
DISCRETE AND CONTINUOUS doi:10.3934/dcdss.2021097
DYNAMICAL SYSTEMS SERIES S
Volume 15, Number 4, April 2022 pp. 727–746

A DRIFT HOMOTOPY IMPLICIT PARTICLE FILTER METHOD

FOR NONLINEAR FILTERING PROBLEMS

Xin Li, Feng Bao∗ and Kyle Gallivan

Department of Mathematics
Florida State University, Tallahassee, Florida

Abstract. In this paper, we develop a drift homotopy implicit particle filter

method. The methodology of our approach is to adopt the concept of drift
homotopy in the resampling procedure of the particle filter method for solving

the nonlinear filtering problem, and we introduce an implicit particle filter

method to improve the efficiency of the drift homotopy resampling procedure.
Numerical experiments are carried out to demonstrate the effectiveness and

efficiency of our drift homotopy implicit particle filter.

1. Introduction. The goal of nonlinear filtering problems is to make the best esti-
mation for the state of some stochastic dynamical system based on its partial noisy
observations. As a key mathematical tool for data assimilation, nonlinear filtering
methods have various applications in many scientific and engineering areas, such as
weather forecasting, parameter estimation, signal processing, target tracking, and
machine learning [34].

There are two types of approaches to solve the nonlinear filtering problem. The
first type formulates the conditional distribution of the state of the target dynamical
system by stochastic partial (or ordinary) differential equations, and then computes
approximated distributions through numerical solutions of the equations [4,5,7–13,
15, 21, 26, 35]. The other type of approach is called the “Bayesian filter”, in which
Bayesian inference is used to incorporate observational data into the dynamical
model to estimate the state. In this work, we focus on the Bayesian approach due
to its wide acceptance by practitioners. There are two categories of Bayesian filter:
Kalman-type filters and particle filters. The main idea of Kalman-type filers is
to use the classic Kalman-Bucy filter, which can solve the linear filtering problem
analytically, to solve a linearized filtering problem. Well-known Kalman-type filters
include the ensemble Kalman filter, the extended Kalman filter, and the unscented
Kalman filter [19, 20, 23, 31, 32]. Although Kalman filters are easy to implement
and they are efficient in solving high dimensional problems, the major drawback
of the Kalman type filters is their poor performance when the dynamical system
and the observation function are highly nonlinear. The linearized problem does
not provide a good approximation to the original nonlinear filtering problem, and
the quality of the state estimate degrades significantly. The particle filter method
(also called the sequential Monte Carlo method), on the other hand, is designed
specifically to solve nonlinear filtering problems. In contrast to the Kalman filter
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framework, which propagates and updates Gaussian distributions, the particle filter
uses a set of weighted random samples (particles) to describe arbitrary conditional
distributions of the target state [3,6,16,17,22,25]. The weights on the particles are
used to incorporate observational information, and they are assigned by Bayesian
inference. Through flexible Monte Carlo sampling, a particle filter can effectively
handle nonlinear dynamics and nonlinear observations. The primary challenge of
particle filter is that the errors caused by Monte Carlo sampling can accumulate
through the sequential sampling procedures. Therefore, particle filters often suffer
from the so-called “degeneracy” problem. In other words, after several estimation
steps, most particles tend to lie in insignificant regions of the distribution, hence
the effective ensemble size is dramatically reduced [30].

One of the most effective approaches to address the degeneracy problem in the
particle filter is “resampling”. The goal of resampling is to rejuvenate the particle
cloud and relocate particles from low density regions to high density regions. Usu-
ally, a resampling step is implemented after (or combined with) Bayesian inference
and it generates a set of particles (or moves current particles) that follow the de-
sired conditional distribution of the target state. Successful resampling methods
include sequential importance sampling with resampling (the benchmark method),
the auxiliary particle filters, the Markov Chain Monte Carlo particle filter, the drift
homotopy particle filter, and the implicit particle filter [1,2,14,22,27,29,33]. While
all of these methods can mitigate the degeneracy problem to some extent, they all
have their disadvantages and drawbacks.

In this paper, we develop a drift homotopy implicit particle filter method that
combines the drift homotopy particle filter [24,27] and the implicit particle filter [14].
The central concept of the drift homotopy particle filter is to construct a sequence
of intermediate systems called drift homotopy dynamics, and then transport par-
ticles by using the Markov Chain Monte Carlo (MCMC) sampling method, which
is driven by those intermediate homotopy systems, to high density regions of the
desired state distribution. The drift homotopy dynamics are usually designed in
a way so that the observational data play a more important role in the first few
particle transportation steps, and then the original filtering dynamical model is in-
corporated into the state distribution gradually. In this way, the drift homotopy
particle filter is different from most traditional Bayesian approaches, which simulate
dynamical models first and then incorporate data through Bayesian inference. As a
result, the drift homotopy systems provide a mechanism to “trust the observational
data” first, which typically results more robust estimation performance. The main
drawback of the drift homotopy particle filter is that the MCMC sampling proce-
dure is time consuming – especially carried out repeatedly through the sequence
of drift homotopy dynamics , and thus the drift homotopy particle filter is not an
efficient method. The primary effort of the implicit particle filter is to carry out
an implicit sampling procedure, which works by first picking target probabilities
and then looking for particles that assume them, so that the particles are guided
to the high probability region. In practical implementation, the implicit sampling
procedure is achieved by optimization, and the efficiency of implicit sampling is
based on the shape of state distribution, which is governed by the state dynamics
and the observational data. Therefore, when the state dynamical model and the
observational data do not align well, the optimization task in the implicit particle
filter could be very challenging.
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Our motivation for developing a drift homotopy implicit particle filter (DHIPF)
method is to exploit the advantages of the drift homotopy particle filter and the
implicit particle filter while alleviating their disadvantages. Specifically, we shall
adopt the general drift homotopy framework and utilize a sequence of drift ho-
motopy dynamics to transport particles. However, instead of using the MCMC
sampling method to move particles slowly, we treat the sampling procedure for in-
termediate drift homotopy systems as a sequence of nonlinear filtering problems
and then use the implicit particle filter to solve those filtering problems. Since the
implicit sampling in the implicit particle filter is achieved by optimization, the im-
plicit particle filter sampler for intermediate drift homotopy systems is much more
efficient than the MCMC sampling method. In this connection, the application of
the implicit particle filter in DHIPF can significantly improve efficiency of the con-
ventional drift homotopy particle filter. On the other hand, since the observational
data play a more important role in the first few particle transportation steps in the
drift homotopy systems, our DHIPF method could endow the implicit particle filter
with the mechanism of “trust observational data first”, which can make the DHIPF
obtain more robust estimation results.

