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Observationally constrained representation of brown carbon
emissions from wildfires in a chemical transport model

Soroush E. Neyestani® and Rawad Saleh*?

The month of August 2015 featured extensive wildfires in the Northwestern U.S. and no significant fires in Alaska and
Canada. With the majority of carbonaceous aerosols (CA), including black carbon (BC) and brown carbon (BrC), over the U.S.
dominated by emissions from Northwestern wildfires, this month presented a unique opportunity for testing wildfire BrC
representation in the Weather Research and Forecasting model with chemistry (WRF-Chem). We performed parallel
simulations that (1) did not account for BrC absorption, (2) accounted for BrC absorption, and (3) accounted for BrC
absorption as well as its decay due to photobleaching. We used a comprehensive set of extensive and pseudo-intensive
optical properties, namely the aerosol optical depth (AOD), aerosol absorption optical depth (AAOD), absorption Angstrém
exponent (AAE), and single scattering albedo (SSA) to constrain the model output against observations from the Aerosol
Robotic Network (AERONET). We found that accounting for BrC absoroption and photobleaching resulted in the best
agreement with observations in terms of aerosol absorption (AAOD and AAE). However, the model severely underestimated
AOD and SSA compared to observations. We attributed this discrepancy to missing scatering due to missing secondary
organic aerosol (SOA) formation from wildfire emissions in the model. To test this hypothesis, we applied a zeroth-order
representation of wildfire SOA, which significantly improved the AOD and SSA model-observation comparison. Our findings
indicate that BrC absorption, the decay of its absorption due to photobleaching, as well as SOA formation should be

accounted for in chemical transport models in order to accurately represent CA emissions from wildfires.

Environmental Significance Statement

With the continued reduction in anthropogenic emissions
driven by environmental regulation and the projected increase
in the intensity of wildfires driven by increase in global
temperatures and drought episodes, wildfires are expected to
be the dominant source of carbonaceous aerosol (CA) in the
U.S. in the near future. Therefore, predicting the air-quality and
climate impacts of aerosols requires accurate representation of
CA emitted by wildfires in chemical transport and climate
models. Here, we utilize a comprehensive set of remote-sensing
observations to constrain the representation of wildfire CA in
models. Our analysis demonstrates the importance of
accounting for light absorption by brown carbon and secondary
organic aerosol formation in order to reconcile model output
with observations. These findings improve the model ability to
predict the effect of wildfire CA on the atmospheric energy
budget and the CA inhalation exposure levels in regions
impacted by wildfires.
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Introduction

Emissions from wildland fires are associated with significant
impacts on public health3 and the climate*>. On the other
hand, they play an essential ecological role that benefits natural
resources and promotes ecosystem health and resilience®’. This
tradeoff renders planning for the management and mitigation
of wildland fires a major challenge?, especially due to the
chaotic nature of open fires which makes model predictions of
their public-health and climate impacts highly uncertainl48,
Wildland fires encompass wildfires, which are usually ignited
unintentionally, and prescribed fires?. On average in the U.S.,
prescribed fires (mostly in the Southeastern U.S.) and wildfires
(mostly in the Western U.S.) cover similar burned areas annually
of ~3 million ha each, though Western wildfires exhibit
significant year-to-year variability® and have been increasing in
intensity due to increase in global temperatures and drought
episodes®. With the continued decrease in anthropogenic
emissions driven by emission standards and regulation1?, the
fraction of air pollutants attributed to wildland fires has been
steadily increasing and is projected to continue to do so in the
futurell.

Wildland fires are major emitters of carbonaceous aerosol (CA),
including organic aerosol (OA) and black carbon (BC). Numerous
laboratory studies!2-14 and field measurements!>-17 have shown
that OA from wildland fires is light-absorbing, and is categorized
as brown carbon (BrC)18-20, BC is a strong absorber of solar



radiation with a positive radiative forcing that is globally second
only to carbon dioxide2%22, BrC is comprised of various species
with a wide range of light-absorption properties, usually
quantified using the imaginary part of the refractive index (k).
On average, BrC emitted from biomass burning (including
wildland fires) exhibits mid-visible k values that are one to two
orders of magnitude smaller than k of BC20. However, BrC
emissions are usually one to two orders of magnitude larger
than BC23, thus atmospheric BrC absorption is potentially
equally important to BC. Furthermore, BrC exhibits absorption
spectra that are largely skewed toward shorter visible and UV
wavelengths, which can have important implications for
photochemistry2425,

