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Observationally constrained representation of brown carbon 
emissions from wildfires in a chemical transport model 

Soroush E. Neyestania and Rawad Saleh*a 

The month of August 2015 featured extensive wildfires in the Northwestern U.S. and no significant fires in Alaska and 

Canada. With the majority of carbonaceous aerosols (CA), including black carbon (BC) and brown carbon (BrC), over the U.S. 

dominated by emissions from Northwestern wildfires, this month presented a unique opportunity for testing wildfire BrC 

representation in the Weather Research and Forecasting model with chemistry (WRF-Chem). We performed parallel 

simulations that (1) did not account for BrC absorption, (2) accounted for BrC absorption, and (3) accounted for BrC 

absorption as well as its decay due to photobleaching. We used a comprehensive set of extensive and pseudo-intensive 

optical properties, namely the aerosol optical depth (AOD), aerosol absorption optical depth (AAOD), absorption Ångström 

exponent (AAE), and single scattering albedo (SSA) to constrain the model output against observations from the  Aerosol 

Robotic Network (AERONET). We found that accounting for BrC absoroption and photobleaching resulted in the best 

agreement with observations in terms of aerosol absorption (AAOD and AAE). However, the model severely underestimated 

AOD and SSA compared to observations. We attributed this discrepancy to missing scatering due to missing secondary 

organic aerosol (SOA) formation from wildfire emissions in the model. To test this hypothesis, we applied a zeroth-order 

representation of wildfire SOA, which significantly improved the AOD and SSA model-observation comparison. Our findings 

indicate that BrC absorption, the decay of its absorption due to photobleaching, as well as SOA formation should be 

accounted for in chemical transport models in order to accurately represent CA emissions from wildfires.

Environmental Significance Statement 

 

With the continued reduction in anthropogenic emissions 

driven by environmental regulation and the projected increase 

in the intensity of wildfires driven by increase in global 

temperatures and drought episodes, wildfires are expected to 

be the dominant source of carbonaceous aerosol (CA) in the 

U.S. in the near future. Therefore, predicting the air-quality and 

climate impacts of aerosols requires accurate representation of 

CA emitted by wildfires in chemical transport and climate 

models. Here, we utilize a comprehensive set of remote-sensing 

observations to constrain the representation of wildfire CA in 

models. Our analysis demonstrates the importance of 

accounting for light absorption by brown carbon and secondary 

organic aerosol formation in order to reconcile model output 

with observations. These findings improve the model ability to 

predict the effect of wildfire CA on the atmospheric energy 

budget and the CA inhalation exposure levels in regions 

impacted by wildfires. 

Introduction 

Emissions from wildland fires are associated with significant 

impacts on public health1–3 and the climate4,5. On the other 

hand, they play an essential ecological role that benefits natural 

resources and promotes ecosystem health and resilience6,7. This 

tradeoff renders planning for the management and mitigation 

of wildland fires a major challenge7, especially due to the 

chaotic nature of open fires which makes model predictions of 

their public-health and climate impacts highly uncertain1,4,8. 

Wildland fires encompass wildfires, which are usually ignited 

unintentionally, and prescribed fires7. On average in the U.S., 

prescribed fires (mostly in the Southeastern U.S.) and wildfires 

(mostly in the Western U.S.) cover similar burned areas annually 

of ~3 million ha each, though Western wildfires exhibit 

significant year-to-year variability1 and have been increasing in 

intensity due to increase in global temperatures and drought 

episodes9. With the continued decrease in anthropogenic 

emissions driven by emission standards and regulation10, the 

fraction of air pollutants attributed to wildland fires has been 

steadily increasing and is projected to continue to do so in the 

future11.  

Wildland fires are major emitters of carbonaceous aerosol (CA), 

including organic aerosol (OA) and black carbon (BC). Numerous 

laboratory studies12–14 and field measurements15–17 have shown 

that OA from wildland fires is light-absorbing, and is categorized 

as brown carbon (BrC)18–20. BC is a strong absorber of solar 
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radiation with a positive radiative forcing that is globally second 

only to carbon dioxide21,22. BrC is comprised of various species 

with a wide range of light-absorption properties, usually 

quantified using the imaginary part of the refractive index (k). 

