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Abstract

The chemical composition of particulate matter (PM) in biomass-burning smoke evolves upon aging in the
atmosphere. The effect of this evolution on the toxicity of biomass-burning PM is understudied. Here, we
burned oak foliage, pine needles, and hickory twigs in an environmental chamber. We used UV radiation
to initiate photochemical aging of the emissions leading to the production of secondary organic aerosol
(S0A), quantified using online particle size distribution measurements, and an overall increase in the PM
oxygenation and decrease in the relative abundance of aromatic and condensed aromatic structures,
obtained using ultra-high-resolution electrospray ionization mass spectrometry. In vitro exposure of
human lung epithelial cells to PM from hickory combustion led to the strongest reduction in metabolic
activity, followed by pine and oak, which was associated with the heavy metal content of the PM from the
three fuels, quantified using induction-coupled plasma mass spectrometry. Furthermore, exposure to the
fresh PM led to more reduction in metabolic activity than the aged PM for all fuels, whereas the aged PM
induced more cell death by apoptosis. The differential cellular response to the fresh and aged PM indicates
that the increase in oxygenation and decrease in aromaticity associated with photochemical aging alters
the toxicity mechanisms exhibited by the PM, with a possible role of decreasing the heavy metal content
(gram-metals per gram-PM) due to SOA formation. Together, these findings highlight the complex effect
of photochemical aging on biomass-burning PM toxicity and motivate further studies to elucidate the
underlying differences in toxicity mechanisms between fresh and aged PM.

Keywords: wildland fires, organic aerosol, atmospheric aging, toxicity, apoptosis, mitochondrial
dysfunction
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1. Introduction

Wildland fires play an essential role in maintaining the health of natural ecosystems® 2. However, they are
also major sources of air pollution, with significant impacts on climate3*® and public health’ %, In 2011, an
estimated 212 million people lived in U.S. counties that were affected by wildfire smoke®?. Further,
between 2008 and 2012, more than 10 million people lived in counties that had unhealthy air quality for
over ten days a year due to wildfire smoke, with particular implications for vulnerable communities®®. As
the response to air pollution and climate change gears toward lower anthropogenic emissions, and as the
increase in global temperatures and drought episodes drives wildland fires to increase in frequency and
intensity!* %, emissions from wildland fires could become the dominant health risk caused by air pollution
for millions of people®®.

Inhalation exposure to particulate matter (PM) emitted from wildland fires has been associated with lung
diseases including asthma and chronic obstructive pulmonary disease (COPD)Y'°. However,
understanding of the toxicity mechanisms underlying these health effects is still lacking® 1% 19 20,
Measurements of biological markers from humans exposed to wildland-fire smoke?" 2, in vivo exposure
studies®, and in vitro exposure studies**%¢ have revealed various toxicological effects including oxidative
stress, inflammation, and cell death by apoptosis/necrosis. Biomass-burning PM is mostly composed of
organic aerosol (OA)?” 2, which includes a myriad of organic species with varying physicochemical
properties?® 2931, Hereafter, we use OA when we refer to the organic fraction of the PM, and PM when
we refer to the overall particulate matter, which, in addition to OA, includes elemental carbon, inorganic
salts, and metals?” 32, Different OA components can induce different toxicity mechanisms. Pardo et al.®
exposed lung epithelial cells to the water-soluble and organic-soluble fractions of OA from wood pyrolysis.
They showed that the more oxidized water-soluble OA fraction induced more oxidative stress and
apoptosis but less DNA damage than the less oxidized organic-soluble fraction. Furthermore, the chemical
composition of biomass-burning PM varies with fuel type and combustion conditions®**. Kim et al.*®
exposed mice to emissions from burning of peat, eucalyptus, and oak at either smoldering or flaming
combustion conditions and reported inflammation levels that were dependent on fuel type, with higher
levels associated with peat and eucalyptus compared to oak. That study also reported that even though
flaming emissions contained less PM than smoldering emissions, the flaming PM induced higher levels of
toxicity per unit mass of PM.

