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Abstract: Anomaly detection relies on designing a score to determine whether a par-
ticular event is uncharacteristic of a given background distribution. One way to define a
score is to use autoencoders, which rely on the ability to reconstruct certain types of data
(background) but not others (signals). In this paper, we study some challenges associated
with variational autoencoders, such as the dependence on hyperparameters and the metric
used, in the context of anomalous signal (top and W ) jets in a QCD background. We find
that the hyperparameter choices strongly affect the network performance and that the op-
timal parameters for one signal are non-optimal for another. In exploring the networks, we
uncover a connection between the latent space of a variational autoencoder trained using
mean-squared-error and the optimal transport distances within the dataset. We then show
that optimal transport distances to representative events in the background dataset can
be used directly for anomaly detection, with performance comparable to the autoencoders.
Whether using autoencoders or optimal transport distances for anomaly detection, we find
that the choices that best represent the background are not necessarily best for signal
identification. These challenges with unsupervised anomaly detection bolster the case for
additional exploration of semi-supervised or alternative approaches.
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1 Introduction

While many searches for physics beyond the Standard Model have been carried out at the
Large Hadron Collider, new physics remains elusive. This may be due to a lack of new
physics in the data, but it could also be due to us looking in the wrong place. Trying to
design searches that are more robust to unexpected new physics has inspired a lot of work
on anomaly detection using unsupervised methods including community wide challenges
such as the LHC Olympics [1] and the Dark Machines Anomaly Score Challenge [2]. The
goal of anomaly detection is to search for events which are “different” than what is expected.
When used for anomaly detection, unsupervised methods attempt to characterize the space
of background events in some way, independent of signal. The hope is then that signal
events will stand out as being uncharacteristic.

Anomaly detection techniques can be broadly split into two categories. For some
signals, the signal events look similar to typical background events and one must exploit
information about the expected probability distribution of the background to find the
signal. Many anomaly detection techniques have been developed to find signals of this
type [1, 3–24]. Alternatively, some signals are qualitatively different from prototypical
background and then methods that try to characterize an individual event as anomalous
can be used [2, 25–54]. Here, we restrict to the latter type of anomaly detection, where an
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anomaly score for individual events can be determined from the background ensemble and
used for discrimination, without needing to characterize the full probability distribution
of the signal ensemble. With an effective method, events with a small score are likely to
be a part of the background, while events with a larger score are not. There are many
different ways of defining an anomaly score. Some rely on traditional high-level observables,
like mass or N -subjettiness [55], (see e.g. [7, 13, 29] which use traditional variables in
anomaly detection). Others attempt to directly learn how likely a given event or object
is using low-level information, like individual particle momenta (see e.g., ref. [50]). Some
methods that search for outliers rely on abstract representations to try to characterize the
event space, such as the latent space of an autoencoder [20, 48]. Others give the event
space itself a geometric interpretation in terms of distances [56–58]. Given the complexity
and high-dimensionality of data at the LHC, many anomaly detection techniques employ
machine learning.

In this paper, we begin by exploring the use of autoencoders for anomaly detection on
individual fat jets within events. Autoencoders were initially introduced for dimensionality
reduction, similar to principal component analysis, to learn the important information
in data while ignoring insignificant information and noise [59]. Autoencoders contain an
encoder, which reduces the dimensionality of the input to give some latent representation,
and a decoder, which transforms the latent space back to the original space. In particle
physics, autoencoders were first used for anomaly detection in refs. [26–28], where they are
meant to reconstruct certain types of data (background) but not others (signals). In order
to work as an anomaly detector, an autoencoder should have a small reconstruction error
for background events and a large reconstruction error for signal events. To do so, the
autoencoder must establish a delicate balance in achieving a reconstruction fidelity which
is accurate, but not too accurate. There are several cases where training a network with
adequate discriminating power is especially difficult, such as when the signal looks very
similar to the background, when the dataset has certain topological properties [18], or when
innate characteristics of the samples make the signal sample simpler than the background
sample to reconstruct [46, 48].

A generalization of autoencoders called variational autoencoders (VAEs) were intro-
duced in ref. [60]. Unlike an ordinary autoencoder, where each input is mapped to an
arbitrary point in the latent space, in a VAE, the latent space is a probability distribution
which is sampled and mapped back to the original space by the decoder. In addition to
the usual reconstruction error, the VAE loss also includes a Kullback-Leibler (KL) diver-
gence component that pushes the latent space towards a Gaussian prior and regularizes
network training. The latent space of the VAE encodes the probability distribution of
the background training sample, which can be used in the anomaly score. VAEs were
first used in anomaly detection in computer science in ref. [61], and first used for par-
ticle physics anomaly detection in refs. [26, 29]. They have been widely studied since
then [20, 37, 41–43, 48, 53, 54, 62, 63].

The task of an autoencoder, variational or not, for unsupervised anomaly detection
is to provide a strong universal signal/background discriminant for a variety of signals
having access only to background for training. In principle, this approach is advantageous
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because it opens the possibility to bypass Monte Carlo simulations and work directly with
experimental data, which is almost completely background.1 The autoencoder paradigm
is based on the vision that there is trade-off between efficacy and generality: the ideal
discriminant for a given signal and given background would be ineffective for a different
signal and different background while a general discriminant, like the autoencoder, would
work decently on a broad class of signals and backgrounds. The ideal assumes, first, that
such a general discriminant exists with an appropriate use case, and second that it can be
found by training purely on one or more background samples without any direct information
about the signal. However, one has reason to be suspicious: machine learning methods work
great at optimizing a given loss, which is meant to correlate strongly with the problem one
is trying to solve. For autoencoder anomaly detection, the optimization (background only)
is not aligned with the ultimate problem of interest (signal discovery over background), so
it should not be surprising if the autoencoder does poorly. In section 4, we explore the
challenges induced by trying to optimize a VAE in a model agnostic way.

In order to understand what a VAE is learning, we study its latent space. In particular,
we look at the distance between events in VAE latent space (see [48, 64] for other studies of
VAE latent spaces in particle physics). Since we can think of the VAE anomaly score as a
“distance” encoding how far any given event is from the background distribution, it is also
natural to ask about the distances between individual events. We find there is a significant
correlation between the Euclidean distance between events represented in the VAE latent
space and the Wasserstein optimal transport distance between events represented as im-
ages. We study Wasserstein distances in particular because they were physically motivated
in refs. [56–58].

The correlation we observe between distances in the VAE latent space and between the
event images motivates us to explore using optimal transport distances between events to
define an anomaly score in section 5. One method for using distances directly is to identify
representative events in the background sample, and use an event-to-event distance between
a given event and the representative event as the score. The advantages of this method
we propose are that it does not require training a neural network and that it is easily
adaptable to different background samples.

This paper is organized as follows. In section 2, we provide information about the
dataset used in our study. In section 3, we provide relevant background information on
the metrics used (section 3.1), and the details of the VAE architecture (section 3.2). In
section 4, we explore the effectiveness of an image based convolutional autoencoder for
anomaly detection, including its sensitivity to hyperparameters. We also explore correla-
tions between Euclidean distances in the autoencoder’s latent space and optimal-transport
distances among the event images in section 4.2. This motivates the development of meth-
ods that directly use the optimal transport distances among events as an alternative to
VAEs in section 5. We conclude in section 6.

