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Emission of particles from a parametrically driven condensate in a one-dimensional lattice
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Motivated by recent experiments, we calculate particle emission from a Bose-Einstein condensate trapped in
a single deep well of a one-dimensional lattice when the interaction strength is modulated. In addition to pair
emission, which has been widely studied, we observe single-particle emission. Within linear response, we are
able to write closed-form expressions for the single-particle emission rates and reduce the pair emission rates to
one-dimensional integrals. The full nonlinear theory of single-particle emission is reduced to a single variable
integrodifferential equation, which we numerically solve.
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I. INTRODUCTION

Cold atom experiments have enabled previously unimag-
inable investigations of quantum dynamics, which combine
the richness of classical dynamical systems with the pro-
found and unexpected features of quantum mechanics. They
explore fundamental questions of how order and correlations
develop [1,2] and find extensive applications, including dis-
covering novel nonequilibrium phases [3,4] and modeling the
evolution of the early universe [5–7]. A recent experiment
from the Chicago group [8] and several follow-ups [9–14]
observed jets emerge from a gas of ultracold cesium atoms,
when the interaction strength was modulated. This was both
surprising, and visually striking. Motivated by the phenom-
ena, we develop and analyze a simple model of matter-wave
emission, which reveals new aspects of such jet emission.
In particular, we find that in addition to the experimentally
observed pair jets, there are regimes where one can see single-
particle emission.

The key technology behind these experiments is the ability
to control the interaction strength of ultracold atoms [15,16].
At very low temperature, only s-wave collisions are allowed,
and the low-energy scattering is quantified by a single num-
ber, the s-wave scattering length. Magnetic fields mix in
different scattering channels, and allow one to modify the
scattering length. Experiments have demonstrated both tem-
poral [17–20] and spatial [21–24] control of the interactions,
enabling an incredibly wide range of explorations [19,25–28].
In the jet experiments [8] a spatially uniform magnetic field is
sinusoidally modulated at frequencies ω/2π ∼ kHz—which
are fast compared to typical timescales of collective oscil-
lations, but very slow compared to atomic excitations. As a
consequence, the scattering length oscillates, which leads to
particle jets.

This experiment has been modeled using Bogoliubov the-
ory [8,29–31]. The oscillating scattering length appears as a
parametric drive in the equations for the elementary excita-
tions of the condensate. The drive resonantly excites pairs of
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particles, each of which has energy h̄ω/2, and these form the
jets. The quantum state, with these strong pair correlations, is
quite exotic. At larger drive strength they also observed non-
linear processes, where the outcoming particles have multiples
of this energy [11].

We analyze such particle emission within a 1D lattice
model. This experimentally accessible geometry is chosen
to make the analysis as simple as possible, thereby making
the phenomena as clear as possible. This model has a finite
bandwidth, which spectrally separates various processes. We
present two approaches: linear response theory and mean-field
theory.

In the linear regime we use Green’s functions to calcu-
late the emission rates. We find two distinct instabilities:
The pair emissions observed in the experiment, and a dis-
tinct single-particle emission process. To explore the full
nonlinear behavior, we convert the lattice Gross-Pittaevskii
equation into a single variable nonlinear integrodifferential
equation: effectively a damped nonlinear oscillator with a
non-Markovian bath. We numerically integrate these equa-
tions, and find a series of higher-order single-particle emission
processes.

Related physics is seen in amplitude or phase modulated
lattices [32–38]. The primary difference being that the case of
modulated interactions is intrinsically nonlinear. Modeling of
these amplitude modulated lattices has largely focused on the
harmonically confined system, where any jets that are formed
remain trapped [39–41]. Parametric excitation of condensates
has also been explored in a number of other contexts [42–44].

In Sec. II we introduce our model. In Sec. III we describe
the mean-field theory approach. In Sec. IV we use linear
response theory to calculate the single-particle and pair emis-
sion rates. In Sec. V we present numerical analysis of the
mean-field theory from Sec. III. We summarize our results and
their implications in Sec. VI.

II. MODEL

We consider a 1D semi-infinite lattice, as depicted in Fig. 1.
The sites are labeled by integers j, running from 0 to ∞, and
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FIG. 1. Schematic of the 1D semi-infinite lattice. A potential, of
depth V is applied to site 0, and the pairwise interaction energy of
atoms on that site has strength U . Hopping between neighboring sites
has matrix element J .

the site at j = 0 represents the trap. We apply a local potential
at that site to confine the atoms. Atoms which escape can hop
down the chain, and move off to infinity.