After it is emitted to the atmosphere, biomass-burning PM evolves significantly upon reacting with
oxidants such as hydroxyl radicals (OH)*¢* and secondary organic aerosol (SOA) formation from the
oxidation and subsequent condensation of the co-emitted organic vapors®4°. SOA from both biogenic (a-
pinene) and anthropogenic (m-xylene, naphthalene) precursors was shown to reduce metabolic activity
of human lung epithelial cells*, generate reactive oxygen and nitrogen species (ROS / RNS) in murine
alveolar macrophages**3, as well as induce oxidative stress and inflammation in human lung epithelial
cells and macrophages*. However, the effect of atmospheric photochemical aging and SOA formation on
biomass-burning PM toxicity is understudied and has only been investigated in the context of the oxidative
potential (OP) using the dithiothreitol (DTT) chemical assay**¢. Wong et al. used field and laboratory data
to compare the effect of atmospheric transport time (in the field) and different aging mechanisms (in the
laboratory) on the OP of biomass-burning PM*. They reported a 50% increase in the OP after a few hours
of atmospheric transport, with relatively stable OP after that. In their laboratory experiments, however,
they found that the aging of biomass-burning PM by photolysis increased the OP initially, only to be
followed by a decline. Aqueous OH oxidation, in contrast, led to a rapid significant decline in OP. Jiang and
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Jang*® measured the DTT activity of wood smoke PM over a period of several hours of photooxidation.
They found that the photochemical aging of the PM led to a significant decrease in OP, which they
attributed to the decomposition of oxidizers. Verma et al.*” used an aerosol mass spectrometer to group
ambient OA collected at different locations in the Southeastern United States according to identity /
source. Using the DTT assay, they found that biomass-burning OA had the highest OP per mol. In previous
work, Verma et al.*® found that biomass-burning OA and SOA dominated the OP of ambient aerosol in the
Southeastern United States, with strong seasonal dependence (biomass-burning OA in the winter, SOA in
the summer). Although these studies highlight the importance of the toxicity of atmospherically aged
biomass-burning PM, it remains unclear if / how atmospheric aging alters the toxicity mechanisms.

In this study, we exposed human lung epithelial cells in vitro to fresh and photochemically aged PM
emitted from the combustion of three biomass fuels. We used two assays to assess the reduction in cell
metabolic activity as well as cell death by apoptosis and necrosis. We also analyzed the PM chemically to
investigate the relation between toxicity and chemical composition of fresh and aged PM.

2. Methods
2.1. Combustion Experiments

We burnt dead Pin oak (Quercus palustris) foliage, Pignut hickory (Carya glabra) twigs, and Slash pine
(Pinus elliottii) needles, all fuels commonly consumed in wildland fires in the Southeastern United States**
0 inside a 7.5 m? environmental chamber. The environmental chamber was lined with 44 UV lamps (GE
Blacklight FA0BL) on the bottom. The light intensity in the chamber corresponds to NO; photolysis rate
(Jnoz2) of 0.41 min? (see Supplementary Information (SI) for details), which is within the range of
environmental chamber designs reported in the literature®> > and is slightly smaller than Jyoz2 = 0.49 min
! for a sunny day, ground level, 40°N, July 1, noon, 25 °C*. Before each experiment, the chamber was
conditioned to a relative humidity of approximately 50% to promote the production of OH radicals when
the UV lights were turned on. We burnt 25 g of each fuel inside the environmental chamber, restricting
the combustion to the smoldering (flameless) phase. By focusing the experiments on the smoldering
phase of combustion, we ensured that there were minimal concentrations of black carbon and that the
PM inside the chamber was largely soluble in methanol®**, the importance of which is discussed below.

We measured the particle size distribution inside the chamber throughout the experiments using a
scanning mobility particle sizer (SMPS, TSI 3882), covering particles in the range of 10-500 nm. The total
PM mass concentration in the chamber was calculated by integrating the SMPS size distribution, with an
assumed particle density of 1.2 g/cm3 °% 57, After the UV lights were turned on, the PM concentration
increased due to the production of SOA from the photooxidation and subsequent condensation of vapor
species. We estimated the concentration of SOA produced by subtracting the fresh PM concentration (i.e.,
PM concentration before the lights were turned on) from the concentration after the lights were turned
on. To do that, we accounted for particle losses to the chamber walls, as described in the SI. We collected
fresh and aged PM on 47 mm Teflon filters (0.2 microns, Sterlitech Corporation, PTU024750) for chemical
analysis and in vitro exposure. We collected four filters at a time with a flow rate of 5 SLPM through each.
The aged PM was collected after 2 hours of photooxidation.

