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Machine learning (ML) is increasingly being used in high-stakes applications impacting society. Therefore, it
is of critical importance that ML models do not propagate discrimination. Collecting accurate labeled data in
societal applications is challenging and costly. Active learning is a promising approach to build an accurate
classifier by interactively querying an oracle within a labeling budget. We introduce the fair active learning
framework to carefully select data points to be labeled so as to balance model accuracy and fairness. To
incorporate the notion of fairness in the active learning sampling core, it is required to measure the fairness
of the model after adding each unlabeled sample. Since their labels are unknown in advance, we propose an
expected fairness metric to probabilistically measure the impact of each sample if added for each possible class
label. Next, we propose multiple optimizations to balance the trade-off between accuracy and fairness. Our
first optimization linearly aggregate the expected fairness with entropy using a control parameter. To avoid
erroneous estimation of the expected fairness, we propose a nested approach to maintain the accuracy of the
model, limiting the search space to the top bucket of sample points with large entropy. Finally, to ensure
the unfairness reduction of the model after labeling, we propose to replicate the points that truly reduce the
unfairness after labeling. We demonstrate the effectiveness and efficiency of our proposed algorithms over
widely used benchmark datasets using demographic parity and equalized odds notions of fairness.

1. Introduction

Data-driven decision making plays a significant role in modern
societies by enabling wise decisions and to make societies more just,
prosperous, inclusive, and safe. However, this comes with a great deal
of responsibilities as improper development of data science technolo-
gies cannot only fail but make matters worse. Judges in US courts,
for example, use criminal assessment algorithms that are based on the
background information of individuals for setting bails or sentencing
criminals. While it could potentially lead to safer societies, an improper
usage could result in deleterious consequences on people’s lives. For
instance, the recidivism scores provided for the judges are highly
criticized as being discriminatory, as they assign higher risks to African
American individuals (Angwin, Larson, Mattu, & Kirchner, 2016).

Machine learning (ML) is at the center of data-driven decision
making as it provides insightful unseen information about phenomena
based on available observations. Two major reasons of unfair outcome
of ML models are Bias in training data and Proxy attributes. The former is
mainly due to the inherent bias (discrimination) in the historical data
that reflects unfairness in society. For example, redlining is a systematic
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denial of services used in the past against specific racial communities,
affecting historical data records (Jan, 2018). Proxy attributes on the
other hand, are often used due to the limited access to labeled data,
especially when it comes to societal applications. For example, when
actual future recidivism records of individuals are not available, one
may resort to information such as “prior arrests” that are easy to collect
and use it as a proxy for the true labels, albeit a discriminatory one.

Example 1. A company is interested in creating a model for predicting
recidivism to be used by judges when setting bails; they want to predict
how likely a person is to commit a crime in the future. Suppose the
company has access to the background information of some criminal
defendants.! However, the collected data is not labeled. That is because
there is no evidence available at the time of the trial if an individual
will commit a crime in the future or not. Considering a time window,
it is possible to label an individual in the dataset by checking the
background of the individual within the time window after being
released. However, it is costly as it might require expert efforts for data
collection, integration and entity resolution.

E-mail addresses: hadis@uic.edu (H. Anahideh), asudeh@uic.edu (A. Asudeh), s.thirumuruganathan@hbku.edu.qa (S. Thirumuruganathan).
! In the US, such information is provided by sheriff offices of the counties. For instance, for the COMPAS dataset, ProPublica used information obtained from

the Sheriff Office of the Broward County. https://bit.ly/36CTc2F

https://doi.org/10.1016/j.eswa.2022.116981

Received 24 August 2021; Received in revised form 15 January 2022; Accepted 23 March 2022

Available online 4 April 2022
0957-4174/© 2022 Elsevier Ltd. All rights reserved.


http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:hadis@uic.edu
mailto:asudeh@uic.edu
mailto:s.thirumuruganathan@hbku.edu.qa
https://bit.ly/36CTc2F
https://doi.org/10.1016/j.eswa.2022.116981
https://doi.org/10.1016/j.eswa.2022.116981
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.116981&domain=pdf

H. Anahideh et al.

Example 2. A loan consulting company would like to create a
model for financial agencies to identify “valuable customers” who will
pay off their loans on time. The company has collected a dataset of
customers who have received a loan in the past few years. The dataset
includes information such as demographics, education and income level
of individuals. Unfortunately, at the time of approving loans, it is not
known whether customers will pay their debt on time, and hence, the
data are not labeled. Nevertheless, the company has hired experts who,
given the information of admitted applicants in the past, can verify
their background and assess if payments were made on time. Of course,
considering the costs associated with a background check, it is not
viable to freely label all customers.

Both of the above examples use biased historical data for building
their models. For instance, the income in Example 2 is known to
include gender bias (Jones, 1983). Similarly, using prior count as a
proxy attribute in Example 1 is racially biased (Angwin et al., 2016).
Furthermore, the datasets in both cases are unlabeled.

A new paradigm of fairness in machine learning has emerged (Baro-
cas, Hardt, & Narayanan, 2019) to address the unfairness issues of
predictive outcomes. These work often assume the availability of (pos-
sibly biased) labeled data in sufficient quantity. When this assumption
is violated, their performance degrades. In many practical societal
applications such as Example 1, one operates in a constrained envi-
ronment. Obtaining accurate labeled data is expensive, and could only
be obtained in a limited amount. Training the model by using the
(problematic) proxy attribute as the true label® will result in an unfair
model.

Our goal is to develop efficient and effective algorithms for fair
models in an environment where the budget for labeled data is re-
stricted. An obvious baseline is to randomly select a subset of data
(depending on the available budget), obtain their labels, and use it
for training. However, a more sophisticated approach would be to
use an adaptive sampling strategy. Active learning (Settles, 2012) is
a widely used strategy for such a scenario. It sequentially chooses the
unlabeled instances where their labeling is the most beneficial for the
performance improvement of the ML model.

In this paper, we aim to develop an active learning framework

that will yield fair(er) models. Fairness has different definitions and
is measurable in various ways. Specifically, we consider a model fair
if its outcome does not depend on sensitive attributes such as race or
gender. We adopt demographic parity (aka statistical parity), one of the
popular fairness measures (Dwork, Hardt, Pitassi, Reingold, & Zemel,
2012; Kusner, Loftus, Russell, & Silva, 2017).
Summary of contributions. We introduce fairness in active learning
for constructing fair models in the context of limited labeled data.
We propose a fair active learning (FAL) framework to balance model
performance and fairness (Section 4). At a high-level, FAL uses an
accuracy—fairness optimizer for selecting samples to be labeled. We
propose three strategies for the optimizer, namely FAL a-aggregate
(Section 5.1), FAL Nested (Section 5.2), and FAL Nested Append
(Section 5.3). Given that sample points are unlabeled in the context
of AL, the optimizer uses expected unfairness reduction, proposed in
Section 4. For the special case of generalized linear models, we propose
a fairness by covariance (Section 6), an efficient alternative for expected
unfairness reduction that reduces the asymptotic time complexity of
FAL to be the same as traditional active learning. While our default
notion of fairness is based on Demographic Parity, we provide an ex-
tension to other fairness models (Section 7). We conduct comprehensive
experiments to evaluate the performance of our proposal on benchmark
datasets (Section 8). Our results confirm that FAL can significantly
reduce unfairness while not significantly impacting the model accuracy.
In particular, our optimization FAL Nested-Append had on average a
better performance, significantly reducing unfairness, while sacrificing
a small amount on the accuracy.