The rest of this paper is organized as follows. In Section 2, we introduce the
general mathematical formulation of the nonlinear filtering problem. In Section 3,
we introduce the state-of-the-art approach to solve the filtering problem, i.e. the
particle filter, and briefly discuss the drift homotopy particle filter and the implicit
particle filter. Then, in Section 4, we combine the drift homotopy particle filter
and the implicit particle filter to establish our drift homotopy implicit particle filter
method. Numerical experiments that illustrate the performance of our method are
given in Section 5.

2. The nonlinear filtering problem. An optimal filtering problem is usually
described by a system of stochastic differential equations (SDEs)

dXt =f(Xt)dt+ σtdWt, (State)

dYt =g(Xt)dt+ dVt. (Observation)
(1)

The first equation in (1) is a state equation that models the state of a dynamical
system, where Wt is a standard Brownian motion, f(Xt)dt is the drift term and the
σtdWt integral is called the diffusion term. The second equation is the observational
equation that gives partial noisy observations of Xt. In practical applications,
this continuous version of the optimal filtering problem is often discretized and
represented by the following discrete state-space model

Xn+1 =f(Xn) + σnwn, (State)

Yn+1 =g(Xn+1) + vn, (Observation)
(2)

where we have incorporated the temporal discretization steps ∆t into the model.
In this way, the sequence {Xn}n ∈ Rd describes the state of the stochastic dynam-
ical system, the function f : Rd → Rd now plays the role of the drift term in the
continuous state equation in (1), and the state of X is perturbed by a sequence of
d-dimensional standard Gaussian noises {wn}n with their coefficients {σn}n, and
Yn+1 ∈ Rm is the m-dimensional partial noisy measurement on Xn+1 through the
observation function g : Rd → Rm, which is also perturbed by a Gaussian noise vn
independent from wn with the standard deviation R. For the discretized optimal
filtering problem (2), the first stochastic process in (2) is called the “state process”
and the second process is called the “observation process”. When the functions f
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and g are nonlinear functions, the filtering problem is called the “nonlinear filtering
problem”. The goal of the nonlinear filtering problem is to find the best estimate for
Φ(Xn+1) given the observational data Y1:n+1 := {Y1, Y2, · · · , Yn+1}, where Φ is a
test function that represents the quantity of interest in the nonlinear filtering prob-
lem. Mathematically, we aim to find the “optimal filter” Φ̃(Xn+1) as a conditional
expectation given Y1:n+1, i.e.

Φ̃(Xn+1) := E[Φ(Xn+1)|Y1:n+1].

The standard approach to solve the optimal filtering problem (2) is the “Bayesian
filter”, which aims to find the best estimate for the conditional probability density
function (pdf) p(Xn+1|Y1:n+1) of the state through recursive Bayesian inference.
Then, the conditional pdf p(Xn+1|Y1:n+1), which is also called the “filtering den-

sity”, can be used to calculate the optimal filter Φ̃. Specifically, the Bayesian filter
is composed of two steps: a prediction step and an update step. For the given
conditional pdf p(Xn|Y1:n) at the time instant n, the prediction step is carried out
by the following Chapman-Kolmogorov formula,

p(Xn+1|Y1:n) =

∫
pf (Xn+1|Xn)p(Xn|Y1:n)dXn, (Prediction) (3)

where pf (Xn+1|Xn) is the transition probability associated with the state dynamical
function f , and p(Xn+1|Y1:n) is called the prior pdf, which predicts the state of Xn+1

before receiving the new observational data. In the update step, we apply the Bayes
formula to incorporate the observational data Yn+1 to update the prior pdf and get
a posterior distribution p(Xn+1|Y1:n+1) as following

p(Xn+1|Y1:n+1) =
p(Yn+1|Xn+1)p(Xn+1|Y1:n)

p(Yn+1|Y1:n)
, (Update) (4)

where p(Yn+1|Xn+1) is the likelihood function that measures the discrepancy be-
tween the state and the observation, and the denominator in (4) is given by

p(Yn+1|Y1:n) =

∫
p(Yn+1|Xn+1)p(Xn+1|Y1:n)dXn+1,

which normalizes the posterior p(Xn+1|Y1:n+1).
In this work, we aim to develop an efficient and effective particle filter method

to implement the Bayesian filter’s “Prediction-Update” framework.

3. The particle filter approach.

3.1. The generic particle filter framework. The main strategy of the particle
filter is to use a cloud of samples, which are called particles, to represent conditional
distributions, and use the recursive Bayesian filter framework (3) - (4) to propagate
and updates the particle cloud. In what follows, we give a brief discussion to
introduce the general framework of particle filters.

At the time instant n, assume that we have a set of Np particles that form an em-
pirical distribution p̃(Xn|Y1:n), which approximates the conditional pdf p(Xn|Y1:n).