2.2. Sample Extraction for Chemical Analysis and in vitro Exposure

We extracted the filters collected under each condition in 10 ml of methanol inside a glass vial, sonicating
the vial for 10 minutes. We then removed the Teflon filters and filtered the solution in a glass syringe with
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a metal luer lock tip through a 13 mm Teflon filter (0.2 microns, Sterlitech Corporation, PTU021350) to
remove suspended particles, since those could create nonuniformities in the in vitro exposure tests>® >,
As mentioned earlier, restricting the combustion experiments to the smoldering phase reduces the
amount of methanol-insoluble species, such as black carbon, that would be filtered out in this process.
Thus, the species extracted in methanol were largely representative of the PM in the chamber. At the end
of this process, we had six vials representing parent solutions for each of the conditions under study (three
biomass fuels, fresh and aged PM from each).

Inorganic salts and metals constitute a small fraction of biomass-burning PM mass, usually less than 5%%”
% Therefore, the PM concentration in the solutions was mostly dictated by organics. We determined the
organic carbon concentration in the solutions using an organic-carbon elemental-carbon (OCEC) analyzer
(Sunset Laboratory Inc, model 4L) running the NIOSH-870 protocol®!. The OCEC analyzer measures the
total amount of carbon on a Quartz filter punch by heating the sample at different temperature stages
and then measuring the carbon species, as CO,, using a non-dispersive infrared sensor. To measure the
concentration of carbon in the solutions, we pipetted 200 uL of each solution onto a pre-baked 1.5 cm?
punch in 50 pL steps. After each step, we evaporated the methanol under a stream of clean, dry air. To
estimate the concentration of the parent solutions, we divided the total OC measured by the OCEC
analyzer by the volume pipetted onto the Quartz filter punch (200 puL).

The PM solutions were then used for chemical analysis and in vitro exposure as elaborated in the
subsequent sections. We also prepared a background sample consisting of a blank Teflon filter extracted
and filtered in the same procedure as the combustion samples.

2.3 Chemical Analysis

We used ultra-high resolution electrospray ionization mass spectrometry (ESI-MS) to chemically
characterize the OA in the samples. The mass spectra of the samples were obtained using a Bruker SolariX
XR 12T Fourier-transform ion cyclotron resonance (FTICR) in positive ionization mode. Peaks were picked
using the open-source software mMass (mmass.org) with a signal-to-noise ratio of 3. Background peaks
(i.e., those appearing for a blank Teflon filter extracted in methanol) were excluded from the sample peaks
with a tolerance of 1 ppm. We used Formularity®> ©, an automated formula assignment software, to
identify probable molecular formulae with the following constraints®: +3 ppm, Cs.s0Hs-100N0-200-1250-1.

Metals are common components in biomass-burning PM emissions, and their toxicity in trace
concentrations has been repeatedly demonstrated®* %%, We analyzed the PM samples for metal content
using induction-coupled plasma mass spectrometry (ICP-MS). One half of a Teflon filter corresponding to
the fresh PM samples from each combustion experiment was transferred into a Teflon digestion vessel
and treated with 5 ml of trace-metal grade nitric acid. The vessel was then subjected to microwave
digestion, following EPA protocol®’. After cooling to room temperature, the vessels were opened, treated
with 20 ml of water, and shaken thoroughly. Finally, 1 ml from each vessel was diluted to 10 ml with 1%
nitric acid and analyzed using the ICP-MS (Perkin Elmer Elan 9000) according to EPA method 200.8

protocol®,
2.4 Cell Preparation and Exposure Doses

Cell cultures were prepared by growing immortalized human bronchial epithelial cells (cell line BEAS-2B
(ATCC: CRL-9609) obtained from the American Tissue Culture Collection (ATCC, Manassas, VA, 20110)) in
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a treated cell culture grade T75-flask with Bronchial Lung Epithelial Basal Cell medium complete with
growth factors and nutrients (Lonza BEGM™), herein referred to as complete BEBM. The cell culture was
kept at 37°C in a humidified environment with 5% CO; until a confluence of 70-80 % was reached, after
which the cells were split enzymatically by a 5-minute incubation in 0.18% trypsin (and 0.5 mM EDTA)
followed by centrifugation at 200 relative centrifugal force (RCF) for five minutes. The supernatant was
discarded, and fresh medium was added to the cell pellet. The cells were counted by trypan blue assay
using an automated Cell Counter (Nano EnTek).