1Of course, in the realistic situation where the training is performed on data, there could be signal events
contaminating the background sample. Nevertheless, a number of studies have demonstrated that this has
little effect on the autoencoder performance (e.g., refs. [27, 28]). We will ignore this complication when we
refer to “background only” samples in what follows.

– 3 –



J
H
E
P
0
3
(
2
0
2
2
)
0
6
6

2 Datasets

We begin by describing the datasets we use for our analysis. For concreteness, we focus on
anomaly detection in simulated jet events at the LHC. We will consider QCD dijet events
as the background, and consider both top and W jets as representatives of anomalous
signal events. Although in practice anomaly detection techniques would not be used for
top and W jets since there are dedicated experimental searches for these objects, these jets
provide a simple benchmark for studying unsupervised methods. The authors of ref. [37]
have provided a suite of jets for Standard Model and beyond the Standard Model parti-
cle resonances which are available on Zenodo [65]. A sample of QCD dijet background
events are also provided on Zenodo using the same selection criteria, showering, and de-
tector simulation parameters [66]. The datasets were generated with MadGraph [67] and
Pythia8 [68] and used Delphes [69] for fast detector simulation. Jets were clustered
using FastJet [70, 71] using the anti-kT algorithm [72] with a cone size of R = 1.0. The
event selection requires two hard jets, with leading jet having pT > 450GeV and the sub-
leading jet having pT > 200GeV. The QCD jets are created using the pp → jj process
in MadGraph, while the top and W jets we examine are produced through a Z ′ which
decays to tt̄ or a W ′ which decays to a W and invisibly decaying Z. Samples are available
in ref. [65] for a variety of top and W masses, but we use only those with the SM values.
There are around 600,000 QCD dijet events and 100,000 events for the “anomalous” top
and W events. We reserve 100,000 QCD events for testing and use 50,000 QCD events for
validation when training the VAE.

The leading jet in each event is used for the analysis. We pre-process the raw four-
vectors into an image following the procedure presented in ref. [73]. Using the Ener-
gyFlow package [74], we boost and rotate the jet along the beam direction so that the pT
weighted centroid is located at (η, φ) = (0, 0). Next, the jet is rotated about the centroid
such that the pT weighted major principal axis is vertical. After this, the jet is flipped along
both the horizontal and vertical axes so that the maximum intensity is in the upper right
quadrant. Only after the centering, rotations, and flipping do we pixelate the data [73].
We use 40 × 40 pixel images covering a range of ∆η = ∆φ = 3.2. The final step of the
pre-processing is to divide by the total pT in the image. Note that we do not standardize
each pixel by, e.g., subtracting the mean and dividing by the standard deviation for the
entire training dataset, because optimal transport requires positive values in every pixel.
It is important to note that the individual images are very sparse and do not resemble the
average of the dataset. For instance, out of the 1600 pixels, only 10.4± 5.3, 13.5± 4.3, and
10.1± 3.3 pixels account for more than 1% of the total pT of the image for the QCD, top,
and W jets, respectively.

3 Defining the anomaly score

Anomaly detection, in general, requires an anomaly score: we want to determine if an
event is anomalous by measuring how far away it is from a typical background event. This
anomaly score can also be thought of as the “distance” between an event and an ensemble.

– 4 –



J
H
E
P
0
3
(
2
0
2
2
)
0
6
6

In order to define an event-to-ensemble distance it is helpful first to explore event-to-event
distance measures. For instance, given an event-to-event metric, one could compute the
distance from an event to some fiducial background event, and use this as a proxy for
the event-to-ensemble distance. To understand both types of distances, we need to review
the metrics used to define the distance, which we will do in section 3.1. We can also use
an autoencoder to generate an implicit construction of an approximate event-to-ensemble
distance, in the form of an anomaly score. We will provide background and discuss the
architecture of our autoencoder in section 3.2.

3.1 Metrics

First, we define the metrics that can be used to compute event-to-event distances. One of
the simplest event representations is to treat an event as an image, with pixel intensities
representing the particles’ transverse momentum [75].2 A simple event-to-event metric, the
“mean power error” (MPE), can then be written as:

d
(α)
MPE(I1, I2) = 1

Npixels

∑
i∈pixels

|I1,i − I2,i|α . (3.1)

where I1(2),i is the pixel intensity (transverse momentum) in pixel i of the image 1(2), and
α is a parameter that governs the relative importance of pixels with high/low intensity
differences. This type of metric is often used for doing regression. Frequently, the choice
α = 2 is made, inspired by the χ2 statistic, in which case d(2)

MPE is known as the mean-square
error (MSE). The mean-absolute error (MAE) is another well-known choice, corresponding
to α = 1.

While d(α)
MPE makes sense in regression, using it on images does not make much sense

from a physics point of view.3 For instance, let I1 be the image of a particle with energy E
in a single pixel and I2 be the image of a particle with same energy E in the neighboring
pixel. These events are nearly identical physically, but will have a very large MSE distance.
Moreover, we will still get the same MSE distance if we move one of the two pixels much
further way. Physically similar events do not necessarily result in small MSE distances.

A completely different way to assign distance between two events is to compute the
minimum “effort” needed to transform one image into the other, known as the optimal
transport distance. There are many possible optimal transport algorithms (see ref. [76]
for a broad review). Finding the minimum effort is an optimization problem: given a cost
function cij , where i and j label elements (e.g. pixel labels) of the two events, we optimize

2In principle, it would be interesting to consider the complete set of four-vectors of the particles in an
event as a representation, rather than the pixelated image, and define a metric on these. The p-Wasserstein
distances described later in this section are well-suited for such a representation, but building an autoencoder
architecture on the full set of four-vectors is more challenging. It is also important to comment that our
image representation is dependent on its preprocessing. Although recent studies have shown that the
processing done to events before anomaly detection is inherently model dependent [46], we work with the
images as described.

3In contrast, if one designs a neural network with higher-level variables as the input data representation,
using MPE as the metric is a sensible choice.
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over the transport plan, fij . The cost can be thought of as how much work it takes to
transport a single unit of intensity a given distance, and the plan describes how much
intensity to transport and where to transport it to. In terms of the cost and plan, the total
optimal transport cost dOT is then defined as

dOT = min
f

∑
i,j

fij cij . (3.2)

In some cases, the cost function cij is itself a positive definite distance, in which case dOT
is also a distance. One example is the set of p-Wasserstein distances:

d
(p)
Wass =

(
min
f

∑
i,j

fij (cij)p
)1/p

, (3.3)

Depending on the problem, the set of fij may have to satisfy additional constraints.
We define the underlying cost cij as the Euclidean distance in the (η, φ) plane between

pixel i in image I1 and pixel j in image I2. The transport plan fij is defined by the amount
of pT that is moved from pixel i in image I1 to pixel j in image I2. The transport plan
is constrained such that the amount of pT moved from a pixel cannot be more than what
was there,

∑
j fij ≤ pT,i. Similarly the amount of pT moved into a pixel cannot exceed

the amount in that pixel in I2:
∑
i fij ≤ p′T,j . Here, we consider normalized images,

preprocessed such that the total intensity summed over all pixels is equal to unity, so that
there is no extra cost of creating or destroying pT . In mathematical language, we are
considering “balanced optimal transport”.