We denote this set of particles by {x(i)n }Np

i=1, and the empirical distribution is defined
as

p̃(Xn|Y1:n) :=
1

Np

Np∑
i=1

δ
x
(i)
n

(Xn), (5)



A DRIFT HOMOTOPY IMPLICIT PARTICLE FILTER METHOD 731

where δx is the Dirac delta function. In the prediction step, we propagate each

sample x
(i)
n in the particle cloud through the state dynamical model f to get a

predicted sample x̃
(i)
n+1. In this way, the ensemble of predicted particles {x̃(i)n+1}

Np

i=1

form an empirical distribution π̃(Xn+1|Y1:n) defined as

π̃(Xn+1|Y1:n) :=
1

Np

Np∑
i=1

δ
x̃
(i)
n+1

(Xn+1), (6)

which is an approximation for the prior distribution p(Xn+1|Y1:n).
In the update step, after receiving the new measurement Yn+1, we carry out

Bayesian inference through the Bayes formula (4) to incorporate the new obser-
vational data to get an approximation for the posterior distribution. Specifically,
we use the empirical distribution π̃(Xn+1|Y1:n) to replace the prior distribution
p(Xn+1|Y1:n) in (4), and obtain

π̃(Xn+1|Y1:n+1) =
p(Yn+1|Xn+1)π̃(Xn+1|Y1:n)∫

p(Yn+1|Xn+1
)π̃(Xn+1|Y1:n)dXn+1

, (7)

where the likelihood function p(Yn+1|Xn+1) of the Gaussian noise v with the stan-

dard deviation R is given by p(Yn+1|Xn+1) = 1√
(2πR2)m

exp
(
− ‖g(Xn+1)−Yn+1‖2

2R2

)
.

With the empirical distribution π̃(Xn+1|Y1:n) defined in (6), the Bayesian inference
formula (7) can be implemented by the following update scheme

π̃(Xn+1|Y1:n+1) =

∑Np

i=1 p(Yn+1|x̃(i)n+1)δ
x̃
(i)
n+1

(Xn+1)∑Np

i=1 p(Yn+1|x̃(i)n+1)
. (8)

We let α
(i)
n+1 ∝ p(Yn+1|x̃(i)n+1) be the importance weight corresponding to the particle

x̃
(i)
n+1 such that

Np∑
i=1

α
(i)
n+1 = 1. Then, the empirical distribution π̃(Xn+1|Y1:n+1) is

an approximation for the posterior distribution p(Xn+1|Y1:n+1), where we have

π̃(Xn+1|Y1:n+1) =

Np∑
i=1

α
(i)
n+1δx̃(i)

n+1

(Xn+1).

In practice, due to the extra uncertainties involved in the observational data and
the sequential sampling errors, the weights on many particles tend to be negligible
after several recursive steps, and only a few particles have very large weights, which
significantly reduces the effective ensemble size. This fact of losing the effectiveness
of particle sizes is often called the “degeneracy” of particles. To address the degen-
eracy problem, a resampling step is introduced to re-generate the particle cloud with
equally weighted particles that describe the empirical distribution π̃(Xn+1|Y1:n+1).
In the benchmark bootstrap particle filter, which is also known as the sequential
importance sampling with resampling method, people use importance sampling to

generate Np samples, denoted by {x(i)n+1}
Np

i=1, which include more copies of particles

in the weighted particle cloud {x̃(i)n+1}
Np

i=1 and discard the low weight ones. In this
way, the resampled particles give us the following empirical distribution

p̃(Xn+1|Y1:n+1) :=
1

Np

Np∑
i=1

δ
x
(i)
n+1

(Xn+1).
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Although the importance sampling in the bootstrap particle filter is a success-
ful strategy to increase the effective particle size in recursion, simply reproducing

more particles in the original predicted particle set {x̃(i)n+1}
Np

i=1 still suffers from the
degeneracy problem since the prediction step is not informed by the observational
information and the predicted particles may not provide good candidate particles
to be reproduced. To conquer the degeneracy of particles, several data informed
resampling methods have been developed, such as the auxiliary transportation, the
Markov Chain Monte Carlo resampling, the drift homotopy particle filter, the im-
plicit particle filter. In this work, we combine the drift homotopy particle filter and
the implicit particle filter to develop an efficient drift homotopy implicit particle
filter method that takes the advantages of both methods. To proceed, we shall
introduce the drift homotopy particle filter and the implicit particle filter in the
following.

3.2. The drift homotopy particle filter. Homotopy is a mathematical process
that continuously transforms one function to another. When adopting homotopy in
the particle filter, we design a homotopy process that transforms the drift term in
the state dynamics gradually from an intermediate drift homotopy system, so that
the sampling of the desired filtering density can be implemented effectively.

In this connection, the key of the drift homotopy particle filter is to construct
a sequence of stochastic dynamical systems with modified drift terms that inter-
polate between the original and modified drifts in the state model. To proceed,
assume that we have an empirical distribution that describes the conditional pdf

p(Xn|Y1:n) at the time instant n with equally weighted particles {x(i)n }Np

i=1. For a

given particle x
(i)
n , the “ideal” particle at the time instant n+ 1 that could be used

to describe the posterior distribution p(Xn+1|Y1:n+1) should follow the distribution

p(xn+1|x(i)n , Y1:n+1), which is defined by

p(Xn+1|x(i)n , Y1:n+1) ∝ pf (Xn+1|x(i)n )p(Yn+1|xn+1), (9)

where pf (Xn+1|x(i)n ) is the transition probability that describes the conditional dis-

tribution of Xn+1 with the given initial state at the time instant n as Xn = x
(i)
n , and

the likelihood p(Yn+1|Xn+1) incorporates the observational data Yn+1 into the con-

ditional distribution p(Xn+1|x(i)n , Y1:n+1). In order to generate a sample that follows
the posterior distribution, which considers the new observational data Y1:n+1, in-
stead of using the importance sampling method which only reproduces more copies
of high density propagation samples, one could use the Markov Chain Monte Carlo

(MCMC) sampling method to generate a sample x
(i)
n+1 that follows the conditional

distribution p(Xn+1|x(i)n , Y1:n+1). However, it is well known that the effectiveness
and efficiency of MCMC sampling depends on the complexity of the target distri-
bution. When the dynamics of the state process is complicated, it is difficult for

the MCMC method to generate the sample x
(i)
n+1. Moreover, in the case that the

practical observational data has large deviation from the prediction, the resulting
posterior distribution might have large covariance, which makes the MCMC proce-
dure have even worse performance.