On average, BrC emitted from biomass burning (including 

wildland fires) exhibits mid-visible k values that are one to two 

orders of magnitude smaller than k of BC20. However, BrC 

emissions are usually one to two orders of magnitude larger 

than BC23, thus atmospheric BrC absorption is potentially 

equally important to BC. Furthermore, BrC exhibits absorption 

spectra that are largely skewed toward shorter visible and UV 

wavelengths, which can have important implications for 

photochemistry24,25. 

Representing BrC absorption in chemical transport models is 

challenging. Reported estimates of the global direct radiative 

effect (DRE) of BrC absorption range between +0.03 W/m2 and 

+0.57 W/m2 24,26. This large range partly reflects the 

aforementioned large variation in BrC light-absorption 

properties, where different modeling studies have used 

different kBrC values. To account for variability in kBrC, 

experimental studies have developed parametrizations that 

correlated kBrC in biomass-burning emissions with the BC-to-BrC 

ratio (BC/BrC) in the emissions12,27,28. Specifically, as BC/BrC 

increases, BrC becomes more absorbing (i.e. kBrC increases). The 

underlying reasoning is that a fraction of BrC is formed through 

the same route as BC, and as the combustion conditions 

become more conducive for BC formation, the light-absorption 

properties of the emitted BrC converge to those of BC29. 

Further complicating the representation of BrC in chemical 

transport models is that BrC absorption decays upon aging in 

the atmosphere. This process, referred to as photobleaching, 

involves the destruction of BrC chromophores due to either 

direct photolysis or photochemically induced reactions with 

OH15,30–33. Atmospheric observations of the evolution of wildfire 

plumes have shown that BrC absorption decays with e-folding 

timescales on the order of 1 day18,34. Wang et al.35  implemented 

a photobleaching scheme in a chemical transport model and 

found that the global BrC absorption DRE dropped from +0.1 

W/m2 to 0.048 W/m2 when they incorporated the effect of 

photobleaching. Similarly, Brown et al.36 reported a global BrC 

absorption DRE of +0.13 W/m2 and +0.06 W/m2 with and 

without photobleaching, respectively. 

While the importance of light absorption by biomass-burning 

BrC has been established in experimental studies and 

atmospheric observations, the extent to which accounting for 

BrC absorption improves model performance is less clear. on 

one hand, several investigations have reported that accounting 

for BrC absorption resulted in better agreement between 

models and observations. Hammer et al.24 compared ultraviolet 

aerosol index (UVAI) values retrieved from Ozone Monitoring 

Instrument (OMI) data and those simulated by a global climate 

model and found that ignoring BrC absorption in the model 

caused a negative bias in UVAI over biomass-burning regions24. 

Wang et al.35 used aircraft measurements over the U.S. to 

constrain model-simulated BrC absorption. They found that 

best model-measurement agreement was achieved by 

accounting for both BrC absorption and photobleaching. 

Similarly, June et al.37 found that ignoring photobleaching in a 

global chemical transport model led to overestimating aerosol 

absorption compared to Interagency Monitoring of Protected 

Visual Environments (IMPROVE) observations. On the other 

hand, Brown et al.36 found that even though implementing BrC 

absorption in a global chemical transport model led to better 

agreement between model absorption Ångström exponent 

(AAE) values over biomass-burning regions and those retrieved 

from Aerosol Robotic Network (AERONET) observations, the 

model underestimated single scattering albedo (SSA) values 

over these regions compared to AERONET. This finding was 

confirmed by a more comprehensive follow-up study which 

reported that all of 9 global models underestimated SSA over 

biomass-burning regions compared to measurements from 12 

observational data sets8. Indeed, that study reported that 

accounting for BrC absorption exacerbated the 

underestimation of SSA.  

Here, we present a detailed investigation of the extent to which 

representing absorption by BrC from wildfire emissions in a 

chemical transport model improves the comparison with 

remote-sensing observations. Using the Weather Research and 

Forecasting model with chemistry (WRF-Chem)38, we 

performed simulations for the month of August 2015 over the 

U.S. where we treated OA emissions from wildfires as (1) non-

absorbing, (2) absorbing (i.e. BrC), and (3) BrC with evolving 

light-absorption properties due to photobleaching. We then 

applied a comprehensive set of constraints retrieved from 

AERONET observations to assess the model performance for 

each treatment. The constraints included both extensive (AOD 

and AAOD) and pseudo-intensive (AAE and SSA) optical 

properties. 

