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Restricted Boltzmann machines (RBMs) have proven to be a powerful tool for learning quantum
wavefunction representations from qubit projective measurement data. Since the number of classical
parameters needed to encode a quantum wavefunction scales rapidly with the number of qubits, the
ability to learn efficient representations is of critical importance. In this paper we study magnitude-
based pruning as a way to compress the wavefunction representation in an RBM, focusing on RBMs
trained on data from the transverse-field Ising model in one dimension. We find that pruning can
reduce the total number of RBM weights, but the threshold at which the reconstruction accuracy
starts to degrade varies significantly depending on the phase of the model. In a gapped region of the
phase diagram, the RBM admits pruning over half of the weights while still accurately reproducing
relevant physical observables. At the quantum critical point however, even a small amount of pruning
can lead to significant loss of accuracy in the physical properties of the reconstructed quantum state.
Our results highlight the importance of tracking all relevant observables as their sensitivity varies
strongly with pruning. Finally, we find that sparse RBMs are trainable and discuss how a successful
sparsity pattern can be created without pruning.

I. INTRODUCTION

Pruning is a common technique employed in machine
learning (ML) with the goal of reducing the overall num-
ber of parameters in a neural network (NN) in order
to make it more memory- and compute-efficient. The
fact that pruning can substantially reduce the number
of weights without degrading the performance of a NN
has been known for decades by the ML community [1–
3]. A more recent explosion of interest in this technique
was brought about by deep learning, as deep NNs – par-
ticularly the ones that perform best – require enormous
amounts of computational resources. An efficient com-
pression of such deep NN models is of immediate con-
cern, particularly in industrial applications [4, 5]. The
most successful approach has been iterative magnitude-
based pruning post training, which eliminates the small-
est weights from a trained NN stepwise and allows the
remaining parameters to adjust by doing some training
iterations after each pruning step [6–8]. This method
can substantially reduce the computational cost of in-
ference and enable deployment of NN-based applications
in resource-constrained environments, such as mobile de-
vices [4, 9, 10]. However, pruning post training means
that the NN still must initially be trained at its full size.
A variety of recent works propose pruning based on alter-
native criteria [11–13], but to date there is no competitive
approach to pruning before training [14]. Moreover, the
principles of why pruning works in general are not un-
derstood and it is unclear what determines a successful
sparsity pattern for a given NN and learning task. For a
recent review of the current state of pruning research in
ML see Ref. [15].

As all fields involving enormous amounts of compu-
tational resources, physics would benefit from more effi-

cient NN models. In particular in quantum many-body
physics we are ultimately interested in modeling large
physical systems, and the anticipated power of ML tech-
niques lies in their ability to handle system sizes that
conventional numerical methods can not. Physics, in
turn, has the potential to advance the theoretical un-
derstanding of pruning and sparsity in NNs. Specifically,
physics problems offer a practical test bed for ML meth-
ods because their datasets are well characterized. For
instance, in case of a quantum many-body problem, the
knowledge of the Hamiltonian allows us to describe the
entire state space, to generate input data using numerical
simulations, and to derive relevant characteristics of the
underlying probability distribution. This opens up more
ways to evaluate the learning procedure and the obtained
predictions, and thus to gain insights into the processes
of NN learning and pruning.

In this paper, we investigate pruning based on the
problem of quantum state reconstruction with restricted
Boltzmann machines (RBMs) [16]. The reconstruction of
a quantum many-body state from data is one of the most
important applications in physics requiring NNs with as
few parameters as possible. In the simplest case of a
quantum state prepared on a number of qubits, the task
involves learning the probability distribution underlying
a set of projective measurements as given by the Born
rule. This is most immediately accomplished by a gener-
ative model [17], whose parameters are trained to maxi-
mize the likelihood that it accurately represents the data
distribution. The success of pruning in the discriminative
setting opens up the possibility that a similar strategy
might work in the generative setting.

