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A B S T R A C T

Heterogeneous membranes or films are thin and soft structures with spatial variations in material property
and thickness. Mechanical behavior of heterogeneous membranes is not well understood, mainly due to the
difficulty in obtaining accurate and reliable material property data. To understand the mechanical behavior
of these materials, accurate and efficient characterization methods for heterogeneous membranes are needed.
In this paper, an inverse method based on machine learning is developed to efficiently extract mechanical
properties from full-field strain distributions. This approach is demonstrated on a flat heterogeneous membrane
with uniform thickness formed by up to four linear elastic synthetic materials in a grid arrangement, and
deforming in a moderate strain range (true strain ∼ 10%). The results show that the machine learning method
achieves accuracy comparable to the traditional inverse finite element method, and is 6 orders of magnitude
faster in the demonstrated case studies.
1. Introduction

Synthetic thin structures, ranging from non-woven fabrics (Feng,
2017; Nukala, 2016) and thin forms of stretchable/flexible electron-
ics (Rogers et al., 2010; Kim et al., 2011), to foam metals (Fiedler
t al., 2006), porous media, and metal alloy systems (Körner and Singer,
000), are becoming increasingly complex in material composition and
hickness variation to meet the demands of multi-functionality, com-
act designs, and large-scale manufacturing (Chiluka, 2018). Knowing
he mechanical properties of these heterogeneous thin products is
ritical for the optimization of industrial production processes. For ex-
mple, characterization of the web materials in web-handling will allow
redictions of critical buckling loads and help determine important
rocess parameters (Chiluka, 2018).
In addition to synthetic materials, many thin, soft biological tissues

e.g. meninges Gu et al., 2012, eardrums Wang et al., 2017, heart
valves Jett et al., 2018, skins Rensink, 2012) are made of different
materials, and their thickness varies spatially (Barr, 2014; Asally et al.,
2012; Fung, 2013). Due to their small thickness, these synthetic and
biological membranes lose structural stability under small compressive
or tensile loads.

The mechanical behavior of these heterogeneous materials is not
well understood, mainly due to the lack of an efficient characterization
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method. Some prior studies used a single effective material to represent
the entire heterogeneous structure, and extract the effective proper-
ties of the heterogeneous material from experimental measurement
of force–deformation relations (Forte et al., 2017; Babarenda Gamage
et al., 2011). These simplified models ignore the local property vari-
ations in heterogeneous structures, which could lead to errors when
predicting local structure deformation or failure. Another category of
characterization methods, referred to as inverse methods (Cooreman
et al., 2008), extracts material properties of heterogeneous structures
from the displacement field under given loading conditions. The in-
put of the inverse method is the displacement field which can be
obtained by Digital Image Correlation (DIC) (Pan et al., 2009). There
are several methods to solve this type of inverse problems (Avril et al.,
2008; Martins et al., 2018). For example, the constitutive equation
gap method (CEGM) was first developed by Ladevèze and Leguillon
in 1983 (Ladeveze and Leguillon, 1983) to estimate the error in Fi-
nite Element Analysis (FEA). In 2002, Geymonat, Hild and Pagano
adopted this method to identify material parameters from full-field
measurements (Geymonat et al., 2002). More recently, CEGM has been
applied to study heterogeneous materials (Florentin and Lubineau,
2011), anisotropic elasticity (Guchhait and Banerjee, 2016), and plas-
ticity (Latourte et al., 2008). The advantage of CEGM is its applicability
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Fig. 1. Fabricated (a) 1 × 2 and (b) 2 × 2 heterogeneous specimens with clamping boundaries (blue lines) and boundaries for area of interests in DIC (red lines). The size bars
n the figures represent 10 mm. (c) the full-field strain distribution of a 2 × 2 specimen obtained by 2D DIC. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)
o any constitutive model. However, the calculation of a statically
dmissible stress field can be computationally costly, especially when
he material is more complex. Another method is the Virtual Fields
ethod (VFM), first introduced by Grédiac in 1989 (Grédiac, 1989).