Experimental design 

The goal of this study is to assess the importance of accounting 

for the absorption of BrC in wildfire CA emissions for accurately 

representing their interaction with solar radiation. To that end, 

we performed a series of WRF-Chem simulations over the U.S. 

for the month of August 2015. We chose this month because it 

featured extensive wildfire events in the Northwestern U.S., 

while no major fires were recorded in Alaska and Canada. 

Therefore, this simulation period presents a unique test case 

with high levels of wildfire CA emissions within the simulation 

domain and minimal transport from outside the domain 

boundaries. Over the month of August 2015, approximately 

93% of the CA emissions in the U.S. were from biomass burning 

(7% were from anthropogenic sources), 92% of which were 

from the Northwestern wildfires. The impact of the CA 

emissions from the high wildfire activity is depicted in Figure 1a, 

where the modeled monthly average wildfire CA column 

burden exceeded 50 mg/m2 over the Northwestern U.S. Figure 

1b shows the fraction of CA column burden over the U.S. 

attributed to the wildfire emissions, clearly reflecting that CA 

from wildfire emissions dominated the CA column burden over 

the majority of the U.S. regions. The contribution of the 

Northwestern wildfires to CA is the lowest in the Eastern U.S. 

due to both the long transport distance as well as the relatively 
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high levels of anthropogenic CA and biogenic secondary organic 

aerosol (SOA) over that region.  

In order to assess the impact of representing BrC in wildfire 

emissions on CA optical properties, we performed 4 parallel 

simulations: 

1. Base: We treated all OA emissions, including biomass-

burning OA, as non-absorbing. This is the default 

setting in WRF-Chem. 

2. BrC: We treated biomass-burning OA emissions as BrC 

based on the parameterization of Saleh et al.28, as 

further elaborated below. More than 90% of biomass-

burning OA emissions were attributed to 

Northwestern wildfires in the simulation period with 

little contribution from other biomass-burning 

sources. Therefore, biomass-burning BrC in this 

simulation is effectively wildfire BrC. Anthropogenic 

OA emissions as well as SOA from all precursors 

(biogenic, anthropogenic, and biomass burning) were 

treated as non-absorbing. 

3. BrC+bleaching: We accounted for the decay in BrC 

absorption due to photobleaching based on the 

parameterization of Wang et al.35, as further 

elaborated below. 

4. BrC+bleaching+SOA: We incorporated a zeroth-order 

representation of SOA formation from the oxidation of 

vapors in wildfire emissions. 

Model description 

We employed WRF-Chem38 version 3.8. We set a single domain 

encompassing the contiguous U.S. with a horizontal resolution 

of 12 km (396 × 246 grid cells) and 30 pressure-based vertical 

layers extending up to 50 hPa. The model time step was 60 

seconds and the output was saved as 3-hour averages. A 10-day 

spin-up time was added at the start of the simulation period. 

The initial and boundary conditions were processed for 

meteorology calculations using the National Center for 

Environmental Prediction (NCEP) final reanalysis data with a 

horizontal resolution of 1° × 1° and temporal resolution of 6 

hours39. We also implemented the reanalysis data to apply 

Four-Dimensional Data Assimilation (FDDA) nudging40 to the 

wind and temperature components in the simulations. 

We obtained both anthropogenic and biomass-burning 

emissions data from the EPA National Emission Inventory 

(NEI)41. In addition to satellite fire detection, wildland-fire 

emissions in NEI are obtained from fire information databases 

reported by national, regional, state, local, and tribal agencies42. 

We preprocessed the NEI emissions for use in WRF-Chem using 

the Sparse Matrix Operator Kernel Emission (SMOKE)43 model 

version 3.6.5 and converted the SMOKE hourly emission output 

into WRF-Chem compatible input files using 

EPA_ANTHRO_EMIS code developed by NCAR44. For 

computational efficiency, a simplified plume rise method45 was 

applied to the fire emission sources before using as input in 

WRF-Chem.  

