines.

by numerically performing the integrals from Sec. II B. In our
weak-coupling picture, the only U -dependence comes from
the fact that the scattering rate (and hence the resistivity)
is proportional to (U/t )2. We find that the resistivity is a
monotonic increasing function of temperature that vanishes
at T = 0. These are the hallmarks of metallic behavior. As
will be explained in Sec. III A 1, the high-temperature asymp-
totic behavior is linear in temperature and independent of the
particle density. Next-leading-order high-temperature correc-
tions are of order 1/T and are minimized at half filling. The
high-temperature T -linear behavior persists to surprisingly
low temperature, and it would require very high-precision ex-
periments to identify the deviations for T ! t . The deviations
from linear are particularly small at half filling, though they
are nonzero.

As seen in the inset of Fig. 1, at low temperature there
are three different behaviors, depending on the filling. For
0 < |µF | < 2t we find ρ ∝ T 2, while for µF = 0 we in-
stead find ρ ∝ T . In Sec. III A 2 we explain this difference
in terms of band structure. For |µF | > 2t , low-temperature
umklapp scattering is forbidden and the resistivity falls off
exponentially.

We define a scattering lifetime using the Einstein relation,
σ = Dχc, and the definition of the diffusion constant in a
quasiparticle system, D = 1

d 〈v2〉τ (d is the number of spatial
dimensions). It is straightforward to compute 〈v2〉, the average
squared quasiparticle velocity, and χc, the charge compress-
ibility, for the noninteracting gas. The resulting scattering

FIG. 2. Scattering rate 0 versus temperature in units of the
high-temperature asymptote 0∞ ≈ 0.609 nσ (1 − nσ )U 2/h̄t . At low
temperatures, 0 ∝ T 2 for 0 < |µF | < 2t ; the scattering rate vanishes
as ∼T at half filling and exponentially for |µF | > 2t .

rate 0 = 1/τ is plotted in Fig. 2. In the limit of infinite
temperature, the scattering rate saturates. At low tempera-
ture we again find three regimes: 0 ∝ T 2, T , and e−1U /T

for 0 < |µF | < 2t , µF = 0, and |µF | > 2t , respectively. Here
1U = 2(|µF | − 2t ) is the umklapp gap [36].

1. High temperature

Cold atom experiments measuring transport in the 2D
Fermi-Hubbard model have thus far been limited to moderate-
to-high temperatures, T/t ! 1 [22,37]. In this section we
model this regime.

At high temperature we can expand the Fermi functions as
f 0
k = nσ − nσ (1 − nσ )βεk . It is then straightforward to write a

high-temperature series expansion for the integrals in Eqs. (7)
and (9). We find ρ̃∞(T ) = 0.076 (T/t )ρ0, where ρ0 = e2/h̄.
Similarly 0∞ = 0.609 nσ (1 − nσ )U 2/h̄t . A useful way to in-
terpret these asymptotic results is in terms of a diverging
effective mass within a Drude picture, where σ = ne2τ

m∗ with
τ = 1/0. There are positive and negative contributions to the
inverse effective mass from the bottom and top of the band.
These cancel at high temperatures, resulting in a divergent
resistivity despite the fact that the scattering rate saturates.
More precisely, in a relaxation time approximation

(
n

m∗

)

eff
=

∫
d2k
2π2

fk
(
∇2

k εk
)
, (14)

and for large T this integral vanishes as 1/T .
We further interpret the scattering rate as 0 = a−2nσ (1 −

nσ )σeff v̄, where nσ is the dimensionless filling fraction and
a is the lattice constant. Since the occupations fk approach
a constant as T → ∞, the average velocity approaches v̄ =√

〈v2〉 → 2at/h̄. This implies that the effective cross-section
is σeff = 0.3a(U/t )2. Up to the numerical prefactor, this last
result can be derived from dimensional analysis and the Born
approximation expression σeff ∝ U 2.
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While this calculation is only justified for perturbatively
small U/t , it leads to arbitrarily large resistivity at sufficiently
high temperature. This high-temperature divergence is well
documented for single-band models [38–40], and we empha-
size that this should not be interpreted as a violation of the
MIR limit: the scattering rate and mean free path remain
bounded.

2. Low temperature

Low-temperature quantities depend only on properties of
the Fermi surface, and are derived by performing a Som-
merfeld expansion [1]. Applying this expansion to Eq. (9)
gives a leading-order T 2 behavior of the resistivity for generic
filling (Appendix C) and T -linear behavior at half filling
(Appendix D). The key features of this argument are de-
scribed below, as well as a more qualitative argument. Only
momentum nonconserving umklapp processes contribute to
the resistivity at low temperature. When |µF | > 2t , these
processes are geometrically disallowed and the resistivity is
exponentially small in 1U /kBT .