VFM has superior computational efficiency for homogeneous materials
because the virtual strain field can be obtained analytically (Pierron
and Grédiac, 2012; Grédiac et al., 2006). However, when the ma-
terial is heterogeneous, FEA iterations are needed to calculate the
virtual strain field using return-mapping algorithms. Another com-
monly used inverse method is the Finite Element Model Updating
(FEMU) method (Kavanagh and Clough, 1971). Kauer et al. (2002)
used FEMU to characterize the viscoelastic material properties of a
soft tissue. None of the above methods can handle materials with
complex heterogeneity or thickness variations, mainly because of high
computational costs and difficulties in convergence.

With the fast development of the machine learning (ML) technol-
ogy (Jordan and Mitchell, 2015; LeCun et al., 2015) in recent years,
ore and more complex problems (including physics-based problems)
an be solved. For example, Hoerig et al. developed an information-
ased machine learning approach for elasticity imaging of soft bi-
logical tissue (Hoerig et al., 2017); Ghaboussi et al. proposed an
pproach combining the Gappy Proper Orthogonal Decomposition ma-
hine learning technique with a physics-based direct inversion strategy
or material characterization (Ghaboussi et al., 1998). ML can also be
sed to study the mechanical behavior of materials (He et al., 2021;
hang et al., 2019; Bishnoi et al., 2019; Wang and Sun, 2018; Liu et al.,
2019; Heider et al., 2020; Ghaboussi et al., 1998, 1991). By applying
ML, the efficiency of the inverse solving process is significantly im-
proved. However, there is still a gap of knowledge in applying ML to
determine the relationship between heterogeneous material properties
and displacement fields.

To advance understanding of the mechanical behavior of thin and
heterogeneous materials, this study develops a ML neural network
which is trained with FEA generated data. The developed neural net-
work can efficiently extract material properties from full-field experi-
mental strain measurements. The focus of the study is on a thin, flat,
and linear elastic heterogeneous membrane with up to four materials in
a grid arrangement and deforming in the moderate strain range (true
strain ∼10%). A comprehensive numerical and experimental study is
performed to validate the proposed method.

2. Methodology

In this study, a collection of heterogeneous membranes (poly-
dimethylsiloxane, or PDMS) were fabricated to reach controlled ge-
ometry (especially controlled thickness) and material properties. Mem-
branes of 1 × 2 and 2 × 2 grid material patterns were fabricated. Details
of the fabrication process are documented in Section 5. The mixing ratio
of Sylgard 184 PDMS was varied to create PDMS with Young’s moduli
2

between 1.0–3.0 MPa. A Poisson’s ratio of 0.49 was assumed for all
PDMS materials, so the Young’s moduli are the only unknowns in the
inverse method.

Two-dimensional (2D) digital image correlation (DIC) technique
was then used to measure the full-field displacements of the specimens
under uniaxial tensile loading (Peters and Ranson, 1982; Lu and Cary,
2000). The software Ncorr (Blaber et al., 2015) was used to calculate
the Green strain distribution from the full-field displacements. The
Green strain was converted to logarithmic strain and compared to the
strain obtained from the FEA software SIMULIA ABAQUS (SIMULIA
ABAQUS). Material properties and thickness of each material in the
specimen were experimentally measured right after the tensile testing,
and used as inputs for inverse modeling.

Two inverse modeling methods were adopted to extract the mate-
rial properties from the measured full-field strain distributions — the
traditional FEMU and ML-based inverse methods. The two methods are
compared for computational efficiency and accuracy in Section 3.

2.1. Full-field strain measurement

After the specimens were fabricated, an airbrush was used to spray
a random ink pattern on the surface of the specimens. The 1 × 2
specimens (Fig. 1a) were clamped at the blue lines, and uniaxial tensile
tests were performed on an Instron 5942 system. The 2 × 2 specimens
(Fig. 1b) were clamped at the top and bottom blue lines and stretched
vertically, then released and clamped at the left and right blue lines
and stretched horizontally. Each material takes up a 40 × 40 mm2 area
for the 1 × 2 specimens within the area of interest, and a 25 × 25 mm2

area for the 2 × 2 specimens, so the size and zone of each material are
known.