Gas-phase chemistry was processed using the Model for Ozone 

and Related Chemical Tracers (MOZART)46. Model of Emissions 

of Gases and Aerosols from Nature (MEGAN) version 2 47 was 

used to calculate biogenic emissions online with meteorology. 

The Model for Simulating Aerosol Interactions and Chemistry 

(MOSAIC)48, which includes major aerosol species such as BC, 

organic carbon (OC), sulfate, nitrate, and ammonium, was 

selected for simulating aerosol microphysics. Within MOSAIC, 

gas-particle partitioning of semi-volatile organic species is 

simulated based on the volatility basis set framework49 and 

inorganic aerosol thermodynamics is simulated using the multi-

component equilibrium solver over aerosols50. 

We compared the monthly average BC and OA surface 

concentrations predicted by the model with those obtained 

from the Chemical Speciation Network (CSN) and the 

Interagency Monitoring of Protected Visual Environment 

(IMPROVE) network51. The locations of the CSN and IMPROVE 

stations are given in ESI Figure S1, and the comparisons for BC 

and OA are given in Figure S2a and Figure S2b, respectively. As 

shown in Figure S2c, the model achieves the performance goals 

defined by Boylan and Russell52  based on the mean fraction 

error (MFE) for the CSN comparison for both BC and OA. For the 

IMPROVE comparison, the model achieves the performance 

goals for BC and the less stringent performance criteria for the 

OA comparison. The reason for the larger MFE for the model-

IMPROVE OA comparison relative to the model-CSN 

comparison is further discussed in ‘The missing scattering’ 

subsection. 

WRF-Chem employs Mie theory to perform aerosol optical 

calculations (scattering coefficients and absorption coefficients) 

using MOSAIC size distributions and the complex refractive 

indices associated with each MOSAIC chemical constituent53. 

We used the model default complex refractive indices except 

for wildfire BrC, which was parameterized as described in the 

next section. We employed an external mixing assumption for 

BC, and all the other aerosol components were treated as well-

mixed within each size bin. We note that WRF-Chem does not 

provide this mixing state as an option. Therefore, we defined 

new (duplicate) size bins for BC particles which were only 

employed for optical calculations in the optical module and thus 

did not affect the aerosol microphysical and chemical processes 

in the chemical transport module. 

Brown carbon parameterization 

In its default configuration, WRF-Chem treats OA from all 

sources, including wildfires, as non-absorbing by assigning an 

OA imaginary part of a refractive index (kOA) of zero. In 

simulations 2, 3, and 4 (described above), we accounted for 

absorption by biomass-burning (mostly wildfire) OA, i.e. we 

treated wildfire OA as BrC. We applied the parameterization of 

Saleh et al.28, which calculates kBrC of biomass-burning 

emissions as a function of the BC-to-BrC ratio (BC/BrC) in the 

emissions: 
kBrC,550 = 0.016 × log(BC/BrC) +0.03925 (1) 

 

w=
0.2081

BC/BrC +0.0699
 (2) 
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Where kBrC,550 is kBrC at 550 nm and w is the wavelength 

dependence. kBrC at other wavelengths (300 nm, 400 nm, 600 

nm, and 999 nm in WRF-Chem) is calculated as: 
 

kBrC,λ = kBrC,550× (
550

λ
)
w

 (3) 

 

According to this parameterization, kBrC,550 increases and w 

decreases with increasing BC/BrC, signifying that the BrC 

absorption becomes stronger but has a flatter wavelength 

dependence. The inverse relationship between kBrC,550 and w 

has been observed in several studies12,27,54. It is noteworthy that 

BC has w = 0 in the visible spectrum. 

We note that in Equations 1 and 2, BC refers to biomass-burning 

BC and BrC refers to biomass-burning OA. Therefore, in order to 

implement the parameterization (Equations 1 and 2) in WRF-

Chem, we defined new species to separate the OA emissions 

into anthropogenic OA and biomass-burning OA (BrC) and the 

BC emissions into anthropogenic BC and biomass-burning BC.  