To reach a qualitative understanding of this behavior,
we consider the rate at which a particle of momentum k1
undergoes scattering. In particular, we consider processes
(k1, k2) → (k3, k4), with energies ε1, ε2, ε3, ε4, with |ε j −
µF | < kBT . At low temperature, the number of allowed
choices of k2 scale with T . Having fixed k1 and k2, energy and
momentum conservation constrains three of the four degrees
of freedom of k3 and k4. One therefore expects that the number
of allowed final states should scale as T . Consequently, the
scattering rate (and resistivity) scale as T 2. One factor of T is
associated with the freedom to choose k2 and the other factor
corresponds to redistributing energy between k3 and k4.

At half filling the counting is slightly different. Up to
logarithmic corrections from the divergent density of states,
the number of allowed values of k2 again scales as T . Energy
and momentum conservation again restrict all but one degree
of freedom of k3 and k4. At half filling, however, the phase
space for scattering is dominated by nested scattering events
that are automatically within kBT of the Fermi surface. Thus
the number of final states is independent of temperature and
the scattering rate scales as T .

In Appendix D we put this argument on stronger mathe-
matical foundations. We express the resistivity as an integral
over the energy of pairs of scattering particles, and expand the
Fermi functions to arrive at

ρ ∝ β

∫ 8t

−8t
dE

(E/2 − µF )2

sinh2[β(E/2 − µF )]
fT (E ). (15)

Up to numerical factors, T 2 fT (E ) is the joint density of states
for scattering, restricting the particle energies to be within kBT
of E/2. It is well approximated by

fT (E ) =






1
16π4

√( 4t
E

)2 − 1, |E | > cT,

1
16π4

√( 4t
cT

)2 − 1, |E | ! cT,

(16)

where c is a numerical constant. As long as |µF | 0= 0, we can
take the limit

lim
T →0

fT (E ) ≡ f (E ) = 1
16π4

√
(4t/E )2 − 1. (17)

FIG. 3. Crossover temperature Tx , where the dominant T 2 term
in the Sommerfeld expansion of the resistivity is equal to the expo-
nentially suppressed subleading correction (black). Near half filling
we see that the crossover temperature vanishes as Tx ∝ |µF | (grey
dashed line). Umklapp scattering is geometrically forbidden for
small Fermi surfaces, which causes Tx to vanish as |µF | → 2t .

The first term in the integrand of Eq. (15) becomes a delta-
function as T → 0, and we recover the expected T 2 resistivity.
At µF = 0, however, fT (E ) ∝ 1/T and the resistivity is T -
linear. For |µF | > 2t the resistivity vanishes as there are no
allowed umklapp processes.

At generic filling, the strong E = 0 peak in fT (E ) gives
a subleading contribution to the resistivity which scales
as Te−2|µF |/T . Thus one has a crossover between a low-
temperature T 2 regime and a higher-temperature linear-T
behavior. Figure 3 illustrates this crossover by finding the
temperature, Tx, where this subleading term is equal to the
dominant T 2 contribution. This crossover is also evident in
the full numerical results in Fig. 1.

The crossover temperature vanishes as |µF | → 2t due to
the geometric exclusion of umklapp processes. Near half fill-
ing, Tx vanishes as ∼|µ| and it is natural to interpret the
crossover in terms of the thermal occupation of the nested
E = 0 states. At half filling, the crossover temperature van-
ishes. It is noteworthy that Tx is never larger than 0.3t , which
is an order of magnitude below the bandwidth.

B. Thermoelectric properties

Figure 4 shows the thermal resistivity 1/κ and the Lorenz
number L0 = κ/T σ , calculated using the techniques de-
scribed in Sec. II. The thermal resistivity, plotted in units
of 1/κ0 = 1/h̄t , diverges as T 2 at high temperatures with
a coefficient that is independent of the density: κ̃0/κ̃∞ ≈
0.018 (T/t )2. Next-leading-order corrections give a small
density-dependent vertical offset that vanishes at half filling.
This high-temperature behavior can be modeled by the same
techniques as in Sec. III A 1.

At low temperatures we find that 1/κ vanishes linearly
in temperature for 0 < |µF | < 2t . At half filling the thermal
resistivity approaches a constant (1/κ → 0.019/κ0) due to the
same nesting argument as found in Sec. III A 2. For small
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FIG. 4. (a) Scaled thermal resistivity 1/κ̃ = (t/U )2(1/κ ), in
units of 1/κ0 = 1/h̄t , as a function of temperature for a variety of fill-
ings. See Fig. 1 for key. The thermal resistivity diverges as T 2 at high
temperatures with a small vertical offset at finite doping. Inset: The
thermal resistivity at low temperatures (dots) with error bars from
estimated numerical uncertainty. Dotted lines give low-temperature
expansion for 0 < |µF | < 2t ; 1/κ vanishes exponentially for small
Fermi surfaces (|µF | > 2t). At half filling, the thermal resitivity
approaches a constant value of 1/κ̃ → 0.019/κ0. (b) Lorenz number
L0 = κ/T σ , versus temperature. The Lorenz number vanishes as
1/T 2 at high temperatures. A Wiedemann-Franz law is satisfied at
zero temperature for 0 < |µF | < 2t with a Lorenz number of 5π 2/36
and at half filling with a Lorenz number that appears to approach
π 2/3 (labeled dashed lines); for |µF | > 2t , the Lorenz number van-
ishes at low temperatures.