In particle physics applications, unbalanced optimal transport with the choice p = 1
is commonly referred to as the Energy Movers Distance (EMD) [56, 57], as it has the
interpretation of work required to rearrange an energy pattern. This interpretation makes
the EMD a natural choice for a metric on collider events. This has prompted further work
on using the EMD to define event shape observables characterizing the event isotropy [77],
which can be useful in searching for signals that are very non-QCD-like [78, 79]. Sometimes,
p > 1 has been considered [57], while the case of 0 < p < 1 has been less explored.
Intuitively, p < 1 gives more importance to smaller distances. While the EMD includes
an additional term to account for energy differences between jets, in our results, we will
restrict to balanced optimal transport, since we normalize the images.

The p-Wasserstein optimal transport metrics are more aligned with what one expects
for physical events than MPE. For example, two single-particle events where the particles
are nearby will have a much smaller p-Wasserstein distance than when they are far from
each other, in contrast to their MSE distance. We find that the 1-Wasserstein distance and
MSE have mild correlations, as shown in figure 1.

We reiterate that both d(α)
MPE and d(p)

Wass are used to compare the distance between two
images (or events). However, for anomaly detection, we want to know how far an event
is from the expected distribution. One way to do this is with an autoencoder, which we
describe next.
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Figure 1. The pairwise (event-to-event) distances between event images for different metrics. The
mean squared error (d(2)

MPE) is displayed along the x-axis and the 1-Wasserstein distance (d(1)
Wass) is

along the y-axis.

3.2 Autoencoders

A popular method for detecting anomalous data is with a neural-network autoencoder (AE).
An autoencoder works by first encoding the data in a lower-dimensional latent space, and
then decoding it back to the original higher-dimensional representation. The idea is that
data similar to the training sample will be reconstructed well, whereas data that is not
similar to the training sample may be reconstructed poorly. The reconstruction fidelity
can then be used as an anomaly score. Often the data are represented as images, and the
autoencoder uses the MSE metric (eq. (3.1) with α = 2) to compare the input image to
the reconstructed image.

In figure 2, we show an example of an autoencoder architecture that we will use, which
we implement in pytorch [80]. The encoder is made up of some number of downsampling
blocks (there are two in the figure, each marked by a dashed blue line). Each block contains
two sets of 3 × 3 convolutional layers with a depth of five filters. The stride and padding
are set to keep the image size the same and the ELU activation function [81] is applied
after each layer. After the convolutional layers, the data is downsampled through a 2× 2
average pooling layer. After the final downsampling block, the data is flattened and then
followed by a dense layer with 100 nodes and an ELU activation. Finally the network
is mapped to the latent space through another dense layer. We experiment with one,
two, and three downsampling blocks, and use a fixed latent size of 64 dimensions. Our
latent space is substantially larger than what is often used, for example ref. [28] uses a six
dimensional latent representation and ref. [27] finds the optimal size to be around 20-34
for their top-tagging data. We chose the latent space size by preforming a small scan over
latent dimension sizes [2, 4, 8, 16, 32, 64] on the “The Machine Learning Landscape of Top
Taggers” data [82] and found that the larger latent space yielded better top tagging. We
then changed to the current data set, as there are more signals to consider (i.e. the W ).
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Figure 2. Example architecture of an autoencoder, as used for this study. The autoencoder is
made of two networks, the encoder and the decoder, each with one, two, or three down(up)-sampling
blocks.

The new data uses different transverse momentum cuts, so re-optimizing would in general
be required. However, part of the point of this paper is to point out that one cannot
optimize without a signal model in mind.4

The second part of the AE is the decoder, which maps the latent space back to the
space of the input data. In our setup, the decoder is a mirror of the encoder. The first
step is a dense layer with 100 nodes and ELU activation. From here, another dense layer is

4On the other hand, as discussed below, we can view the KL-divergence (and β) as regularizing the
network. There will be a strong correlation with the optimal value of β with the size of the latent space.
So making a different selection for the latent dimension would lead to a different value of β, but would not
change the story.
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used, where the number of nodes is set to the number of pixels in the final downsampling
block. The ELU activation function is used again, and then the data is reshaped into a
square array. From here, the same number of upsampling blocks is applied as the number
of downsampling blocks. In each upsampling block, the first operation is a 2D transposed
convolution which doubles the shape of the image and contains a depth of five filters,
followed by the ELU activation. After this, two 3 × 3 convolutional layers are used with
the ELU activation with the stride and padding set to keep the image size the same. The
final convolution operation reduces the depth to one channel.

During training and inference, the input image is compared with the reconstructed
image via some choice of event-to-event metric. A common method is to use the MSE as
the loss function, with the aim of reproducing the exact image. However, it is possible to
use other metrics for the comparison. Furthermore, the metric used for training does not
need to be the same as the metric used for the anomaly score (see for instance ref. [37]).
We will refer to the difference between the input and reconstructed image as the image
distance, also known as the reconstruction error.

A variational autoencoder enhances the basic autoencoder by adding stochasticity
to the latent embedding. In a regular autoencoder, which is a deterministic function,
very dissimilar events can be placed near each other in the latent space. Distances in
the latent space of an ordinary AE therefore do not have a precise meaning. In a VAE,
the stochastic element makes the network return a distribution in the latent space for
each input event. Since the same input data can be mapped to several nearby points
in a VAE, dissimilar events cannot be placed nearby. Returning a distribution in the
latent space is therefore essential for making distances in the latent space meaningful. The
stochasticity also connects the loss to the statistics method of variational inference [60, 83],
as we summarize in appendix A (see also refs. [83, 84] for reviews). Specifically, we show
that the autoencoder estimates a lower bound on the likelihood for any given event given
the assumption that the event comes from the background distribution that the network
is trained on.

To implement the stochasticity of a VAE, our networks are trained using the standard
reparameterization trick [60, 85]. A single element of the input data now yields a distribu-
tion, and these distributions are treated as a set of D independent Gaussian distributions,
where D is the dimension of the latent space. The output of the encoder is then doubled:
instead of returning a single point in the latent space, it now outputs both the means µ
and the variances σ2 of the distribution in latent space. The loss function for the network
also has to be modified: we want the background sample to be well modeled by a set
of Gaussian distributions in latent space. This is done by introducing a Kullback-Leibler
divergence (KLD) term (see appendix A for details), which is estimated as:5

KLD = −1
2
(
1 + log σ2 − µ2 − σ2). (3.4)

5This estimation assumes Standard Normal priors for the likelihood of the latent data, as described in
appendix A. There is a great deal of ongoing research into methods to improve the likelihood estimate by
changing the latent space priors or improving the posterior approximations of the encoder [2, 48, 86, 87].
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This KLD term acts to regularize the autoencoder by pushing the means in the latent
space to zero and the variances to one. Depending on the metric used to determine the
distance between the original and reconstructed data, more or less regularization may be
needed. To account for this, we introduce another hyperparameter β, and define the loss
function as

L =
(
1− β

)
× Image distance + β ×KLD . (3.5)

We scan over β ∈
{
0, 10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3}, typically finding the best

results for small but nonzero β.
To minimize the loss given in eq. (3.5), we use the Adam optimizer [88] with the

default parameters and an initial learning rate of 10−3. The training data consists of
around 550,000 QCD dijet events, and we reserve 50,000 QCD events for an independent
validation set. After each epoch of training, the loss is evaluated on the validation set.
When the loss has not improved on the validation set for five epochs, the learning rate is
decreased by a factor of 10, with a minimum learning rate of 10−5. Training concludes
when the validation loss has not improved for 12 epochs. We then restore the weights of
the network from the epoch with the best validation loss.