In simulations 3 and 4 (described above), we accounted for the 

decay in BrC absorption by  photobleaching15,30–33 upon aging in 

the atmosphere based on the parameterization of Wang et al. 
35. That study assumed that BrC absorption decreased following 

a first-order dynamic response with a time constant (i.e. 

lifetime) of approximately 1 day18,34 at an OH concentration of 

5x105 molecules/cm3. Therefore, kBrC at each time step can be 

calculated as: 

kBrC,t+Δt = kBrC,t exp (-
[OH] Δt

5×105 ) (4) 

 

Where ∆t is the model time step in days and [OH] is OH 

concentration in molecules/cm3. 

Following Wang et al.35, we did not allow kBrC to drop below 1/4 

of the original value (at t = 0), which is consistent with 

atmospheric observational studies showing  that the decay in 

absorption associated with photobleaching plateaus at a certain 

threshold18,34. 

Figure S3a in the ESI shows the spatial distribution of [OH] 

predicted by WRF-Chem for the month of August 2015, 

averaged over the first 8 layers of the model (where BrC effect 

is important). The corresponding BrC absorption half-lives, 

estimated from Equation 4, are shown in Figure S3b. The 

domain-average BrC absorption half-life was 0.52 days, which is 

consistent with the global-average half-life of 0.59 days 

reported by Brown et al.36. 

Observational constraints 

In order to assess the optical treatments of BrC, we compared 

the model output with observations from the  Aerosol Robotic 

Network (AERONET) observations55. Figure 1 shows the 

locations of AERONET stations (black dots) used in this study. 

The model-observation comparisons are monthly averages 

(August 2015). They include both extensive optical properties, 

namely the aerosol absorption optical depth (AAOD, Figure 2) 

and aerosol optical depth (AOD, Figure 3), as well as pseudo-

intensive optical properties, namely the absorption Ångström 

exponent (AAE, Figure 4) and the single scattering albedo (SSA, 

Figure 5). We use ‘pseudo’ to indicate that even though AAE and 

SSA do not depend on aerosol concentration, they are not true 

intensive optical properties (as for example, the complex 

refractive index) because they depend on particle size and 

mixing state of the aerosol. 

AERONET inversion products use an inversion algorithm 

described in Dubovik & King56 where radiative transfer forward 

modeling is coupled with statistical estimation and constraints 

to optimize the inversion method. AERONET inversion products 

Fig. 1. (a) Column burden of carbonaceous aerosol attributed to biomass-burning emissions averaged over the month of August 

2015. As evident in the spatial distribution, emissions from Northwestern wildfires constitute the majority of biomass-burning 

emissions in the simulation period. Black dots show the locations of AERONET stations used in the model-observation 

comparisons. (b) The fraction of carbonaceous-aerosol column burden attributed to biomass-burning (wildfire) emissions. 
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have two quality assurance levels57. The first level (1.5) includes 

thresholds on azimuth and scattering angles while the second 

level (2.0) applies an extra set of criteria (e.g. omitting data 

points with AODs smaller than 0.4). For this study, we used level 

1.5 AERONET inversion data to retain a large number of data 

points for comparison with the model results. 

AERONET observations are reported at 440 nm, 675 nm, 870 

nm, and 1020 nm. For the AAOD, AOD, and SSA comparisons, 

we focus on the observations at 440 nm, where BrC absorption 

is the strongest. Comparisons at 675 nm are shown in Figures 

S4-S6 in the ESI.  

We calculated AAE from AERONET AAOD at 440 nm and 675 nm 

as: 

 

AAE = 
log (

AAOD440
AAOD675

)

log (
675
440

)
 

 

(5) 

WRF-Chem optical properties are calculated at 300 nm, 400 nm, 

600 nm, and 999 nm. Therefore, we converted WRF-Chem 

AAOD, AOD, and SSA values to 440 nm for comparison with 

AERONET observations. First, we calculated AAE and the 

extinction Ångström exponent (EAE) from WRF-Chem AAOD 

and AOD at 400 nm and 600 nm as: 

 

 

AAE = 
log (

AAOD400
AAOD600

)

log (
600
400

)
 (6) 

 

EAE = 
log (

AOD400
AOD600

)

log (
600
400

)
 (7) 

 

Then, we calculated AAOD and AOD at 440 nm as: 
 

AAOD440 = AAOD400× (
400

440
)

AAE

 (8) 

 

AOD440 = AOD400× (
400

440
)

EAE

 (9) 

 

Model-observation comparison 

The Base simulation 

As shown in Figure 2a, the slope of the linear fit to model AAOD 

versus AERONET AAOD at 440 nm is 0.49 for the Base 

simulation. The underestimation of aerosol absorption at 440 

nm is larger than at 675 nm (slope = 0.62; Figure S4a), which is 

an indication of missing BrC absorption in the Base simulation. 