We choose to work with RBMs [18] that are among
the simplest and oldest generative models in ML. RBMs
have become familiar to condensed matter and quan-
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tum information physicists due to their foundations in
the Ising model of statistical mechanics. Despite their
relative simplicity, RBMs have a high representational
capacity; combined with efficient training heuristics, this
makes RBMs compelling candidates for data-driven state
reconstructions [19]. Several works in quantum physics
have demonstrated the use of RBMs for both data-driven
wavefunction reconstruction [20, 21] and as a variational
ansatz, where parameters are optimized with knowledge
of the Hamiltonian [22]. Furthermore, RBMs have proven
particularly effective in reconstructing quantum states in
experimental devices where shot budgets may be low [23].

The full connectivity of the RBM provides an upper
bound on the entanglement that it can represent in a
physical wavefunction [24]. This upper bound – corre-
sponding to the “volume law” scaling of entanglement
entropy – is sufficiently expressive to capture the entan-
glement behavior of any known class of quantum many-
body states. However, ground states of local Hamilto-
nians are expected to obey sub-volume-law scaling [25],
which raises the question whether RBMs with sparser
connectivity can be found that would lead to more effi-
cient reconstruction schemes.

In this paper, we study the effects of pruning an RBM
trained on data from a prototypical quantum many-body
wavefunction – the groundstate of the one-dimensional
transverse-field Ising model (TFIM),

H = −J
∑
〈ij〉

σzi σ
z
j + h

∑
i

σxi . (1)

Here, σi is the Pauli operator representing a qubit on
site i of the one-dimensional lattice with open bound-
ary conditions. As described in detail below, for various
system sizes and transverse field strengths h/J , we use
the Density Matrix Renormalization Group (DMRG) al-
gorithm [26–29] to produce samples of the ground state
wavefunction in the σz basis. Then, we train RBMs us-
ing the Qucumber software package [30] and subsequently
apply pruning, with the goal of determining how the ac-
curacy of reconstruction of the RBM wavefunction is af-
fected. In addition to the standard loss function, the
Kullback–Leibler (KL) divergence, we examine the ef-
fect of pruning on a number of relevant physical prop-
erties, namely the fidelity, energy, order parameter and
two-point correlation function.

II. METHODS AND OBSERVABLES

When used as a generative model, a standard RBM
can be easily trained on projective measurements of the
groundstate of Eq. (1) [20, 31], which is stoquastic in the
σz basis [32]. This fact also ensures that the wavefunction
can be fully represented by the marginal distribution of
the RBM according to the Born rule

ψ(σ) =
√
pλ(σ). (2)

FIG. 1. Top: The graphs of a trained RBM before (upper)
and after (lower) pruning. Lines represent weights, line thick-
ness corresponds to weight magnitude and color indicates the
sign (red for +, blue for −). Bottom: The procedure of train-
ing and iterative pruning with finetuning.

The RBMs that we use in this paper to reconstruct
the groundstate of Eq. (1) are standard and described in
detail in [30]. The RBM probability distribution corre-
sponding to the wavefunction is encoded in real param-
eters λ, which include weights and biases. The weights
mediate correlations in the wavefunction by connecting
the visible variables (the qubit states) with the hidden
variables. For a fixed number of visible units N , the ex-
pressivity of the RBM is modified by varying the number
of hidden units Nh, which is usually treated as a hyper-
parameter and fixed at the beginning of training. Based
on a previous study [31], we use the ratio Nh = N/2 in
our numerical calculations below.