4 Autoencoder results

Here we present the results of our studies of variational autoencoders. We start by studying
the metric dependence of VAE performance as anomaly detectors. Then we study the latent
space to understand what the VAE is learning.

4.1 Autoencoder performance

Now we study the performance of variational autoencoders as anomaly detectors using
different metrics. Anomaly detection with an autoencoder requires two metric choices.
First, one must choose a training metric, used for computing the image distance during
training. Next, one must choose an anomaly metric to compute an anomaly score which
determines how similar an event is to the training sample. The training metric and anomaly
metric can be the same, but do not have to be.

For the training metric, we consider MSE-type metrics d(2)
MPE and d(1)

MPE and p-Wasser-
stein metrics d(1)

Wass and d
(2)
Wass. Using a p-Wasserstein metric in the loss function to train an

autoencoder is not standard, and requires a little bit of extra engineering.6 The challenge
is that the optimal-transport metrics are not well-suited for the back-propagation part of
the training procedure of a neural network. To get around this, we used the Sinkhorn
approximation within the GeomLoss package [89]. Even with this, training was slow and
sometimes timed out after three days of training on GPU. In contrast, the MSE and MAE
networks typically completed training in around 12 hours on the same platform.

For the anomaly metric, we consider either using the full loss (including both the
training metric contribution and the KL-divergence part in the variational autoencoder),
just the MSE error between the input and output images

(
d

(2)
MPE

)
, the MAE

(
d

(1)
MPE

)
, or the

6Ref. [64] also implements a VAE trained with a p-Wasserstein metric.
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p-Wasserstein distances
(
d

(p)
Wass

)
with p = 0.5, 1.0, and 2.0. The value of each of these is

computed for the test samples for the QCD dijet events, the top-jet events, and the W -jet
events.

To evaluate performance in anomaly detection, we train the autoencoder on a QCD
background using the training metric. Then we evaluate the anomaly score using the
anomaly metric for a boosted top jet signal sample and a boosted W -jet signal sample. For
a figure of merit of performance we use the Area Under the receiver operating characteristic
Curve (AUC). We also include the signal efficiency at a cut which allows only 10% of the
QCD events to pass, which is denoted εS(εB = 0.1).

Results are shown in table 1 for the training metric choices d(2)
MPE and d

(1)
Wass and for

different numbers of downsampling blocks in the network. For each number of down sam-
plings, we trained the network with different values of the VAE parameter β, and in the
table present the results for the value of β which achieved the smallest loss on the val-
idation data. For the d(2)

MPE trained networks, the values of β which minimized the loss
were 10−7, 10−7, and 10−8, for the one, two, and three down sample block networks, re-
spectively. The d(1)

Wass trained results are in the lower part of the table and had optimal
values of β of 10−5, 10−8, and 10−7 for one, two, and three down sampling blocks, respec-
tively. The entries highlighted in blue indicate the configuration with the best AUC and
εS(εB = 0.1) for top jets andW jets across all of our considered VAE architectures, training
methods, and anomaly score methods. The top row in the table shows the results (in red)
from a supervised approach, for comparison (see appendix B for details of the supervised
algorithm).

In general, we find the networks trained with d
(2)
MPE as the training metric and using

the full loss as the anomaly metric has the best AUC. The exception is when only a single
down sample layer is used, in which case using d(1)

Wass as the anomaly metric does slightly
better for the top-jet signal than using the full loss as the anomaly metric. When d(1)

Wass is
used as the training metric, the best performance is with d(2)

MPE as the anomaly metric.
We can see at this stage the proliferation of choices one has to make when deciding

what architecture, training metric, and anomaly metric to use. Making these choices is
especially hard to do if one wants to remain model agnostic. For instance, figure 3 shows
the results of the network trained with d

(2)
MPE as the reconstruction loss. The left panel

contains the loss on the QCD validation events. Using the idea that minimizing the loss is
getting a better estimate of the probability of an event, one would expect that the network
configuration (number of down samplings and value of β) which minimizes the loss will have
learned the QCD distribution the best. However, the remaining panels show the ability of
the networks to distinguish top and W jets from the QCD background in the upper and
lower panels, respectively. The middle panels display the AUC and the right panels show
the signal acceptance at a cut that allows only 10% of the QCD background events to pass.
In particular, we see that the value of β which minimizes any of the loss curves does not
yield the best signal separation. We also point out that the network with a single down
sample block has the lowest loss, but is consistently the worst anomaly detector. This
figure also highlights the danger of using the metrics of a particular signal to chose the
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Signal Top jet W jet
Training Down Anomaly AUC εS(εB = 0.1) AUC εS(εB = 0.1)Metric Samplings Metric

Supervised - - 0.94 0.81 0.96 0.91

MSE

1 (β = 10−7)

Loss 0.82 0.45 0.61 0.10
MSE 0.82 0.45 0.60 0.10
MAE 0.79 0.34 0.48 0.03

Wass(0.5) 0.82 0.42 0.45 0.04
Wass(1) 0.83 0.47 0.41 0.05
Wass(2) 0.81 0.45 0.39 0.08

2 (β = 10−7)

Loss 0.83 0.48 0.65 0.14
MSE 0.83 0.48 0.65 0.14
MAE 0.80 0.37 0.53 0.04

Wass(0.5) 0.82 0.43 0.51 0.04
Wass(1) 0.82 0.44 0.51 0.04
Wass(2) 0.81 0.44 0.54 0.06

3 (β = 10−8)

Loss 0.84 0.49 0.65 0.12
MSE 0.84 0.48 0.65 0.12
MAE 0.81 0.39 0.53 0.04

Wass(0.5) 0.83 0.46 0.52 0.04
Wass(1) 0.84 0.51 0.52 0.05
Wass(2) 0.82 0.51 0.54 0.08

Wass(1)

1 (β = 10−5)

Loss 0.78 0.35 0.44 0.04
MSE 0.71 0.23 0.57 0.12
MAE 0.72 0.20 0.49 0.03

Wass(0.5) 0.75 0.26 0.47 0.03
Wass(1) 0.78 0.35 0.44 0.04
Wass(2) 0.76 0.37 0.39 0.05

2 (β = 10−8)