The effect of missing BrC absorption in the model is more 

evident in the AAE comparison (Figure 4a). AERONET AAE values 

range between 0.8 and 1.4, which is consistent with variable 

contributions of BC and BrC to absorption, where smaller AAE 

values indicate BC-dominated absorption and larger AAE values 

indicate an increased contribution to absorption by BrC. On the 

other hand, the model AAE values exhibit a narrow range 

between 0.6 and 0.7 and no correlation with AERONET AAE 

Fig. 2. Comparison between monthly average AAOD at 440 nm for August 2015 obtained from AERONET observations and 
WRF-Chem output with four different model treatments of wildfire carbonaceous aerosol emissions. 

Fig. 3. Comparison between monthly average AOD at 440 nm for August 2015 obtained from AERONET observations and 
WRF-Chem output with four different model treatments of wildfire carbonaceous aerosol emissions. 
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because absorption in the Base simulation is solely dictated by 

BC. The AAE comparison in Figure 4a indicates that missing BC 

absorption in the model cannot explain the underestimation of 

AAOD in the Base simulation because the Base simulation not 

only underestimates AAOD, but also its wavelength 

dependence. For instance, if one is to add BC to the model to 

reconcile the model and AERONET AAOD at 440 nm, that would 

lead to overestimating AAOD at 675 nm. 

The slope of model AOD versus AERONET AOD is 0.31 (Figure 

3a), which is smaller than the slope of the AAOD comparison. 

This indicates that in addition to the underestimation in aerosol 

absorption in the model, there is a more significant 

underestimation in scattering. As expected, because scattering 

is more underestimated on average than absorption in the 

model, a substantial fraction of model SSA values are smaller 

than AERONET SSA (Figure 5a). The model SSA values are 

generally clustered in two groups, one in good agreement with 

AERONET and one lower than AERONET. This clustering can be 

understood by examining the spatial distribution of model and 

AERONET SSA in Figure 6. The model SSA values are smallest in 

the Northwest, where wildfire CA is dominant, and increase 

toward the South and East, with the largest values along the 

Eastern region. The AERONET observations are mostly clustered 

in the Western region (where model SSA is smallest) and the 

Eastern region (where model SSA is the largest and closest to 

AERONET SSA), thus creating the two clusters in Figure 5a. More 

importantly, comparing the spatial distributions of SSA (Figure 

6) and wildfire CA column burden (Figure 1b) clearly indicates 

that the underestimation in model SSA (i.e. underestimation in 

aerosol scattering) is associated with the treatment of wildfire 

CA in the model. The missing wildfire CA scattering is further 

explored later in this section. 

 

 

Effect of incorporating brown carbon absorption 

Model AAOD values in the BrC simulation are significantly larger 

than in the Base simulation. As shown in Figure 2b, the slope of 

model AAOD versus AERONET AAOD for the BrC simulation is 

1.23. The BrC simulation exhibits an improved model-

observation AAOD comparison compared to the Base 

simulation (slope = 0.49; Figure 2a), though incorporating BrC 

absorption leads to overestimating AAOD, on average. This is 

further evidenced in the AAE comparison. As shown in Figure 

4b, model AAE in the BrC simulation is better correlated with 

AERONET AAE compared to the Base simulation. However, 

almost all model AAE values are larger than AERONET AAE 

values. Overall, even though representing BrC based on the 

parameterization of Saleh et al.28 leads to overestimating 

aerosol absorption, it presents an improvement in the 

prediction of aerosol absorption compared to the Base 

simulation, where BrC is neglected. 

BrC absorption has a negligible effect on aerosol scattering and 

only affects the absorption component of aerosol extinction. 