2 In the rest of the paper we refer to true label as label.
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2. Related work

Algorithmic Fairness in ML. Algorithmic fairness is a topic of ex-
tensive interest with (Barocas, Hardt, & Narayanan, 2017; Zliobaite,
2017), and Mehrabi, Morstatter, Saxena, Lerman, and Galstyan (2019)
providing surveys on discrimination and fairness in machine learn-
ing. Fairness, at a high level, is partitioned into individual fairness,
which deals with discrimination against individuals, and group fairness,
which considers parity over different demographic groups. While some
works study individual fairness (Dwork et al., 2012), considering the
social implications, most attention has been on group fairness. Kearns
et al. (Kearns, Neel, Roth, & Wu, 2018) proposed the notion of rich
subgroup fairness to bridge between group fairness and individual
fairness. Probably the more popular notion of fairness is based on model
independence or demographic parity (Barocas et al., 2019; Narayanan,
2018; Zliobaité, 2017), also referred to by terms such as statistical
parity (Dwork et al., 2012), and disparate impact (Barocas & Selbst,
2016). Model independence simply requires the sensitive characteristic
to be statistically independent of the score (Barocas et al., 2019). There
is a similarity between this model and diversity (Drosou, Jagadish,
Pitoura, & Stoyanovich, 2017). In addition to independence, fairness
can be defined using the notions of separation and sufficiency (Barocas
et al., 2019). Considering a target variable (true label in classification)
for every tuple in a supervised learning setting, the separation model
allows correlation between the score and a sensitive attribute to the
extent that it is justified by the target variable. Fairness measures such
as predictive equality, Equal opportunity, and Equalized odds follow the
separation model. Sufficiency model requires independence of a target
variable and a sensitive attribute conditional to the scores. In other
words, a score satisfies sufficiency if the sensitive attribute and target
variable are clear from the context. Predictive parity is an example
fitting into this model.

The goal of improving fairness in learning problems can be achieved
by intervention at pre-processing, in-processing(algorithms), or post-
processing strategies. Pre-processing strategies involve the fairness
measure in the data preparation step to mitigate the potential bias in
the input data and produce fair outcomes (Asudeh, Jin & Jagadish,
2019; Asudeh, Shahbazi, Jin, & Jagadish, 2021; Calmon, Wei, Vin-
zamuri, Ramamurthy, & Varshney, 2017; Celis, Keswani, & Vishnoi,
2020; Feldman, Friedler, Moeller, Scheidegger, & Venkatasubramanian,
2015; Kamiran & Calders, 2012; Krasanakis, Spyromitros-Xioufis, Pa-
padopoulos, & Kompatsiaris, 2018; Salimi, Rodriguez, Howe, & Suciu,
2019; Soen, Husain, & Nock, 2020; Zemel, Wu, Swersky, Pitassi, &
Dwork, 2013). In-process approaches (Asudeh, Jagadish, Stoyanovich
& Das, 2019; Calders & Verwer, 2010; Corbett-Davies, Pierson, Feller,
Goel, & Huq, 2017; Fish, Kun, & Lelkes, 2016; Goh, Cotter, Gupta, &
Friedlander, 2016; Komiyama, Takeda, Honda, & Shimao, 2018; Xu,
Yuan, Zhang, & Wu, 2018; Zafar, Valera, Rodriguez, & Gummadi, 2015)
incorporate fairness in the design of the algorithm to generate a fair
outcome. Existing works have formulated fairness in classification as
a constrained optimization (Celis, Huang, Keswani, & Vishnoi, 2019;
Hardt, Price, Srebro, et al.,, 2016; Huang & Vishnoi, 2019; Menon
& Williamson, 2018; Zafar, Valera, Gomez Rodriguez, & Gummadi,
2017; Zhang, Chu, Asudeh, & Navathe, 2021). Post-process meth-
ods (Hardt et al., 2016; Hébert-Johnson, Kim, Reingold, & Rothblum,
2017; Kim, Ghorbani, & Zou, 2018; Pleiss, Raghavan, Wu, Kleinberg,
& Weinberger, 2017; Stoyanovich, Yang, & Jagadish, 2018; Zehlike
et al., 2017), manipulate the outcome of the algorithm to mitigate the
unfairness of the outcome for the decision making process.

Our proposal is orthogonal to the fair ML literature. While our goal in
this paper is on selecting the samples to be labeled, fair ML algorithms
aim to build fair models for a given set of labeled samples.

This paper is the first to introduce fair active learning. Besides this
paper, we are aware of one subsequent work that considers fairness
in active learning (Sharaf & Daumé III). The setting of this work
differs from the standard active learning setting: instead of seeking
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Table 1
Table of notations
Symbol Description
v The pool of unlabeled data
L The pool of labeled data
X The input features (observation) vector
d Number of input features
y True label, aka target variable
9 The model prediction
s The sensitive attribute
B Labeling budget
K Cardinality of y
C() A classifier that maps input features vector to a predicted label
F(C) The unfairness of a classifier C
E[F/] Expected unfairness if labeling x € U" and adding it to £ at iter ¢

to minimize the number of labeled data, Sharaf and Daumé III starts
with a pre-existing labeled data and seek to minimize the disparity by
labeling additional samples. In contrast, we tackle the traditional active
learning setting with no labeled data. Fairness has also been studied in
few works that consider the intersection of fairness and active feature
acquisition (Bakker et al., 2020; Noriega-Campero, Bakker, Garcia-
Bulle, & Pentland, 2019). Our work is orthogonal to this research since
our goal is not feature acquisition but rather active learning.