We choose this semi-infinite geometry to eliminate as
many complications as possible. By having only a single
“lead,” all jets must propagate in that one direction, and we
do not need to consider correlations between jets that move in
different directions. One can readily engineer this geometry in
an experiment.

As a further attempt to keep the model simple, we only
include interactions between atoms which sit on the site j =
0. The physical justification is that the atomic density will
be low outside of the trap, and it is reasonable to neglect
interactions in that region. Inhomogeneous magnetic fields,
and a Feshbach resonance, can be used to literally implement
a model with such spatially localized interactions.

Mathematically, our model is described by the Hamiltonian

Ĥ = V â†
0â0 + 1

2
[U + g(t )]â†

0â†
0â0â0

− J
∞∑

j=0

(â†
j+1â j + â†

j â j+1). (1)

Here, V < 0 is the trapping potential, â†
j (â j) are creation

(annihilation) operators, and J quantifies the hopping between
nearest-neighbour sites. The time-dependent interactions are
characterized by a constant term U , and a sinusoidally os-
cillating term g(t ) = g sin(ωt ) or g(t ) = g sin(ωt )θ (t ), where
g is the drive strength. The step function θ (t ) is included to
model the situation where the oscillations are suddenly turned
on.

III. MEAN-FIELD EQUATIONS

We begin by constructing the mean-field equations of mo-
tion, and finding the steady state solution when g = 0. We
replace the operators with their expectation values aj = 〈â j〉.
Physically, |aj |2 corresponds to the number of particles on site
j, and I j = 2J Im(a∗

j+1a j ) is the particle current flowing from
site j to j + 1.

On site j = 0 the expectation value of the Heisenberg
equations of motion read (h̄ = 1 throughout this paper)

i∂t a0 = 〈[â0, H]〉 = Va0 + (U + g(t ))a∗
0a0a0 − Ja1, (2)

where we have neglected fluctuation terms. In Sec. IV we
reintroduce these fluctuations, and argue that they play no
role unless the parametric drive is resonant with pair emission
processes. The parameters of our model can be chosen so

that pair emission and single-particle emission are spectrally
isolated and can be treated independently.

On the remaining sites, where j > 0,

i∂t a j (t ) = −J[a j+1(t ) + a j−1(t )]. (3)

Because we have neglected interactions on these sites, this
latter set of equations is linear. We can formally solve Eq. (3)
under the assumption that there are no particles entering the
system from infinitely far away,

a j (t ) = −J
∫ t

dτ Gj1(t − τ )a0(τ ), (4)

where as derived in Appendix A, the Green’s function is

Gj1(t ) = i j−2 jJj (2Jt )
Jt

θ (t ). (5)

Here, Jn(z) is the Bessel function of the first kind. We thereby
arrive at a nonlinear integrodifferential equation

i∂t a0 = Va0+ (U + g(t ))a∗
0a0a0+ J2

∫ t

dτG11(t − τ )a0(τ ).

(6)
We find the stationary solution by making the ansatz a0 =
αe−iνt , whence

ν = V + U |α|2 + J2G11(ν), (7)

where, as derived in Appendix A, the frequency-domain
Green’s function is

JG11(ε) = ε

2J
− i

√
1 − ε2

4J2
. (8)

Equation (7) is solved by isolating the square root on one
side of the equation, and squaring both sides. The resulting
linear equation gives

ν = J2 + (V + U |α|2)2

V + U |α|2
. (9)

Substituting back into the original equation, we find that this
is a spurious root if |V + U |α|2| < J . Under those conditions,
the trap is unable to contain the particles.

The case where V + U |α|2 < −J corresponds to a con-
ventional bound state sitting below the continuum, while
for V + U |α|2 > J it is a “repulsively bound state” sitting
above the continuum. The latter exists because the spectrum
is bounded.

Note, the same results can be found by substituting the
ansatz a j = αe−iνt e−κ j into Eqs. (2) and (3).