We prepared 5 exposure doses of the fresh and aged PM. To do so, we added different volumes from the
parent PM solutions into vials, allowed the methanol to evaporate completely, and re-dissolved the PM
in deionized (DI) water with 1% dimethyl sulfoxide (DMSO). The resulting PM concentrations were 20,
200, 550, 900, and 2150 pg-PM/ml. We also prepared a solvent control solution of DI water with 1%
DMSO. The solutions were diluted by a factor of 10 upon introduction to the cell cultures, resulting in
exposure doses of 0 (solvent control), 2, 20, 55, 90, and 215 pg-PM/ml, and 0.1% DMSO concentration at
exposure. The exposure doses cover a wide range (2 orders of magnitude), which overlaps with doses in
previous studies on PM toxicity®* %%, The dose-response behavior of cells upon exposure to PM typically
exhibits sigmoidal profiles. Based on preliminary experiments, we expected the linear portion of the
response to be in the 10 — 100 pg-PM/ml, with the response plateauing at doses > 100 pg-PM/ml.
Therefore, these doses were chosen to to maximize the potential for capturing the dose-response
behavior of the cells.

2.5 WST-8 Assay

We assessed the metabolic activity of the cells using a tetrazolium salt-based colorimetric WST-8 assay (2-
(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt))
using the Cell Counting Kit-8 (CCK-8, Sigma Aldrich). The cleavage of the salt by metabolically active cells
leads to the formation of formazan, the concentration of which can be measured optically due to its light
absorption at 450 nm. Thus, higher absorption at 450 nm corresponds to higher metabolic activity.

We added 10 pl of the PM in DI water + 1% DMSO samples to 90 pl of complete BEBM + cells (10*
cells/well) in 96-well plates. We conducted exposure doses of 0 (control), 2, 20, 55, 90, and 215 ug-PM/ml.
Cell density can influence the biologically effective dose’, and there is evidence that per-cell basis is
potentially a more appropriate dose metric’. For a cell density of 10> cells/ml (10* cells/well), the
corresponding per-cell doses are O (solvent control), 20, 200, 550, 900, and 2150 pg-PM/cell. The
exposures were performed in pentaplicates. After a 24-hour incubation period, we used a plate reader
(Cytation 5, Biotek, Winooski, VT) to measure the background absorption of the treated cells at 450 and
650 nm prior to adding the WST-8 assay. When adding the WST-8 assay solution, the existing media was
replaced with 10% WST-8 assay tetrazolium-salt solution in complete BEBM. The plates were left to
incubate at 37°C, 5% CO, for 2 hours to allow for the reduction reaction to take place. We then used the
Cytation-5 plate reader to measure the absorption again at 450 and 650 nm, corresponding to the
formazan and formazan-free absorption, respectively. We measured the absorption before and after
adding the WST-8 assay to account for possible light absorption by the OA, which could be confounded
with the absorption by formazan. We calculated the metabolic activity in each well as:

(sampleyso—samplepig 450 )—(samplegso—samplepkg 650)
(controlyso—controlpkg 450)—(controlgso—controlyyg ¢s0)

Metabolic Activity (%) = 100 X (1)
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Here, the samplex corresponds to the absorption at wavelength A = 450 nm or 650 nm after the addition
of WST-8, whereas samplepig corresponds to the absorption measured prior to the addition of WST-8.
The same applies to controly and controlpkg.

2.6 Annexin V Assay

We assessed cell death induced by apoptosis and necrosis using the Muse® Annexin V and Dead Cell Assay
Kit (Luminex). The kit uses 7-Aminoactinomycin D (7-AAD) to distinguish late apoptotic cells from necrotic
ones. We added 100 pl of the PM in DI water + 1% DMSO samples to 900 ul of complete BEBM + cells (2.5
x 10° cells/well) in 12-well plates. We conducted exposure doses of O (solvent control), 20, 55, and 215
ug-PM/ml, which correspond 0 (solvent control), 80, 220, and 860 pg-PM/cell. After 24-hour incubation,
the cells were harvested and stained according to the manufacturer’s instructions. Due to the limited
amount of PM samples, we only performed single exposures with Annexin V, which did not allow for
statistical comparison across fuels. As described in Section 3.2, we averaged the Annexin V results for the
three fuels, which allowed for comparison between the fresh and aged PM.