A. Pruning and Sparsity

The idea of pruning comes naturally when we exam-
ine the weights in a trained RBM. For instance, Figure 1
illustrates the graph of a fully trained RBM used to re-
construct the groundstate of a 10-qubit TFIM, before
and after the pruning procedure (described more below).
It is apparent that after training only a small number
of weights have large magnitudes and all other weights
are much smaller in comparison. This suggests that
the small-magnitude weights might be insignificant, and
could thus be set to zero (“pruned”) without affecting
model performance. As a result of the pruning proce-
dure, the RBM graph becomes more sparsely connected
and the corresponding RBM still performs adequately ac-
cording to some metrics. However, as we show in detail
in Section III A, pruning impacts various physical quali-
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ties in different proportions.
The standard method of pruning and fine-tuning pro-

ceeds by eliminating the weights of a dense RBM af-
ter training is complete. An interesting question to ask
is whether an RBM that is sparse already at initial-
ization can be trained to achieve the same results as
a dense RBM. A recent work in ML [33] has shown
that this is possible for fully-connected feed-forward NNs.
Specifically, if the sparsity pattern obtained by iterative
magnitude-based pruning is applied to the NN with all
non-pruned weights reset to their initial values, the re-
sulting sparse NN can be trained to achieve the same or
even better performance as the original dense one. A
multitude of follow-up works explore this research direc-
tion (see the recent review article [15] for a list of ref-
erences). However, how to find a method to obtain a
working sparsity pattern for a NN without first train-
ing the dense NN remains an open research question.
Most importantly, it is not yet understood why NNs are
amenable to pruning post training, but do not perform as
well if they have less parameters from the start. A com-
mon hypothesis is that NN overparametrization – that
is, the superfluous weights – is required for successful op-
timization, while the final optimized NN model involves
only a fraction of all weights. We investigate the perfor-
mance of RBMs that are sparse at initialization time in
Section III B.

B. Training metrics and physical estimators

We train our RBMs using the standard contrastive di-
vergence (CD) algorithm [34]. This training procedure
is implicitly minimizing the KL divergence between the
target distribution q estimated from the dataset and the
RBM distribution pλ:

DKL(q‖pλ) =
∑
σ

q(σ) ln
q(σ)

pλ(σ)
. (3)

In general, we cannot expect to reach a KL divergence of
zero, yet any target threshold we set for the KL would
be arbitrary, because the KL is not calibrated and un-
bounded from above. Therefore, in addition to the KL
divergence, we introduce and track error measures for
various physical observables.

The KL divergence measures the discrepancy between
the RBM-learned and the target distribution. Similarly,
the fidelity measures the agreement between the recon-
structed state and the exact wavefunction. For pure
states, the fidelity is given by

F (ψλ,Ψ) = |〈ψλ|Ψ〉|2 . (4)

For smaller systems (up to N = 18 qubits), we compute
the KL and fidelity explicitly. However, the computa-
tion cost scales exponentially with the system size, as
it requires summing over the entire state space. There-
fore, in order to evaluate the quality of the learned RBM

distribution for larger systems, we have to rely on other
physical observables.

Two characteristic observables for spin systems are the
energy E = 〈H〉 and the magnetization along the z-axis,
defined as

m =
1

N

N∑
i

σzi , (5)

which serves as the order parameter. Since the train-
ing set comprises simulated configurations of a finite-size
system, it is Z2 symmetric – that is, each configuration
v and its counterpart −v appear in approximately equal
proportions. Consequently, positive and negative contri-
butions to 〈m〉 would cancel out. We therefore compute
both 〈m〉 and the Z2-invariant quantity 〈|m|〉. As sug-
gested in [31], we measure the relative observable error
(ROE) for the energy and the absolute magnetization,
defined as

ROE = max

∣∣∣∣ODMRG − ŌRBM

ODMRG

∣∣∣∣ . (6)

Here, ODMRG is the expectation value for a general ob-
servable O calculated via DMRG, which we consider as
exact. The RBM estimator is ŌRBM with a statistical er-
ror correction calculated as ŌRBM = 〈O〉RBM ± cω/

√
n,

where n is the number of samples, ω is the standard devi-
ation, and c = 2.576 is a constant corresponding to 99%
confidence interval. We shall use the short-form nota-
tion “eROE” and “mROE” for energy and magnetization
ROE, respectively.