During the tensile tests, videos were recorded by a Nicon D5 camera
(Tamron AF 90 mm f/2.8 Di SP AF/MF 1:1 Macro Lens) with a resolu-
tion of 3840 × 2160 pixels, and converted into images in MATLAB, with
each frame corresponding to a load recorded by the Instron system.
DIC was performed to obtain displacements inside the area marked by
the red lines, and the full-field strains were calculated by the software
Ncorr. For 2 × 2 specimens, after the first tensile test with loading in the
vertical direction, the specimens were released, and the tensile testing
was repeated with loading in the horizontal direction. Two strain fields
corresponding to the two stretching directions were determined. The
strains corresponding to the same force (10 Newton for 1 × 2 and
16 Newton for 2 × 2 specimens) were used in both the DIC experiments
and the inverse modeling.

2.2. Traditional FEMU method

2D FEA models with the same geometry and material domains
as in the physical specimens were developed for the FEMU method.
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Fig. 2. 2D FEA models for (a) 1 × 2 and (b) 2 × 2 specimens. The stretching forces are applied on the control nodes A, B, and C. For the boundary nodes, the displacements in
he stretching direction are coupled to the control nodes to simulate a clamped condition.
he boundary conditions corresponding to the clamped–clamped con-
traints in experiments are depicted in Fig. 2. For the 1 × 2 specimens,
single model was needed, while for the 2 × 2 specimens, two models
ere simulated simultaneously to fit the two strain fields of the same
pecimen being stretched in 𝑥 and 𝑦 directions, respectively. The ma-
erials were treated as linear elastic with a fixed Poison’s ratio of 0.49.
he sizes and zone of each material were fixed and consistent with
he physical specimens. Geometric nonlinearity was considered in the
orward solving FEA process.
A rigorous algorithm was implemented in the extended CAE suite

y SIMULIA. Specifically, the Isight and the SIMULIA Execution Engine
as used for creating simulation process flows consisting of a series
f integrated and automatic FEA simulation, data matching, and opti-
ization processes. This process flow iteratively changes the material
arameters to fit an experimentally obtained full-field strain distribu-
ion. The optimization was performed in Isight to search for the optimal
aterial parameter set that minimizes the mean squared error (MSE)
etween the simulated strain distribution and the DIC experiment. For
he FEMU method, several optimization methods, including Downhill
implex, Hooke–Jeeves, and Multi-Island GA, were tested for the same
ask. The Downhill Simplex method was selected for having the best
fficiency among the three. Several different combinations of initial
uess were also tested, the results show there is no significant influence
n the convergence time or the converged values. Isight was set to
un 100 iterations then the MSE was calculated to evaluate the quality
f the solution. A MSE between predicted and experimental strains of
2 × 10−4 was considered acceptable in this study.

.3. Inverse modeling using machine learning

Contrast to the traditional method that manipulates the material
arameters in the governing equations to derive a solution for the
nverse elasticity problem (Cooreman et al., 2008), the ML method
earns the pattern from the given training samples and makes pre-
ictions for testing samples of the same kind (Hagan et al., 2014;
eCun et al., 1998). To solve the inverse moduli mapping problem,
n FEA generated solution data set was used as the training data to
rain a neural network to approximate the relation between the system
esponse (in this case, full-field strain distribution under a given load)
nd the inverse unknowns (the Young’s moduli). Once the network was
eveloped and trained, the solving process became highly efficient.
3

Fig. 3. The architecture of the developed FCNN neural network (Ghaboussi et al.,
1991). The input is the full-field strain distribution under a given load, the target is
the determination of Young’s moduli of all materials. 600 neurons were used in Layer
1 and 200 neurons in Layer 2.