Loss 0.79 0.37 0.46 0.04
MSE 0.76 0.33 0.61 0.15
MAE 0.75 0.26 0.52 0.04

Wass(0.5) 0.77 0.31 0.49 0.03
Wass(1) 0.79 0.37 0.46 0.04
Wass(2) 0.77 0.38 0.40 0.06

3 (β = 10−7)

Loss 0.79 0.36 0.41 0.03
MSE 0.79 0.38 0.60 0.13
MAE 0.77 0.31 0.51 0.03

Wass(0.5) 0.79 0.33 0.47 0.03
Wass(1) 0.79 0.36 0.41 0.03
Wass(2) 0.7 0.32 0.36 0.06

Table 1. Results showing the ability of a VAE trained on QCD only samples to distinguish top
and W jets from QCD jets. The Training Metric column shows which distance metric is used in
the loss function for training, and the Anomaly Metric column shows the distance metric used at
inference time. The bold blue entries mark the highest AUCs and signal efficiencies overall. We
indicate the p-Wasserstein distance metric as Wass(p), and the MPE with power α = 1, 2 by MAE
and MSE, respectively. The number in parenthesis in the Down Sampling column denotes the value
of β which yields the lowest total loss on the validation set for the given number of down samplings.
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Figure 3. Results from scanning over β. The value of β which minimizes the validation loss does
not yield the highest AUCs or signal acceptence for fixed background rejection for either the top
or W samples. If one were to use one of the signal samples to chose the value of β, it can lead to
worse results on the other signal.

hyperparameters of a universal anomaly detector. Examining only performance on the top
jets, it would be tempting to pick the three down sample networks with a value of β = 10−9,
as this gives the best AUC and signal acceptance for the fixed background rejection for
the tops. However, these particular networks have poor score for the W jets. This is
the challenge of signal independent searches; without a signal model in mind, optimizing
analysis strategies is hard to do in a principled manner.

The network trained with d
(2)
MPE with a small KL divergence term yields the best

anomaly detection performance. Therefore, we expect that it is learning a good repre-
sentation of the underlying background distribution. We next explore this hypothesis by
examining event-to-event distances among different metrics.

4.2 What has the VAE learned?

In order for a variational autoencoder to be able to judge the likelihood of an event given
the assumption that it came from the set of training data, it must have a representation of
the probability distribution of events in the training sample. Moreover, since it first maps
events to a lower-dimensional latent space, the information about the relative likelihood
should be encoded in the latent space in some way. It would make sense if the network
places similar events nearby in the latent space, and dissimilar events far apart. In this
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Figure 4. Each panel shows correlations between pair-wise distances of events in the QCD test
set. The y-axis always denotes the d(1)

Wass distance. The x-axis denotes the Euclidean distance in the
latent space. The representation learned by the network is more correlated with the d(1)

Wass distances
than the MSE distances (see figure 1). The latent space distances were computed from networks
trained with an MSE loss function, with two downsampling steps.

section we attempt to quantify if this is indeed true by comparing to the more physical
Wasserstein distance.

Since each input is mapped to a (Gaussian) distribution in the latent space, we use the
Euclidean distance between the means of these distributions, which is a simple measure
of the distance in the latent space.7 In figure 4, we show the correlations between the
Euclidean latent space distance and the 1-Wasserstein event distance among all the ∼ 106

pairings of 1000 events in the QCD test set for various values of the VAE parameter β.
For this study, the events are passed through the encoder part of a VAE with three down
sampling layers, down to a 64 dimensional latent space where the Euclidean distance is
computed. As the value of β is increased, the network goes from having little regularization
to being forced to approach a Gaussian. Correspondingly, the correlation initially grows
as the structure is forced upon the latent representation, and then decreases as β becomes
so large that the regularization dominates and the distribution becomes nearly Gaussian.
We observe similar results for the networks with one and two downsampling layers that
are trained with d(2)

MPE in the loss function. In this figure, the value of β which gives the
minimum loss corresponds to the β with maximum correlation, but we do not find this trend
to hold in general. It seems that the VAE with an intermediate value of β that balances the
d

(2)
MPE and KLD terms in the loss function creates a latent space where distances between

events are correlated with the d(1)
Wass distance in the image space.

The downsampling operations are critical to the production of the latent space. As
they combine information from neighboring pixels, they introduce an element of scale which
MPE would not exhibit. To verify the importance of downsampling, we show in figure 5
the pair-wise event distance correlations for the same network at different depths into the
encoder. In the first panel, distances on the x-axis are computed in the first downsampling

7One could also try to take into account the variance of the distributions, by e.g., taking the KL
divergence between the two distributions.
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Figure 5. Correlations of the pair-wise event distance in the image space with the interior activa-
tions of the network after different numbers of downsampling blocks.
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Figure 6. Correlations of the pair-wise event distance in the image space with the interior activa-
tions of the network after different numbers of down sample blocks. This is the same network as
in figure 5, but now the image distances use a different power of p. The correlation is higher with
p = 0.5 than p = 1.

block, where the events are represented as 20× 20× 5 tensors and the d(2)
MPE goes across all

2000 “pixels” (see figure 2). The correlation between the distance in this first downsampling
layer and the Wasserstein distance of the events is much larger than the MSE distance
between the original events. The correlation further increases from the first down sample
block to the second. The correlation then decreases after a third downsampling. Then,
when the information is further reduced to the latent space, we get smaller correlations
than seen in the early stages of the network.

Although the EMD metric is a p-Wasserstein metric with p = 1, there is no clear
reason why p = 1 should be preferred to other values. So, next we consider p = 0.5. In
figure 6, we show the correlations for the same network with three down sampling layers
but now using d(0.5)

Wass distances along the y-axis. The distances between events at different
layers in the network are ∼ 5% more correlated with d(0.5)

Wass than d(1)
Wass.

In this section, we have explored the representation of the QCD event distribution that
variational autoencoders learn. Our conclusion from this study is that the Euclidean dis-
tances between QCD events in the latent space are highly correlated with the p-Wasserstein
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distances between the events themselves. This is particularly compelling because the VAE
is trained with the MSE metric for its loss function and has no direct access to any p-
Wasserstein metric. A related question is how the correlations would look if a p-Wasserstein
metric were used for training. In that case, we find that the Euclidean distances between
events in the latent space of the Wasserstein trained networks are even more correlated
with the Wasserstein distances in the image space. Thus, it could be argued that the
Wasserstein trained networks learn an even better representation of the QCD distribution
than the MSE trained networks. However, the VAE with MSE training worked better for
finding the top- andW -jet signals than those trained with a Wasserstein loss. The fact that
the method with the “best” latent representation does not yield the best signal separation
highlights the challenges of model agnostic anomaly detection.

5 Event-to-ensemble distance

In the previous section we showed that VAEs tend to work better when MSE loss is used
for training than when Wasserstein metrics are used for training and that the Euclidean
distance in the latent space correlates strongly with the Wasserstein metric on the data,
regardless of the metric used for training. If the power of the VAE for anomaly detection
in physical problems stems from it implicitly learning aspects of the p-Wasserstein metrics,
we can then ask if there may be a way to use these metrics more directly for anomaly
detection, sidestepping the VAE entirely. One way to do this is to use the metric to
compute an event-to-ensemble distance, as we explore in this section.