Fermi surfaces (|µF | > 2t), umklapp processes are gapped
out and 1/κ vanishes exponentially.

Comparing the temperature dependence of the thermal re-
sistivity κ and the conductivity σ , we see that the Lorenz
number L0 = κ/T σ approaches a constant at low temperature.
This behavior is familiar from conventional materials, where
elastic impurity scattering leads to Lelastic

0 = π2/3 at low tem-
peratures. This Wiedemann-Franz relation is an indication that
the same mechanism governs thermal and charge diffusion.
It is often used as a means to judge the relative elasticity of
resistive scattering events [41].

Through an expansion of the Pi j scattering integrals
at low temperature, we find that for 0 < |µF | < 2t the
low-temperature Lorenz number is L0 = 5π2/36. This is
somewhat smaller than the value coming from elastic impurity
scattering. Figure 4 confirms this result. At half filling the
Lorenz number appears to approach a different value π2/3.
This is indicative of a qualitative change in the scattering
processes. For |µF | > 2t the Lorenz number vanishes at low
temperature. At high temperatures, the Lorenz number van-
ishes as 1/T 2: κ ∝ T −2, σ ∝ T −1.

FIG. 5. (a) Seebeck coefficient α versus temperature T . At
infinite temperatures, the Seebeck coefficient approaches the high-
temperature free Fermi gas value eα∞ = − ln[(1 − nσ )/nσ ]. At low
temperatures the Seebeck coefficient vanishes linearly with temper-
ature. The Seebeck coefficient is particle-hole antisymmetric and is
therefore strictly zero at half filling. (b) Slope of the leading-order
low-temperature behavior of the Seebeck coefficient versus chemical
potential (red) as well as the slope of the free Fermi gas Seebeck
coefficient at zero temperature (blue). Introducing scattering causes
the slope to diverge at half filling and at |µF | = 2t . Exponentially
suppressed umklapp scattering causes the deviation between the
curves for |µ| > 2t .

The Seebeck coefficient, or thermopower, α, characterizes
the voltage induced by a thermal gradient. It is more com-
plicated to understand than either the electrical and thermal
resistivities. For example, it can have quite rich density depen-
dence [42]. Figure 5(a) shows the temperature dependence of
α. At high temperature it approaches the infinite-temperature
noninteracting value, eα∞ = − log[(1 − nσ )/nσ ], which is
derived in Appendix E. This form is consistent with the Heikes
formula [43,44]. At low temperatures the thermopower van-
ishes linearly in T for all fillings.

In Eq. (13) we argue that α = −L12/L11 where Li j in-
volves a moment of the collision integral. Within the Born
approximation, both L12 and L11 scale as U −2, and hence α
is independent of the interaction strength. Despite its inde-
pendence from U , the α in Eq. (13) differs from that of the
noninteracting Fermi gas, indicating that the U → 0 limit is
singular. Behavior in this regime is often understood in terms
of the Mott formula [32]

eαMott = T
π2

3
d

dµF
ln[ρ(µF )〈τ (ε, k)∇kεk〉µF ]. (18)

The density of states is given by ρ(x) and 〈. . .〉µF de-
notes momentum averaging over the Fermi surface. The
low-temperature slope of the Seebeck coefficient in Fig. 5(b)
diverges at half filling and at |µF | = 2t due to divergences
in the log-derivative of the scattering lifetime at those points.
It should be noted, however, that the radius of convergence
of the low-temperature expansion vanishes at both of those
points: beyond T ≈ t , the effects of these low-temperature
divergences are minimal. Umklapp scattering is exponentially
suppressed when |µF | > 2t , but nonetheless α vanishes lin-
early in T with a coefficient that differs from that of the ideal
gas.
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IV. DISCUSSION

A. High-temperature resistivity beyond weak coupling

An important conclusion of our work is that high-
temperature T -linear resistivity is a feature of weakly coupled
systems with a bounded spectrum. Such behavior is also seen
at strong coupling [13,16,38–40]. The arguments, as presented
in some of those papers, are generic, and we summarize them
here.