The two-point correlation function is another impor-
tant observable. In particular the functional form of its
decay with increasing spin distance is a distinctive feature
of a physical phase. In the groundstate phase diagram
of the TFIM, one expects algebraic decay at the quan-
tum critical point (QCP) and exponential decay in the
gapped phases away from criticality. We compute

C(di,j) = 〈σzi σzj 〉 − 〈σzi 〉〈σzj 〉, (7)

where dij is the distance between the sites i and j. To
summarize the deviation between the two-point correla-
tion function computed on spin configurations sampled
from the RBM and the one computed on DMRG training
data in a single scalar quantity, we use the mean squared
error

CMSE =
N∑
j=ī

C(dī,j) . (8)

Here, ī = N/2 is the lattice midpoint and the sum ex-
tends over all spin distances from 0 to N/2, as we are
working with open boundary conditions.

III. RESULTS

In this section we present numerical results for our
study of RBM pruning. The dataset we use for train-
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FIG. 2. The behavior of various model quality measures as a function of iterative pruning for an RBM of size 18 × 9, trained
at the quantum critical point at h/J = 1 (left), or in the paramagnetic regime at h/J = 2 (right). Grey dashed vertical line at
85% indicates the point where the RBM graph becomes disconnected.

ing the RBM was obtained using DMRG [28, 31]. It
is composed of projective qubit measurements in the σz

basis for the groundstate wavefunctions of Eq. (1). We
focus on two points of the phase diagram: the quantum
critical point (QCP) at h/J = 1 and inside the paramag-
netic (PM) phase at h/J = 2. We train RBMs for a fixed
number of epochs, ensuring that all observables have fully
equilibrated. All expectation values are computed on 105

configurations drawn from a trained RBM.

A. Pruning Dense RBMs

We train a dense (fully connected) RBM and apply it-
erative magnitude-based pruning and fine-tuning, mean-
ing that weights are removed in steps and the model is
trained for several more epochs after each pruning step
(see Fig. 1). Note that we prune only the weights, not
the biases. Starting from the trained model, we remove
10% of all non-pruned weights in each step – for details
see Appendix, Section IV A.

In the following, we present most of our results for a
system of size N = 18, since this is the maximal size
for which the computation of KL divergence and state
fidelity is feasible. For larger systems, we compute the
eROE, mROE and the 2-point correlation functions, and
find no qualitative difference to the smaller system. Fur-
thermore, we examine the correlations between KL di-
vergence and the alternate physical error measures of the
last section, and generally find that all measures are pos-
itively correlated with KL. However, the correlation is
different for each measure, and it varies strongly depend-
ing on the stage of training or pruning. Further details,
including more discussion on training, can be found in
section IV B in the Appendix.

Figure 2 demonstrates how the various quantities that
measure model quality evolve in the course of prun-
ing. While convergence to the equilibrated values oc-
curs within the first 500 training epochs for all observ-
ables (the training part is not shown in the figure), their
degradation in response to pruning varies and is strongly

dependent on the physical phase. The RBM trained to
model the groundstate in the PM regime does not show
increase in any of the error measures until about 75%
of weights have been removed. In contrast, the model
trained at the QCP allows us to remove only about 25%
of the weights and further pruning incurs significant dam-
age.