We would like to use the p-Wasserstein distance, or another metric, to characterize the
distance of an event to the background ensemble. There are already several options for
using Wasserstein distances to characterize different types of events in the literature, such
as k nearest neighbor (kNN) classifiers [56], “linearized” optimal transport [58], where all
the events are compared to a single reference event and this is used to define a new distance,
and event isotropy, which compares a given event to an isotropic configuration [77]. Our
goal, using a method like these, is to extract from the background ensemble one or more
representative images and to compute the distance of a given signal or background event
to those images. This direct event-to-ensemble distance measure can then be compared to
the VAE anomaly score, which is also effectively an event-to-ensemble distance.

To compute the direct event-to-ensemble distance we need an algorithm to select or
construct fiducial events from the ensemble and a metric with which to compute the dis-
tance. As with the VAE architecture, there may be no choice that is optimal for all signals.
In choosing the fiducial events, we must decide which sample to choose events from, how to
select those events, how many events to use, how to represent the fiducial events (e.g. as im-
ages), and how to combine the distances to the different events. To make a fair comparison
to the VAE approach, we would like our algorithm for generating fiducial events to depend
only on the background sample, independent of what anomalous signal we might search
for. Thus we choose the QCD jet event ensemble as our reference sample. To select events
from the sample, the simplest possibility is to arbitrarily select some number of random
images. However, despite occasionally giving a large AUC for classification, results with
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random images are very sensitive to fluctuations between the random images. A second
possibility that may seem sensible is to take the average of all events in the sample. A
third option, which we find to be the most natural, is to use k medoids as we now explain.

With a given metric, which we call the medoid metric, we can compute the pairwise
distance d(xi, xj) between any two events in the ensemble. Then for each event x we
can sum over all the distances to all other events d(x) =

∑
j d(x, xj). The medoid of the

ensemble is the event x that minimizes d(x). k medoids generalizes this to finding the k
events for which the sum of the distances of each event to the closest of the k medoids is
minimized. Thus the event fragments into a set of clusters, with each cluster closest to one
of the k medoids. k-medoids clustering is similar to k-means clustering when the medoid
metric is chosen to be the Euclidean metric, except that k-medoid clustering actually
requires the medoid to be one of the events in the set. Medoids have previously been
explored in other contexts in refs. [56, 57, 90, 91]. To use k medoids, we need to choose
a value for k and a medoid metric. Then it is natural to take for the event-to-ensemble
distance the distance of an event to its closest medoid. Although one could in principle
use a different metric to compute the event-to-ensemble distance, it is also most natural to
use the same medoid metric that determines the medoids.

Choosing the number of medoids k is challenging to do in a signal independent way.
One approach is the elbow method, a common heuristic for determining how many clusters
are in a dataset. In our case, to use the elbow method we scan over the number k of medoids,
and for each k compute the distances of all the events in our sample to the nearest medoid
and histogram the results. There will be a small number of events very close to a medoid
and a small number very far from all medoids, so the histograms will have a peak at some
finite value of the distance. Moreover, the distance to the peak will decrease monotonically
as the number of medoids increases. In many applications the decrease is rapid for small k,
but at some k this behavior abruptly slows down. Thus the peak distance as a function of
k often has an elbow shape. To determine the elbow location algorithmically we perform a
linear regression to an elbow function (two straight lines), and take the first integer value
after the elbow as the suggested value of k. The result can be seen in figure 7. The idea
behind the elbow method is that increasing k past the location of the elbow should not
give much improvement. Moreover, in the case of anomaly detection, if we have too many
medoids, we can get one medoid that looks “signal-like” rather than “background-like”. We
find that typically k ∼ 2− 4 medoids is selected according to this elbow method.

The main advantage of the elbow method is that it can be automated and used in-
dependent of the sample or the use case. However, there often is not a clear elbow. In
figure 7, the elbow is only apparent because we have fit to a piecewise linear function. The
data seems to follow more of a power law behavior. In addition, the location of the elbow
can be affected by the maximum number of medoids we include in the fit. Additionally, the
elbow can only be computed once we’ve already made the arbitrary choice of the medoid
metric, and of the metric being used for the comparison between the full sample and the
reference sample. Finally, there is no reason to expect that the elbow choice of k, which is
determined only by the background sample, would be optimal for anomaly detection tasks.
Thus, we also consider values of k not determined by the elbow method for this study.
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Figure 7. Example of the elbow method. Left shows histograms of the 1-Wasserstein distance to
the closest medoid, with colors corresponding to the number of medoids. Right plots the peak of
each of these histograms, as a function of the number of medoids.

The top of table 2 shows results for top-jet vs. QCD-jet discrimination and W -jet vs.
QCD-jet discrimination when QCD jets are used for the reference sample. We show results
for different values of k with medoids, using different medoid metrics. We also show the
result from using the distance to a single composite average event determined by averaging
each pixel intensity over all events in the reference sample. For each case, we include both
the AUC and the signal efficiency at a cut which allows only 10% of the QCD events to pass.
When we study the elbow for the most common 1-Wasserstein metric, we see reasonable
performance for both QCD and top jets, though it is best for neither of them. This is in
line with what we expect for unsupervised anomaly detection. For simplicity, we report
results where the metric used to select the medoids is the same one used to compute our
observable. We could have chosen two different metrics for the medoid metric and that
used to compute the event-to-ensemble distance, but restricting to the case where they
are the same does not qualitatively change our results. Table 2 shows that the number of
medoids and the choice of metric matters substantially.

We find that the QCD medoids typically perform better than the average QCD jet.
This is not surprising, since the average QCD jet is much more concentrated in the center of
the image than any real QCD jet, as can be seen in figure 8. In this figure, the color shows
the fraction of the total pT in each pixel on a logarithmic scale. We also find better perfor-
mance for anomaly detection with 5–6 medoids, rather than the 2–4 medoids suggested by
the elbow method. When detecting top jets with QCD reference images, we get the best
results when the p-Wasserstein metric with p = 1 is used to compare images, though we
also find reasonable performance for the p-Wasserstein metric with p = 0.5 or p = 2 (not
shown in the table) and when the MAE metric is used. Although MAE is not a physically
motivated metric, the performance in this case is not surprising because MAE between
events is highly correlated with p-Wasserstein distances between events for QCD jets (the
Pearson correlation coefficient between MAE and the 1-Wasserstein distance is 0.87).