Representing BrC absorption in chemical transport models is
challenging. Reported estimates of the global direct radiative
effect (DRE) of BrC absorption range between +0.03 W/m?2 and
4+0.57 W/m2 2426, This large range partly reflects the
aforementioned large variation in BrC light-absorption
properties, where different modeling studies have used
different kgc values. To account for variability in kg,
experimental studies have developed parametrizations that
correlated kgrc in biomass-burning emissions with the BC-to-BrC
ratio (BC/BrC) in the emissions!227.28_ Specifically, as BC/BrC
increases, BrC becomes more absorbing (i.e. kgrc increases). The
underlying reasoning is that a fraction of BrC is formed through
the same route as BC, and as the combustion conditions
become more conducive for BC formation, the light-absorption
properties of the emitted BrC converge to those of BC2.
Further complicating the representation of BrC in chemical
transport models is that BrC absorption decays upon aging in
the atmosphere. This process, referred to as photobleaching,
involves the destruction of BrC chromophores due to either
direct photolysis or photochemically induced reactions with
OH15:30-33 Atmospheric observations of the evolution of wildfire
plumes have shown that BrC absorption decays with e-folding
timescales on the order of 1 day'834, Wang et al.35> implemented
a photobleaching scheme in a chemical transport model and
found that the global BrC absorption DRE dropped from +0.1
W/m? to 0.048 W/m?2 when they incorporated the effect of
photobleaching. Similarly, Brown et al.3® reported a global BrC
absorption DRE of +0.13 W/m2 and +0.06 W/m?2 with and
without photobleaching, respectively.

While the importance of light absorption by biomass-burning
BrC has been established in experimental studies and
atmospheric observations, the extent to which accounting for
BrC absorption improves model performance is less clear. on
one hand, several investigations have reported that accounting
for BrC absorption resulted in better agreement between
models and observations. Hammer et al.2* compared ultraviolet
aerosol index (UVAI) values retrieved from Ozone Monitoring
Instrument (OMI) data and those simulated by a global climate
model and found that ignoring BrC absorption in the model
caused a negative bias in UVAI over biomass-burning regions24.
Wang et al.3> used aircraft measurements over the U.S. to
constrain model-simulated BrC absorption. They found that
best model-measurement agreement was achieved by
accounting for both BrC absorption and photobleaching.
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Similarly, June et al.3” found that ignoring photobleaching in a
global chemical transport model led to overestimating aerosol
absorption compared to Interagency Monitoring of Protected
Visual Environments (IMPROVE) observations. On the other
hand, Brown et al.3¢ found that even though implementing BrC
absorption in a global chemical transport model led to better
agreement between model absorption Angstrom exponent
(AAE) values over biomass-burning regions and those retrieved
from Aerosol Robotic Network (AERONET) observations, the
model underestimated single scattering albedo (SSA) values
over these regions compared to AERONET. This finding was
confirmed by a more comprehensive follow-up study which
reported that all of 9 global models underestimated SSA over
biomass-burning regions compared to measurements from 12
observational data sets®. Indeed, that study reported that
accounting for BrC absorption exacerbated the
underestimation of SSA.

Here, we present a detailed investigation of the extent to which
representing absorption by BrC from wildfire emissions in a
chemical transport model improves the comparison with
remote-sensing observations. Using the Weather Research and
Forecasting model with chemistry (WRF-Chem)38, we
performed simulations for the month of August 2015 over the
U.S. where we treated OA emissions from wildfires as (1) non-
absorbing, (2) absorbing (i.e. BrC), and (3) BrC with evolving
light-absorption properties due to photobleaching. We then
applied a comprehensive set of constraints retrieved from
AERONET observations to assess the model performance for
each treatment. The constraints included both extensive (AOD
and AAOD) and pseudo-intensive (AAE and SSA) optical
properties.