We begin by considering the fluctuation-dissipation theo-
rem [45]

Re σ (ω) = 1 − e−βω

2ω

∫ ∞

−∞
dt eiωt*(t ), (19)

which expresses the real part of the optical conductivity in
terms of the current-current correlation function

*(t ) = Tr[e−βHJ (t )J (0)]. (20)

Here J is the current operator and J (t ) = eiHt Je−iHt . For a
system with a bounded spectrum, such as the Fermi-Hubbard
model, one can consider the limit where the temperature is
large compared to all internal energy scales. We are then able
to expand the thermal density matrix e−βH in powers of β.
The leading-order contribution to the conductivity is given by

σ (ω) = β

2

∫ ∞

−∞
dt eiωt Tr[J (t )J (0)] + · · · . (21)

Assuming the integral is finite, one immediately sees that
the resistivity ρ = 1/σ (0) diverges linearly with temperature.
This divergence is associated with static properties of the
system (e.g., charge compressibility) rather than dynamical
quantities (e.g., diffusion constant or scattering rate). Our
weak coupling argument can be viewed as a special case
of this general argument, where we are able to specifically
attribute the divergence to the effective mass, (n/m∗)eff .

By contrast, a resistivity that is linear-in-temperature at
intermediate (relative to the energy spectrum of the system)
or at asymptotically low temperatures is not generic and calls
for a specific explanation [39] (cf. Sec. III A 2).

B. Experimental implications

While our results have general implications, they are most
directly applied to cold atom experiments. To date there
have been three experiments that measure the conductiv-
ity of the Fermi-Hubbard model. The first two experiments,
by the Thywissen [46] and DeMarco [37] groups, explored
three-dimensional (3D) Fermi-Hubbard transport. The Thy-
wissen group applied a time-varying force to a harmonically
trapped lattice gas and measuring the center-of-mass re-
sponse [46]. They extracted σ (ω) = 〈 j(ω)〉/F (ω), yielding
a low-frequency conductivity and a transport scattering rate.
The DeMarco group instead used a Raman pulse to generate
spin currents in a 3D Fermi-Hubbard system [37]. From the
subsequent decay of these currents they were able to extract
a transport lifetime and define a resistivity. These two experi-
ments are complementary in that one worked in the frequency
domain and the other in the temporal domain.

The third cold atom experiment, by the Bakr group [22],
involved a 2D lattice. They used an additional superlattice

potential to create a charge-density wave. After turning off
the superlattice, they imaged the decay of the density wave.
By repeating the experiment with different wave vectors, they
extracted a diffusion constant and scattering rate. They also
measured the charge compressibility, χc, and used the Nernst-
Einstein equation to infer the conductivity σDC = Dχc. This
experiment serves as the primary point of comparison for our
calculations.

The top-line result of the Bakr experiment is that they
see a T -linear resistivity, which bears a resemblance to the
phenomenology of “strange-metallic” behavior in correlated
metals [4–9]. This behavior persisted down to temperatures
T/t " 1 despite nontrivial temperature dependence in the dif-
fusion constant and compressibility. They also determine that
the scattering rate saturates at high temperatures and exhibits
a sharp downturn below T/t ∼ 4. While our weak-coupling
calculation does not quantitatively reproduce their results (as
they have U/t ≈ 8), we demonstrated that all qualitative fea-
tures are present in the weak-coupling model. On the basis
of these observations, we hypothesize that our results are
continuously connected to their experiments.

The clearest test of this hypothesis would be to repeat the
Bakr study with weaker interactions. This regime could be
achieved by tuning the lattice depth, transverse confinement,
or atomic scattering length (via a Feshbach resonance). One
technical challenge with the weakly interacting limit is that,
to avoid boundary effects, the atomic cloud must be large
compared to the mean free path. For current experiments, with
sizes of order 30 lattice spacings, this restricts U ! 0.6t at
T/t = 0.5.

An important aspect of our study is the crossover between
the low-temperature T 2 and high-temperature T 1 resistivity.
This crossover occurs at temperatures well below those stud-
ied in Ref. [22]. In addition to the challenges of achieving
these temperatures, reliable low-temperature thermometry re-
quires novel approaches [47]. The crossover temperature is
greatest near fillings of nσ = 0.185 and 0.815, where the
umklapp gap opens up.

Nesting plays an important role in our weakly interacting
transport calculation. This physics can be explored by adding
lattice anisotropy or a superlattice, both of which shift the fill-
ing at which nesting occurs. One can also study other lattices
which do not display nesting [48–50].

The density dependence of the resistivity is at least as inter-
esting as the temperature dependence. In particular, the most
dramatic manifestation of strong-coupling physics is that at
half filling the Fermi Hubbard model describes an interaction-
driven insulator: when T " U/10, the resistivity rises as the
temperature is reduced [28,29]. When U is large compared to
t , one expects that proximity to this Mott physics will lead
to density dependence of the resistivity which significantly
differs from our weak-coupling results, even at intermediate
temperatures [13].

In addition to calculating the electrical resistivity, we con-
struct the full thermoelectric matrix, which also describes
heat transport and thermoelectric effects. Measuring thermal
transport in cold atoms is quite challenging, but there has been
at least one successful experiment [51,52]. There the authors
used a gate beam to separate two cold atom “reservoirs”
with a quasi-2D channel. One reservoir is excited, and the
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temperature of the both reservoirs is monitored. The thermal
conductivity of the channel can them be deduced. One could
imagine adding a lattice to this setup to measure the thermal
conductivity of the Fermi Hubbard model. There may further
be approaches based on tilted lattices which give access to the
full thermoelectric matrix [53].