Consequently, incorporating BrC absorption has only a small 

effect on the AOD model-observation comparison, as evident in 

comparing Figure 3a and Figure 3b. Because BrC absorption 

causes a substantial increase in absorption and negligible effect 

on scattering, this is reflected in a substantial decrease in SSA in 

the BrC simulation compared to the Base simulation. As shown 

in Figure 5b, incorporating BrC absorption widens the gap 

Fig. 4. Comparison between monthly average AAE for August 2015 obtained from AERONET observations and WRF-Chem 
output with four different model treatments of wildfire carbonaceous aerosol emissions. 

Fig. 5. Comparison between monthly average SSA at 440 nm for August 2015 obtained from AERONET observations and WRF-
Chem output with four different model treatments of wildfire carbonaceous aerosol emissions. 
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between the two clusters described above and substantially 

worsens the SSA model-observation comparison. 

As expected, accounting for the decay in BrC absorption due to 

photobleaching (BrC+bleaching simulation) leads to a reduction 

in both AAOD and AAE compared to the BrC simulation. As 

shown in Figure 2c and Figure 4c, the AAOD and AAE in the 

BrC+bleaching simulation exhibit very good agreement with 

AERONET observations. However, similar to the Base and BrC 

simulations, the BrC+bleaching simulation severely 

underestimates aerosol scattering as evident in the model-

observation AOD comparison (Figure 3c). Because incorporating 

photobleaching reduces BrC absorption, the SSA values in the 

BrC+bleaching simulation (Figure 5c) are larger than in the BrC 

simulation (Figure 5b) resulting in a slight improvement in the 

SSA model-observation comparison. However, SSA model-

observation comparison in the BrC+bleaching simulation is still 

worse than the Base simulation (Figure 5a). 

To recap, neglecting BrC absorption (Base simulation) results in 

a significant underestimation of aerosol absorption as 

evidenced in the model-observation AAOD and AAE 

comparisons. Accounting for BrC absorption (BrC simulation) 

leads to overestimating AAOD and AAE, but results in a better 

comparison with observation. The best agreement in AAOD and 

AAE with observations is achieved when accounting for both 

BrC absorption and photobleaching (BrC+bleaching simulation). 

However, all simulations severely underestimate scattering 

compared to observations, as evident in the AOD comparisons. 

We note that the better model-observation agreement of SSA 

in the Base simulation compared to the BrC and BrC+bleaching 

simulations is rather serendipitous; it is due to the fact that the 

Base simulation underestimates both absorption and 

scattering. 

 

The missing scattering 

The model-observation comparisons employed in this study 

(Figure 2, 3, 4, and 5) include both absorption and scattering, as 

well as extensive and pseudo-intensive properties. This 

comprehensive set of constraints enables dissecting the missing 

scattering problem described in the previous sub-section. For 

instance, the underestimation of AOD cannot be explained by 

an underestimation in wildfire CA emissions. Reconciling model 

and AERONET AODs would require increasing CA emissions by a 

factor of ~3 (Figure 3), which would lead to overestimating 

AAOD (Figure 2). The underestimation of AOD cannot be 

explained by wrong BC/BrC or BrC optical properties either. 

Increasing the amount of BrC (or making BrC more absorbing 

and/or scattering) to reconcile the model and AERONET AOD 

would lead to either overestimating AAE, or AAOD, or both. 

A plausible explanation that satisfies the observational 

constraints is that the model largely underestimates SOA 

formation from wildfire emissions. Laboratory experiments58–61 

and field measurements62–64 have reported SOA formation in 

wildfire plumes from the oxidation of vapor precursors as well 

as evaporation and subsequent oxidation of semi-volatile OA 

components65, though to highly variable extents. We performed 

a simulation (BrC+bleaching+SOA) that involved a zeroth-order 

representation of wildfire SOA in addition to representing BrC 

and photobleaching. We treated SOA formation as direct 

emissions from wildfires alongside BrC (i.e. primary organic 

Fig. 6. SSA at 440 nm averaged over the month of August 2015 from WRF-Chem output with four different model treatments 
of wildfire carbonaceous aerosol emissions. The colored dots show the locations and SSA values of AERONET stations used in 
the model-observation comparisons. 