Experimental design

The goal of this study is to assess the importance of accounting
for the absorption of BrC in wildfire CA emissions for accurately
representing their interaction with solar radiation. To that end,
we performed a series of WRF-Chem simulations over the U.S.
for the month of August 2015. We chose this month because it
featured extensive wildfire events in the Northwestern U.S.,
while no major fires were recorded in Alaska and Canada.
Therefore, this simulation period presents a unique test case
with high levels of wildfire CA emissions within the simulation
domain and minimal transport from outside the domain
boundaries. Over the month of August 2015, approximately
93% of the CA emissions in the U.S. were from biomass burning
(7% were from anthropogenic sources), 92% of which were
from the Northwestern wildfires. The impact of the CA
emissions from the high wildfire activity is depicted in Figure 1a,
where the modeled monthly average wildfire CA column
burden exceeded 50 mg/m?2 over the Northwestern U.S. Figure
1b shows the fraction of CA column burden over the U.S.
attributed to the wildfire emissions, clearly reflecting that CA
from wildfire emissions dominated the CA column burden over
the majority of the U.S. regions. The contribution of the
Northwestern wildfires to CA is the lowest in the Eastern U.S.
due to both the long transport distance as well as the relatively
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high levels of anthropogenic CA and biogenic secondary organic
aerosol (SOA) over that region.

In order to assess the impact of representing BrC in wildfire
emissions on CA optical properties, we performed 4 parallel
simulations:

1. Base: We treated all OA emissions, including biomass-
burning OA, as non-absorbing. This is the default
setting in WRF-Chem.

2. BrC: We treated biomass-burning OA emissions as BrC
based on the parameterization of Saleh et al.?8, as
further elaborated below. More than 90% of biomass-
burning OA attributed to
Northwestern wildfires in the simulation period with
little contribution from other biomass-burning
sources. Therefore, biomass-burning BrC in this
simulation is effectively wildfire BrC. Anthropogenic
OA emissions as well as SOA from all precursors
(biogenic, anthropogenic, and biomass burning) were
treated as non-absorbing.

3. BrC+bleaching: We accounted for the decay in BrC
absorption due to photobleaching based on the
parameterization of Wang et al.3®, as further
elaborated below.

4. BrC+bleaching+SOA: We incorporated a zeroth-order
representation of SOA formation from the oxidation of
vapors in wildfire emissions.

emissions  were

Model description

We employed WRF-Chem38 version 3.8. We set a single domain
encompassing the contiguous U.S. with a horizontal resolution
of 12 km (396 x 246 grid cells) and 30 pressure-based vertical
layers extending up to 50 hPa. The model time step was 60
seconds and the output was saved as 3-hour averages. A 10-day
spin-up time was added at the start of the simulation period.
The and boundary conditions were processed for
meteorology calculations using the National Center for
Environmental Prediction (NCEP) final reanalysis data with a
horizontal resolution of 1° x 1° and temporal resolution of 6
hours3?. We also implemented the reanalysis data to apply
Four-Dimensional Data Assimilation (FDDA) nudging® to the
wind and temperature components in the simulations.

We obtained both anthropogenic and biomass-burning
emissions data from the EPA National Emission Inventory
(NEI)41,
emissions in NEI are obtained from fire information databases
reported by national, regional, state, local, and tribal agencies42.
We preprocessed the NEI emissions for use in WRF-Chem using
the Sparse Matrix Operator Kernel Emission (SMOKE)*3 model
version 3.6.5 and converted the SMOKE hourly emission output
into WRF-Chem compatible input files using
EPA_ANTHRO_EMIS code developed by NCAR*. For
computational efficiency, a simplified plume rise method*> was
applied to the fire emission sources before using as input in
WRF-Chem.