2.7 Statistics

We conducted analysis of variance (ANOVA) followed by the Bonferroni post-hoc test to determine
significant differences across different groups. Significant differences are reported as p < 0.05. We further
fit the metabolic activity data (WST-8 assay) to a 5" degree exponential function using EPA’s BMDS 3.2
tool (https://www.epa.gov/bmds) and determined the half-maximal inhibitory concentration ICs, i.e., the
dose that causes a 50% reduction in metabolic activity.

3. Results and Discussion
3.1. Chemical Composition of the Fresh and Photochemically Aged Organic Aerosol

The time series of the PM mass concentration in the environmental chamber produced from the
combustion of hickory twigs is shown in Figure 1. Those from the combustion of pine needles and oak
foliage are shown in Figure S1. At t < 0, the PM mass concentration decays due to particle wall loss in the
chamber. At t = 0, when the UV lights were turned on, a reversal in the decay of PM mass concentration
is observed due to the production of SOA. The OA enhancement, or the fold increase in PM concentration
due to the mass contributed by SOA’?, was approximately 1.46 for hickory, 1.42 for oak, and 1.21 for pine.
We note that the chemical transformation of the OA is not restricted to the production of SOA from the
oxidation of volatile species. Heterogeneous oxidation reactions can also alter the chemical composition
of OA in the particle phase®, though to a lesser extent than SOA formation®. Furthermore, the
temperatures in smoldering combustion are not high enough to produce significant amounts of NO,’3.
Therefore, we expect O; production to be negligible’* and OH oxidation to be the dominant driver of the
OA chemical transformation.
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Figure 1. The evolution of PM mass concentration in the chamber for the hickory twigs combustion
experiment. At t = 0, the UV lights were turned on, which marks the onset of photochemical aging of the

emissions. The black dashed line is the exponential decay fit to the fresh PM mass concentration, used to
estimate the OA enhancement due to SOA formation (see Sl for details).

The mass spectra of the fresh and aged OA, obtained using ESI-MS, are shown in Figure S2. The compounds
identified include species that are common markers for, or have been identified in, biomass-burning OA
such as levoglucosan (CsH100s)%% 7>77, fructose (CsH1206)"® 7%, diethyl phthalate (C12H1404)%% 8%, and dibutyl
phthalate (C16H2204)%" 8. It is important to note that biomass-burning OA species are detected at different
efficiencies by ESI-MS. For example, compounds with low polarity such as polycyclic aromatic
hydrocarbons (PAHs) and their oxygenated derivatives (oxy-PAHs) are detected at relatively low
efficiencies®. Differences in the chemical composition across fuels and between the fresh and aged OA
detected by ESI-MS are illustrated using Van-Krevelen diagrams in Figure 2. As expected, OA from all fuels
became more oxidized upon aging®” 3%, where the species unique to the aged OA (either SOA or
heterogeneously oxidized OA) generally have larger O:C than the species unique to the fresh OA. As shown
in Table 1, this is reflected in an increase in the average O:C as well as the ratio of organic matter (OM) to
organic carbon (OC), OM:0C upon aging, in a fashion consistent with previous reports® 8,
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Figure 2. Van-Krevelen plots showing O:C versus H:C of the compounds detected by ESI-MS in the fresh
and photochemically aged OA from the combustion of different fuels.

Table 1. Average 0O:C, OM:0OC, and Almos of the compounds detected by ESI-MS in the fresh and
photochemically aged OA from the combustion of different fuels.
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Average O:C | Average OM:0OC | Average Almod
Fresh hickory 0.25 1.50 0.31
Aged hickory 0.33 1.61 0.19
Fresh pine 0.32 1.56 0.25
Aged pine 0.41 1.70 0.15
Fresh oak 0.24 1.50 0.30
Aged oak 0.30 1.59 0.18

We also calculated the modified aromaticity index®* 8 (Almod) of the organic species detected by ESI-MS

1+c—0-0.5n— 0.5h

asAloq = , where ¢, o, h, and n correspond to the number of C, O, H, and N atoms. Almod

c—0.50—n
> 0.5 and Almoq > 0.67 correspond to aromatic structures and condensed aromatic structures, respectively.
Table 1 shows the average Almoq Values of fresh and photochemically aged OA from all fuels, which are
within the range of Almed (0.29 + 0.27) reported for ambient biomass-burning OA%. As expected, Almod
decreased with aging indicating that the fresh OA had a higher aromaticity®”. This is further illustrated in
Figure 3, which shows that the relative abundance of aromatic and condensed aromatic species decreased
with photochemical aging for all fuels.