Active Learning. Active learning is the preferred learning strategy in
limited labeled data settings, where collecting new labels is costly.
Different active learning scenarios (Membership Query Synthesis (An-
gluin, 1988; Cohn, Ghahramani, & Jordan, 1996; King et al., 2004),
Stream-Based Selective Sampling (Cohn, Atlas, & Ladner, 1994; Da-
gan & Engelson, 1995; Dasgupta, Hsu, & Monteleoni, 2007; Mitchell,
1982; Moskovitch et al., 2007), Pool-Based Active Learning (Hoi, Jin,
& Lyu, 2006; McCallumzy & Nigamy, 1998; Settles & Craven, 2008;
Tong & Koller, 2001; Tur, Hakkani-Tiir, & Schapire, 2005)) and sam-
pling strategies (Uncertainty Sampling (Lewis & Gale, 1994; Settles &
Craven, 2008; Shannon, 2001), Query-By-Committee (Gilad-Bachrach,
Navot, & Tishby, 2006; Melville & Mooney, 2004; Seung, Opper, &
Sompolinsky, 1992), Expected Model Change (Freytag, Rodner, & Den-
zler, 2014; Roy & McCallum, 2001; Settles, Craven, & Ray, 2007),
Variance Reduction (Cohn et al.,, 1996; Hoi et al., 2006), etc.) have
been proposed and are surveyed in Settles (2012). Similarly (Kumar
& Gupta, 2020) reviews recent advancements in the area of active
learning. Uncertainty sampling is one of the most popular approaches
for active learning (Balcan, Broder, & Zhang, 2007; Lewis & Catlett,
1994; Tong & Koller, 2001), which merely selects data points based
on the single objective function of informativeness. There are several
active learning approaches proposed to incorporate more than one
criteria for sampling, such as representativeness (Donmez, Carbonell, &
Bennett, 2007; Huang, Jin, & Zhou, 2010; Xu, Yu, Tresp, Xu, & Wang,
2003). Other advanced sampling strategies based on deep learning has
also been proposed for active learning (Wu, Chen, Zhong, Wang, & Shi,
2021).

3. Background

In this section, we introduce the data model, the active learning
framework with uncertainty sampling heuristic, and fairness model.

3.1. Learning model

Given a classifier and a pool of unlabeled data 1, Active Learn-
ing (AL) identifies the data points to be labeled so that an accurate
model could be learned as quickly as possible. " is assumed to be an
independent and identically distributed (i.i.d) sample set collected from
the underlying unknown distribution. For each data point p;, € V", we
use the notation x” for the d-dimensional vector of input features and
x;i) to refer to the value of jth feature. Each data point is associated
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with a non-ordinal categorical sensitive attribute s such as gender and
race. We use the notation s to refer to the sensitive attribute of p;.
We also use y to refer to the label of a point p; with K possible values
{0,..., K —1}. The notations used in this paper are listed in Table 1.

Algorithm 1 Active Learning (with uncertainty sampling)

1: fort=1to B do
2:  x* =argmax H(y|x, L)

XeV
3:  y = label x* using the labeling oracle
4: add (x*,y) to L

5:  train the classifier C, using £

6: end for

7: return Cp

Without loss of generality and to simplify the explanations, unless
explicitly stated, we assume s is a single sensitive attribute. Still, we
would like to emphasize that our techniques are not limited to the
number of sensitive attributes.

The goal is to learn a classifier function C : RY — [0,K — 1]
that maps the feature space X to the labels y. Let y = C(x) be the
predicted label for x. Pool-based active learning (Lewis & Gale, 1994),
sequentially selects instances from U to be labeled by an expert oracle
and forms a labeled set £ for training. Labeling, however, is costly and
usually there is a limited labeling budget B. The challenge is to design
an effective sampling strategy that wisely utilizes the budget to build
the most accurate model. Uncertainty sampling (Lewis & Gale, 1994), a
widely used strategy, chooses the point p € U" that the current model is
least certain about its label. The classifier C,_, for iteration ¢ chooses the
data point that maximizes the Shannon entropy (M) (Shannon, 1948)
over the label probabilities.

x* = argmax H(y|x, L) (@)
XeV

Algorithm 1 presents the standard active learning algorithm. Using
Eq. (1), the active learning algorithm iteratively selects a point from
U to be labeled next. It uses the classifier trained in the previous step
C, to obtain probabilities of the labels. The algorithm obtains the label
from the labeling oracle, and adds the point to the set of labeled dataset
L, using it to train the classifier C,. This process continues until the
labeling budget is exhausted.

3.2. (Un)fairness model

We develop our fairness model on the notion of model independence
or demographic parity (DP) (Barocas et al., 2019; Zafar et al., 2017;
Zliobaité, 2017), also referred by terms such as statistical parity (Dwork
et al., 2012; Simoiu, Corbett-Davies, Goel, et al., 2017), and disparate
impact (Barocas & Selbst, 2016; Feldman et al., 2015). Although our
focus in this paper is on fairness based on model independence, in
Section 7 we show how to extend our framework for other measures
based on separation (yLls | y) and sufficiency (yLs | §) (Barocas et al.,
2019). Given a classifier C and a random point (x, s) with a predicted
label = C(x), DP holds iff Ls (Barocas et al., 2017, 2019). For a
binary classifier, let § = 1 count as “acceptance” (such as receiving a
loan). DP requires that the acceptance rate be the same for all groups
of S i.e. female or male in this case. For a binary classifier and a binary
sensitive attribute, the statistical independence of a sensitive attribute
from the predicted label induces the following notions for DP:

1. P(p = I|s=0)=P@ =1|s = 1): The probability of acceptance is
equal for members of different demographic groups. For instance, in
Example 1 members of different race groups have an equal chance
for being classified as low risk.

2. P(s = 1| = 1) = P(s = 1): If the population ratio of a particular
group is p (i.e. P(s = 1)), the ratio of this group in the accepted class
is also p. For instance, in Example 2, let p be the female ratio in
the applicants’ pool. Under DP, female ratio in the set of admitted
applications for a loan equals to p.
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Fig. 1. FAL framework.

3. I(§;s) = 0: Mutual information is the measure of mutual dependence
between two variables. When y and s are independent, their mutual
information is zero. That is, the conditional entropy H(s|y) is equal
to H(s).

4. couv(P, s) = 0: When j and s are independent, cou(J, s) is equal to zero.

A disparity (or unfairness) measure can be defined using any of the
above notions. The absolute differences or the ratio of probabilities in
bullets 1 or 2 provide four disparity measurements. Mutual information
and covariance (or correlation) provide two natural measures, since the
greater the absolute value of the two is the greater the disparity. In
this paper, we do not limit ourselves to any of the unfairness measures
(demographic disparity) and give the user the freedom to provide a
customized measure. We denote (user-provided) measure of unfairness
as F(s,C). When s is clear by context, we simplify it to F(C).

4. Fair active learning (FAL) framework

By carefully selecting samples to be labeled, AL has the potential to
mitigate algorithmic bias by incorporating the fairness measure into its
sampling process. Still, not considering fairness while building models
can result in model unfairness. As a naive resolution, one could decide
to drop the sensitive attribute from the training data. This, however,
is not sufficient since the bias in the features may cause model unfair-
ness (Buolamwini & Gebru, 2018; Zou & Schiebinger, 2018). Hence,
a smart sampling strategy is needed to mitigate the bias. Blindly opti-
mizing for fairness could result in an inaccurate model. For instance,
in Example 1, consider a model that randomly classifies individuals
as high-risk. This model indeed satisfies demographic parity since the
probability of the outcome is (random and therefore) independent of
S. However, such a model provides zero information about how risky
an individual is.