Gas-phase chemistry was processed using the Model for Ozone
and Related Chemical Tracers (MOZART)4¢. Model of Emissions

initial

In addition to satellite fire detection, wildland-fire

This journal is © The Royal Society of Chemistry 20xx

of Gases and Aerosols from Nature (MEGAN) version 2 47 was
used to calculate biogenic emissions online with meteorology.
The Model for Simulating Aerosol Interactions and Chemistry
(MOSAIC)?*8, which includes major aerosol species such as BC,
organic carbon (OC), sulfate, nitrate, and ammonium, was
selected for simulating aerosol microphysics. Within MOSAIC,
gas-particle partitioning of semi-volatile organic species is
simulated based on the volatility basis set framework*® and
inorganic aerosol thermodynamics is simulated using the multi-
component equilibrium solver over aerosols>°.

We compared the monthly average BC and OA surface
concentrations predicted by the model with those obtained
from the Chemical Speciation Network (CSN) and the
Interagency Monitoring of Protected Visual Environment
(IMPROVE) network>. The locations of the CSN and IMPROVE
stations are given in ESI Figure S1, and the comparisons for BC
and OA are given in Figure S2a and Figure S2b, respectively. As
shown in Figure S2c¢, the model achieves the performance goals
defined by Boylan and Russell>2 based on the mean fraction
error (MFE) for the CSN comparison for both BC and OA. For the
IMPROVE comparison, the model achieves the performance
goals for BC and the less stringent performance criteria for the
OA comparison. The reason for the larger MFE for the model-
IMPROVE OA comparison relative to the model-CSN
comparison is further discussed in ‘The missing scattering’
subsection.

WRF-Chem employs Mie theory to perform aerosol optical
calculations (scattering coefficients and absorption coefficients)
using MOSAIC size distributions and the complex refractive
indices associated with each MOSAIC chemical constituent®3.
We used the model default complex refractive indices except
for wildfire BrC, which was parameterized as described in the
next section. We employed an external mixing assumption for
BC, and all the other aerosol components were treated as well-
mixed within each size bin. We note that WRF-Chem does not
provide this mixing state as an option. Therefore, we defined
new (duplicate) size bins for BC particles which were only
employed for optical calculations in the optical module and thus
did not affect the aerosol microphysical and chemical processes
in the chemical transport module.

Brown carbon parameterization

In its default configuration, WRF-Chem treats OA from all
sources, including wildfires, as non-absorbing by assigning an
OA imaginary part of a refractive index (koa) of zero. In
simulations 2, 3, and 4 (described above), we accounted for
absorption by biomass-burning (mostly wildfire) OA, i.e. we
treated wildfire OA as BrC. We applied the parameterization of
Saleh et al.2%, which calculates kgc of biomass-burning
emissions as a function of the BC-to-BrC ratio (BC/BrC) in the
emissions:

kBrC,SSO =0.016 x IOg(BC/BrC) +0.03925 (1)
_ 0.2081
W= BC/BrC +0.0699 (2)
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Where kgrc,ss0 is kerc @t 550 nm and w is the wavelength
dependence. kgrc at other wavelengths (300 nm, 400 nm, 600
nm, and 999 nm in WRF-Chem) is calculated as:

550\"
Karc,n = Kare,550% (T) (3)

According to this parameterization, kgrc,sso increases and w
decreases with increasing BC/BrC, signifying that the BrC
absorption becomes stronger but has a flatter wavelength
dependence. The inverse relationship between kgrcs50 and w
has been observed in several studies!227.54, It is noteworthy that
BC has w =0 in the visible spectrum.

Environmental Science: Atmospheres

absorption associated with photobleaching plateaus at a certain
threshold18:34,

Figure S3a in the ESI shows the spatial distribution of [OH]
predicted by WRF-Chem for the month of August 2015,
averaged over the first 8 layers of the model (where BrC effect
is important). The corresponding BrC absorption half-lives,
estimated from Equation 4, are shown in Figure S3b. The
domain-average BrC absorption half-life was 0.52 days, which is
consistent with the global-average half-life of 0.59 days
reported by Brown et al.3¢,

0 10 20 30 40 50

0 0.2

0.4 0.6 0.8 1

Fig. 1. (@) Column burden of carbonaceous aerosol attributed to biomass-burning emissions averaged over the month of August
2015. As evident in the spatial distribution, emissions from Northwestern wildfires constitute the majority of biomass-burning
emissions in the simulation period. Black dots show the locations of AERONET stations used in the model-observation
comparisons. (b) The fraction of carbonaceous-aerosol column burden attributed to biomass-burning (wildfire) emissions.