IV. LINEAR RESPONSE

Here we calculate the rate of particle emission when g is
small. We start from the ansatz

â j (t ) = e−iνt [α j + b̂ j (t )], (10)

where α j are the solutions to the mean-field equations with
g = 0: Eqs. (2) and (3). To ease notation, we leave off the
index j when j = 0, i.e., we define α = α0, and take α to be
real.
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Equation (10) is a canonical transformation, and up to
quadratic order the transformed Hamiltonian is

Ĥ = E0 + Ĥbog + g(t )(X̂1 + X̂2), (11)

with

Ĥbog = (V + 2Uα2 − ν)b̂†
0b0 + Uα2

2
(b̂0b̂0 + b̂†

0b̂†
0)

+
∞∑

j=1

(−νb̂†
j b̂ j − Jb̂†

j b̂ j−1 − Jb̂†
j−1b̂ j ), (12)

X̂1 = α3(b̂0 + b̂†
0), (13)

X̂2 = α2

2
(b̂0b̂0 + b̂†

0b̂†
0 + 4b̂†

0b̂0), (14)

where E0 is the ground-state energy and Ĥbog describes the
quadratic fluctuations about the ground state. The perturbation
is broken into two terms. At linear order, X̂1 is responsible
for single-particle emission. The operator whose expectation
value give the emission rate is

Ĵ1 = 1
i

[b̂†
0b̂0, g(t )X̂1] = g(t )α3 b̂†

0 − b̂0

i
. (15)

Similarly, the operator corresponding to the particle flux from
pair emission is

Ĵ2 = 1
i

[b̂†
0b̂0, g(t )X̂2] = g(t )α2 b̂†

0b̂†
0 − b̂0b̂0

i
. (16)

Within linear response the single-particle and pair processes
can be treated separately. It is convenient to write Ĵ1 =
−ig(t )Ŷ1 and Ĵ2 = −ig(t )Ŷ2. Time-dependent perturbation
theory then gives

〈Ĵ j〉 = −
∫ t

dτg(t )g(τ )〈[Ŷj (t ), X̂ j (τ )]〉, (17)

where the expectation value is taken in the g = 0 state, and
Ô(t ) = eiĤbogtÔe−iĤbogt . We take g(t ) = g sin(ωt ), and average
over one period to get

〈Ĵ j〉 = g2

4
Im[χ j (ω) + χ j (−ω)], (18)

where χ j (t − t ′) = −iθ (t − t ′)〈[Ŷj (t ), X̂ j (t ′)]〉 is the retarded
response function, and we have used that both X̂ and iŶ
are Hermitian to write χ∗(t ) = −χ (t ) and hence χ (ω) =
−χ∗(−ω).

We now write these response functions in terms of the 2 ×
2 matrix Green’s function

Gi j (t − t ′) = 1
i
θ (t − t ′)〈[φ̂i(t ), φ̂†

j (t ′)]〉, (19)

where φ̂1 = b̂0 and φ̂2 = b̂†
0. Fourier transforming the equa-

tions of motion for G gives
(

ω + ν − ,ω+ν −α2U
−α2U −ω + ν − ,∗

−ω+ν

)
G =

(
1 0
0 1

)
, (20)

with

,ε = V + 2α2U + J2G11(ε). (21)

FIG. 2. Single-particle emission rate J1 = 〈Ĵ1〉 calculated from
linear response, Eq. (22) (solid curve), and by fitting to simulations
of the nonlinear mean-field equations, in Sec. V. Here we have used
units where J = 1, and taken V = −7, |a0(t = 0)|2 = 1, and U = 0,
so that ν = −7.14. Linear response theory works well in this regime,
as is evident by the collapse of the data with different drive strength g.
The small discrepancy is an artifact related to extracting the emission
rate from numerical data.

The inversion is straightforward, and G(ω) is real unless
−2J < ω ± ν < 2J , and hence 〈Ĵ1〉 vanishes outside that re-
gion. Formally,

〈Ĵ1〉 = g2α6

4i
(−1 1)[G(ω) + G(−ω)]

(
1
1

)
. (22)

In Appendix B, we give a more elementary derivation of
this result, which demonstrates that this result is captured by
mean-field theory.

Figure 2 shows a typical emission spectrum. As expected,
it has finite support. Also shown are emission rates calculated
via the techniques in Sec. V. These should agree when g is
small, where linear response theory is applicable.