We propose the Fair Active Learning (FAL) framework to balance
between accuracy and fairness. FAL is an iterative approach similar to
standard active learning approaches. As shown in Fig. 1, the central
component of FAL is the sample selection unit (SSU) that chooses an
unlabeled point (x, s®) from U and obtains the label from an oracle.
The labeled point (x®, s®, V) is moved to £, the set of labeled points
that is used to train C,. In the next iteration, 7+ 1, SSU employs C, and
selects the next point to be labeled. This process continues until the
budget for labeling is exhausted.

At a high level, SSU can be viewed as two computation blocks
stacked on top of each other. The upper block is the fairness—accuracy
optimizer that selects a point from U to be labeled next such that
a combination of accuracy (misclassification reduction) and fairness
(unfairness reduction) is maximized. We shall provide the details of this
block in Section 5.

The accuracy—fairness optimizer relies on the lower block for es-
timating unfairness values. Let C,_; be the current model, created
in the previous iteration t+ — 1. In order to evaluate the unfairness
reduction after labeling a sample point (x,s®) € 1/, the optimizer
block needs to compute the unfairness of the current model 7(C,_),
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as well as the unfairness of the model after labeling the sample point
F(C," ). Computing F(C," ) turns out to be problematic as at the time of
evaluating the candidate points in U/, we still do not know their labels.
On the other hand, to evaluate F(C[i ), we need to know what the model
parameters will be after labeling the point (x®, s®)) and adding it to L.
In other word, in order to evaluate a point to whether or not it should
be labeled, we need to know its label in advance! This contradicts with
the fact that U is unlabeled.

To resolve this issue, using a decision theoretic approach (Settles,
2012), we consider the expected unfairness reduction: selecting the point
that is expected to impart the largest reduction to the current model
unfairness, after acquiring its label. Therefore, instead of F(C!), we plug
in the expected fairness E[F/]. In this way, we are approximating the
expected future fairness of a model using £ U {(x®, s, yD)} v x € 1~
over all possible labels under the current model. Consider a point p; € U’
and let C'* be the model after adding p; to £ if its true label is y© = k.
Inevitably, SSU does not know the label in advance. Hence, it must
instead calculate the unfairness as an expectation over the possible
labels. That is, it considers the fairness reduction IF the label was
C, (class 0), C; (class 1), ...,Cg_; (class K — 1), and aggregate the
values into an expected value. Eq. (2) denotes the expected (un)fairness
computation used by SSU:

K-1

E[F]] = ) F(CI*)P(y = kIx?) (@)
k=0

Using Fig. 2 for explanation, for every point p; = (x®,s?) in

the unlabeled pool, SSU considers different values of {0,...,K — 1} as
possible labels for p;. For every possible label y,, it updates the model
parameters to the intermediate model C,”k using £ U {(x®, s® k)}.

Algorithm 2 ExpF

Input: (x?,s®), £,C,_,
1: sum=0
2: for k=0to K—1 do
3:  train C* using £ U {(x?, 59, )}
4 compute P(C,“k), using IV
50 sum = sum+ F(C/*)P(y = k|x®)
6: end for
7: return sum

Since the points to be labeled are selective samples from ", and
moved from U to L, after the process starts, neither " nor £ can
be seen as i.i.d. samples of the actual underlying distribution, and
therefore, cannot be used to estimate the fairness. However, V" initially
follows the underlying distribution. Therefore, to create a dataset for
evaluating the fairness of the model for sample selection, we utilize
the initial unlabeled pool U (referred as IT°) and use it in different
FAL iterations. Following the standard AL, at every iteration, for every
possible label for a point (x), s), SSU uses the current model C,_, for
calculating P(y = k|x®). Note that each of the K models is used only
to compute F(Cf"‘) in Eq. (2).

Algorithm 2 shows the pseudo-code of for computing the expected
unfairness. In order to compute the expected unfairness, Algorithm 2
requires to train K models, each for a possible label k for the point
(x®, 5Dy, to compute P(C;’k), which makes it inefficient. In Section 6,
we propose a constant-time approximation alternative that enables the
same asymptotic time complexity as traditional active learning. We
shall then provide the details of extending the fairness block for other
measures of fairness beyond DP in Section 7.

Having discussed the FAL framework and the unfairness estimation
block, we will next describe the accuracy—fairness optimization block
used by SSU for selecting the next sample to be labeled.

5. Accuracy-fairness optimization

Having introduced the FAL framework, in this section, we propose
multiple optimizations to balance the trade-off between accuracy and
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Fig. 2. Computing expected unfairness for (x?,s®) e U'.

fairness. We treat the active learning optimizer for accuracy as a black
box. That is, we assume the existence of a metric (such as entropy) that
quantifies the desirability of a data point for traditional active learning.
Nevertheless, to simplify the explanations, we use uncertainty sampling
as a representative active learning method for the accuracy optimizer.
To adapt for other accuracy optimizers, one should simply replace the
accuracy term (entropy) with the proper alternative.

5.1. FAL a-aggregate

Similar to AL, FAL is also an iterative process that selects a sample
from the unlabeled pool U to be labeled and added to the labeled pool
L. However, FAL a-aggregate considers a combination of unfairness
and misclassification error reduction as the optimization objective for
the sampling step. Specifically, for a sample point (x?, sV} € U, we
consider the Shannon entropy measure H,_;(y) for misclassification
error, while considering demographic disparity F(C’) for unfairness —
C! is the classifier trained on L at iteration #, after labeling the point
(x, 5Dy and H,_,(y") is the entropy of the y’ based on the current
model C,_;. The formulation can be viewed as a multi-objective opti-
mization for fairness and misclassification error. Another perspective is
to view the fairness as a regularization term to the optimization. Eq. (3)
is consistent with both of these views and is therefore considered in our
framework.

argmax aM,_; () + (1 - ) (F(C,_)) - F(CH)) 3
(x0,50)er
(F(C,_)) — T’(C{)) is the unfairness reduction (fairness improvement)
term and the coefficient « € [0,1] is the user-provided parameter
that determines the trade-off between the model fairness and model
performance. Values closer to 1 put greater emphasize on model per-
formance, while smaller values of « put greater importance on fairness.
As we shall elaborate in Section 8, entropy and fairness values are
standardized to the same scale before being combined in Eq. (3).

As we discussed earlier, computing the fairness for each unlabeled
sample points, we consider the expected fairness E[F’], which is re-
turned by Algorithm 2. Hence, in Eq. (3), the second component of the
objective function is modified to (1 — a)(F(C,_,) — E[F!]).

While a controls the trade-off between the accuracy (entropy) and
the fairness terms, selecting an appropriate « value might not be clear
for the user. More importantly, FAL might find it challenging to use
a fixed learning strategy based on « in different iterations. To avoid
parameter tuning in active learning instead of using a fixed « for all
iterations, one can use a decay function that begins with a large value
of a, which improves the accuracy of the model. As the model becomes
more stable, the value of a gets dropped, putting more weight on
improving fairness.