Fig. 7. Column burden of SOA averaged over the month of August 2015 from WRF-Chem output with four different model 
treatments of wildfire carbonaceous aerosol emissions. 
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aerosol; POA) and BC. We assumed equal amounts of SOA and 

POA, which is within the range of values reported in the 

literature61. For simplicity, we treated wildfire SOA as non-

absorbing. Figure 7a shows monthly average SOA column 

burdens over the model domain from the Base simulation. The 

relatively high levels of SOA over the Eastern U.S. are due to 

biogenic volatile organic compounds (VOCs) emissions, which 

are efficient SOA precursors. On the other hand, SOA formation 

from VOCs and other precursors (intermediate volatility and 

semi-volatile organic compounds)66 in wildfire emissions is 

severely underestimated in the model as evidenced by the low 

SOA levels in the  Northwest. Incorporating BrC leads to a slight 

decrease in SOA concentrations (Figure 6b and 6c) because BrC 

light absorption reduces the surface temperature slightly, which 

leads to a reduction in emission rates of biogenic VOCs47. 

Representing wildfire SOA in the model (BrC+bleaching+SOA 

simulation) increases SOA column burden by about two orders 

of magnitudes over the wildfire regions in the Northwest (Figure 

7d). 

Relative to the BrC+bleaching simulation, accounting for SOA 

formation in the BrC+bleaching+SOA simulation has a small 

effect on AAOD as shown in Figure 2c and 2d (slope of AAOD 

comparison increases from 1.05 to 1.15) and AAE (Figure 4c and 

4d). However, accounting for SOA formation has a significant 

effect on AOD as shown in Figure 3c and 3d (slope of AOD 

comparison increases from 0.35 to 0.60), thus largely 

reconciling the model SSA and AERONET SSA (Figure 5d). Brown 

et al.8 performed a comprehensive SSA comparison between 9 

global chemical transport / Earth system models and 12 

observational data sets over globally distributed regions 

dominated by biomass-burning emissions. The study found that 

all models underestimated SSA compared to observations. 

Since those models did not include SOA formation from 

biomass-burning emissions8, it is plausible that the 

underestimated scattering due to the missing SOA at least 

partly explains the inconsistency between the models and the 

observations. 

The results obtained from the model-observation comparison 

performed in this study indicate that SOA formation from 

precursors in wildfire emissions is important and should be 

accounted for in chemical transport models65,67. This SOA has 

implications not only to the radiative balance in the 

atmosphere, but also to air quality (public health). Including 

wildfire SOA in the model improved the comparison between 

surface-level OA concentrations predicted by the model and 

those obtained from IMPROVE, as evidenced by lower MFE of 

the BrC+bleaching+SOA simulation (ESI Figure S2f) compared to 

the Base simulation (ESI Figure S2c). We note that MFE of the 

model-CSN OA comparison was only slightly impacted by 

including wildfire SOA in the model. The reason is that IMPROVE 

stations (46 out of 118) are substantially more represented than 

CSN (14 out of 119) in the regions most impacted by wildfire 

emissions (ESI Figure S1). These results indicate that neglecting 

wildfire SOA can lead to underestimating aerosol surface 

concentrations, thus inhalation exposure, in regions impacted 

by wildfire emissions. 

Conclusions 

We employed a comprehensive set of optical properties 

retrieved from AERONET observations as complementary 

constraints for testing the representation of wildfire BrC in 

WRF-Chem. Specifically, the combination of AAOD (an extensive 

aerosol light-absorption property) and AAE (a pseudo-intensive 

light-absorption property that describes the wavelength 

dependence of absorption) comparisons showed that BrC 

absorption should be accounted for in order to reconcile model 

and observed absorption. One could match model and observed 

AAOD at a certain wavelength by scaling wildfire BC emissions, 

but that would lead to disagreement at other wavelengths if BrC 

absorption was ignored. Overall, the best model-observation 

agreement in terms of aerosol absorption was achieved by 

representing wildfire BrC absorption using the parameterization 

of Saleh et al.28 and its decay by photobleaching using the 

parameterization of Wang et al.35. However, in order to also 

reconcile model and observed AOD and SSA, we found that the 

model should account for relatively high levels of wildfire SOA 

(similar levels to wildfire POA). Neglecting wildfire SOA results 

in severely underestimating aerosol scattering. This finding 

indicates that modeling frameworks that do not account for 

wildfire SOA underestimate aerosol concentrations in regions 

impacted by wildfire emissions. 
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