We note that in Equations 1 and 2, BC refers to biomass-burning
BC and BrC refers to biomass-burning OA. Therefore, in order to
implement the parameterization (Equations 1 and 2) in WRF-
Chem, we defined new species to separate the OA emissions
into anthropogenic OA and biomass-burning OA (BrC) and the
BC emissions into anthropogenic BC and biomass-burning BC.
In simulations 3 and 4 (described above), we accounted for the
decay in BrC absorption by photobleaching?>39-33 upon aging in
the atmosphere based on the parameterization of Wang et al.
35, That study assumed that BrC absorption decreased following
a first-order dynamic response with a time constant (i.e.
lifetime) of approximately 1 day8:34 at an OH concentration of
5x10° molecules/cm3. Therefore, kg:c at each time step can be
calculated as:

[OH] At

Karc,t+at = Karc,r €XP (- W) (4)

Where At is the model time step in days and [OH] is OH
concentration in molecules/cm3.
Following Wang et al.35, we did not allow kgc to drop below 1/4
of the original value (at t = 0), which is consistent with
atmospheric observational studies showing that the decay in
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Observational constraints

In order to assess the optical treatments of BrC, we compared
the model output with observations from the Aerosol Robotic
Network (AERONET) observations®>. Figure 1 shows the
locations of AERONET stations (black dots) used in this study.
The model-observation comparisons are monthly averages
(August 2015). They include both extensive optical properties,
namely the aerosol absorption optical depth (AAOD, Figure 2)
and aerosol optical depth (AOD, Figure 3), as well as pseudo-
intensive optical properties, namely the absorption Angstrém
exponent (AAE, Figure 4) and the single scattering albedo (SSA,
Figure 5). We use ‘pseudo’ to indicate that even though AAE and
SSA do not depend on aerosol concentration, they are not true
intensive optical properties (as for example, the complex
refractive index) because they depend on particle size and
mixing state of the aerosol.

AERONET inversion products use an inversion algorithm
described in Dubovik & King>¢ where radiative transfer forward
modeling is coupled with statistical estimation and constraints
to optimize the inversion method. AERONET inversion products

This journal is © The Royal Society of Chemistry 20xx
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have two quality assurance levels5’. The first level (1.5) includes log 283400)

thresholds on azimuth and scattering angles while the second EAE = 60800 (7)
level (2.0) applies an extra set of criteria (e.g. omitting data log (m)

points with AODs smaller than 0.4). For this study, we used level

1.5 AERONET inversion data to retain a large number of data Then, we calculated AAOD and AOD at 440 nm as:

points for comparison with the model results.

AERONET observations are reported at 440 nm, 675 nm, 870 0y AAE

nm, and 1020 nm. For the AAOD, AOD, and SSA comparisons, ~ ~AAODaao = AAODyg0% (m) (8)

we focus on the observations at 440 nm, where BrC absorption
is the strongest. Comparisons at 675 nm are shown in Figures
S4-S6 in the ESI.

We calculated AAE from AERONET AAOD at 440 nm and 675 nm
as:

400\ A€

AODy 40 = AOD4g0x (_>

440

(9)

o (AAOD440> Model-observation comparison
8\ AAOD,;; . .
AAE = 675\ (5) The Base simulation
log (—)
440 As shown in Figure 2a, the slope of the linear fit to model AAOD
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Fig. 2. Comparison between monthly average AAOD at 440 nm for August 2015 obtained from AERONET observations and
WRF-Chem output with four different model treatments of wildfire carbonaceous aerosol emissions.
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Fig. 3. Comparison between monthly average AOD at 440 nm for August 2015 obtained from AERONET observations and

WRF-Chem output with four different model treatments of wildfire carbonaceous aerosol emissions.