The primary contribution of the drift homotopy particle filter is to improve the
performance of the MCMC procedure to effectively generate a sample that follows
the posterior distribution. Also, it could provide a mechanism that allows us to
“trust the data” first. In the drift homotopy particle filter, instead of generating a



A DRIFT HOMOTOPY IMPLICIT PARTICLE FILTER METHOD 733

sample from p(Xn+1|x(i)n , Y1:n+1) by using MCMC sampling directly, we introduce
a sequence of drift homotopy dynamical systems given as follows

X∗ = (1− βl)b(X) + βlf(X) + σnwn, l = 0, 1, 2, · · · , L (10)

where the function b is artificially defined intermediate drift term, which is different
from the original drift f , and {βl}Ll=0 is a constant sequence increasing from 0
to 1. Therefore, when l = 0, we have β0 = 0, and the dynamical system (10)
only contains the intermediate function b. On the other hand, when l = L, i.e.
βL = 1, the intermediate drift term b is gone and (10) coincides the original state
dynamical model in the nonlinear filtering problem (2). For a specific drift homotopy
level l, 0 ≤ l ≤ L − 1, the dynamical system (10) is driven by the combined
model (1 − βl)b(X

l) + βlf(X l). To generate a sample that follows the desired

conditional distribution p(Xn+1|x(i)n , Y1:n+1) (as described in (9)), we incorporate
the observational data Yn+1 through the likelihood function of the dynamical system

(10). Since the target distribution p(Xn+1|x(i)n , Y1:n+1) is conditioned on x
(i)
n , we

take the state X of the drift homotopy dynamics (10) to be the particle x
(i)
n , i.e.

X = x
(i)
n , which is a sample in the previous conditional particle cloud {x(i)n }Np

i=1. As a

result, we obtain a sequence of drift homotopy distributions {pl(X∗|x(i)n , Y1:n+1)}Ll=1

for each particle x
(i)
n through the following proportional relation

pl(X
∗|x(i)n , Y1:n+1) ∝ pl(X∗|x(i)n )p(Yn+1|X∗), (11)

where pl(X
∗|x(i)n ) is the transition probability of the system (10) determined by the

combined dynamics. In this way, the distribution of the L-th drift homotopy step

is the desired posterior distribution given that pL(X∗|x(i)n ) = pf (Xn+1|x(i)n ).

To carry out the drift homotopy particle filter, we first choose x
(i)
n as the initial

state of X and use the MCMC method to generate a sample, denoted by x∗,0n+1,

from the first homotopy distribution p0(X∗|x(i)n , Y1:n+1). For the l-th drift homo-

topy level, l = 0, 1, 2, · · · , L − 1, assume that we have the sample x∗,ln+1, we let

x∗,l+1
n+1 be the initial state of the drift homotopy system (10) and use the MCMC

method to generate a sample, denoted by x∗,l+1
n+1 from the homotopy distribution

pl+1(X∗|x(i)n , Y1:n+1). As a result, the sample x∗,Ln+1 that we generate in the iter-
ative drift homotopy procedures gives a sample that follows the desired posterior

distribution p(Xn+1|x(i)n , Y1:n+1), and we let x
(i)
n+1 = x∗,Ln+1.

From the above discussion, we can see that the main theme of the drift ho-

motopy particle filter is to transport the particle x
(i)
n gradually to x

(i)
n+1, which is

then used to formulate the posterior distribution. In order to fully assimilate the
observational information into the posterior distribution, we choose the intermedi-

ate drift term b so that the initial transition probability p0(X∗|x(i)n ) is well-aligned
with the likelihood function p(Yn+1|X∗). Then, as the drift homotopy distribu-

tions {pl(X∗|x(i)n , Y1:n+1)}l morph gradually to the ultimate posterior distribution

p(Xn+1|x(i)n , Y1:n+1), the original state dynamics f is incorporated. In this way,

the homotopy procedure builds a bridge to connect the sample x
(i)
n in the previous

particle cloud at the time instant n to the particle x
(i)
n+1 for the desired posterior

distribution. Moreover, note that the combined dynamical system only contains
the intermediate drift term b in the first drift homotopy step, which is designed
to be well-aligned with the observational data. Therefore, the observational data
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would have more influence in the drift homotopy distribution. In this way, the drift
homotopy particle filter also creates a mechanism that allows us to “trust the data
first”.

3.3. The implicit particle filter. The central concept of the implicit particle
filter is to update the particles by first deriving implicit transportation probabili-
ties, which construct the conditional distribution of the target, and then determine
particle locations that assume them. As a result, the implicit sampling procedure
guides the particles one by one to the high probability domain of the desired pos-
terior distribution, and therefore it can effectively address the degeneracy problem
of the particle filter approach.