B Fresh [ Aged

a) Aromatic structures b) Condensed aromatic structures
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Figure 3. Relative abundance of (a) aromatic structures, corresponding to modified aromaticity index
(Almod) > 0.5 and (b) condensed aromatic structures, corresponding to Almeq > 0.67 in the fresh and
photochemically aged OA species detected by ESI-MS for the different fuels.

3.2. Cell Death and Reduction in Metabolic Activity

Figure 4 shows the cell metabolic activity obtained using the WST-8 assay after 24-hour exposure to each
of the fresh and photochemically aged PM from the three fuels. All samples exhibited typical dose-
response profiles, with a significant decrease in metabolic activity relative to solvent control at all
exposure doses equal to or higher than 20 pg-PM/ml (200 pg-PM/cell). The results in Figure 4 reflect the
dependence of metabolic activity on both fuel type and photochemical aging. These trends can be
conveniently summarized using the half-maximal inhibitory concentration, ICso, which is the dose that
causes a 50% reduction in metabolic activity. There are significant differences in ICso across the fresh PM
samples, with the fresh PM from hickory combustion having the smallest ICs, followed by pine and oak.
For all fuels, the 1Cso of the fresh PM was significantly smaller than the ICso of the aged PM, indicating that
photochemical aging rendered the PM less potent at reducing the metabolic activity of the cells.



280

281
282
283
284
285
286
287

288
289
290
291
292
293
294
295

296

a} Hickory b} Pine c) Oak

g _ ICsoresn= 161 Kspnges = 32415 ICsoren=24%3  ICosonges=39%E3  ICsqprean=32%2  ICoppgeq=39%2
= X 120 . . - : :
b 5 * * * T * * * * *
=5 100f TR - Aced B SR —----}----._,t 4
= .\\ ~ o e . ~ SN
%’ S " s g [ Tl +\ Aged "I Aged
a £ ) 1 N N
\‘ s, \\ \

22 4 Y Fresh ~J ‘ \
23 Fresh ™, N Fresh \»

b ‘ \ L AR
52 40 L 1t N | \\
1= ; AN ‘& \‘\‘- A%}
o “ 20 \\_2 L u— \1\7:73— \-is\‘l—_i
T = ~£ . T ¥ ¥
o3 3
iy 0 : : - - . :

1 10 100 1 10 100 1 10 100

PM dose (pg-PM/ml) PM dose (pg-PM/ml) PM dose (pg-PM/ml)

Figure 4. Results from the WST-8 assay showing metabolic activity relative to solvent control of cells
exposed to fresh and photochemically aged PM from the combustion of different fuels. Error bars
represent standard deviations from five measurements. Significant differences with solvent control were
obtained for all fresh and aged PM exposures at doses > 20 pg-PM/ml. Significant differences between
fresh and aged PM are denoted by asterisks. The dashed lines represent 5" degree exponential fits
calculated using BMDS 3.2. Above the panel for each fuel is its ICsg, the dose required for a 50% reduction
in cell metabolic activity, and the 95% confidence interval.

However, with further investigation of cell death pathways, the results become more nuanced. Figure 5
shows the flow cytometry results from the Annexin V assay of cells exposed to 55 pg-PM/ml (220 pg-
PM/cell) for 24 hours of fresh and aged biomass-burning PM from the different fuels. The results for cells
exposed to 20 pug-PM/ml (80 pg-PM/cell) and 215 pg-PM/ml (860 pg-PM/cell) are shown in Figures S3 and
S4, respectively. The flow cytometry analysis identifies cells that are live, early apoptotic, late apoptotic,
and dead, with each category falling in a unique quadrant in the panels shown in Figure 5. In contrast to
the WST-8 assay, the Annexin V assay shows increasing toxicity with the photochemical aging of the PM,
with the aged PM inducing higher levels of late apoptosis than the fresh PM across all fuels.
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Figure 5. Flow cytometry analysis of cells exposed to 55 pg-PM/ml of fresh and photochemically aged PM
from the combustion of different fuels. Also shown are data for control (untreated cells) and solvent
control (cells exposed to DI water + 0.1% DMSO). The quadrants indicate the fractions of live, early
apoptotic, late apoptotic, and dead/necrotic cells.