WRF-Chem optical properties are calculated at 300 nm, 400 nm,
600 nm, and 999 nm. Therefore, we converted WRF-Chem
AAOD, AOD, and SSA values to 440 nm for comparison with
AERONET observations. First, we calculated AAE and the
extinction Angstrom exponent (EAE) from WRF-Chem AAOD
and AOD at 400 nm and 600 nm as:

log (AAOD400)

AAE = 600)

log (m

This journal is © The Royal Society of Chemistry 20xx

versus AERONET AAOD at 440 nm is 0.49 for the Base
simulation. The underestimation of aerosol absorption at 440
nm is larger than at 675 nm (slope = 0.62; Figure S4a), which is
an indication of missing BrC absorption in the Base simulation.
The effect of missing BrC absorption in the model is more
evident in the AAE comparison (Figure 4a). AERONET AAE values
range between 0.8 and 1.4, which is consistent with variable
contributions of BC and BrC to absorption, where smaller AAE
values indicate BC-dominated absorption and larger AAE values
indicate an increased contribution to absorption by BrC. On the
other hand, the model AAE values exhibit a narrow range
between 0.6 and 0.7 and no correlation with AERONET AAE
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because absorption in the Base simulation is solely dictated by
BC. The AAE comparison in Figure 4a indicates that missing BC
absorption in the model cannot explain the underestimation of
AAOD in the Base simulation because the Base simulation not
only underestimates AAOD, but also its wavelength
dependence. For instance, if one is to add BC to the model to
reconcile the model and AERONET AAOD at 440 nm, that would
lead to overestimating AAOD at 675 nm.

CA in the model. The missing wildfire CA scattering is further
explored later in this section.

Effect of incorporating brown carbon absorption

Model AAOD values in the BrC simulation are significantly larger
than in the Base simulation. As shown in Figure 2b, the slope of
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Fig. 4. Comparison between monthly average AAE for August 2015 obtained from AERONET observations and WRF-Chem
output with four different model treatments of wildfire carbonaceous aerosol emissions.
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Fig. 5. Comparison between monthly average SSA at 440 nm for August 2015 obtained from AERONET observations and WRF-
Chem output with four different model treatments of wildfire carbonaceous aerosol emissions.

The slope of model AOD versus AERONET AOD is 0.31 (Figure
3a), which is smaller than the slope of the AAOD comparison.
This indicates that in addition to the underestimation in aerosol
absorption in the model, there is a more significant
underestimation in scattering. As expected, because scattering
is more underestimated on average than absorption in the
model, a substantial fraction of model SSA values are smaller
than AERONET SSA (Figure 5a). The model SSA values are
generally clustered in two groups, one in good agreement with
AERONET and one lower than AERONET. This clustering can be
understood by examining the spatial distribution of model and
AERONET SSA in Figure 6. The model SSA values are smallest in
the Northwest, where wildfire CA is dominant, and increase
toward the South and East, with the largest values along the
Eastern region. The AERONET observations are mostly clustered
in the Western region (where model SSA is smallest) and the
Eastern region (where model SSA is the largest and closest to
AERONET SSA), thus creating the two clusters in Figure 5a. More
importantly, comparing the spatial distributions of SSA (Figure
6) and wildfire CA column burden (Figure 1b) clearly indicates
that the underestimation in model SSA (i.e. underestimation in
aerosol scattering) is associated with the treatment of wildfire
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model AAOD versus AERONET AAOD for the BrC simulation is
1.23. The BrC simulation exhibits an improved model-
observation AAOD comparison compared to the Base
simulation (slope = 0.49; Figure 2a), though incorporating BrC
absorption leads to overestimating AAOD, on average. This is
further evidenced in the AAE comparison. As shown in Figure
4b, model AAE in the BrC simulation is better correlated with
AERONET AAE compared to the Base simulation. However,
almost all model AAE values are larger than AERONET AAE
values. Overall, even though representing BrC based on the
parameterization of Saleh et al.28 leads to overestimating
aerosol absorption, it presents an improvement in the
prediction of aerosol absorption compared to the Base
simulation, where BrC is neglected.

BrC absorption has a negligible effect on aerosol scattering and
only affects the absorption component of aerosol extinction.
Consequently, incorporating BrC absorption has only a small
effect on the AOD model-observation comparison, as evident in
comparing Figure 3a and Figure 3b. Because BrC absorption
causes a substantial increase in absorption and negligible effect
on scattering, this is reflected in a substantial decrease in SSA in
the BrC simulation compared to the Base simulation. As shown
in Figure 5b, incorporating BrC absorption widens the gap
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between the two clusters described above and substantially
worsens the SSA model-observation comparison.