In the standard particle filter, assume that we have the particle x
(i)
n at the time

step n, then the predicted particle location x̃
(i)
n+1 is propagated from the particle x

(i)
n

through the state dynamics introduced in (2). According to the Bayesian update

scheme (4), the weight on x̃
(i)
n+1 is given by

α
(i)
n+1 =

p(x̃
(i)
n+1|x

(i)
n )p(Yn+1|x̃(i)n+1)

C
,

where C is the normalization constant. The set of weights {α(i)
n+1}

Np

i=1, together

with the predicted particle locations {x̃(i)n+1}
Np

i=1, now describe the desired posterior
density. In the implicit particle filter method, instead of simply reproducing more
copies of particles in the predicted particle cloud with high weights, an implicit

sampling procedure is used to generate “optimal” particle locations, i.e. {x̂(i)n+1}
Np

i=1,
that follow the posterior distribution directly.

To achieve this goal, we first choose a reference random variable ξ with a pre-
determined pdf that is easy to sample. Then, we treat the desired optimal sample

variable x̂
(i)
n+1 := ψn+1,i(ξ) as a function of ξ, which is indexed by both the time

instant and the specific choice of particle. The purpose of the function ψ is to

connect highly probable values of ξ to highly probable values of x̂
(i)
n+1, which follow

the posterior distribution. To obtain the mapping ψ, we define a function Fn+1,i

corresponding to each time instant n+ 1 and each particle i, such that

exp
(
− Fn+1,i(x̂

(i)
n+1)

)
:= p(x̂

(i)
n+1|x(i)n )p(Yn+1|x̂(i)n+1), (12)

and solve the equation

Fn+1,i
(
ψn+1,i(ξ)

)
− γn+1,i =

ξT ξ

2
(13)

to get the function ψn+1,i. The random variable γn+1,i in the above equation is
an additive factor introduced to make the above equation solvable, and it is typical
choose γn+1,i = minFn+1,i + λ, where λ represents a small perturbation. When
implementing the implicit particle filter numerically, optimization type numerical
solvers are needed to calculate ψn+1,i through (13).

Once the function ψn+1,i is determined, we can obtain the particle set {x̂(i)n+1}
Np

i=1

since the position of the particle x̂
(i)
n+1 appears with the (unnormalized) probability

exp
(
− ξT ξ

2

)
J−1ψn+1,i , where Jψn+1,i denotes the Jacobian of ψn+1,i, and the weight
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on x̂
(i)
n+1 equals exp

(
− ξT ξ

2

)
exp(−γn+1,i) [28], i.e.

α̂
(i)
n+1 := exp

(
− ξT ξ

2

)
exp(−γn+1,i). (14)

To generate equally weighted particles, we apply the importance sampling method

to resample particles {x̂(i)n+1}
Np

i=1. Specifically, we normalize the weights {α̂(i)
n+1}

Np

i=1

obtained in (14) so that
∑Np

i=1 α̂
(i)
n+1 = 1. For each of Np random numbers ζk,

k = 1, 2, · · · , Np, drawn from the uniform distribution on [0, 1], we choose a point

x
(k)
n+1 randomly from the particle set {x̂(i)n+1}

Np

i=1 such that

k−1∑
j=1

α̂
(j)
n+1 < ζk <

k∑
j=1

α̂
(j)
n+1.

Then the particle set {x(i)n+1}
Np

i=1 follows the importance distribution described by

the weighted sample pairs {(x̂(i)n+1, α̂
(i)
n+1)}Np

i=1, and each particle x
(i)
n+1 has an equal

weight. Note that the particle set {x(i)n+1}
Np

i=1 resampled from {x̂(i)n+1}
Np

i=1 describes
the conditional distribution of the target better than the particles resampled from

{x̃(i)n+1}
Np

i=1 since {x̂(i)n+1}
Np

i=1 are already in the high density region through the im-
plicit sampling.

Theoretically, the implicit particle filter method can generate equally weighted
particles that follow the desired posterior distribution if the (nonlinear) equation
(13) can be effectively solved, and the performance of the implicit particle filter is
based on the performance of the optimization procedure that solves the equation.
However, the complexity of the equation (13) depends on the function F , which
relies on both the transition probability and the likelihood function (as indicated in
(12)). In this way, the implicit particle filter could be computationally expensive and
challenging when the dynamical model is not well-aligned with the observational
data.

4. Drift homotopy implicit particle filter. The main effort of this work is to
combine advantages of the drift homotopy particle filter and the implicit particle
filter to construct a drift homotopy implicit particle filter (DHIPF) method, which
can effectively use observational data and efficiently generate particles that follow
the filtering density of the target. The general framework of our approach adopts
the drift homotopy procedure in the drift homotopy particle filter. Instead of using
MCMC as a sampling method in the drift homotopy particle filter, we carry out
the “implicit sampling” procedure introduced the implicit particle filter to generate
the desired particles efficiently.

To proceed, we recall that in the drift homotopy particle filter, the drift homotopy
sequence (10) builds a bridge that connects the intermedia dynamics b to the original
state dynamics f . With the observational data incorporated through likelihood (as

described in (11)), the drift homotopy distribution pl(X
∗|x(i)n , Y1:n+1) in each drift

homotopy step is proportional to pl(X
∗|x(i)n )p(Yn+1|X∗). In the DHIPF, instead

of simply using the drift homotopy dynamics as a bridge to transport samples, we
consider the random variable X in the drift homotopy dynamics (10) as the state of
a nonlinear filtering problem at the time instant n and consider X∗ as the state at

the time instant n+1. Therefore, the drift homotopy distribution pl(X
∗|x(i)n , Y1:n+1)



736 XIN LI, FENG BAO AND KYLE GALLIVAN

is equivalent to the filtering density of the following nonlinear filtering problem

X̃n+1 =(1− βl)b(X̃n) + βlf(X̃n) + σnwn, (State)

Ỹn+1 =g(X̃n+1) + vn, (Observation)
(15)

given that the state X̃n is chosen as a particle x
(i)
n in the previous particle cloud

{x(i)n }Np

i=1 of the original nonlinear filtering problem (2) and the observation Ỹn+1 is
taken as the observational data Yn+1. In other words, we have

pl(X
∗|x(i)n , Y1:n+1) = pl(X̃n+1|X̃n, Ỹn+1)

∣∣
X̃n=x

(i)
n ,Ỹn+1=Y1:n+1

.