Calculating the pair emission rate is more difficult, as it
involves correlations of four operators. It is convenient to in-
troduce functions G>

i j = 〈φ̂i(t )φ†
j (0)〉 and G<

i j = 〈φ†
j (0)φ̂i(t )〉.

Since Ĥbog is quadratic, we can apply Wick’s theorem, and
write χ (t ) = −iθ (t )[χ>(t ) − χ<(t )], with

χ>(t ) = α4(G>
22G>

22 + G>
21G>

21 + 4G>
22G>

21

−G>
11G>

11 − G>
12G>

12 − 4G>
11G>

12

)
, (23)

and a similar expression for χ<(t ). Since we are work-
ing in the Bogoliubov vacuum, the Fourier transform
gives G>(ω) = A(ω)θ (ω) and G<(ω) = −A(ω)θ (−ω), where
A(ω) = 2ImG(ω) is the spectral density [45]. We then note
that -(ω) = 2Imχ (ω) = χ>(ω) − χ<(ω) to express 〈Ĵ2〉 as a
convolution between elements of Ai j (ω) times step functions.
Since the spectral densities have finite support, 〈Ĵ2〉 vanishes
unless −2J < ω/2 ± ν < +2J .

In Appendix C, we give explicit expressions for both 〈Ĵ1〉
and 〈Ĵ2〉 in the limit U = 0.

V. NONLINEAR DYNAMICS

We now consider the full nonlinear behavior. We work
at the mean-field level, largely to simplify the numerics. In
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FIG. 3. Time dependence of the condensate for different drive
strength g with fixed interaction strength U = 1. The trapping po-
tential is V = −7, and the drive frequency is ω = 6. Energies are in
units of J , and times are in units of h̄/J .

our context, this treatment cannot capture the physics of pair
emission, but it does describe single-particle emission. This
approximation should be valid when the pair and single-
particle excitations are spectrally separated. Note, that when
the condensate has more degrees of freedom, such a mean-
field approach will be able to capture the physics of pair
jets [9]. Dynamical broken symmetries couple the different
emission channels.

We imagine that the perturbation is turned on at time t = 0,
and take g(t ) = g sin(ωt )θ (t ). We assume that the system is in
equilibrium for t < 0, and therefore take a0(t < 0) = αe−iνt .
This allows us to write Eq. (6) as

i∂t a0(t ) = Va0(t ) + [U + g(t )]a∗
0(t )a0(t )a0(t )

+ J2
∫ t

0
G11(t − τ )[a0(τ ) − αe−iντ ]dτ

+αe−iνt J2G11(ν). (24)

We choose a fixed time step, using the Runge-Kutta (RK4)
method to evolve a0. In evaluating the right-hand side of the
integrodifferential equation, we use the a0’s from prior time
steps, and calculate the integral utilizing Simpson’s rule [46].
We repeat the calculations for multiple step sizes to verify that
the finite step-size error is negligible.

Without any loss of generality we take α = 1, which is
accomplished by scaling aj → a j/α, U → U |α|2 and g →
g|α|2. For most of our numerical analysis, we will work in

units where J = 1–though we reintroduce the scale J in our
discussions as appropriate.

Figure 3 represents typical values for the time dependence
of the number of condensed particles in the well, after the
oscillating modulation is turned on. We see two different
behaviors: For some parameters the number simply oscillates.
This corresponds to the situation where the condensate wave
function undergoes oscillations, but the atoms remain bound.
For other parameters the number falls. This latter case corre-
sponds to particle emission, similar to what is seen in Ref. [8].

The condensate decay is nonexponential. The arguments
from Appendix B imply that for small g the decay rate
is

∂t |a0(t )|2 = −〈Ĵ1〉, (25)

where 〈Ĵ1〉 is given by Eq. (22) with α replaced by a0(t ).
The right-hand side is a highly nonlinear function of |a0(t )|2,
especially when U is large. Moreover, Eq. (25) will break
down when g is large.

Nonetheless, we quantify the decay by fitting the conden-
sate number to an exponential, |a0(t )|2 = Ae−.t . In this fit, .
corresponds to the average rate at which particles are emitted
from the condensate, and in the linear regime . = 〈Ĵ1〉/|α|2.
Figure 2 verifies that for small g we reproduce the linear
response results.