In initial iterations, the model is not accurate because it was trained
only on a few labeled instances, resulting in possibly inaccurate esti-
mates of the label probabilities for a given unlabeled instance from V.

Algorithm 3 FAL a-aggregate

1: fort=1to B do

2: max=0

3: fori=1to |U| do

4: H=-Y5 Py = kIx?) log P(y = k|x®)
5: E[F!] = ExpF((x?,s®),L,C,_,)

6: obj = a()H + (1 — a())(F(C,_,) — E[F!])
7: if 0obj > max then

8: max = obj

9: (x*, 5%y = (x, s0)
10: end if
11:  end for
12:  y* = label x* using the labeling oracle

13: move (x*,s*,y*) to L

14:  train the classifier C, using £
15: end for

16: return C,

Computing the expected fairness values relies heavily on the probabil-
ities of the label. The miscalculation of these probabilities leads to an
inaccurate estimation of fairness; such erroneous values contribute to
the selection of points that do not support (and may even deteriorate)
the fairness of the model and may not be good for model accuracy. In
the later iterations, the model may already be stable and accurate, and
new labeled points may not significantly impact its accuracy. However,
the model can provide better estimations of the label probabilities,
which results in more robust estimations of the expected fairness.

This concept is applied in different context, such as assigning learn-
ing rate (Schaul, Zhang, & LeCun, 2013), where a larger value is used
initially that gradually decreases over time. Our approach is agnostic
to the decay function used. In the experiments, we use a function that
linearly interpolates between the range [0,1].

Given the scarcity of labels in the active learning paradigm, it is
not possible to identify an appropriate value of a. In other words, even
though « is an important hyper-parameter, it cannot be tuned due to
the scarcity of the labels. Instead, we advocate for an adaptive setting
where the value of « is graduated varied so as to trade-off both accuracy
and fairness. In Section 8, we conduct extensive experiments to study
the impact of « fixing it to a value withing a wide range of [0.1,0.9],
as well as adaptive a approach. Besides, to propose more effective
solutions, after proposing the a-aggregate approach, we introduced
FAL-Nested (and later FAL-Nested-Append).

The pseudo-code of FAL with a-aggregate is provided in Algorithm
3.

5.2. FAL nested

Accurately estimating the expected unfairness reduction is critical
for the performance of FAL. Looking at Eq. (2), computing the expected
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Fig. 3. Distribution of Entropy for COMPAS dataset.

fairness directly depends on the probability estimations of the current
model C,_; for different class labels k. The miscalculation of these
probabilities leads to an inaccurate estimation of fairness. Sacrificing
accuracy for fairness in previous steps will affect the estimation of
expected fairness in subsequent steps. Such erroneous estimation of the
expected unfairness improvement as a result, contribute to the selection
of points that do not support (and may even deteriorate) the fairness
of the model and may not be good for model accuracy. In order to
prevent this phenomena, it is necessary to always maintain an accurate
intermediate model - i.e., to ensure that the selected points to be
labeled will not negatively impact the accuracy of the model.

Fortunately, we make an observation in practice that helps us
keeping the intermediate models accurate while achieving fairness. As
we shall further explain in the following, our observation, also helps us
to even reduce the computation cost of the model by only focusing on
a subset of U, instead of the full set.

It turns out in practice the distribution of the entropy of the data
points in U is left-skewed, having a large number of points with
entropy close to the point with maximum entropy. Therefore, all these
points are almost equally good candidates from the accuracy perspec-
tive. We observed this in our real experiments, including the one on
COMPAS dataset shown in Fig. 3. In the figure, one can observe that
the last bucket contains a relatively large pool of points with entropy
close to the maximum value. As a result, the top bucket of high-entropy
samples provide “good” alternatives for the point with highest entropy,
selected by AL (Eq. (1)). Hence, the “regret” of selecting either of
the alternatives compared to the top-1 point should be small. On the
other hand, the relatively large size of the set (as observed in Fig. 3)
increases the chance that it contains a point with a high potential for
reducing unfairness. This is because the expected unfairness reduction
monotonically increases by the size of the set. To see why, consider two
sets S’ C S. Let p; be the point with maximum expected unfairness
reduction in S” and p; be the one in S. Since every point in S’ also
belongs to S, (F(C,_y) — E[F!]) > (F(C_)) - E[F/]).

We use the above observation to design a nested optimization for
accuracy and fairness. In particular, instead of computing a score
by linearly combining the two terms (Eq. (3)), we apply a nested
optimization where in the first level, we select a subset of Uy C U" of
the top-# points® that maximize the entropy H(y) using the current
classifier C,_;:

U, = ¢-argmaxH(y|x, L) ©))
&0 s0yer

where the function #-argmax returns £ samples with maximum values.
The first optimization level only optimizes for accuracy, to ensure main-
taining a high accuracy for the intermediate model. Next, changing the

3 Instead of a fixed set cardinality, one could consider selecting the points
that their values are close to the maximum (e.g. have distance less than 0.001).
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Algorithm 4 FAL Nested

1: fort=1to B do
2: U, = ¢-argmaxH(y|x", L)

(x,s0)eV
3: min=o

4. for (x¥,sV)y e U, do

5: E[F!] = ExpF((x?,s®),£,C,_,)
6: if E[P;] < min then

7: min = E[F!]

8: (x*,5*) = (x?, s0)

9: end if
10:  end for

11:  y* = label x* using the labeling oracle
12:  move (x*,5*,y*) to L

13:  train the classifier C, using £

14: end for

15: return C,

optimization criteria to fairness in the second level, SSU selects a point
from U, that maximizes the expected unfairness improvement (Eq. (5))
and pass it to the labeling oracle.

argmax (F(C,_))— E[F/]) = argmin E[F]| 5)
<x(1)wg(i))EUA (x(’>,s('))el/'A

Besides assuring the accurate estimations of expected unfairness
reduction, the nested optimization helps to reduce the time-complexity
of FAL. This is especially important as it reduces the number of points to
be evaluated for fairness from || to #. Note that, in order to estimate
the unfairness reduction for every sample (Fig. 2), Algorithm 2 requires
retraining of k models. As a result, the computation time to run the
framework is dominated by the total time to compute fairness values
for the points in the unlabeled pool, before selecting one to be labeled.
Hence, reducing the number of points to be evaluated for fairness
significantly reduces the computation cost by a factor of %.

The pseudo-code of FAL Nested is provided in Algorithm 4.