As expected, accounting for the decay in BrC absorption due to
photobleaching (BrC+bleaching simulation) leads to a reduction
in both AAOD and AAE compared to the BrC simulation. As
shown in Figure 2c and Figure 4c, the AAOD and AAE in the
BrC+bleaching simulation exhibit very good agreement with
AERONET observations. However, similar to the Base and BrC
simulations, the  BrC+bleaching simulation  severely
underestimates aerosol scattering as evident in the model-

O | T — L T [ T —
7 0.8 09 1 .7 08 09 1

0. 0.
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Base simulation underestimates both and

scattering.

absorption

The missing scattering

The model-observation comparisons employed in this study
(Figure 2, 3, 4, and 5) include both absorption and scattering, as
well as extensive and pseudo-intensive properties. This
comprehensive set of constraints enables dissecting the missing
scattering problem described in the previous sub-section. For

c) BrC+bleaching

d) BrC+bleaching+SOA
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Fig. 6. SSA at 440 nm averaged over the month of August 2015 from WRF-Chem output with four different model treatments
of wildfire carbonaceous aerosol emissions. The colored dots show the locations and SSA values of AERONET stations used in

the model-observation comparisons.

a) Base

mg/m®
[ TTTT 1T [
0 1 2 3 4 5 0

c) BrC+bleaching d) BrC+bleaching+SOA

mg/m®
[T JIT T
30 40

0 10 20 50

Fig. 7. Column burden of SOA averaged over the month of August 2015 from WRF-Chem output with four different model

treatments of wildfire carbonaceous aerosol emissions.

observation AOD comparison (Figure 3c). Because incorporating
photobleaching reduces BrC absorption, the SSA values in the
BrC+bleaching simulation (Figure 5c) are larger than in the BrC
simulation (Figure 5b) resulting in a slight improvement in the
SSA model-observation comparison. However, SSA model-
observation comparison in the BrC+bleaching simulation is still
worse than the Base simulation (Figure 5a).

To recap, neglecting BrC absorption (Base simulation) results in
a significant underestimation of aerosol absorption as
evidenced in the model-observation AAOD and AAE
comparisons. Accounting for BrC absorption (BrC simulation)
leads to overestimating AAOD and AAE, but results in a better
comparison with observation. The best agreement in AAOD and
AAE with observations is achieved when accounting for both
BrC absorption and photobleaching (BrC+bleaching simulation).
However, all simulations severely underestimate scattering
compared to observations, as evident in the AOD comparisons.
We note that the better model-observation agreement of SSA
in the Base simulation compared to the BrC and BrC+bleaching
simulations is rather serendipitous; it is due to the fact that the

This journal is © The Royal Society of Chemistry 20xx

instance, the underestimation of AOD cannot be explained by
an underestimation in wildfire CA emissions. Reconciling model
and AERONET AODs would require increasing CA emissions by a
factor of ~3 (Figure 3), which would lead to overestimating
AAOD (Figure 2). The underestimation of AOD cannot be
explained by wrong BC/BrC or BrC optical properties either.
Increasing the amount of BrC (or making BrC more absorbing
and/or scattering) to reconcile the model and AERONET AOD
would lead to either overestimating AAE, or AAOD, or both.

A plausible explanation that satisfies the observational
constraints is that the model largely underestimates SOA
formation from wildfire emissions. Laboratory experiments>8-61
and field measurements®2-%4 have reported SOA formation in
wildfire plumes from the oxidation of vapor precursors as well
as evaporation and subsequent oxidation of semi-volatile OA
components®5, though to highly variable extents. We performed
a simulation (BrC+bleaching+SOA) that involved a zeroth-order
representation of wildfire SOA in addition to representing BrC
and photobleaching. We treated SOA formation as direct
emissions from wildfires alongside BrC (i.e. primary organic