A more conventional approach to thermoelectric measure-
ments of the Hubbard model might be achieved in transition
metal dichacogenide (TMD) heterobilayers, which realize
2D Fermi-Hubbard physics on a Moiré lattice [54]. Such a
scheme would be advantageous insofar as conventional meth-
ods for thermoelectric transport could be used. One might
tune the effective interaction strength by changing the distance
between the gates and the sample: when the gates are closer,
they more effectively screen the long-range Coulomb interac-
tion. In general, however, the downside of TMDs compared to
cold atoms is in the relative difficulty of tuning the interaction
strength as well as the presence of a long-range interaction
that complicates the theoretical analysis. Additionally, lattice
defects and phonons may contribute to the resistivity.

C. Limits of validity

Our results are well controlled, and should be accurate for
small U/t . Quantifying the exact range of validity, however,
is challenging. For typical fillings, one would naively assume
that the results are quantitative for U " 0.1t and qualitatively
accurate for U " t , but this would need to be verified by
calculating the next-order terms. One could also potentially
explore the range of validity by extending strong coupling
calculations [13,16,18] to smaller U/t .

The precise range of validity will depend on the tempera-
ture and density of the system: at sufficiently low temperatures
the half-filled Fermi-Hubbard model displays a nesting-driven
instability [28,29] towards a Mott insulating state. This occurs
at any U/t > 0, but the instability temperature falls with U/t .
Conversely, the range of qualitative validity is likely consid-
erably better in the dilute limit, where there are no nesting
instabilities and the exact collision integral can be written
in terms of the two-body T -matrix [55]. In this limit, one
would expect the factor of (U/t )2 to be renormalized, but the
temperature dependence should not change dramatically.

In addition to assuming that U ' t , we make use of a
variational ansatz for the phase-space distribution function. In
Appendix F we systematically explore the dependence of the
resistivity on the trial functions. We find that at low temper-
ature a more sophisticated ansatz rescales the resistivity, but
does not change the temperature or density dependence.

V. CONCLUSION AND OUTLOOK

Experimental studies of cold atom transport in optical
lattices are still in their relative infancy. The primary exper-
imental papers cited here have all been published in the last
three years, and their full impact has yet to be felt. Our paper
approaches the transport problem from the weak-coupling
side, in which calculations are tractable and the physical prin-
ciples are readily extracted.

The key conclusion of our study is that even weak
coupling models can host a variety of “unconventional”

transport properties. As has been well established in prior
work [13,16,18,38–40], the high-temperature resistivity di-
verges in a single-band model. This divergence is not
associated with a short mean-free path, but rather with a
diverging effective mass. For all coupling strengths the the
transport coefficients are simple power laws ρ ∼ T , 1/κ ∼
T 2, α ∼ T 0. The prefactors have nontrivial dependence U and
nσ . Mapping out this dependence on interactions and density
is a prime target for future experiments.

At weak coupling, these high-temperature results persist
to temperatures on the order of T ≈ t (or lower near half
filling). While these are high temperatures in the context of
condensed matter systems, it bears re-emphasizing that cold
atom experiments have yet to probe transport at temperatures
considerably colder than this.

At moderate temperatures, 1 < T/t < 4, we find that the
regime of near-T -linearity in the electrical resistivity is ac-
companied by a nontrivial order-of-magnitude decrease of the
scattering rate. In our calculation, the featurelessness of the
resistivity in this range of temperatures arises from an inter-
play between the quasiparticle scattering rate and the effective
mass (or, equivalently, between the diffusion constant and the
charge compressibility) that is entirely explicable in terms of
band theory. We emphasize this point to draw a comparison to
a similar phenomenon observed in the Bakr experiment [22],
which probed the strongly interacting limit.

At low temperature, we use a Sommerfeld expansion to
recover the expected Fermi-liquid result ρ ∝ T 2 and similar
expressions for the full thermoelectric matrix. The radius of
convergence of this expansion is finite, and it vanishes at half
filling, where ρ ∝ T . This anomalous scaling arises from the
continuum of umklapp scattering events enabled by the nested
band structure. The nesting condition can also lead to various
spin-density wave and charge-density wave instabilities which
may preempt some of this behavior [23,28,29,48].