– 18 –



J
H
E
P
0
3
(
2
0
2
2
)
0
6
6

Top jet W jet
Reference
Sample

Metric Number of
medoids

Method AUC εS(εB = 0.1) AUC εS(εB = 0.1)

Supervised - - - 0.94 0.81 0.96 0.91

QCD
Reference

Wass(1)

- Avg 0.81 0.33 0.62 0.02
1 Medoid 0.83 0.28 0.63 0.02
3 (elbow) Medoids (min) 0.85 0.43 0.67 0.04
5 Medoids (min) 0.87 0.54 0.60 0.05
7 Medoids (min) 0.87 0.54 0.61 0.05

Wass(5)

- Avg 0.53 0.10 0.60 0.03
1 Medoid 0.62 0.21 0.36 0.03
3 Medoids (min) 0.66 0.19 0.41 0.05
4 (elbow) Medoids (min) 0.67 0.22 0.41 0.04
5 Medoids (min) 0.71 0.24 0.43 0.04

MAE

- Avg 0.83 0.47 0.71 0.08
1 Medoid 0.82 0.40 0.71 0.07
3 (elbow) Medoids (min) 0.82 0.49 0.61 0.08
5 Medoids (min) 0.83 0.48 0.67 0.08
7 Medoids (min) 0.83 0.48 0.65 0.08

Top
Reference

Wass(1)

- Avg 0.69 0.17 0.69 0.04
1 Medoid 0.58 0.20 0.79 0.31
3 (elbow) Medoids (min) 0.32 0.07 0.79 0.53
5 Medoids (min) 0.45 0.12 0.84 0.62
7 Medoids (min) 0.49 0.13 0.83 0.60

Wass(5)

- Avg 0.72 0.18 0.40 0.01
1 Medoid 0.53 0.12 0.52 0.05
2 (elbow) Medoids (min) 0.72 0.32 0.70 0.06
3 Medoids (min) 0.66 0.20 0.61 0.04
5 Medoids (min) 0.61 0.16 0.54 0.03

Wass(5)
3 (elbow) Medoids (sum) 0.66 0.27 0.66 0.06
5 Medoids (sum) 0.73 0.30 0.58 0.02
7 Medoids (sum) 0.75 0.31 0.60 0.02

MAE

- Avg 0.48 0.05 0.57 0.05
1 Medoid 0.29 0.04 0.64 0.23
3 (elbow) Medoids (min) 0.25 0.03 0.36 0.03
5 Medoids (min) 0.31 0.10 0.58 0.31

Table 2. Results for QCD vs. signal classification, with signal labeled in the top row. Top rows use
a QCD reference sample, and bottom rows use a top reference sample (assuming W events are more
“top-like” than QCD events). When there are multiple medoids, distances are combined either by
taking the minimum or the sum of the distances to the k different medoids, as denoted in the table.
Medoids are selected with the same metric as the one used to compare images. For each metric, we
note which number of medoids corresponds to the elbow. The best AUC and εS(εB = 0.1) values
for each reference sample are denoted in blue. We indicate the p-Wasserstein distance metric as
Wass(p), and the MPE with power α = 1, 2 by MAE and MSE, respectively.
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Figure 8. Images of example QCD and top events. The top row shows QCD events; the bottom row
shows top events. The left column shows the average image in each case, and the other two columns
show two medoids computed with the 1-Wasserstein metric. Note medoids are more sparse and
varied than average images, and that one of the top medoids appears “QCD-like” when we include
multiple medoids.

That our results depend on the exponent p is suggestive. For the p-Wasserstein metric
with larger p we get substantially decreased performance when comparing to QCD reference
jets. This suggests that the ideal value of p is related to the relevant scales in the problem:
a smaller value of p places comparatively larger emphasis on pixels with smaller differences.
This is consistent with results such as ref. [46], which finds better AE performance when
pixel intensities are rescaled to emphasize dim pixels. When we choose a better (smaller)
value of p, the results are also slightly less sensitive to exactly which QCD reference images
are chosen than when a larger value is chosen.

While autoencoders are often trained on a QCD background, several studies have
explored trying to train an AE on alternative samples. One example is ref. [46], which
showed that AEs perform poorly when tagging QCD jets if trained on a top jet sample.
This can be attributed to top jets being more complex than QCD jets, so that an AE
trained on top jets can also reconstruct QCD jets despite them being out of distribution
samples. While modifications can be made so that an AE trained on top jets can tag QCD
jets [46, 48], requiring sample dependent optimization defeats the point of unsupervised
anomaly detection.
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Unlike in the case of an AE, event-to-ensemble distances can be directly applied to other
reference samples, assuming an applicable metric is selected. We include in the bottom
half of table 2 results using a top-jet reference sample for concreteness and brevity, but the
method can be easily applied to other reference samples. We find that for top reference
samples, the best metric is not the same as for QCD reference samples. In contrast to the
case of the QCD reference sample, we find the p-Wasserstein metric with higher p does
better for QCD vs. top classification than that with p = 1. We suspect that top reference
samples usually prefer a large value of the exponent p because a larger power prioritizes
larger differences in pT over smaller ones, and effective classification using top reference
samples should deprioritize small pT differences, since the top reference samples are spread
out with substantial pixel-to-pixel variation. In contrast, the QCD reference sample case
has fewer populated pixels with less variation, so a smaller value of the exponent p is needed.
However, this result is signal dependent, in addition to being dependent on the background
sample: when trying to use the top reference sample to distinguish QCD vs. W -jet events,
we find using the p-Wasserstein metric with p = 1 is better than higher p. We also find
that whether the average event or minimum distance to the medoids does better depends
on the signal sample — for QCD versus top classification with a top reference sample the
average event does better than medoids (unlike the QCD reference sample case), but the
opposite is true for QCD vs. W classification. Furthermore, we find the somewhat counter
intuitive result that the sum of the distance to the medoids does better than the minimum
for top vs. QCD classification with top reference jets, which is surprising because only the
distance to the closest event is actually used when determining the medoids. For QCD vs.
top classification, using a QCD reference sample still outperforms the top reference sample,
but the opposite is true when doing QCD vs. W classification.

Our best results using the event-to-ensemble distance approach are comparable to and
even slightly exceed the performance of the VAE in the previous section, which can be
seen from comparing table 2 to table 1. This suggests that if we choose a smart, physically
motivated metric like the p-Wasserstein distance then we can use the medoid method, which
is much faster and simpler than the VAE, and avoids optimizing all the hyperparameters in
the VAE network architecture. The trade-off is that we need to put effort into optimizing
the metric and choice of k for the medoid approach. This is not surprising, since as we saw
in the previous section, distances in the VAE latent space between two separate encoded
latent representations are fairly correlated with the p-Wasserstein distance between the
original images. This equivalence is further supported by our study of the number of
downsampling layers in the previous section. Like in the case of the p-Wasserstein metrics,
locality is incorporated in the convolutional VAE on scales other than the arbitrary pixel
size due to the convolutions and down samplings.

The ease and speed of using the event-to-ensemble approach is a distinct advantage
when compared to AEs, where the architecture, normalization, and parameters all need
to be optimized. However, since the ideal metric and fiducial sample selection depend on
both the background and signal samples, the signal dependence of the event-to-ensemble
approach further suggests that there may be advantages of weakly/semi-supervised learning
as compared to unsupervised learning, and that weakly/semi-supervised methods should
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be explored further. The potential advantages of semi-supervised learning can be further
seen from the fact that the best QCD vs. W AUC values come from top reference samples,
rather than QCD reference samples.