Constrained by the amount of PM samples, we were able to perform only one measurement for each
exposure with the Annexin V assay, which did not allow for statistical comparison across fuels. However,
the measurements from the three fuels can be combined to perform comparison between the fresh and
aged PM. As shown in Figure 6, averaged over the three fuels, the aged PM induced higher levels of
apoptosis and necrosis than the fresh PM, with the exception of necrosis at 20 ug-PM/ml (80 pg-PM/cell),

with significant differences in apoptosis at 20 pg-PM/ml (80 pg-PM/cell) and 55 pg-PM/ml (220 pg-
PM/cell).
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Figure 6. The fraction of (a) total apoptotic and (b) necrotic cells after exposure to fresh and
photochemically aged PM averaged across all fuels. Also shown are data for control (untreated cells) and
solvent control (cells exposed to DI water + 0.1% DMSO). Error bars represent standard deviations from 3
measurements (one for each fuel). Significant differences relative to solvent control are denoted by plus
signs. Significant differences between the fresh and aged samples are denoted by asterisks.

Comparison of the response of the cells assessed using the WST-8 and Annexin V assays to fresh and
photochemically aged PM, averaged across all fuels, is shown in Figure 7. While the fresh PM was more
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potent at reducing the metabolic activity of the cells, the aged PM induced more cell death. The seeming
inconsistency between the WST-8 and Annexin V assays is potentially a manifestation of differences in
toxicity mechanisms that are captured by the different end points measured by the two assays. The
Annexin V assay measures apoptosis and necrosis by detecting exofacial phosphatidylserine (annexin V)
and permeable cell membranes (7-AAD), each distinct markers for apoptotic and necrotic cells,
respectively®® 8, However, other programmed cell death pathways® with different markers can go
undetected with the Annexin V. Those pathways could lead to a reduction in metabolic activity, which can
also be cell-death independent®.
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Figure 7. The fraction of (a) metabolically active cells relative to solvent control (WST-8) and (b) live cells
(Annexin V) after exposure to fresh and photochemically aged PM averaged across all fuels. Also shown
are data for control (untreated cells) and solvent control (cells exposed to DI water + 0.1% DMSO) for
Annexin V. Error bars represent standard deviations from 15 measurements (5 for each fuel) in panel (a)
and 3 measurements (one for each fuel) in panel (b). Significant differences between the fresh and aged
samples are denoted by asterisks. In panel (b), significant differences relative to solvent control are
denoted by plus signs.

Different OA species can induce different toxicity mechanisms®. Pardo et al.® separated tar distilled from
wood pyrolysis (equivalent to the fresh OA in this study) into water-soluble and organic-soluble fractions.
They found that the water-soluble fraction, which is more oxygenated (has higher O:C) but has a lower
aromatic content than the organic-soluble fraction, caused more oxidative stress and apoptosis but less
DNA damage in lung epithelial cells. The difference in toxicity mechanisms between the water-soluble and
organic-soluble fractions in Pardo et al. is possibly driven by the relative abundance of oxidized organic
species and aromatic structures in the two fractions. It is plausible that the relative abundance of oxidized
organic species also plays a role in the differences in cellular responses between fresh and aged PM in this
study. Photochemical aging increases the abundance of highly oxidized species (Figure 2), which renders
the PM more potent at producing ROS and inducing apoptosis mediated by oxidative stress. On the other
hand, photochemical aging decreases the abundance of aromatic and condensed aromatic structures
(Figure 3), which renders the PM less potent at inducing DNA damage. Excessive activation of Poly(ADP-
ribose) polymerase-1 (PARP-1) proteins in response to DNA damage®® has been shown to reduce
metabolic activity without necessarily causing cell death®?. This could partly explain the lower metabolic
activity for the fresh PM despite the higher rate of cell death for the aged PM (Figure 7).
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In general, these results indicate that even for the relatively short chamber oxidation time in our
experiments (2 hours), photochemical aging significantly alters the toxicity mechanisms induced by the
PM. Longer OH exposure continues to chemically transform the PM over time scales of days®, which is
expected to further affect PM toxicity. Furthermore, biomass-burning plumes undergo other oxidation
pathways, including ozonolysis** and nighttime oxidation with nitrate radicals®, that can potentially have
different impacts on the biomass-burning PM toxicity.