The order parameter is the most pruning-sensitive ob-
servable. At the QCP, mROE increases already at the
first pruning iteration (albeit only weakly), indicating
that pruning has an immediate effect on the order and the
correlations between the spins. We take a closer look at
the order parameter, defined in Eq. (5), in Figure 3: The
training set has 〈|m|〉 ≈ 0.5, indicating the presence of a
preferred spin alignment direction within configurations,
and 〈m〉 ≈ 0, meaning that the two alignment direc-
tions are equally frequent. This is confirmed by the his-
togram of m for the individual configurations (right panel
of Figure 3), which is symmetric around zero and shows
a double-peak structure with maxima at m = ±0.75, but
also a significant proportion at m = 0. We compute
the occurrence ratio for a configuration v and its Z2-
symmetric counterpart −v in the training set and find
0.98± 0.19, indicating that the training set is mostly Z2-
symmetric, as mentioned in the previous section. The
sample set drawn from the trained RBM resembles the
properties of the training set closely. However, in the
course of pruning, the double-peak structure morphs into
an increasingly pronounced single peak at m = 0. This
change indicates that pruning induces loss of correlations
between spins. In case when spins in the chain are com-
pletely independent, the two possible spin orientations,
+1 and −1, become equally likely for every spin, yielding
an expected value of zero for each σzi and consequently
also for m. In Figure 4 we observe this effect more di-
rectly: As a consequence of pruning, the functional form
of the two-point correlation function changes from alge-
braic to exponential decay.

These results align with our intuition that the physical
system is most complex at the QCP, where the correla-
tion length spans the entire system. We therefore expect
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FIG. 3. Magnetization expectation values 〈m〉 and 〈|m|〉 (left), and histogram of the m values for each configuration in a
sample of 105 configurations (right) at the QCP. The numbers on the x-axis in the left plot and in the legend on the right
indicate the fraction of weights pruned. The training set, labeled as “DMRG”, serves as reference.

that more parameters are required to model a system at
a QCP. In contrast, correlations decay exponentially in
the disordered PM phase, thus the model can be simpler
and many weights in the RBM are superfluous.

Note the effect of system size in Figure 4: In larger
models, a larger percentage of weights has to be pruned
in order to induce the same degree of damage to the
correlation function. The reason for why larger RBMs
seem more robust is of combinatorial nature: The mini-
mal number of edges required to keep a bipartite graph
connected is one less than the total number of nodes.
This means that at any given percentage of weights re-
maining, the graph of the smaller RBM is more likely to
be disconnected than the graph of the larger RBM.

B. Training Sparse RBMs

Having observed that a trained RBM can be pruned
to some extent without a significant loss in accuracy, we
investigate whether an RBM that is sparse already at
initialization can be trained to achieve the same results
as a dense RBM. In order to investigate this question in
the context of RBMs applied to reconstructing our quan-
tum wavefunction, we conduct two types of experiments
with modified RBM weight matrices: In type 1, we ap-
ply a sparsity mask obtained by pruning to an RBM with
weights reset to (a) their original initialization values, or
(b) other initial values (i.e., different random seed is used
when drawing the initial weight values). In type 2, we
construct the sparsity mask according to ad-hoc rules
that we derive based on regularities that we observe in
the weight matrix of trained RBMs (i.e. its cluster struc-
ture). Namely, for our Nh = 2N models, we observe that
for each hidden unit, there is one cluster of three weights
with significantly larger magnitude than the rest. The
resulting rules are:

1. Each hidden unit must be connected to a cluster
of X ≥ 3 adjacent visible units. The value of X is
chosen according to the desired sparsity level.

2. The RBM graph must remain connected.

We analyze the importance of the cluster structure for
model performance and its relationship with the weight
values at initialization in a series of ablation experi-
ments. Our most important observations are the follow-
ing. Firstly, gradually breaking up the cluster structure
of the pruning mask while maintaining the number of
weights constant leads to a gradual decrease in model
performance. Furthermore, when we prune the weights
that would form clusters in the final model at initializa-
tion, the model can still be trained successfully and its
final weight matrix will have clusters in other positions.
Based on these observations we conclude:

• The cluster structure of the RBM weight matrix
is crucial for proper functionality of the generative
model.

• The position of the clusters is not fully predeter-
mined by the weights’ initialization values.

The latter fact also aligns with the observation that the
sparsity pattern obtained for an RBM initialized with
some random seed works reasonably well for RBMs with
other initialization seeds.