The deep neural network architecture adopted in this study is
shown in Fig. 3. A light-weighted Fully Connected Neural Network
(FCNN) (Ghaboussi et al., 1991) was designed for the task. The network
parameters were set heuristically so that the network is capable of
handling the inverse problem with a low computational cost. The strain
of each element in a specimen was used as the input and mapped
to a vector before feeding into the network. The moduli of all the
materials were estimated in the output layer. The network consists of
two linear hidden layers before the output. 600 neurons were used
in Layer 1 and 200 neurons in Layer 2. The network was trained for
60,000 epochs with the loss function defined as the MSE between the
output (predicted moduli) and the ground-truth moduli (given by the
training data set). The neuron learning rate decayed with a factor of 0.9
for each 10,000 epochs in the training process to allow adjustments to
improve the network-data fitting. The neuron parameters were updated
automatically during training to minimize the MSE loss to ensure that
the network produces accurate moduli predictions. The ML results
showed that the trained network was capable of handling both 1 × 2

and 2 × 2 moduli predictions.
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Table 1
Comparison of Young’s modulus values for 1 × 2 specimens.

Experiment Thickness FEMU ML

(MPa) (mm) (MPa) Error (%) (MPa) Error (%)

Specimen 1 𝐸1 1.83 ± 0.031 1.76 ± 0.025 1.90 4.27 1.79 1.94
𝐸2 2.59 ± 0.048 1.82 ± 0.038 2.72 4.87 2.60 0.22

Specimen 2 𝐸1 1.30 ± 0.016 1.87 ± 0.018 1.36 4.68 1.24 4.64
𝐸2 2.56 ± 0.081 1.95 ± 0.018 2.69 5.06 2.54 0.72

Specimen 3 𝐸1 2.93 ± 0.054 1.95 ± 0.015 3.03 3.20 2.97 1.34
𝐸2 1.55 ± 0.029 1.83 ± 0.018 1.63 5.05 1.55 0.323

Specimen 4 𝐸1 2.92 ± 0.050 1.87 ± 0.022 3.05 4.44 2.97 1.68
𝐸2 1.32 ± 0.059 1.76 ± 0.036 1.37 3.84 1.23 6.84

Specimen 5 𝐸1 2.72 ± 0.044 2.10 ± 0.061 2.69 0.785 2.67 1.67
𝐸2 1.26 ± 0.024 2.18 ± 0.047 1.20 4.91 1.23 2.56

To generate the network training data, an FEA model with about
000 elements was established with the same material pattern as the
xperimental specimens. Assuming the materials’ moduli are within the
ange of 0.75–3.5 MPa, a large number of Young’s moduli combinations
hich cover the whole search space were generated as the training
ata set. This enables the network to handle any possible combination.
pecifically, the moduli combinations (𝐸1, 𝐸2 in Fig. 2a can take any
alue in the set [0.75, 0.85, . . . , 3.45, 3.5] MPa, i.e. a total of 841
ossible combinations for 1 × 2 specimens; 𝐸1, 𝐸2, 𝐸3, and 𝐸4 in Fig. 2b
an take any value in the set [0.75, 1.25, 1.75, . . . , 3.25] MPa, i.e. a
otal of 1296 possible combinations for 2 × 2 specimens) were assigned
o each specimen, and the corresponding logarithmic strain distribution
f all the elements was computed by FEA. Under a set force (10 Newton
or 1 × 2 and 16 Newton for 2 × 2 specimens), the strains were used as
he training inputs and the Young’s moduli were used as training output
argets. 500 synthetic validation data with random Young’s moduli
ere also prepared to evaluate the network performance. The network
as built and tested using NVIDIA GTX 750 ti graphic card with
40 CUDA cores. The training time varied according to the network
arameters, the number of element in the FEA model, and the number
f specimens in the training set. For example, the 1 × 2 case with 841
amples in the training set needed a training time of approximately
5 min. The testing accuracy on randomly synthetic samples reached
0.4% error on average. Once the network was developed and fully
rained, it only took 1 ms to generate the required output for any new
nput (full-field strain distributions) obtained from FEA generated data
r DIC experiments.

. Results and discussions

.1. Accuracy of the FEMU and ML methods

The results of the two inverse modeling methods – FEMU by Abaqus
sight and ML – are given in Tables 1 and 2. Both methods can
xtract the material properties accurately, with errors up to ∼5% from
he experimentally measured average modulus. It is noted that the
verage experimental values are also subject to measurement errors
the standard deviations of four measurements are given in the tables).
he MSE between predicted and experimental strains for the FEMU
ethod in all the cases is < 2 × 10−4 after 100 iterations.