3.3. Possible Competing Roles of Heavy Metals and Organic Aerosol

Biomass-burning PM and atmospheric PM in general usually contain trace amounts of heavy metals. Even
though heavy metals typically constitute < 0.1% of the PM mass, they are important contributors to PM
toxicity, as has been confirmed in in vitro exposure studies®. Heavy metals in ambient PM have been
associated with adverse health outcomes and have been shown to exhibit positive mortality risk
coefficients®®. We detected several heavy metals with established toxicities in the PM samples (Table 2).
The differences in PM metal content across fuels should not be taken as a characteristic of each fuel, as
these metals could have originated from various natural and/or anthropogenic sources and then absorbed
by the biomass®” %, We note the samples used in ICP-MS measurements to obtain the values in Table 2
were prepared using nitric acid extraction, while the PM samples for cell exposure were prepared using
methanol extraction. Therefore, even though methanol is effective at extracting metals® 1%, it is likely
that there are differences in the metal content values in Table 2 and the metal content in the PM used for
cell exposure. Nevertheless, metal toxicity can partly explain the differences in metabolic activity across
fuels. Hickory PM had the highest overall metal content (3.25 mg/g-PM), followed by pine (0.49 mg/g-PM)
and oak (0.39 mg/g-PM), which is in line with their differential reduction in metabolic activity (Figure 4).
Furthermore, arsenic and thallium, both considered among the more toxic heavy metals'®" 192 were only
detected in hickory PM.

Table 2. Heavy metals content in the fresh PM from the combustion of different fuels obtained using ICP-
MS. The analysis also included iron (Fe), copper (Cu), and lead (Pb), but those were not detected in any of
the samples.

Hickory ‘ Pine ‘ Oak
Metal Metal Content (mg/g-PM)
Arsenic (As) 0.56 ND ND
Cadmium (Cd) 0.03 0.01 0.01
Chromium (Cr) ND 0.48 0.38
Antimony (Sb) 0.27 ND ND
Thallium (T1) 2.39 ND ND

Mitochondrial dysfunction induced by metals!®21% can also partly explain the lower metabolic activity in

the fresh PM compared to aged PM. SOA formation upon photochemical aging increases the PM
concentration and effectively dilutes the metal content in the aged PM relative to the fresh PM. Thus, for
the same PM exposure dose, the cells were exposed to higher levels of metals in the fresh PM compared
to the aged PM. However, photochemical aging of the PM led to increased apoptotic cell death (Figure 6)
despite the reduction in metal content, which suggests a more dominant role of increased OA oxygenation
at inducing these endpoints. Similar to OA, heavy metals have been implicated in various toxicity
mechanisms that can contribute to the observed cell death and decreased metabolic activity in this study,
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including oxidative stress!® 1% inhibition of DNA repair'®, excessive PARP-1 activation!®, and
mitochondrial dysfunction® 1%7_ It is plausible that metals are more efficient at inducing effects that are
more linked to metabolic activity (mitochondrial dysfunction), while increased OA oxygenation upon
photochemical aging renders the PM more efficient at inducing effects more linked to apoptosis (e.g.,
oxidative stress).

4. Conclusions

Human bronchial epithelial cells exhibited different responses when exposed to fresh and
photochemically aged PM emitted from the combustion of hickory twigs, pine needles, and oak foliage.
Hickory PM induced the strongest reduction in metabolic activity, followed by pine and oak. While the
limited number of fuels investigated in this study does not allow for deriving generalized correlations
between fuel type and levels of smoke toxicity, our results suggest that smoke toxicity depends on fuel
type. The aged PM induced more apoptotic cell death, while the fresh PM was more potent at reducing
metabolic activity. These results indicate that atmospheric processing alters the toxicity of biomass-
burning PM in a complex fashion, with a possible important contribution by heavy metals. This calls for
targeted efforts to investigate the effect of aging on the underlying toxicity mechanisms implicated in the
observed endpoints in this study. These could include focusing on specific biological markers related to
mitochondrial function®1, as well as elucidating causal pathways between intracellular responses (e.g.
oxidative stress, PARP-1 overactivation) and cell death®’.
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