Due to the nonexponential nature of the decay, our calcu-
lated . has a weak dependence on the simulation time. For the
comparison in Fig. 2, where numerical precision is important,
we extrapolate to the short time limit. In all further graphs,
where we are mainly interested in qualitative features, we
perform a single fit over 0 < t < 30/J .

Figure 4 shows how this rate depends on the drive fre-
quency ω and the drive strength g when the well depth V
ranges from relatively shallow to deep. We take the interac-
tion strength U = 1–though similar results can be found for
different U . For generic drive frequencies and weak drive
strength, the condensate is stable and . = 0. We see that
for |ν| − 2J < ω < |ν| + 2J , even a small g leads to particle
emission. This restriction is related to energy conservation.
Generally, a particle in the condensate has energy ν, while the
particle which escapes to infinity must have −2J < E < 2J .
Although not shown here, we find quantitative agreement with
the linearized model in Sec. IV.

One can see further bands of instability at finite drive
strength g when |ν| − 2J < nω < |ν| + 2J , for integer n.
These correspond to nonlinear processes, and are suppressed
at small g. When the well is shallow (exemplified by V =

FIG. 4. Condensate decay rate . vs drive strength g and drive frequency ω for different trapping strength V =
−5, −7, −9, −11, −13. Color bars denote .. In all cases the interaction strength is fixed as U = 1. The chemical potentials are
ν = −4.25, −6.17, −8.13, −10.10, −12.08, respectively. All energies are in units of J .
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FIG. 5. Condensate decay rate . vs interaction strength U and
drive frequency ω for different drive strength g. Color bars denote
.. The trapping potential is fixed as V = −7. Also shown are char-
acteristic scales ω±/n = (|ν| ± 2J )/n, for integer n. These delineate
the regimes where n’th order excitations would be expected at weak
coupling. All energies are in units of J .

−5), the different instabilities overlap, while for deeper
wells (e.g., V = −13) they would be separated from one-
another. Importantly, the linearized model cannot capture this
physics.

Figure 5 demonstrates how the instability depends on
the interaction strength U and the drive frequency ω, for a
moderately deep well V = −7. When the drive strength is
moderately weak (g = 1), one only sees the most dominant
instability, delimited by ω− < ω1 < ω+ with ω± = |ν| ± 2J .
The nonlinear excitations become prominent when g is larger.
For example, one sees the second-order excitation at ω− <

FIG. 6. Number of particles on site j at different times. The
trapping potential is V = −7, and the interaction strength is fixed
as U = 1. Typically, the drive strength is g = 5 with drive frequency
ω = 6. Note the scaled axes.

2ω2 < ω+ when g = 3. For g = 5 and g = 7, there are also
third-order excitation at ω− < 3ω3 < ω+ and fourth-order ex-
citation at ω− < 4ω4 < ω+. These regions overlap, leading to
a complicated pattern. For large g (for example, g = 7) the
higher-order effects appear to also renormalize the locations
of the boundaries.

Finally, in Fig. 6 we visualize the “jets” by plotting the
number of particles on different sites as a function of time,
which are calculated from Eq. (4). The behavior on the
sites near the origin are somewhat complicated, as they re-
flect the oscillations of the trapped condensate. Further out
( j ! 3 for these parameters), one sees simpler behavior. A
clear wavefront is visible, moving at roughly a constant
speed.

VI. SUMMARY AND OUTLOOK

Cold atom experiments have given us access to new classes
of quantum dynamical systems. In Ref. [8], the experimen-
talists investigated the response of a Bose condensate to
time-dependent interactions, and observed the emission of
paired matter-wave jets. We explore the emission of both
single-particle and pair jets with a simple lattice model where
all of the physics is accessible.

We analyze the emission processes within linear response,
then present a detailed numerical study of nonlinear single-
particle jets. In our model, where the atoms are on a
lattice, emission occurs when |nω − |ν|| < 2J . In linear re-
sponse single-particle emission corresponds to n = 1 and pair
emission to n = 1/2. Nonlinear single-particle emission cor-
responds to integer n > 1. Although we do not model it,
nonlinear pair emission will occur when n = m/2 for in-
teger m > 1. For deep traps, where the magnitude of the
chemical potential is large |ν| * 2J , the different emis-
sion channels are spectrally separated, and can be treated
independently.