In Figure 5 we present the results of training sparse
RBMs with different kinds of sparsity mask in compari-
son to dense RBM and pruned RBM. We consider both
h/J = 1 and 2, and choose a moderate value of sparsity
– the sparse RBMs have about 40% weights removed.
In each of the tested cases we find that a sparse RBM is
trainable and the quality of the resulting model is compa-
rable with the RBM that was trained dense and pruned
post training. However, the differences can be substantial
and do depend on the phase. In both regimes, the RBM
with same-seed sparsity mask (sp/ss) shows faster con-
vergence to its minimum errors. This fact is interesting
from the optimization perspective – intuitively, it indi-
cates that removing unnecessary weights from the start
allows the algorithm to traverse the optimization trajec-
tory and reach the optimum faster. In the PM phase,
the sp/ss RBM attains the smallest error values, out-
performing even the dense RBM. At the QCP, all sparse
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FIG. 4. Spin-spin correlation function versus the distance between lattice sites, as measured from the middle of the spin chain,
for different system sizes (left: 18; middle: 50; right: 100 spins). The color bar indicates the fraction of weights pruned. The
training set baseline is shown as a thick gray line, which is mostly covered by the first plotted RBM-sample data (dark blue).

RBM variants do not outperform the pruned RBM, albeit
the performance of the sp/ss RBM is close. A notable
difference between the two regimes is that the worst-
performing sparsity types are different: In the PM phase,
it is sp/os, while at the QCP it is the sc type. This result
indicates that the ad-hoc rules for constructing cluster-
based sparsity masks might be missing some constraint
for the QCP regime.

IV. DISCUSSION

In this paper, we have examined the effects of prun-
ing on a restricted Boltzmann machine (RBM) trained
to represent a quantum wavefunction based on simulated
projective measurement data from the groundstate of the
transverse-field Ising model in one dimension. We have
observed that the effect of pruning varies drastically de-
pending on the physical phase that the system is in. For
RBMs trained to represent the groundstate in the param-
agnetic (PM) phase, up to 50% of weights can be pruned
without significant loss of accuracy in the physical prop-
erties of the reconstructed state. In contrast, for RBMs
trained on data at the quantum critical point (QCP),
even a relatively small amount of pruning can have ad-
verse effects on the model accuracy. This result is intu-
itive, as at the QCP the state of the physical system is
highly entangled and is characterized by long-range spin-
spin correlations, while the PM phase the correlations
decay rapidly. Therefore, we expect that the probability
distribution that corresponds to the PM phase can be
encoded in a simpler and less expressive function, and
thus many weights in the dense RBM are superfluous.
An interesting question to pursue is whether this result
has consequences beyond quantum critical systems, as
much of the data from the natural world used to train
neural networks in industry displays signatures of similar
power-law decay [35].

Furthermore, our experiments demonstrate that prun-
ing has disparate effects on various model quality mea-
sures. Specifically, we have found that among all physi-
cal observables energy is least sensitive to pruning. More

precisely, a pruned RBM can generate samples that have
a reasonably accurate energy, while spin order and cor-
relations show strong deviations from the ground truth.
Thus, for our learning task, energy should not serve as
a measure for model quality when pruning is applied.
In general, our result demonstrates that it is important
to monitor all relevant model quality measures instead
of relying on a single observable. This is rather easy
to accomplish when modeling a physical system, as the
relevant physical observables are well-defined, but much
harder for non-physical learning tasks, such as classifica-
tion of natural images, where apart from the empirical
test error no other measure of model quality is readily
available. The risk of pruning in such settings is that
it might be introducing unnoticed instabilities into the
model while keeping the standard test accuracy intact.
Such instabilities could then be exploited by adversaries
or lead to biased outputs, undermining the reliability of
the NN-based application. Indeed, in ML context it is
known that pruning significantly reduces robustness to
image corruptions and adversarial attacks [36] [37, 38].
Furthermore, it has been found that model performance
is disproportionally impacted for classes of images that
are generally more challenging to learn, which presents a
concern for the fairness of AI algorithms [39, 40].