Then, the implicit particle filter method can be applied to solve the nonlinear filter-
ing problem (15) and produce a particle that follows the drift homotopy distribution

pl(X
∗|x(i)n , Y1:n+1).

Specifically, for an appropriately chosen reference random variable ξ, we solve for
the function ψn+1,i

l (ξ) that connects highly probable values of ξ to highly probable

values of x̂
(i)
n+1,l, i.e. x̂

(i)
n+1,l = ψn+1,i

l (ξ), where x̂
(i)
n+1,l is a particle that follows

the distribution pl(X̃n+1|X̃n, Ỹn+1)
∣∣
X̃n=x

(i)
n ,Ỹn+1=Y1:n+1

. To this end, we define a

function Fn+1,i
l (corresponding to the particle x

(i)
n ) by

exp
(
− Fn+1,i

l (x̂
(i)
n+1,l)

)
:= pl(x̂

(i)
n+1,l|x

(i)
n )p(Yn+1|x̂(i)n+1,l), (16)

where pl is the transition probability of the l-th drift homotopy dynamics. Then,
we solve the following equation

Fn+1,i
l

(
ψn+1,i
l (ξ)

)
− γn+1,i

l =
ξT ξ

2
(17)

to obtain the function ψn+1,i
l , where γn+1,i

l := minFn+1,i
l +λ is the factor that makes

(17) solvable as we introduced in the equation (13). Then, with the connection

function ψn+1,i
l solved through the equation (17), we can generate the position

of the particle x̂
(i)
n+1,l through the expression exp

(
− ξT ξ

2

)
J−1
ψn+1,i

l

for a pre-chosen

sample that follows ξ.
Similar to the procedure that solves the equation (13) in the implicit particle

filter, we use an optimization-based approach to determine ψn+1,i
l (for a given sam-

ple drawn from ξ). Note that the drift homotopy dynamics morph gradually from
the intermediate drift b to the original dynamical model f . Therefore, the transi-
tion probabilities {pl}Ll=1 between two successive drift homotopy levels have similar

distributions. Hence the values of implicit functions {ψn+1,i
l }Ll=1 should be close

for two successive drift homotopy levels. To take the advantage of those bridging

drift homotopy dynamics, we use the sample x̂
(i)
n+1,l−1 obtained in the l− 1-th drift

homotopy level as the initial condition for the optimization procedure when solving
for ψn+1,i

l . As a result, the optimization for solving ψn+1,i
l convergences quickly

due to the “good” initial condition and the implicit particle filter can be carried out
efficiently.

In the last homotopy level L, the drift homotopy dynamics become the origi-
nal state dynamics f . Therefore, once we obtain the function ψn+1,i

L through the

implicit sampling procedure (16) - (17), we obtain the sample x̂
(i)
n+1,L that follows

the desired filtering density p(Xn+1|x(i)n , Y1:n+1) given the particle
(i)
n and the fact

pL(X∗|x(i)n ) = pf (Xn+1|x(i)n ).
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Our DHIPF algorithm is summarized in Table 1. Based on the above discussions

Table 1.

Algorithm: Drift homotopy implicit particle filter (DHIPF)

Initialize the particle cloud {x(i)0 }
Np

i=1, the number of drift homotopy lev-

els L with the intermediate drift function b and the constant sequence

{βl}Ll=0, and the reference random variable ξ for the implicit particle fil-

ter procedure.

while n = 0, 1, 2, · · · , do

for: particles i = 1, 2, · · · , Np,
for: drift homotopy levels l = 0, 1, 2, · · · , L− 1,

-: Construct the drift homotopy dynamics (10);

-: Solve for ψn+1,i
l in the equation (17) with the initial

guess x̂
(i)
n+1,l;

-: Generate the sample x̂
(i)
n+1,l+1 through exp

(
−

ξT ξ

2

)
J−1
ψn+1,i

l

;

end for:

end for:

The particles {x(i)n+1}
Np

i=1 := {x̂(i)n+1,L}
Np

i=1 provide an empirical distribution

for the filtering density p(Xn+1|Y1:n+1)

end while

for DHIPF, we can see that the optimization based implicit sampling procedure

can generate the drift homotopy sample x̂
(i)
l much more efficiently – compared with

the standard MCMC sampling method. On the other hand, the drift homotopy
procedure creates a bridge that connects an intermediate dynamical function and
the original state dynamics. Since two successive drift homotopy dynamics are
similar, solutions of drift homotopy filtering problems (15) change gradually to the
filtering density of the original nonlinear filtering problem. Therefore, it is easy
to achieve the optimality condition in the implicit particle filter , and hence the
implicit particle filter can be implemented efficiently under our DHIPF framework.
Moreover, the intermediate dynamics b in the DHIPF is designed in a way so that
the likelihood function would dominate the first few drift homotopy steps. Then,
the drift homotopy procedure incorporates the original filtering dynamics and let
the dynamical model combine with the observational data. In other words, the drift
homotopy procedure aims to construct the desired filtering density starting from
the likelihood instead of starting from the predicated model, which is typically
implemented by most optimal filtering methods. In this way, the DHIPF could
endow the implicit particle filter the mechanism that trusts the observational data
first.
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5. Numerical experiments. In this section, we present two benchmark numeri-
cal examples to demonstrate the performance of our DHIPF method. In the first
example, we track the state of a stochastic dynamical system driven by the dou-
ble well potential. To demonstrate the advantageous performance of DHIPF, we
compare our method with the implicit particle filter and the standard drift homo-
topy particle filter (with MCMC sampling ) – along with other “state-of-the-art”
methods. In the second example, we solve a Lorenz attractor problem. The target
state that we estimate is driven by the Lorenz 63 model, which is a well-known
chaotic dynamical system. We show that our method can capture the unpredicted
chaotic behavior of the model by effective processing of observational data. All the
numerical experiments are carried out on an Intel Core i7-670HQ 2.6GHz CPU.