.2. Efficiency comparison between the FEMU and ML methods

For the 2 × 2 specimens, the time FEMU needed for each inverse
roblem was about 30 min (with an AMD FX-8350 8-core CPU). In
omparison, the time used to train the neural network was only about
5 minutes (with NVIDIA GTX 750 ti with 640 CUDA cores GPU). After
he training is completed, the network took merely ∼1 ms (this will not
e significantly affected by hardware) to solve an inverse problem from
4

ny given strain field. The training process is only needed once, then
able 2
omparison of Young’s modulus values for 2 × 2 specimens.

Experiment Thickness FEMU ML

(MPa) (mm) (MPa) Error (%) (MPa) Error (%)

Specimen 1

𝐸1 2.14 ± 0.099 1.90 ± 0.061 2.23 4.30 2.19 2.25
𝐸2 1.81 ± 0.033 1.98 ± 0.016 1.83 1.24 1.81 0.12
𝐸3 0.99 ± 0.014 1.97 ± 0.009 1.01 1.81 1.04 4.78
𝐸4 1.32 ± 0.030 1.97 ± 0.043 1.35 1.92 1.34 1.37

Specimen 2

𝐸1 1.55 ± 0.008 1.90 ± 0.065 1.60 3.70 1.53 1.04
𝐸2 1.11 ± 0.011 1.96 ± 0.004 1.10 0.12 1.08 2.22
𝐸3 2.67 ± 0.030 1.92 ± 0.030 2.78 4.33 2.67 0.318
𝐸4 1.97 ± 0.021 1.85 ± 0.043 2.04 3.88 1.97 0.267

Specimen 3

𝐸1 1.94 ± 0.070 2.22 ± 0.025 1.92 1.28 1.93 0.467
𝐸2 1.25 ± 0.032 2.01 ± 0.065 1.28 2.51 1.22 2.72
𝐸3 2.93 ± 0.084 2.08 ± 0.053 3.03 3.38 2.90 1.28
𝐸4 1.37 ± 0.061 2.07 ± 0.048 1.36 1.19 1.34 2.49

Specimen 4

𝐸1 2.75 ± 0.078 2.01 ± 0.008 2.88 4.81 2.73 0.909
𝐸2 1.52 ± 0.074 1.94 ± 0.059 1.60 4.76 1.50 1.43
𝐸3 1.99 ± 0.029 2.10 ± 0.046 1.99 0.0010 1.95 2.04
𝐸4 1.17 ± 0.038 2.12 ± 0.021 1.12 4.19 1.15 1.30

Specimen 5

𝐸1 1.04 ± 0.039 2.03 ± 0.015 1.01 2.93 1.04 0.446
𝐸2 2.22 ± 0.044 2.04 ± 0.007 2.32 4.57 2.20 0.953
𝐸3 1.42 ± 0.039 1.86 ± 0.019 1.49 4.52 1.40 1.75
𝐸4 3.14 ± 0.015 1.84 ± 0.025 3.25 3.21 3.17 0.708

Fig. 4. The computational time needed to reach convergence (MSE≤0.0025) versus the
number of unknown materials for the 1 × 𝑁 cases. The 𝑁 = 7 case is not converged
(red cross) after more than 6 h of computational time.

the trained ML network performs a one-step feed-forward calculation
to efficiently predict the moduli for any new specimen. On the other
hand, the FEMU is an optimization-based iterative approach that has
limited performance. The inverse solving process of the ML method
was 6 orders of magnitude faster than FEMU in the current study.
It should be noted that with careful additional adjustments to the
FEMU inverse method such as adjoint formulation or Gauss–Newton
procedures, the efficiency of the FEMU method may be increased, but
it will still have potential problems of slow convergence or converging
to local minima (Gokhale et al., 2008; Goenezen et al., 2011; Guchhait
and Banerjee, 2015; Oberai et al., 2009).