Finally, our study highlights the differences between
pruning a fully-connected RBM before and after train-
ing. In the latter case, we observe that masks found by
magnitude-based pruning of a dense RBM can be applied
a posteriori to produce a sparser weight matrix; however,
the accuracy of the resulting trained model can depend
significantly on initial conditions for the weights. In the
former case, we find that pruning masks defined through
ad-hoc rules that take into account spatial locality and
applied a priori often give poor accuracy. These observa-
tions suggest that pruning could be a viable strategy to
reduce the computational resources required by RBMs
used in other contexts, for example in the variational
setting [41]. However, significant further investigation
would be required to devise pruning masks that could
be applied to RBMs before training. This can be con-
trasted to Tensor Networks, where efficient wavefunction
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FIG. 5. Training curves for various sparse RBMs with approximately 60% weights being nonzero and the dense RBM for
comparison. Top row h/J = 1, bottom row h/J = 2. Legend abbreviations: dense: standard RBM, no weights removed;
pruned: trained dense and pruned post training for 5 iterations with fine-tuning; sp: trained sparse, sparsity pattern obtained
by pruning of another model with same seed (ss) or other seed (os); sc: trained sparse, sparsity pattern obtained by construction.

ansatze are constructed a priori based on assumptions
of low entanglement [42]. Thus, we hope that our study
will motivate future investigations of pruning strategies
for RBMs and other generative models with applications
both in quantum physics and to other natural phenom-
ena.
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APPENDIX

A. Pruning schedule

In this study, we chose to prune 10% of the weights
in the RBM at every iteration. In Table I we provide a
list of the pruning iterations and the respective percent-
age of weights remaining in the RBM. We have tested
alternative pruning schedules, where we prune a larger
percentage of weights in the first iteration (between 10%
and 40%) and a smaller percentage in the following iter-
ations (5%). Experiments with these schedules have not
revealed any qualitative difference.

pruning iteration weights remaining

0 100.0 %
1 90.0 %
2 81.0 %
3 72.9 %
4 65.6 %
5 59.0 %
6 53.1 %
7 47.8 %
8 43.0 %
9 38.7 %
10 34.9 %
11 31.4 %
12 28.2 %
13 25.4 %
14 22.9 %
15 20.6 %
16 18.5 %
17 16.7 %
18 15.0 %

TABLE I. Percentage weights left in the RBM at a given
pruning iteration. The RBM graph becomes necessarily dis-
connected at the 18th pruning iteration when less than 26
weights (16.05%) are left.

B. Comparison of error measures

In this study we have defined a number of model qual-
ity measures based on physical observables that we have
used additionally to the standard KL divergence. One
reason for introducing these error measures is that here
we are concerned with learning a model for a physical
system; it is therefore an essential requirement to ensure
that the physical observables are correct. Another reason
is that the computation of the KL divergence is not fea-

sible for large systems, and thus we have to rely on other
quality measures, as discussed in Section III. While the
CD training procedure by construction minimizes the KL
divergence, the physical observables are not optimized
for. In Figure 6 we present evidence that our physical
measures are indeed correlated with the KL divergence.
Note, however, the distinct behavior: mROE and the
MSE of the 2-point correlation function CMSE are signif-
icantly more sensitive to pruning than KL, while eROE
is less sensitive. These differences demonstrate the ne-
cessity of tracking all relevant physical observables when
pruning an RBM to ensure that the model remains cor-
rect.
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FIG. 6. Correlation between physical error measures and the
KL divergence during training and pruning, up to the 18th
pruning iteration (where the RBM graph necessarily becomes
disconnected). Training phase is indicated by blue markers,
pruning phase by a color gradient from purple to yellow.
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