The prime motivator of the atomic Hubbard model exper-
iments is trying to gain understanding of strongly correlated
phenomena, including high-temperature superconductivity.
Such insight will require much lower temperatures. The pseu-
dogap regime in the cuprates occurs for T " 0.1t . Strange
metal behavior is also apparent at those scales. The crossover
between the weak-coupling physics explored in this paper and
the strong-coupling physics seen in materials is likely to be
quite rich and well suited for exploration using cold atom
experiments.
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APPENDIX A: EQUATION OF MOTION FOR ENTROPY

For a given distribution function, fk , the von Neumann
entropy of the ensemble of fermions is

S = −
∫

d2k
(2π )2

[ fk ln fk + (1 − fk ) ln(1 − fk )]. (A1)

165143-8



TRANSPORT IN THE TWO-DIMENSIONAL … PHYSICAL REVIEW B 104, 165143 (2021)

Near equilibrium, the distribution function has the form

fk = f 0
k − )k

∂ f 0
k

∂εk
, (A2)

where )k is small. We take the time derivative of Eq. (A1) and
expand to leading order in )k:

Ṡ = −
∫

d2k
(2π )2

ln
(

fk

1 − fk

)
ḟk

≈ −
∫

d2k
(2π )2

[−β(εk − µ) + β)k] ḟk. (A3)

We recognize Eq. (A3) as an equation of motion for the total
entropy, Ṡ = βĖ − βµṄ + Ṡneq, and conclude

Ṡneq = −
∫

d2k
(2π )2

β)k ḟk . (A4)

Inserting ḟk from the linearized Boltzmann equation, Eq. (2),
into Eq. (A4) leads to the conclusion that Eq. (8),

∑

i

ξi

[
j (i)
α Eα

T
+ u(i)

α ∇α

(
1
T

)]
= 1

T

∑

i j

ξiξ jPi j,

is equivalent to Ṡneq = 0. The right-hand side is the rate of
entropy production from scattering processes. This must equal
the left-hand side, the rate at which this heat is carried away.
In Appendix B, we show that the optimal distribution function
fk is obtained by maximizing the rate of entropy production.

APPENDIX B: VARIATIONAL PRINCIPLE

Following Ziman [31,35], here we derive a variational
principle for transport coefficients. We begin by introducing
compact notation, defining

Xk = −∇r f 0
k · vk + eE · ∇k f 0

k (B1)

as the left-hand side of the steady-state Boltzmann equation,
expanded to linear order in the electric field and thermal
gradients. We think of Xk as components of a vector and write
X as the abstract vector. Similarly, ) is the abstract vector
with components )k [see Eq. (A2)]. We define the positive
definite linear operator P as

(P))k = −Ik[)], (B2)

where Ik[)] is the linearized collision integral defined in
Eq. (6). The linearized Boltzmann equation then reads

X = P). (B3)

We introduce an inner product

〈),3〉 =
∫

d2k
(2π )2

)(k)3(k). (B4)

Taking the inner product of Eq. (B3) with ) yields

〈), X 〉 = 〈), P)〉, (B5)

which can be recognized as the equation for entropy balance,
Eq. (8).

Let ) be the exact solution to Eq. (B3) and let 3 be a
variational ansatz which obeys Eq. (B5), i.e.,

〈3, X 〉 = 〈3, P3〉. (B6)

We will show that

〈), P)〉 " 〈3, P3〉, (B7)

and hence the best variational solution is the one that maxi-
mizes 〈3, P3〉. As argued in Appendix A, this corresponds
to maximizing the entropy produced in collisions.

The proof is straightforward. Since P is positive definite
〈(3 − )), P(3 − ))〉 " 0. Expanding this out yields

〈), P)〉 " −〈3, P3〉 + 〈3, P)〉 + 〈), P3〉. (B8)

Explicitly writing out the integral reveals 〈), P3〉 =
〈3, P)〉. We then use Eqs. (B3) and (B6) to find 〈3, P)〉 =
〈3, X 〉 = 〈3, P3〉. Substituting this into Eq. (B8) yields the
desired result, Eq. (B7).

APPENDIX C: COLLISION INTEGRAL
AT LOW TEMPERATURE

Here we discuss the Sommerfeld expansion of the col-
lision integral at low temperatures. We will limit ourselves
to |µF | 0= 0, leaving the discussion of the half-filled case
for Appendix D. We will use a one-component ansatz, with
φk = (∇kε)x = 2t sin kx.

Our starting point is Eq. (9). We rewrite the energy and
momentum delta functions as

δ(εk + εk′ − εk′′ − εk′′′ ) =
∫

dE δ(εk + εk′ − E )

× δ(εk′′ + εk′′′ − E ), (C1)
∑

Q

δ(2)(k + k′ − k′′ − k′′′ − Q)

=
∑

Q

∫
d2K δ(2)(k + k′ − K ) δ(2)[k′′ + k′′′ − (K − Q)].

(C2)

We now take the low-temperature limit of the product of Fermi
functions, noting that both f (ε) f (E − ε) and [1 − f (ε)][1 −
f (E − ε)] = eβ(E−µF ) f (ε) f (E − ε) are sharply peaked about
ε = E/2, and that

∫
dε

1
eβ(ε−µF ) + 1

1
eβ(E−ε+µF ) + 1

= E − 2µF

1 − eβ(E−µF )
, (C3)

which leads to the approximation

f 0
k f 0

k′
(
1 − f 0

k′′
)(

1 − f 0
k′′′

)

≈ (E/2 − µF )2

sinh2[β(E/2 − µF )]
δ(εk − E/2) δ(εk′′ − E/2).