The experiments in Ref. [8] differ in several ways from
our model. First, the atoms are not trapped on a lattice, and
hence the excitation spectrum is unbounded, so instead of
requiring |ν| − 2J < nω < |ν| + 2J , the nth order excitations
can occur whenever nω > |ν|. Furthermore, the experiment
has a shallow trap, and |ν| is very small. Consequently, all pro-
cesses compete with one-another, and only the dominant pair
emission processes (and their harmonics [11]) are observed.
To see single-particle emission, one would need to repeat the
experiment with a deeper trap, where the modes are spectrally
separated.

A related feature of the experiment which is not cap-
tured by our model, is that the experimental condensate
contains many degrees of freedom. The pair emission process
is accompanied by a dynamical instability of the conden-
sate, and pattern formation [9,10]. This pattern formation
is one of the reasons why pair emission dominates in the
experiments [29–31].
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APPENDIX A: DERIVATION OF THE GREEN’S FUNCTION

Here we give a brief derivation of the Green’s function for
a semi-infinite chain of sites:

i∂t Gxy(t ) + JGx,y+1(t ) + JGx,y−1(t ) = δxyδ(t ), (A1)

where x, y = 1, 2, · · · , Gx0 ≡ 0, and Gxy(t < 0) = 0. This
can be expressed in terms of the eigenstates of the homoge-
neous equations, ψ (k)

x = sin(kx), where 0 < k < π , and εk =
−2J cos k. By the orthogonality condition on the eigenstates,
one can write

Gxy(t ) = 1
i
θ (t )

2
π

∫ π

0
dk ψ (k)

x ψ (k)
y e−iεkt , (A2)

as this solves the homogeneous equation for t > 0 and satis-
fies Gxy(t = 0+) = δxy/i. Explicitly calculating the integrals
yields

Gxy(t ) = 1
i
θ (t )[ix−yJx−y(2Jt ) − ix+yJx+y(2Jt )], (A3)

where Jn(z) is the Bessel function of the first kind. This ex-
pression has a natural interpretation in terms of images: The
first term represents direct propagation from x to y, and the
second term represents propagation of a fictitious image from
−x to y.

In the main text we require Gj1(t ). Using the identities
J−n(z) = (−1)nJn(z) and Jn−1(z) + Jn+1(z) = (2n/z)Jn(z), we
arrive at

Gj1(t ) = i j−2 jJj (2Jt )
Jt

θ (t ). (A4)

We also need these Green’s functions in the frequency do-
main. The Fourier transforms obey ωG11 + JG21 = 1 and
ωGj,1 + JGj−1,1 + JGj+1,1 = 0 for j > 1. This recursion re-
lationship is solved by making the ansatz Gj1 = −e−κ j/J .
Solving the resulting quadratic equation for e−κ yields

JG11 = z − i
√

1 − z2, (A5)

where z = ω/2J . The retarded function corresponds to adding
an infinitesimal positive imaginary part to z, and taking the
principle branch of the square root. An alternative way to
write this function is JG11 = z(1 −

√
1 − z−2). This latter

representation is convenient, as when one takes the principle
branch of the square root, the branch cut runs from z = −1 to
z = 1.

APPENDIX B: METHOD OF MULTIPLE SCALES

Here we reproduce the single-particle emission results
from Sec. IV by directly analyzing the lattice Gross-
Pittaevskii equation, Eq. (6), in the limit where g(t ) =
g sin(ωt ) is small.

We use the method of multiple scales, writing

a0(t ) = e−iνt [α(t ) + gu(t )e−iωt + gv∗(t )eiωt ], (B1)

where we take α(t ), u(t ), and v(t ) to be slowly varying. In
particular, the time derivatives of each of these quantities is
suppressed by a factor of g2.

We substitute this ansatz into Eq. (6), and collect terms
which are linear in g. The time derivatives of u and v do not

appear at this order. We neglect the slow variation of u in the
integral, writing
∫ t

G11(t − τ )u(τ )e−i(ω+ν)τ dτ ≈ u(t )e−i(ω+ν)t G11(ω + ν).