Before concluding this section, we would like to discuss the impact
of small approximation errors on the performance of FAL-Nested. FAL-
Nested considers highly uncertain points in the second stage. But there
still is an approximation, since instead of selecting the point that
maximizes the entropy (the best point from the accuracy perspective),
it selects a point with the entropy close to maximum. Let the difference
between the maximum entropy and the entropy of the selected point
be ¢. Indeed, a small ¢ difference does not significantly impact the
trained model. However, this small error will get propagated to the
subsequent iterations, resulting in a drop in the accuracy, observed
in our experiments in Section 8. Note that at every iteration, we use
the model C,_; built in the previous iterations to estimate (i) entropy
values and (ii) expected fairness improvement. A slightly less accurate
intermediate model causes less accurate estimation of these values,
hence making larger errors in selection of next iteration samples. As a
result, the impact of error gets propagated to the subsequent iterations.
Still, as we shall demonstrate in our experiments, the aggregated impact
of error propagation was minimal, maintaining a high accuracy, while
resolving the unfairness issues.

5.3. FAL nested-append

Since the sample points in U are unlabeled, FAL has no choice but
to estimate the expected unfairness reduction after labeling a point,
according to how likely it will take each possible label. But whether
unfairness reduces depends on the actual label after adding the point
to L. To further clarify this, let us consider a toy example highlighted
in Fig. 4. To simplify the explanation, we use 6 triangle and 6 circle
points, each representing a demographic group, to evaluate the fairness
of a linear binary classifier. Suppose the decision boundary of current
classifier (C,_,) is the one shown in solid line in the figure, and the
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Algorithm 5 FAL Nested-Append

1: fort=1to B do
2: U, = ¢-argmaxH(y|x?, L)

(x0 sHer

3: min = 0

4. for (x¥,sV) e U, do

5: E[F!] = ExpF((x?,s"),£,C,_,)
6: if E[F!] < min then

7: min = E[F]

8: (x*, s*) = (x®, s®)

9: end if
10:  end for

11:  y* = label x* using the labeling oracle
12: move (x*,s*,y*) to L

13:  train the classifier C, using £

14: compute F(C,)

15:  if F(C,) - F(C,_,) > 0 then

16: Replicate (x*,s*,y*) in £

17:  end if

18: end for

19: return C,

points in the top-right of the line are classified as +1. C,_, classifies two
third (4 out of 6) of circles, but only one third (2 out of 6) of triangles
as +1, hence is not fair according to DP.

Looking at the figure, to make the classifier fair, FAL needs to rotate
the border toward the dashed line. Consider the two angles highlighted
in the figure in the intersection of the two lines. To make the rotation,
FAL needs to find points in V" with the true +1 label that belong to the
top-left angle, or the ones with the true —1 label in the bottom-right
angle. Note that such points are misclassified by the current classifier.
As a result, it is less likely to find the points with proper labels needed
for reducing unfairness. On the other hand, if the label is not as hoped,
adding the new point will not help to reduce unfairness. Therefore, to
boost FAL for improving fairness, our next optimization, FAL Nested-
Append, replicates the points that get labeled in a way that unfairness
gets reduced. Let p, = (x?,57) € U, be the point selected using FAL
Nested. Let 7(C,) be the unfairness of the model after collecting the
true label of p, and adding it to L. If F(C,)—F(C,_;) > 0, the algorithm
replicates p; in £, further boosting its impact for unfairness reduction.
In particular, since FAL Nested puts more emphasize on accuracy, FAL
Nested-Append helps to account more for fairness. As we shall show
in Section 8, boosting the performance of FAL Nested for fairness, FAL
Nested-Append on average had a better performance across different
experiments.

The pseudo-code of FAL Nested is provided in Algorithm 5.
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6. Efficient FAL by covariance

Our proposed FAL framework is agnostic to the choice of classifier
C. In this section, we show that it is possible to design efficient
algorithm for the special case of generalized linear models. An appeal-
ing property of our algorithm is that, using the efficient computation
provided in Section 6.1, it has same asymptotic time complexity as
traditional active learning. We achieve this by avoiding the model re-
training step for calculating the expected fairness of unlabeled samples,
in Algorithm 2.

Consider a generalized linear model in form of j = #'x.* The
covariance between the model and a sensitive attribute s should be
zero under model independence (demographic parity). We make a
key observation in Lemma 1 that shows this covariance, cou(s, §), only
depends on cou(s,x) and 6.

Lemma 1. For a generalized linear model in form of § = 07x, cou(S, §) =
07 cou(s, X).

Proof.

cou(s, §) = E[s §] — E[s]E[J]

EISIES] = uE[ Y 0ix;] = py ) Oy,
=01 Hghy, + Osfispy, + o+ Og sy,

Elspl = E[s Y 0,x]] = E[Y, s6,x/]

= E[sé’lxl +50,%x) + -+ + sedxd]
= E[slel] + E[s 92x2] + -+ E[s ded]
= GIE[S xl] + -t HdE[sxd]

= cou(s, y) = HIE[sxl] + e+ GdE[sxd]—
O pspy, + o+ Ogpgpy,)

=0\ (E[s x| = pgpty)) + -+ 04(E[s xq] = mgpty,)

d
= 0;cou(s, x;) = HTcov(s, x) O

i=1

According to Lemma 1, the covariance of the model with the
sensitive attribute (that results in unfairness) depends only on the
weight vector 6 and the underlying covariance of features x with s. We
can reduce the model unfairness by ensuring that the model does not
assign high weights to the problematic features (the features with high
covariance with s). This observation allows us to indirectly optimize for
fairness through covariance instead of computing expected unfairness
reduction.

Consider a feature x; that is highly correlated with the sensitive
attribute (i.e., cou(x;, s) is high) and also has a high weight ¢, in the
current model. Our objective is to reduce the weight assigned to such
features. The reason the model has assigned a large weight to x; is that
x; is highly predictive of y in L. Therefore, in order to reduce the weight
0;, we need to reduce cov,(x;,y) in the labeled pool £ to make it less
predictive of y in £. Now, consider a point P; = (x¥),s¥)) € U and
its value xf,j) on feature x;. Depending on xf.D and its label y) (after
labeling), the point P; can impact cov(x;,y) in L. Indeed, we do not
know y\) during the sample selection step. Still, similar to Section 5,
we can consider the probability distribution over y and calculate the
expected improvement in covariance. Let cov; = cov (x;,y) be the
covariance of x; and y in £ and COVj ik = COVLG () 50D kyy (X Y) the
covariance of x; and y after adding (x\,s%), k) to £. The expected
covariance improvement for x; after adding P; to L is

K-1
E[cov} | = ' (Icovi] = leov; ;  NB(y = kIxV) ®)
k=0

4 The decision boundary of the classifier is viewed as a threshold value on
y that separate different classes, using, for example, a sign function.
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Following Lemma 1 the contribution of the covariance reduction for
a feature x; to fairness is proportional to |6;cov(x;, s)|. Subsequently,
it is important to reduce cov,(x;,y) for the features that are highly
correlated with the sensitive attribute and have a high weight 6; in the
model. Therefore, the (indirect) fairness improvement by covariance for
a point P; € U" can be computed as following:

d

E[Fijl] = Z |9,-cov(s,x,-)|E[covjl.J] 7
i=1

Now, it is enough to replace the term for expected unfairness reduction

(FP(C,_y) = F(CY)), in Egs. (3) and (5), with E[FbC}].