(C4)

We substitute this leading behavior into Eq. (9), yielding a
resistivity, ρ = P/ j2, of the form

ρ = β

j2

∫ 8t

−8t

(E/2 − µF )2

sinh2 β(E/2 − µF )
f (E )dE , (C5)

where f (E ) is an integral over the center-of-mass momenta of
the colliding pairs that will be discussed below. The current at
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zero temperature is simply j(µF ) = 2(e/h̄) ζ (µF /4t ) where

ζ (y) = 4|y|
π2

[E (1 − y−2) − 5(1 + y−1, 1 − y−2)

− 5(1 − y−1, 1 − y−2)] (C6)

and E (k) and 5(n, k) are complete elliptic integrals of the
second and third kinds, respectively. If f is well behaved in
Eq. (C5), one can replace

(E/2 − µF )2

sinh2 β(E/2 − µF )
→ π2

3
T 3 δ(E/2 − µ), (C7)

which yields

ρ = π2

3
T 2 f (2µF )/[ j(µF )]2. (C8)

The function f (E ) in Eq. (C5) involves an integral over the
incoming momenta k, k′ and the outgoing momenta k′′ and
k′′′. Due to momentum conservation, we can write f (E ) =∫

d2K g(E , K ), where K is the center-of-mass momentum,
and g is an integral over the relative momenta. The only term

in Eq. (9) coupling the incoming and outgoing integrals is
the factor (φk + φk′ − φk′′ − φk′′′ )2. Expanding this quadradic
allows us to express g as a sum of four terms, each of which
are a product of incoming and outgoing terms,

g(E , K ) =
∑

Q

4
(2π )5

[F (2)(E , K )F (0)(E , K − Q)

+ F (2)(E , K − Q)F (0)(E , K )

− 2F (1)(E , K )F (1)(E , K − Q)], (C9)

where

F (m)(E , K ) = 2 sin
Kx

2

∫ π

−π

d2q cosm(qx )

× δ(εq+K/2 + εq−K/2 − E ) δ(εq+K/2 − εq−K/2)
(C10)

and K/2 ± q are the momenta of the two scattering particles.
Changing coordinates to u = cos(Kx/2) and v = cos(Ky/2),
this can be rearranged to find

f (E ) = 1
4π5

∫ 1

|E |/4

dv√
1 − v2

∫ v−|E |/4

0

du√
1 − u2

v2 + u2 − 2u2v2

√
(u2 − v2)2[E2/16 − (u + v)2][E2/16 − (u − v)2]

. (C11)

We find empirically that this integral evaluates to

f (E ) = 1
16π4

√
(4t/E )2 − 1. (C12)

The physical consequences are discussed in Sec. III A 2.

APPENDIX D: PHASE-SPACE INTEGRALS
AT HALF FILLING

As presented, the integral in Eq. (C5) is divergent due
to the fact that f (E ) ∝ E−1 for small E . This divergence
is an artifact of the approximation in Eq. (C4) where the
product of Fermi functions is replaced with infinitely sharp
delta-functions. Here we show that at finite T the divergence
is cutoff, and as T → 0, f (E = 0) ∝ β.

Including the finite widths of the Fermi function steps,
Eq. (C4) takes on the form

f 0
k f 0

k′
(
1 − f 0

k′′
)(

1 − f 0
k′′′

)
≈ (E/2 − µ)2

sinh2[β(E/2 − µ)]

× δβ (εk − E/2) δβ (εk′′ − E/2),
(D1)

where δβ (x) has area 1 and a width that scales as 1/β. The
exact form is not important. Setting E = 0, the phase-space
integrals that appear in Eq. (C9) become

F (m) = 2 sin
(

1
2

Kx

)∫ π

−π

d2k cosm(kx ) δ(εk+K/2 + εk−K/2)

× δβ (εk+K/2 − εk−K/2). (D2)

Note, the energy conserving delta-function is not broadened.
For E = 0, the function F (1) vanishes due to symmetry.

Along the diagonals (Kx = ±Ky) the integrand is poorly
behaved, and as β → ∞ the integral is dominated by those
regions. To calculate the contribution from one diagonal, we
shift the center-of-mass variables Kx = P + q and Ky = P −
q, and consider the region where |q| ' P. The contribution
from the other diagonals is identical.