J. Name., 2013, 00, 1-3 | 7
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aerosol; POA) and BC. We assumed equal amounts of SOA and
POA, which is within the range of values reported in the
literature®l. For simplicity, we treated wildfire SOA as non-
absorbing. Figure 7a shows monthly average SOA column
burdens over the model domain from the Base simulation. The
relatively high levels of SOA over the Eastern U.S. are due to
biogenic volatile organic compounds (VOCs) emissions, which
are efficient SOA precursors. On the other hand, SOA formation
from VOCs and other precursors (intermediate volatility and
semi-volatile organic compounds)® in wildfire emissions is
severely underestimated in the model as evidenced by the low
SOA levels in the Northwest. Incorporating BrC leads to a slight
decrease in SOA concentrations (Figure 6b and 6c) because BrC
light absorption reduces the surface temperature slightly, which
leads to a reduction in emission rates of biogenic VOCs*’.
Representing wildfire SOA in the model (BrC+bleaching+SOA
simulation) increases SOA column burden by about two orders
of magnitudes over the wildfire regions in the Northwest (Figure
7d).

Relative to the BrC+bleaching simulation, accounting for SOA
formation in the BrC+bleaching+SOA simulation has a small
effect on AAOD as shown in Figure 2c and 2d (slope of AAOD
comparison increases from 1.05 to 1.15) and AAE (Figure 4c and
4d). However, accounting for SOA formation has a significant
effect on AOD as shown in Figure 3c and 3d (slope of AOD
comparison increases from 0.35 to 0.60), thus largely
reconciling the model SSA and AERONET SSA (Figure 5d). Brown
et al.8 performed a comprehensive SSA comparison between 9
global chemical transport / Earth system models and 12
observational data sets over globally distributed regions
dominated by biomass-burning emissions. The study found that
all models underestimated SSA compared to observations.
Since those models did not include SOA formation from
biomass-burning emissions8, it is plausible that the
underestimated scattering due to the missing SOA at least
partly explains the inconsistency between the models and the
observations.

The results obtained from the model-observation comparison
performed in this study indicate that SOA formation from
precursors in wildfire emissions is important and should be
accounted for in chemical transport models®567, This SOA has
implications not only to the in the
atmosphere, but also to air quality (public health). Including
wildfire SOA in the model improved the comparison between
surface-level OA concentrations predicted by the model and
those obtained from IMPROVE, as evidenced by lower MFE of
the BrC+bleaching+SOA simulation (ESI Figure S2f) compared to
the Base simulation (ESI Figure S2c). We note that MFE of the
model-CSN OA comparison was only slightly impacted by
including wildfire SOA in the model. The reason is that IMPROVE
stations (46 out of 118) are substantially more represented than
CSN (14 out of 119) in the regions most impacted by wildfire
emissions (ESI Figure S1). These results indicate that neglecting
wildfire SOA can lead to underestimating aerosol surface
concentrations, thus inhalation exposure, in regions impacted
by wildfire emissions.

radiative balance

8| J. Name., 2012, 00, 1-3

Conclusions

We employed a comprehensive set of optical properties
retrieved from AERONET observations as complementary
constraints for testing the representation of wildfire BrC in
WRF-Chem. Specifically, the combination of AAOD (an extensive
aerosol light-absorption property) and AAE (a pseudo-intensive
light-absorption property that describes the wavelength
dependence of absorption) comparisons showed that BrC
absorption should be accounted for in order to reconcile model
and observed absorption. One could match model and observed
AAOD at a certain wavelength by scaling wildfire BC emissions,
but that would lead to disagreement at other wavelengths if BrC
absorption was ignored. Overall, the best model-observation
agreement in terms of aerosol absorption was achieved by
representing wildfire BrC absorption using the parameterization
of Saleh et al.2® and its decay by photobleaching using the
parameterization of Wang et al.3>. However, in order to also
reconcile model and observed AOD and SSA, we found that the
model should account for relatively high levels of wildfire SOA
(similar levels to wildfire POA). Neglecting wildfire SOA results
in severely underestimating aerosol scattering. This finding
indicates that modeling frameworks that do not account for
wildfire SOA underestimate aerosol concentrations in regions
impacted by wildfire emissions.
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