.3. Limitation of the FEMU method

Noting that the FEMU method was difficult to converge for the
× 2 cases, a set of numerical experiments were designed to test the
fficiency of the solving method. Here a 1 × 𝑁 material pattern was
designed, and the strain field corresponding to a set of materials was
calculated by FEA and used as ‘‘virtual experimental’’ data. The FEMU
was then used to inversely calculate the moduli from the given strain
field. It is found that for simulations with less than 6 unknown material

parameters, the FEMU produced accurate predictions with a maximum
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Fig. 5. Approximate linear, elastic response of PDMS under 5 loading/unloading cycles with maximum strain of 20% and strain rate of 0.5%/min.
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rror of 0.054%. However, for the 1 × 6 case, the maximum error was
.6%. The computational time also increased significantly when the
umber of materials in a specimen was greater than 5, and convergence
ecame extremely difficult when the number of materials was greater
han 6 (Fig. 4, the red cross represents a non-converged case). It is
lear that the efficiency and accuracy of the FEMU method decreases
ignificantly with the increase of the number of materials. Therefore, in
uture studies when the geometry becomes more complex, and/or the
umber of unknown parameters increases, FEMU might not be able to
olve those problems, but the ML-based inverse method can still provide
solution.

. Conclusions and future studies

A ML-based inverse method is developed to determine the mate-
ial parameters in a linear elastic and heterogeneous membrane. The
ethod is demonstrated on flat specimens. The conclusions of this study
re summarized below:

1. Both the FEMU and ML inverse methods are capable of in-
versely solving moduli of heterogeneous membranes from full-
field strain distributions obtained from 2D DIC, with accuracy
within ∼ 5% of the experimentally measured moduli.

2. ML is as accurate as the traditional FEMU method, but has a
significant advantage in terms of computational efficiency. The
training time is negligible, and the required number of data sets
is moderate for these case studies. The computational time is
6 orders of magnitude less than that of FEMU for the 2 × 2
heterogeneous patterns.

3. The network structure will be further optimized in future studies
to increase the efficiency of the training process and reduce the
prediction error. Deep learning techniques will be implemented
to make the network more robust for noisy DIC data.

4. Future studies will focus on enabling the ML neural network
to learn the relationships between given loads and moduli, as
well as extending its capability from handling simple patterns to
more complex patterns (e.g. from 2 × 2 to 4 × 4, and eventually
being able to handle any desired resolution of 𝑀 × 𝑁). When
the number of unknown materials ML can handle increases
to sufficiently large, this method can be used to characterize
5

complex heterogeneous membranes. i
. Experiments

.1. Specimen fabrication

PDMS Sylgard 184 was processed to make specimens of different
oung’s moduli. Molds of specified geometries were created with 3D
rinters and a milling machine. The PDMS base and curing agent were
ixed at a chosen weight ratio by a mixing machine for 15 min. The
ixture was degassed in a vacuum chamber for 60 min. The mold
urface was sprayed with a mold release agent, and the mixture was
ast into the mold. Specimens were then cured in an oven (100 ◦C)
or 5 h. Once fully cured, specimens were cooled down to room
emperature. For heterogeneous specimens, each material was cast and
ured sequentially – e.g. for the 1 × 2 specimens, the first material
as cast to fill the whole mold and cured, then the specimen was
ut into 2 halves and one of them was used to fill half of the mold.
astly, the second material was cast and cured. This method created
eterogeneous specimens with strong material interfaces such that the
aterial interfaces did not fracture during the tensile testing.

.2. Linearity of PDMS under true strain <20%

PDMS Sylgard 184 under various compound mixing ratios were
ade into single-material testing coupons. The strain and stress data
nder a uniaxial tensile test (strain rate 5%/min) was plotted, and the
lopes were fitted with MATLAB to obtain the Young’s moduli. Tensile
ests with repeated loading and unloading cycles were performed to
heck the elastic linearity. Results showed that PDMS Sylgard 184 can
e treated as a linear elastic material for strains up to 20% as shown
n Fig. 5.

.3. Experimental measurement of single-material moduli

It was also found that the PDMS’s Young’s modulus is highly de-
endent on the mixing ratio, the curing temperature, and the resting
ime before tensile test. The modulus of each constituent in the het-
rogeneous specimens were measured right after the uniaxial testing.
he heterogeneous specimens were cut into coupons of single-material,
nd for each material, 4 coupons were prepared and tested, and the
btained moduli were averaged.
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