6 Conclusions

Using an autoencoder for anomaly detection is particularly challenging, since it must be
trained well enough to reconstruct the background, but not so well that it also reconstructs
the signal. There are many details about the network configuration that need to be op-
timized, such as the network size, metric used to compare input and output images, the
definition of the anomaly score, and hyperparameters. Many of the results currently in the
literature do not sufficiently emphasize these difficulties, so we have attempted in this paper
to characterize and resolve them. To be concrete, we considered detecting boosted hadronic
top andW jets over a QCD-jet background. We considered using different metrics for train-
ing the VAE; we found that using the more physically-motivated optimal transport-based
metrics did not outperform the simpler mean-squared-error metrics, and actually performed
slightly worse. We found that the optimal values of various hyperparameters depend on
the signal that we are trying to detect and that the optimal hyperparameters for describing
the QCD sample are not necessarily those that detect anomalies the best.

In order to understand what the autoencoder has learned, we also studied the au-
toencoder latent space. The latent space provides a representation of any particular event
which can be used to study the background distribution. In order to characterize this latent
space, we computed the distance between distinct events. One way to do this is by using
the Euclidean distance between quantities in the latent space. Alternatively, if we rely on
a more physical, optimal transport based metric, we can compute the distances between
images directly. When we compared the two, we found that the event-to-event optimal
transport based distances between the background events are highly correlated with the
Euclidean distances between events in the latent space of the autoencoder. This suggests
that the autoencoder is learning some aspects of optimal transport, despite being trained
with only a mean-squared-error based loss function.

This motivated us to develop methods that use optimal transport more directly. By
choosing a representation of the QCD background distribution, such as the average QCD
image or several medoids of the set of QCD jets, we can directly compute the optimal
transport distance to this fiducial sample and use it as an anomaly score. We found
that this method is at least as effective as the autoencoder, with the added benefits of
being easier and faster to optimize, and generalizing more easily than the autoencoder
to more complicated background distributions. We also found that the best choice of
optimal transport metric depends on both the new physics signal and the qualities of the
expected background distribution. Before using this medoid method in practice, we suggest
additional studies of this method, including exploring background sculpting, testing the
effects of signal contamination when selecting a background reference sample, and studying
the correlation of this anomaly score with known observables.
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Although we have shown that the performance of variational autoencoders can be
reproduced, and improved upon, by the relatively simpler medoid method, neither approach
is very close to optimal for signal detection. To be quantitative, when trained on a QCD
sample, the best autoencoder performance we found gave an AUC of 0.65 for W detection
(see table 1). The best performance using medoids with a QCD background gave a slightly
better AUC of 0.71 (see table 2). These are both worse than the performance of a fully
supervised network which gave a nearly perfect AUC of 0.96. Somewhat surprisingly, we
found that when the medoids method was used on a top-jet background sample, it found
W jets over QCD better (AUC of 0.84) than when trained on a QCD background. This is
comparable to what a supervised network trained to find tops over QCD gives when tested
on W vs. QCD (AUC of 0.86). These observations suggest that a path forward might be
to use a semi-supervised approach [43, 92–94], where a network is trained with an example
signal in mind, and then used for anomaly detection more broadly.
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A Variational inference for autoencoders

The idea behind variational inference for anomaly detection is to estimate the true proba-
bility distribution of the background, p(x). Assuming we have an underlying latent space
of elements z, we can write p(x) as

p (x) = Ep(z)
[
p (x|z)

]
≡
∫
p (x|z) p(z) dz, (A.1)

where E denotes the expectation value, p (x|z) is the probability of x given z, and p(z) is
the prior likelihood of the latent data. We can take the latent space prior to be a set of
independent Gaussians with zero mean and unit standard deviation, zi ∼ N (0, 1), where
i runs over the dimension of the latent space. At this point p(x|z) is an unknown and
intractable distribution.

To make progress, we introduce a new tractable distribution qφ(z|x), where φ are some
parameters to be optimized over. In an autoencoder architecture, this is the encoder. We
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can then write eq. (A.1) in a more useful form:

p(x) =
∫
qφ(z|x) p(x|z)

qφ(z|x) p(z)dz = Eqφ(z|x)

[
p(x|z)p(z)
qφ(z|x)

]
. (A.2)

The log likelihood, log p(x), is then given as

log p(x) = logEqφ(z|x)

[
p(x|z)p(z)
qφ(z|x)

]
(A.3)

≥ Eqφ(z|x)

[
log
(
p(x|z)p(z)
qφ(z|x)

)]
(A.4)

= Eqφ(z|x)

[
log p(x|z)− log

(
qφ(z|x)
p(z)

)]
, (A.5)

where we have used Jensen’s inequality in the second line above. Let’s first consider the
first term in the last line in eq. (A.5). It is the expectation value of x given z when z is
sampled from qφ(z|x) (which is a distribution in z given x). This term can be interpreted
as a (negative) reconstruction error term. If we approximate p(x|z) by a decoder part of
the architecture pθ(x|z) (where θ is to be optimized over), Eqφ(z|x)(pθ(x|z)) is the usual
(negative) reconstruction error term in the loss function for an autoencoder with decoder
pθ(x|z) and encoder qφ(z|x).

The second term is by definition the Kullback-Leibler divergence (KLD) between the
distributions qφ(z|x) and p(z). Recall that p(z) ∼ N (0, 1). We take qφ(z|x) to also be a
Gaussian distribution, but with a unknown mean and standard deviation (to be fixed by
the optimization), i.e. qφ(z|x) = N (µ(x), σ2(x)). The KLD between these two distributions
is then given exactly by eq. (3.4). Using the reparameterization trick [60, 85], we can write
qφ(z|x) in terms of a standard normal:

z ∼ qφ(z|x) , z = µ(x) + σ(x)ε , ε ∼ N (0, 1) . (A.6)

Using the reparameterization trick allows for more efficient training of the network, as the
back propagation of the gradients extends to the parameters of the distribution (µ and θ)
even though a random draw from the distribution is passed to the decoder.

It’s now clear that the last line in eq. (A.5) is the negative loss for a VAE architecture.
By training the VAE, we are minimizing the loss. By the inequality in eq. (A.5), the last line
is also a lower limit for the log likelihood. The optimized VAE therefore gives a maximized
lower bound to the log likelihood, the so called Evidence LOwer Bound (ELBO). Notice
that in this discussion it is imperative to use the full VAE loss in order for it to have the
variational inference interpretation.

B Supervised results

It is well known that anomaly detection is sub-optimal for looking for any particular model;
if the signal is known before-hand, supervised classification will yield the best results. We
use a similar setup for our supervised classification as we did for the VAEs. The network
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consists of 1, 2, or 3 convolution blocks. Each block is made of two successive convolutional
layers with 5 filters with a kernel size of 3 pixels, followed by an ELU activation function.
After the convolutions, the data is down sampled with a 2 × 2 average pool operation.
Following the convolution blocks, the data is flattened to a vector and a fully connected
layer reduces the output to a single number with a sigmoid activation.

The networks are trained using 50000 events from the QCD sample and 50000 events
from either the top or W samples. Similarly, 5000 events from each dataset are used for
validation and to stop the network training when the validation loss has stopped improving.
The training minimizes the binary cross entropy. After training, the network is applied
to the test data of 5000 events in each class. We find that the network with three down
sample layers achieves the best AUCs, with a score of 0.94 for top tagging and 0.96 for W
tagging.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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