5.1. Double well potential. The double well potential is an important quartic
model in quantum mechanics and quantum field theory, and models derived from
the double well potential have been widely used in nano-phase materials [18]. The
potential U , described by

U(x) =
α

4
(x4 − 2x2),

has two stable positions at x = 1 and x = −1, where α is the model parameter that
determines the “depth” of potential wells. While a particle is at positions other
than 1 and −1, it will be pushed by a force with the magnitude of U ′(x) towards
one of the stable positions. In this example, we aim to estimate the state of a
stochastic dynamical system driven by the double well potential, i.e.

dXt = −α(X3
t −Xt)dt+ σdWt, 0 ≤ t ≤ T

and the data that we use to track the target state are direct observations on X,
which are perturbed by Gaussian noises with standard deviation R.

We consider the following discretized nonlinear filtering problem

Xn+1 =Xn − α(X3
n −Xn)∆t+ σwn,

Yn+1 =Xn+1 +Rvn,
(18)

where wn and vn are two independent Gaussian random variables, and we track
the state of X for 300 time steps with stepsize ∆t = 0.01. In this example, we
compare our DHIPF with four most successful nonlinear filtering methods: the
auxiliary particle filter (APF), the ensemble Kalman filter (EnKF), the implicit
particle filter and the drift homotopy particle filter (DHPF), where IPF and DHPF
(implemented by MCMC sampling) are fundamental components that we use to
construct our DHIPF. For all the particle filters, we use 20 particles to describe
the one-dimensional state distribution and we use an ensemble of 200 Kalman filter
samples in the EnKF. Also, we choose the total number of drift homotopy steps to
be L = 2, i.e. we use three intermediate dynamical systems to transport particles.

To provide a comprehensive demonstration of the performance of all the nonlinear
filtering methods, we solve the double well potential tracking problem for three
different cases.

Case 1. In this case, we choose the parameters for the double well potential tracking
problem as α = 1, σ = 1.5, and R = 1.5, and the initial state X is set to be X0 = 0.6.
In Figure 1 (a), we present the state estimation for the target state obtained by
different nonlinear filtering methods, where the black curve is the true simulated
state and the colored curves are estimates. From this subplot, we can see that all
the methods captured the main trend of the state while the EnKF failed to capture
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(a) Tracking performance.

(b) Estimation errors.

Figure 1. Double well potential case 1: α = 1, σ = 1.5, R = 1.5

detailed behaviors of the target. To show more details of estimation accuracy, in
Figure 1 (b) we plot errors of each method in estimating the state X. From this
subplot, we can see that the IPF, the DHPF and the DHIPF can give very accurate
estimates for the state, the APF occasionally suffers large errors, and the EnKF
has the worst performance.

Table 2. Example 1. Performance comparison for Case 1

APF EnKF IPF DHPF DHIPF

CPU Time 9.703 0.365625 0.0938 48.563 0.312

MSE 2.03E − 3 5.22E − 3 1.10E − 3 5.92E − 4 4.60E− 4

In order to further demonstrate the performance of all the methods, we present
the accumulated mean square error (MSE) of each method along with its CPU
time in solving this double well potential tracking problem in Table 2. From the
comparison table, we can see that the DHPF (with MCMC sampling) and the
DHIPF have the lowest estimation errors. However, the DHIPF spends much less
CPU time compared with DHPF due to the efficient implicit sampling procedure.
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Case 2. In this case, we let α = 1, σ = 1, and R = 1, and the initial state X is
set to be X0 = 0.6. Different from the first case, we observe that the real state
switched from the stable position X = 1 to the stable position X = −1 after
approximately 150 tracking steps. In physics, this kind of switch may be caused by
some unexpected external force or some extreme diffusion activities. We use this
experiment to demonstrate the “data first” advantage of drift homotopy procedure,
and we present the tracking performance and the estimation error of each method
in Figure 2 (a) and (b), respectively. From this figure, we can see that the EnKF

(a) Tracking performance.

(b) Estimation errors.

Figure 2. Double well potential case 2: α = 1, σ = 1, R = 1 with
state switch

and APF could not follow effectively the rapid change in the target state. On the
other hand, the IPF, the DHPF and the DHIPF captured the switch of the real
state effectively while the IPF has slightly higher error at the time of switch. In

Table 3. Example 1. Performance comparison for Case 2

APF EnKF IPF DHPF DHIPF

CPU Time 9.391 0.578 0.109 43.344 0.297

MSE 6.29E − 1 1.36 5.28E − 3 1.78E − 3 1.08E− 3
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Table 3, we present the CPU time and the MSE of each method. We can see from
this table that due to the unexpected switch of the target state, both the APF and
the EnKF have high estimation errors. The DHPF and the DHIPF have very low
MSEs in tracking the state, and the DHIPF has much lower computational cost
compared with DHPF.

Case 3. In this case, we also consider state switch during the tracking period. This
time, we choose parameters α = 10, σ = 1, and R = 2 for the nonlinear filtering
problem, where the large parameter α indicates that the potential wells are very
“deep”. In Figure 3, we present the tracking performance and the estimation error

(a) Tracking performance.