6.1. Efficiently computing covariance of X and y in L

So far in this section, we proposed the efficient FAL by covariance
method that works based on Eq. (7). Let T be the time to train a
classifier on £. The time complexity of FAL (without considering the
labeling cost) is O(B - T - |U’|). That simply is because at every iteration
FAL requires to train a constant number of classifiers per each sample
in U, while there totally are B iterations. In this section we show that
maintaining the aggregates from the previous steps, we can further
improve the efficiency by computing E[F bC}] in constant time, when
d is constant. As a result the time complexity drops to O(B-(|U'|+T)),
the same as traditional active learning, when FAL by covariance method
is used.

First, we note that cou(x;, s), the covariance of each feature x; with
S, does not depend on £ and can be computed in advance, using
the unlabeled samples in . It is computed once for every feature
at the beginning of the process and the same numbers will be used
in different iterations. The values of cov; = cov,(x;,y) and cov;;, =
OV (x) 50D,y =y} (Xis V) in Eq. (6), however, depend on the set of
labeled data and should get recomputed at different iterations and for
different points P; € U'. We maintain the following aggregates for
efficiently computing these values:

G, = D ¥y

V(x() s@) yOyer
. ¢
Gylil = Z xf )
V(x5 yOyer
. ¢
G.lil= Xy
V(x(O) 5€) yOrer
Note that at every iteration each of the above aggregates can be
updated in constant time by adding the corresponding value from the
new point to it. Now, using these aggregates:

C.lil Gl G,
—_—— ——— X —_—

cov; = covp(x;,y) =
i (X, Y n n n

Similarly, for a point P; = (x\,s¥)) € V" and a label y\ = k:

CAil+kx G li1+xY G +k
covj ;i = - X
n+1 n+1 n+1

7. Extension to other fairness models

So far in this paper, we considered independence (yLs) for fairness.
Next, we discuss how to extended our findings to other measures
based on separation and sufficiency (Barocas et al., 2019), such as
equalized odds (Hardt et al., 2016), where the prediction outcome § is
independent of the sensitive feature s given the true label y, i.e. P(y =
lly=1,s=0=P@=1ly=1,s=1),y€e0,1.

The fairness—accuracy optimizer of FAL is not limited to a specific
notion of fairness for balancing accuracy and fairness. Similarly, the
notion of expected unfairness reduction does not rely on a specific
notion of fairness as 7(.) in Eq. (2) can be computed using any fairness
measure, besides demographic parity. As a result, at a high-level, the
FAL framework should work as-is for other notions of fairness as
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well. However, as we shall explain in the following, computing F(.)
would require additional information that comes at a cost of randomly
labeling a subset of data.

Looking at Fig. 2, recall that we use the initial unlabeled set 1V
for estimating the fairness of a model. 17" follows the underlying data
distribution and, hence, can be used for evaluating the demographic
disparity. However, this set cannot be used for estimating fairness
according to separation or sufficiency since its instances are not labeled.
On the other hand, the pool of labeled data is not representative of the
underlying data distribution.

Our resolution is to use a small subset of C;» C IV for fairness
computation, accepting the potential error in estimations relative to
the size of the set. Before starting the FAL process, we need to label
Cyr. Once labeled, C;- will be used for calculating 7(.) based on other
notions of fairness, and FAL can be executed as-is. In Section 8, we run
experiments to show the extension of FAL for equalized odds.

8. Experiments

The experiments were performed on a Linux machine with a Core
19 CPU and 128 GB memory. The algorithms were implemented using
Python 3.7.°

8.1. Datasets

COMPAS®: published by ProPublica (Angwin et al., 2016), this
dataset contains information of juvenile felonies such as marriage
status, race, age, prior convictions, and the charge de-
gree of the current arrest. We normalized data so that it has zero mean
and unit variance. We consider race as sensitive attribute and filtered
dataset to black and white defendants. The dataset contains 5,875
records, after filtering. Following the standard practice (Corbett-Davies
et al., 2017; Mehrabi et al., 2019), we use two-year violent recidivism
record as the true label of recidivism: y = 1 if the recidivism is greater
than zero and y® = 0 otherwise.

Adult dataset’”: contains 45,222 individuals income extracted from
the 1994 census data with attributes such as age , occupation, ed-
ucation, race, sex, marital-status, hours-per-week,
native country, etc. We use income (a binary attribute with
values > 50k$ and < 50k$) as the true label. We consider sex as the
sensitive attribute. We normalized data so that it has zero mean and
unit variance.

8.2. Algorithms evaluated

All our proposed approaches are evaluated using a regularized ¢,

norm logistic regression classifier with a regularization strength of one.
We trained the logistic regression with liblinear optimizer and with a
maximum iteration of 100. Our findings are transferable to other clas-
sifiers. We begin by comparing our proposed approach against a wide
variety of representative baselines. Then, we focus on understanding
the effectiveness and performances of our proposed approaches under
different settings.
Baselines: We consider four baselines in order to build a fair classifier
in a limited data environment. We first start to evaluate passive meth-
ods, RandL and R-FLR, that select all the samples randomly at one
shot to form a training set and fit a regular and fair logistic regression
(proposed by (Zafar et al., 2017)), respectively. We then evaluate active
methods, AL and AL-FLR, which iteratively select a sample point based
on its informativeness (Eq. (1)) and fits a regular and fair logistic
regression (Zafar et al., 2017) in each iteration, respectively.

5 Our codes are publicly available: https://github.com/anahideh/FAL--Fair-
Active-Learning

6 ProPublica, https://bit.ly/35pzGFj

7 UCI repository, https://bit.ly/2GTWz9Z
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Fig. 8. FAL with Equalized odds, COMPAS Dataset.

Our Algorithms: We evaluate our fairness-accuracy optimization al-
gorithms proposed in Section 5, namely FAL a-aggregate ( FAL-a),
FAL Nested (Nested), and FAL Nested-Append (N-App). For FAL-a,
we normalize the accuracy and fairness improvement values as (v-
min)/(max-min) before combining them in Eq. (3). Besides fixed values
of a, we also consider an adaptive a parameter, using a decay function
that, starting from a = 1 to a = 0, the value «a drops by 0.1 every | B/11]
iterations. For Nested, and N-App, we consider different exponents of
2 as the value of ¢ (in Eq. (4)) from 2 to 512.

Our default choice for computing unfairness reduction is Algorithm
2. The efficient FAL by covariance (FBC), proposed in Section 6, is also
evaluated to show the computation time improvement. We evaluate
FBC with the three optimization approaches FAL-a, Nested, and N-
App. Finally, in order to show the extension of our proposal for other
fairness models, we run FAL using Equalized Odds as the fairness
measure.