The functions F (0) and F (2) have the same scaling with β,
so we only give the arguments for F (0). We use the energy
conservation delta-function to perform the ky integral, treating
q as small,

F (0)(K ; β ) ∼
∫

dkx
1

| sin(kx )|
δβ

(
4q cos(P/2) sin(|kx|)

−4q
sin2(P/2) cos2(kx )
cos(P/2) sin(kx )

)
. (D3)

There are now two small parameters in this problem (1/β
and q), so we must consider the asymptotic behavior of the
integral for βq 3 1 and βq ' 1 independently. In the first
case, the broadened delta function is only nonzero when kx
is within ∼1/|βq| of the points P/2 and π − P/2. The factor
of 1/| sin(kx )| is well behaved in these regions, and we can
replace it with 1/| sin(P/2)|. Treating δβ as a box function,
we see that the βq 3 1 contribution to the integral scales
as F> ∼ β(1/βq)2. The contribution to f (E = 0) from this
region is then

f > ∼ β2
∫

1/β

dq
q4

∼ β. (D4)

The βq ' 1 contribution to the integral comes from the re-
gion where kx is not within |βq| of the points 0 and ±π . The
integrand diverges as 1/|kx| near these points, so we need only
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consider the behavior in their vicinity

F< ∼ β

∫

βq

dkx

|kx|
∼ −β ln(βq). (D5)

The contribution to f is has the same scaling

f < ∼
∫ 1/β

0
dq β2[ln(βq)]2 ∼ β. (D6)

Thus we established that the divergence is cutoff, as described
by Eq. (16).

APPENDIX E: SEEBECK COEFFICIENT
OF NONINTERACTING GAS

While some transport coefficients, such as the electrical
and thermal resistivities, are undefined in the absence of
scattering, the free Fermi gas has a well-defined Seebeck co-
efficient. The steady-state, collisionless Boltzmann equation
describes the behavior of the distribution function in response
to electric fields and inhomogeneities: Eq. (2) with ∂t fk = 0
and Ik[ f ] = 0. As in Eq. (5), we take T (r) and µ(r) to be
slowly varying, writing fk = f 0

k (r). We absorb spatial deriva-
tives of µ(r) into the definition of the field, and hence the
relevant spatial derivatives of fk are proportional to ∇rT . We
then take the moment of the Boltzmann equation with respect
to ∇kεk to arrive at a steady-state condition for the particle
number current

∇rT
∫

d2k
(2π )2

(∇kεk )2 ∂ fk

∂T
+ eE

∫
d2k

(2π )2
(∇kεk )2 ∂ fk

∂εk
= 0,

(E1)
The Seebeck coefficient relates the electric field and thermal
gradient E = α∇rT under the condition of a vanishing num-
ber current. We therefore rearrange Eq. (E1) to find

eα = β

∫ d2k
(2π )2 (εk − µ)(∇kεk )2 f 0

k

(
1 − f 0

k

)

∫ d2k
(2π )2 (∇kεk )2 f 0

k

(
1 − f 0

k

) . (E2)

At high temperature, T → ∞, the Seebeck coefficient ap-
proaches eα → −βµ = log[nσ /(1 − nσ )]. At low tempera-
ture, T → 0, the Seebeck coefficient vanishes linearly with
temperature.

APPENDIX F: ACCURACY OF TRIAL FUNCTIONS

Here we evaluate the accuracy of our variational trial
wave function by systematically including higher moments.
We consider the low-temperature limit, calculating ρ via

FIG. 6. Low-temperature resistivity ρN calculated using a vari-
ational ansatz using N trial functions of the form φ (i) = (εk −
µ)i−1(∇kεk )x . At low temperature including more terms simply
rescales the resistivity, and the ratio ρN/ρ1 is independent of all
microscopic parameters. Blue line: Best fit of the form ρN/ρ1 =
1 − A

∑N
i=1 i−α , with α = 1.86 and A = 0.368. Black dashed line:

Asymptote of the fitting curve at ρ∞/ρ1 = 0.707.

Eq. (13), including N trial functions of the form φ(i) = (εk −
µ)i−1(∇kεk )x. At low temperatures, the scattering integrals Pi j
defined in Eq. (9) can be expanded as shown in Appendix C.
In particular, using the approximation in Eq. (C4) the low-
temperature expression for Pi j is

Pi j = β

∫ 8t

−8t

(E/2 − µF )i+ j

sinh2 β(E/2 − µF )
fT (E )dE , (F1)

where the function fT (E ) is defined in Eq. (16). We then
expand the integrand using Eq. (C7) to determine the leading-
order low-temperature behavior of Pi j . The currents j (i) and
u(i) [see Eq. (7)] are expanded in an analogous manner, and
we determine the thermoelectric matrix using Eq. (12).

We define ρN as the resistivity calculated using all trial
function φ(i) with i ! N . We find that including terms beyond
N = 1 simply rescales the thermoelectric response functions:
at low temperatures the ratios between different approximants
ρN/ρ1 are temperature and density independent.

Figure 6 shows how the resistivity changes as we add more
terms to our ansatz. The calculation is variational, so the
resistivity monotonically decreases as more terms are added.
Extrapolating N → ∞ gives a 30% reduction from the N = 2
result discussed in the main paper. More general ansatze are
unlikely to significantly change this result. Similarly, it is
reasonable to assume that this estimate of the error applies
at all temperatures.
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