(b) Estimation errors.

Figure 3. Double well potential case 3: α = 10, σ = 1, R = 2
with state switch

of each method. We can see from this figure that both the EnKF and the APF
completely failed to capture the state switch. On the other hand, IPF, DHPF and
DHIPF captured the state switch well. In Table 4, we present the CPU time and
the MSE of each method. We can see that DHIPF has the lowest accumulative
error, and its computational cost is comparable to IPF.

From the above numerical experiments, we can see that our DHIPF method
outperforms EnKF in accuracy, and it steadily outperforms APF and DHPF in
both efficiency and accuracy. In comparison with IPF, DHIPF typically has higher
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Table 4. Example 1. Performance comparison for Case 3

APF EnKF IPF DHPF DHIPF

CPU Time 9.563 0.453 0.156 50.188 0.422

MSE 1.80 1.99 5.02E − 3 1.35E − 2 1.59E− 3

accuracy. On the other hand, the computational cost for DHIPF is slightly higher
than IPF since DHIPF requires several implicit sampling procedures. To give more
details of advantageous performance of DHIPF compared with IPF, in the next
numerical example we focus on the comparison between DHIPF and IPF.

5.2. Lorenz attractor. In this example, we solve a Lorenz attractor problem,
which has wide applications in weather forecasting and climate prediction. The
Lorenz dynamics that we consider is the Lorenz 63 model, which is described by

Lz(x) =

 a1(y − x)
a2x− y − xz
xy − a3z

 , (19)

where x = (x, y, z) is a three-dimensional vector, a1 is the Prandtl number, a2
is a normalized Rayleigh number and a3 is a non-dimensional wavenumber. The
nonlinear filtering problem corresponding to the Lorenz 63 model (19) is given by

dXt =dLz(t)dt+ σdWt,

dYt =Xtdt+RdVt,
(20)

where W and V are two standard Brownian motions, σ is the diffusion coefficient,
which decides the size of noises that perturb the state process, and R is the coef-
ficient for observational noises. In our numerical experiments, we choose a1 = 10,
a2 = 28 and a3 = 8/3, which will result chaotic behavior of the state process, and
we let σ = I3×3, R = I3×3.

In the first numerical experiment, we estimate the state X over the time interval
[0, 40] with step-size 0.01, i.e. 4000 steps, and we use 10 particles to implement both
DHIPF and IPF. In Figure 4, we present the tracking performance of DHIPF and
IPF with respect to each dimension. The black curve is the true target state, the
blue dotted curve is the estimate obtained by IPF, and the red dotted curve is the
estimate obtained by DHIPF. From this figure, we can see that generally DHIPF
and IPF provide good estimates for the target state. Specifically, they both give
accurate estimates in x and y directions, and DHIPF is consistently more accurate
than IPF in the z direction. To take a closer look at the accuracy between DHIPF
and IPF, we plot squared errors combining all three directions in Figure 5. From
this figure, wes see that DHIPF is more accurate than IPF over the entire tracking
period.

In our second numerical experiment in this Lorenz attractor example, we present
the tracking performance of DHIPF and IPF when the true state of the Lorenz
dynamics moves rapidly between time steps 300 and 400. Such rapid motion are
typically caused by the chaotic nature of the Lorenz model, which is often observed
when predicting weather in real time. To implement DHIPF and IPF, we use 30
particles to adjust the possible fast state change and we estimate the target state
for 600 time steps.

In Figure 6, we show the estimation performance of DHIPF and IPF in each
dimension. We can see from the figure that DHIPF accurately captured the true
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Figure 4. Tracking performance for 4000 steps.

Figure 5. Tracking errors for 4000 steps.

state of the Lorenz dynamics even during the rapid motion period. On the other
hand, IPF could only follow the trend of the target motions and it took IPF over 100
steps to recover good estimates. In Figure 7, we plot the squared errors combining
three dimensions over the tracking time, and we can see clearly that IPF suffers
large errors from time step 300 to approximately time step 450 while DHIPF only
has a small spike in estimation errors to adjust the chaotic behavior of the model.

To further demonstrate the advantageous performance of DHIPF over IPF, we
assume that there are gaps between model simulations and observations. This could
reflect the situation that the data are collected occasionally, and such a situation
occurs frequently in practice. In this experiment, we use 50 particles for both DHIPF
and IPF, and we track the target state with 1000 simulation steps. In Figure 8,
we solve the Lorenz attractor problem repeatedly over 20 times and plot the MSEs
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Figure 6. Tracking performance with rapid change in the state.

Figure 7. Tracking errors with rapid change in the state.

among all 20 repeated tests of each method with respect to observation gaps, where
the blue markers are MSEs of IPF, the red markers are MSEs of DHIPF with 2
drift homotopy levels, i.e. L = 2, and the green markers are MSEs of DHIPF with
3 drift homotopy levels, i.e. L = 3. From this figure, we see that the errors of IPF
increase as observations become sparser. On the other hand, although DHIPF has
larger errors when observations are sparser, it is not as sensitive as IPF with respect
to observation gaps, and DHIPF always has accurate estimates for the state.The
reason why DHIPF has better performance in this “observation gap experiment”
is that the drift homotopy procedure allows us to process the observational data
first before we incorporate the dynamical model. As a result, in the case that data
are hard to collect, which means each set of observational data is “more valuable”,
DHIPF can utilize the observational data more effectively and therefore obtain
better results. Moreover, we see from this figure that for smaller observation gaps,
DHIPF with 2 homotopy levels has similar performance to 3 homotopy levels. When
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Figure 8. Mean square errors with respect to observation gaps.

the observation gap is getting larger, more homotopy levels bring more accurate
results. This also supports the utility of the homotopy procedure.
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