(B2)
Equivalent expressions hold for v. Collecting the terms pro-
portional to e−i(ν±ω)t , yields
(

ω + ν − ,ω+ν −α2U
−(α∗)2U −ω + ν − ,∗

−ω+ν

)(
u
v

)
= i|α|2

2

(
α
α∗

)
,

(B3)

where, as in the main text,

,ε = V + 2|α|2U + J2G11(ε). (B4)

The matrix on the left of Eq. (B3) is simply the inverse of the
Green’s function in Eq. (20), which can be easily inverted to
find

(
u
v

)
= i|α|2

2
G
(

α
α∗

)
. (B5)

We then calculate the current,

〈Ĵ1〉 = −∂t |a0(t )|2 = g2|α|2Re(α∗u − αv), (B6)

which agrees with Sec. IV. In particular, . = 〈Ĵ1〉/|α|2 is zero
unless −2J < ω ± ν < 2J .

APPENDIX C: SIMPLE LIMIT

Here we give explicit results for 〈Ĵ1〉 and 〈Ĵ2〉 when U = 0.
This corresponds to oscillating the interaction strength about
zero. While the arithmetic is simpler, all aspects of the physics
are still observed.

When U = 0, the chemical potential is ν = J2/V + V ,
and stability requires |V | > J . The off-diagonal elements of
the matrix Green’s function vanish, i.e., G12 = G21 = 0. In
frequency space the diagonal elements can be expressed as

G11 = −1
V ω

(
ω + ν

2
− V − i

√
J2 − (ω + ν)2

4

)

, (C1)

G22 = 1
V ω

(
ν − ω

2
− V + i

√
J2 − (ν − ω)2

4

)

, (C2)

with spectral densities

A11(ω) = 2
√

J2 − (ω + ν)2/4/(V ω), (C3)

A22(ω) = 2
√

J2 − (ν − ω)2/4/(V ω) = −A11(−ω), (C4)

when the arguments of the square roots are posi-
tive and zero otherwise. The single-particle excitation
rate is then 〈Ĵ1〉 = (g2α6/8)[A22(ω) + A22(−ω) − A11(ω) −
A11(−ω)]. When |ω + ν| < 2J , it becomes

〈Ĵ1〉 = −g2α6

2

√
J2 − (ω + ν)2/4

V ω
. (C5)

The pair excitation rate is 〈Ĵ2〉 = (g2/8)[-(ω) + -(−ω)],
where -(ω) = 2Imχ (ω) = 2[χ>(ω) − χ<(ω)], and the cor-
relation functions are given by Eq. (23). When U = 0 the
ground state is a vacuum of the b̂ operators, and hence

033308-6



EMISSION OF PARTICLES FROM A PARAMETRICALLY … PHYSICAL REVIEW A 104, 033308 (2021)

G>
22(t ) = 〈b̂†

0(0)b̂0(t )〉 = 0. Similarly, G<
11 and all the off-

diagonal terms G>
12,G<

12,G>
21,G<

21 vanish. Therefore,

χ>(ω) = −α4
∫

dz
2π

G>
11(ω − z)G>

11(z), (C6)

and χ>(ω) vanishes if ω < 0. Assuming ν < 0, we use
G>(ω) = A(ω)θ (ω) and Eq. (C3) to find that χ>(ω) is
nonzero when −ν − 2J < 2ω < −2ν + 2J , in which case

χ>(ω) = 4α4

−V 2

∫
dz
2π

√(
J2 − (ω+ν−z)2

4

)(
J2 − (z+ν)2

4

)

z(ω − z)
,

(C7)

where the integral is taken over z such that all of the follow-
ing inequalities are satisfied: |ω + ν − z| < 2J , |z + ν| < 2J ,
and 0 < z < ω. In particular, if −2ν − 4J < ω < −2ν, then
the integral runs from z− = −ν − 2J to z+ = ω + ν + 2J .
Conversely, if −2ν < ω < −2ν + 4J the integral runs from
z− = ω + ν − 2J to z+ = −ν + 2J . The resulting integral can
be expressed in terms of elliptic functions, though it is more
efficient to simply evaluate the integral numerically. Similarly,

χ<(ω) = α4
∫

dz
2π

G<
22(ω − z)G<

22(z) = −χ>(−ω), (C8)

and

〈Ĵ2〉 = (g2/2)[χ>(ω) + χ>(−ω)]. (C9)
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