10

and fairness measures to show the deficiency of these approaches in
construction of a final fair classifier. Fig. 5 illustrates the performance
of baselines and FAL-a where a = 0.6 for COMPAS and Adult datasets.
The bars indicate the standard deviation on 30 random split of data.
We observe that the baselines had similar performances on fairness.
Even applying a fair classifier (FLR) fails to improve the fairness. FAL-
a, on the other hand, significantly reduces unfairness while sacrificing
small amount of accuracy. The results indicate a significant drop in the
unfairness of the model (almost 30% reduction) versus the accuracy
drop of 4% when we use FAL.

One can observe that AL-FLR has higher unfairness compared to
the proposed FAL. To justify let us first review how AL-FLR algorithm
works. At every iteration of the active learning process, AL-FLR trains a
FairML model on the collected samples instead of a regular ML model.
Given the known trade-off between fairness and model accuracy in a
FairML model, the intermediate models then are less accurate (than
if regular ML was used instead). The intermediate models are used to
select the next sample points to be labeled. However, due to the low
accuracy of an intermediate model in AL-FLR, it poorly estimates the
entropy values that introduces error in estimating expected unfairness
values, resulting in selecting sub-optimal points for being labeled next.
The erroneous estimation of values, causing a poor selection of points
for sampling that is propagated to the subsequent iterations, further
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Fig. 10. Computation time of proposed approaches, COMPAS Dataset.

escalating its negative impact. In summary, the poor performance of
the intermediate models built by AL-FLR introduces errors that their
impact gets propagated in all subsequent iterations, resulting in models
with both low accuracy and fairness.

In our next experiment illustrated in Fig. 6, we evaluate the average
performance of three different optimizers FAL-a, Nested, and N-App,
the efficient algorithms proposed in Section 5 and compare it against
AL. Fig. 6(a) presents a comprehensive comparison of FAL with differ-
ent user-defined « and adaptive alpha, versus AL on COMPAS dataset.
We can observe that FAL-a achieved a good level of fairness across
different « values. Fig. 6(c) corresponds to the performance of Nested,
which focuses on the upper percentile of the entropy distribution, to
ensure that the selected points are improving accuracy, and not only the
unfairness. As expected, the results indicate that this approach nudges
up the accuracy of FAL-a. Finally, in Fig. 6(e), we evaluate the average
performance of N-App on COMPAS dataset. Compared to both FAL-a
and Nested, the unfairness level of the model dramatically improved by
appending the points two times when they truly improve the unfairness
level in each iteration. Similarly, we replicated the results for Adult
dataset as in Fig. 6(b), 6(d), and 6(f). It can be seen that the effective N-
App approach significantly improves the unfairness level of the model
while maintaining its accuracy.

We also evaluate the average performance of FBC approach as
proposed in Section 6. Fig. 7 includes the results of FBC with the
three proposed optimizers on COMPAS dataset. The results are fairly
consistent with the results we observed in Fig. 6 for COMPAS dataset.
Note that FBC is an approximation of the expected unfairness reduction
and is computationally more efficient to be used in FAL algorithm
(Fig. 10).

As we discussed in Section 7, our proposed approaches can be
extended to use other fairness measures. Fig. 8 corresponds to the
experimental setup where he Equalized Odds notion of fairness as
proposed by Hardt et al. (2016) is used in FAL-a for measuring fairness.
The results indicate the effectiveness of FAL compared to AL using
different « values. The results of the same setting for

Fig. 9 corresponds to the average (un)fairness and average accuracy
score on 30 random runs using COMPAS dataset. Looking at the figure,
we can observe that Nested-64 enforces the accuracy while considering
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Table 2
Average replication percentage over 30 random runs of N-App.

i Adult-Eodds Compas-Eodds Adult-Dparity Compas-Dparity
2 0.31 0.35 0.30 0.33
4 0.31 0.35 0.31 0.35
8 0.33 0.38 0.31 0.37
16 0.33 0.36 0.31 0.36
32 0.34 0.36 0.31 0.36
64 0.34 0.38 0.32 0.37
128 0.36 0.38 0.32 0.37
256 0.37 0.37 0.33 0.37
512 0.36 0.37 0.34 0.38

the fairness in the sample selection. Hence, with a higher accuracy and
lower unfairness it outperforms FAL-a-0.6. Overall, N-App-64, outper-
forms both FAL-¢-0.6 and Nested-64, significantly reducing unfairness
while dropping the accuracy by a small amount. Note that since Nested-
Append replicates some of the sample points (but not others) it pays
a price in accuracy reduction. However, our experiments demonstrate
in practice the accuracy drop is negligible. In particular, looking at
Fig. 9, we can observe that Nested-append has lower accuracy than
Nested. This indicates the impact of replicating points, significantly
reducing the unfairness. Although N-App-64 sacrifices accuracy to cut
half of the unfairness of Nested-64, the accuracy is minimally dropped as
it achieved almost .58/.6 = 96% of the accuracy of Nested-64.

Table 2 demonstrates the average percentage of observations that
are replicated in the Nested Append approach. Overall, 30% of the ob-
servations are replicated, that confirms the effectiveness of the replica-
tion on the final model performance compared to the Nested approach,
as shown in Fig. 9.

Fig. 10 shows the computation time of each sampling iteration for
different accuracy—fairness optimizers compared to the original FAL
on COMPAS dataset. FBC is orders of magnitude faster than FAL as it
avoids the need to compute expected fairness. On the other hand, since
it indirectly optimizes for fairness, FAL outperforms it on fairness.

Next, we provide additional experimental results on the perfor-
mance of our proposed algorithms, using FBC and Equalized Odds.

Fig. 11 presents results for FBC approach using three different
optimizers, FAL-a, Nested, and N-App on Adult dataset. It can be seen
that our ideal N-App approach outperforms other optimizers when we
use the efficient FBC approach for fairness approximation.

In Fig. 8 we provided our experiment results for Equalized Odds,
using N-App, on COMPAS dataset. Fig. 12 shows our complimen-
tary results for the other two accuracy—fairness optimizers: FAL-a and
Nested.

Finally, Fig. 13 provides results of FAL using three different opti-
mizer for Equalized Odds on Adult dataset. The results indicate that our
efficient and effective N-App approach outperforms other optimizers in
terms of unfairness reduction while maintaining accuracy.
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9. Final remarks

Prior works on fair classification assume the availability of suf-
ficiently labeled data. In a number of societal applications such as
recidivism prediction, the labeled data is unavailable and collecting
it is expensive and time-consuming. The traditional active learning
approach focuses on accuracy, often at the cost of fairness. In this
paper, we proposed a framework for fairness in active learning that
balances fairness and accuracy by selecting samples from the unlabeled
pool that maximizes a linear combination of misclassification error
reduction and improvement over expected fairness. We described a
wide variety of optimizations for improving accuracy, fairness, and
running time. Specifically, FAL Nested-Append successfully achieves a
deft balance between accuracy and fairness. Our extensive experiments
on real datasets confirm that our proposed approach produces a fairer
model without significantly sacrificing the accuracy. We hope that
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our proposed approach will have a positive impact by improving 1the
model fairness in a number of real-world scenarios.
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